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FRANK-OSEEN TYPE SOLUTIONS WITH ORBITS AND VORTICES

AXEL OSSES(1,2) AND NICOLÁS A. BARNAFI(1)

Abstract. We establish some exact and approximate analytical solutions of the Frank-
Oseen equations under the one-constant hypothesis of the nematic theory of liquid crystals
in two and three dimensions. In 2-d, we find a family of homogeneous solutions (or weakly
harmonic map solutions) with infinite oscillations of type sin(log(r/R)) where r is the
distance from the origin in a centered disk D of radius R. These solutions do not belong
to the standard energy space H1(D) but to a weaker Sobolev space W 1,p(D) with p < 2.
In 3-d, we build analytic approximate solutions in a cylinder and in a sphere, in the sense
that they satisfy the Frank-Oseen equations up to a source term that decays as 1/rγ at
some rate γ > 0, where r is the cylindrical or spherical radius respectively. While the
2-d solutions have singularities of type log(r), the 3-d solutions exhibit singularities of
type log(r) or 1/r in the cylindrical of spherical coordinate examples respectively. All
the 3-d solutions present vortices in the vertical axis. The fact that all the solutions both
in 2-d and 3-d have infinite energy, motivated us to introduce p-nematic Frank-Oseen
equations for p ≤ 2. Many of the solutions encountered in this paper were motivated
from the geometry of protoplanetary disks orbits and vortices observed in astrophysical
data observations and models, even if the rigorous connection is not yet completely clear.

1. Introduction

The nematic liquid crystal theory studies the structure of the principal directions of
the molecules of a liquid crystal, which is an intermediate state between a solid and a
liquid [12]. Although this theory is typically used for studying electronic devices [4], other
unconventional applications of ths theory have been established, such as proto-planet for-
mation [21] and more recently the orientation of cardiac fibers, both experimentally [2] and
mathematically [7]. Out work was motivated by the discovery of higher energy solutions
of the Frank-Oseen equations on rings, computed in [7, Sec. 2.2.3].

The simplest case of the Frank-Oseen equations of nematic liquid crystals [17] consists
in finding a spatial distribution of unit vectors that are critical points of a certain global
energy. The following is the simplest case of the Frank-Oseen theory under the one-constant
hypothesis of lyquid crystal theory [19].
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2 FRANK-OSEEN TYPE SOLUTIONS WITH ORBITS AND VORTICES

Definition 1. Given a regular domain Ω in RN , N = 2, 3, we say that d is a 2-nematic
field if it is a critical point of the functional

(1) min
s.t.|d|=1

1

2

∫
D
|∇d|2 −

∫
D
f · d,

where f ∈ L2(Ω) is a given force and the solution is subject to the unit modulus constraint.
That is, d is a unitary field solution of the following non linear system

∆d+ 2λ2(d)d = −f, d · d = 1, in D,

λ2(d) :=
1

2

(
|∇d|2 − f · d

)
,(2)

where λ2 the point-wise energy potential. If f = 0 we say that the 2-nematic field is
homogeneous, non-homogeneous otherwise and conservative if f · d = 0 with total energy
E2(Ω) =

∫
Ω λ2 in the latter case. If the solution of (2) is in H1(Ω) we say this is a finite

energy solution and an infinite energy solution otherwise.

The subscript 2 makes emphasis on the presence of the L2-norm for the gradient in (1),
and will be instrumental for the definition of p-nematic liquid crystals in Section 5. In the
classical theory [9], we can consider f ∈ L2(Ω)N and seek for solution of (1) or (2) with
finite energy d ∈ H1(D)N , but we will build solutions that do not belongs to H1(D)N in
a neighborhood of the origin.

There are other more complete theories for nematic crystals such as the Ericksen [15],
the Landau–De Gennes theories [13, 6, 5], and the Ginzburg-Landau theory of supercon-
ductors [18, 8].

Some of the solutions encountered in this paper were motivated from the geometry of
the formation of planets and the distribution of their orbits, not only in our solar system
but also in other planetary systems, geometries that exhibit orbits and vortices [3, 14].
This is part of the branch of Astronomy and Astrophysics that studies the dynamics of
protoplanetary disks. We can think of a flat disk containing a fluid that rotates with an
angular velocity and that under the action of gravity and magnetic fields is dragging matter
until it accumulates in certain orbits. Even if the rigorous connection with minimization
of energies of type (1) or equations of type (2) is not yet completely clear, there are some
similarities with solutions obtained by perturbation analysis of a non-linear fluid accretion
model in [21].

The shape and structure of these disks where planets are forming can be observed and
studied with radio telescopes. Numerical simulations can also be performed from the
equations of magneto-hydrodynamics [3] where after multiple spins we arrive to structures
similar to those observed in radio-astronomy. The problem of fit of planet orbits, auto-
similar and quantified solutions appears also in the context of the scale relativity theory
[20].

There is also a recent connection between nematic theory and the distribution of the
orientation of muscular cardiac fibers, both from the theoretical, numerical [7] and the
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experimental point of view [2], where Frank-Oseen models naturally appears in the pres-
ence of external forces in the case of a single ventricle [7]. Again, the rigorous link with
minimization of energies of type (1) is not yet completely clear.

Motivated from geometries from these applied fields, we build novel solutions of (2) that
have infinite energy [10]. The solutions are exact in two dimensions (i.e. with f = 0) and
approximate in the three dimensional case (i.e. with f 6= 0 but with a certain radial power
decay from the origin). We focus only on the cases where the domain D is either a disk, a
cylinder, and a sphere.

The rest of the paper is organized as follows. In Section 2 we compute analytic solutions
on a disk. In Section 3 we extend the disk solutions to a cylinder. This formulation gives
rise to a non-homogeneous problem, so we show three types of solutions where we try to
maximize the power decay of the external force. In Section 4 we perform a similar study
but for the case of a spherical domain. In Section 5 we define p-nematic liquid crystals for
p ≤ 2 and establish connections with the standard p = 2 model. Finally, we discuss our
results in Section 6.

2. Exact solutions in a two-dimensional disk

Let us consider a disk of radius R centered at the origin of coordinates which we will
represent in polar coordinates (r, θ) given by D = {|r| ≤ R}. Problem (2) can be rewritten
as the solution of the following nonlinear Frank-Oseen equation: find a unit vector field d
such that:

(3) ∆d+ λd = drr +
1

r
dr +

1

r2
dθθ + 2λ2d = 0 in D,

where

(4) λ2 =
1

2
|∇d|2 =

1

2

(
|dr|2 +

1

r2
|dθ|2

)
.

We will look for solutions of this equation with boundary conditions on the boundary ∂D
of D, yet to be defined. As we show later, we will not worry about possible singularities
at r = 0—that is, we can obtain infinite energy solutions—because we can always remove
a small neighborhood of the origin.

Henceforth it will be useful for us to use the rotation matrix at an angle α and two
related matrices:

(5) Qα =

[
cosα sinα
− sinα cosα

]
, I = Q0 =

[
1 0
0 1

]
, I⊥ = Qπ/2 =

[
0 1
−1 0

]
,

which satisfy the following properties: dQ
dα = I⊥Q, and I⊥I⊥ = −I. These properties will

be used extensively throughout this work.
In two dimensions, we will look for a solution with a rotating boundary condition

(6) ê(nθ) =

[
− sinnθ
cosnθ

]
if r = R,
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so we propose the following solution ansatz :

(7) d(r, θ) = Qα(r)ê(nθ),

where α(r) is a function to be determined. Leveraging the properties of the rotation matrix,
we readily see that

dr = α′I⊥d, drr = (−|α′|2I + α′′I⊥)d,

dθ = −nI⊥d, dθθ = −n2d,(8)

which in (3) yields

(9) −|α′|2I + α′′I⊥ +
α′

r
I⊥ − n2

r2
I + 2λI = 0, λ2 =

1

2

(
|α′|2 +

n2

r2

)
.

We highlight that the components of I cancel out. By canceling also the components of
I⊥ and using the boundary condition we obtainα′′ +

α′

r
= 0 r ∈ (0, R),

α(R) = 0,

from where we obtain the general solution for α:

(10) α = c1 log(r/R), λ2 =
c2

1 + n2

2r2
,

where c1 is an arbitrary constant. Finally, we established the following result.

Theorem 2. For each n ≥ 1, there exist a family of solutions of the Frank-Oseen equation:

(11)


∆d+ |∇d|2d = 0 in D,

d · d = 1 in D,

d = ê(nθ) on ∂D.

in the disk D = {(r, θ), |r| ≤ R} where ê was defined in (6), given by the unitary field:

(12) d(r, θ) = Qc1 log(r/R) ê(nθ)

and where c1 ∈ R is an arbitrary constant and Qα is a rotation matrix defined in (5).

See Figures 1 and 2 for a graphical representation of the family of solutions (12) of
Theorem 2. We note that the solutions exhibits for n = 1 alternate attractive and repulsive
orbits in rings with exponentially growing separation, for n ≥ 2 the attractors are spirals.

Remark 3. It is easy to verify that the solutions (12) are self-similar with respect to the
origin. Indeed, if d(r, θ) is the solution given by (12) then dk(r

′, θ′) = d(r, θ) for r′ = r/ak,
θ′ = θ and ak = R exp 2kπ

c1
are also solutions of the same equations (2) with the same

boundary conditions for r′ = 1.
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Figure 1. Vector field and trajectories of the 2D disk solutions of Theorem
2 for n = 1 with R = 1 and c1 = 3.84π.

Figure 2. Trajectories of the 2D disk solutions of Theorem 2 for n = 1,
n = 2 and n = 5 with R = 1 and c1 = 3.84π.

Remark 4. The family of solutions (12) present a singularity of type log(r) at the origin.
This means that the solution is in L2(D) but not in H1(D). We note that this singularity
can be removed simply by considering the equation in a ring D\Dε with Dε = {ε ≤ |r| ≤ R}.
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In this ring, it is not difficult to check that the energy of the solution using (10) is given by

E2(D \Dε) =

∫ 2π

0

∫ R

ε
λ2(r, θ)r drdθ = π(c2

1 + n2) log(R/ε),

so we see that the H1-norm of the solution tends to infinity as ε→ 0. We note that if we
fix n = 1 and c1 = 0, we recover a minimal energy solution. For other values of c1 and n,
the solutions are critical points of the energy functional (1) (with f = 0) with higher energy
levels. See Section 5 for a more detailed discussion about the energy of the solutions.

3. Approximate solutions in a cylinder

In this section, we extend the solutions obtained in a disk to the case of a cylinder. For
this we will consider the cylinder in cylindrical coordinates:

C = {(r, θ, z) | 0 ≤ r ≤ R, 0 ≤ θ < 2π, 0 ≤ z ≤ H}.

The Frank-Oseen equation in polar coordinates is written as searching for a unitary field
d such that:

(13) drr +
1

r
dr +

1

r2
dθθ + dzz + 2λ2d = −f in C,

with some right hand side f such that f · d = 0, where

(14) λ2 =
1

2

(
|dr|2 +

1

r2
|dθ|2 + |dz|2

)
.

We define

(15) ê(a, b) =

 − sin a cos b
cos a cos b
− sin b

 , ê⊥(a, b) =

 sin a sin b
− cos a sin b
− cos b

 .
Notice that ê · ê⊥ = 0 and |ê| = 1, |ê⊥| = 1. We also introduce the rotation matrices in the
xy plane of the form
(16)

Qα =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , I12 =

 1 0 0
0 1 0
0 0 0

 , I⊥12 =

 0 1 0
−1 0 0
0 0 0

 , I3 =

 0 0 0
0 0 0
0 0 1

 ,
and I the usual identity matrix in R3. As before, we will make use of the following
properties: QαQ

t
α = I, I12I

⊥
12 = 0, I⊥12I

⊥
12 = −I12. Additionally, Qα and I⊥12 conmute. For

the cylinder case, we consider a solution ansatz of the form

d(r, θ, z) = Qα(r)ê(nθ, β(ξ)),

where we will further consider three types of solution. One with a height rotation ξ = z
and two with an elevation rotation ξ = z/r. The difference between the last two will reside
in the treatment of the forcing term.
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3.1. Cylindrical case 1. In this subsection, we look for solutions of the form

d(r, θ, z) = Qα(r)ê (nθ, β(z)) ,

where α(r) and β(z) are functions to determine, with α(R) = 0 and β(0) = 0 as suggested
by the boundary conditions. The partial derivatives are given as follows:

dr = α′I⊥12d, drr = (−|α′|2I12 + α′′I⊥12)d,

dθ = −nI⊥12d, dθθ = −n2I12d,

dz = β′Qαê
⊥, dzz = −|β′|2d+ β′′Qαê

⊥.

By replacing them in (13) we obtain

(17)

−
(
|α′|2 +

n2

r2

)
I12d− |β′|2d+

(
α′′ +

α′

r

)
I⊥12d+ β′′Qαê

⊥ + 2λ2d = −f1,

λ2 =
1

2

(
cos2 β

(
|α′|2 +

n2

r2

)
+ |β′|2

)
,

f1 = g1Qαê
⊥, g1(r, z) =

(
|α′|2 +

n2

r2

)
sinβ cosβ,

where f1 comes from the terms that do not vanish on the left hand side and can be rewritten
as:

f1 =

(
|α′|2 +

n2

r2

)
(sin2 βI12 − cos2 βI3)d = sinβ cosβ

(
|α′|2 +

n2

r2

)
Qαê

⊥.

Notice that d, I⊥12d and Qαê
⊥ are mutually orthogonal since I⊥12d · d = 0,

Qαê
⊥ · d = Qαê

⊥ ·Qαê = êtQtαQαê
⊥ = ê · ê⊥ = 0,

and

I⊥12d ·Qαê⊥ = I⊥12Qαê ·Qαê⊥ = QtαI
⊥
12Qαê · ê⊥ = QtαQαI

⊥
12ê · ê⊥ = I⊥12ê · ê⊥ = 0.

This implies in particular that f1 · d = 0. Equating the components of I⊥12 and Qαe
⊥ on

the left hand side to zero, we obtain

(18)


rα′′ + α′ = 0 r ∈ (0, R),

β′′ = 0 z ∈ (0, Z),

β(0) = 0,

α(R) = 0,

from which it follows that

(19) α = c1 log(r/R), β(z) = c2z,

for arbitrary real constants c1 and c2. We have thus obtained the following result.
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Theorem 5. For each n ≥ 1, family of solutions of the non-homogeneous Frank-Oseen
equations

(20)

{
∆d+ |∇d|2d = −f1 in C,

d · d = 1 in C,

in the cylinder C = {(r, θ, z) | 0 ≤ r ≤ R, 0 ≤ θ < 2π, 0 ≤ z ≤ H} with right hand side f1

such that f1 · d = 0 and f1 of order O(1/r2), is given by

(21) d(r, θ, z) = Qc1 log(r/R)ê (nθ, c2 z)

where c1, c2 ∈ R are arbitrary constants, Qα is the rotation matrix defined in (16) and ê
was defined in (15).

3.2. Cylindrical case 2. In the previous calculations, it would be interesting to absorb f1

by solving β′′+ g1 = 0, but the solution of this equation is impossible since β only depends
on z and g1 depends on (r, z). This suggest to take β = β(z, r). We will try the case
β = β(z/r), i.e. function of the elevation angle—but other choices could be possible—,
that is, search now for a solution of type

(22) d(r, θ, z) = Qα(r)ê (nθ, β(z/r)) ,

where α(r) and β(ξ), ξ = z/r such that α(R) = 0 and β(0) = 0 are functions to determine.
The partial derivatives are now given by

dr = α′I⊥12d−
z

r2
β′Qαê

⊥,

drr = (−|α′|2I12 + α′′I⊥12)d+

(
z2

r4
β′′ + 2

z

r3
β′
)
Qαê

⊥

−z
2

r4
|β′|2d− 2z

r2
α′β′I⊥12Qαê

⊥,

dθ = −nI⊥12d, dθθ = −n2I12d,

dz =
1

r
β′Qαê

⊥, dzz = − 1

r2
|β′|2d+

1

r2
β′′Qαê

⊥.

By replacing them in (13) we obtain

(23)

−
(
|α′|2 +

n2

r2

)
I12d−

1

r2

(
1 +

z2

r2

)
|β′|2d

+

(
α′′ +

α′

r

)
I⊥12d+

1

r2

((
1 +

z2

r2

)
β′′ +

z

r
β′
)
Qαê

⊥ + 2λ2d = −f1 − f2

λ2 =
1

2

(
cos2 β

(
|α′|2 +

n2

r2

)
+

1

r2

(
1 +

z2

r2

)
|β′|2

)
f1 = g1Qαê

⊥, g1(r, z) =

(
|α′|2 +

n2

r2

)
sinβ cosβ

f2 = −2z

r2
α′β′I⊥12Qαê

⊥
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and the two terms f1 and f2 on the right hand satisfy f1 · d = f2 · d = 0. The last equality
comes from the fact that

I⊥12Qαê
⊥ · d = QαI

⊥
12ê
⊥ ·Qαê = QtαQαI

⊥
12ê
⊥ ·Qαê = I⊥12ê

⊥ · ê = 0.

Equating the components of I⊥12 and of Qαe
⊥ on the left hand side to zero, we obtain

(24)


rα′′ + α′ = 0 r ∈ (0, R),

(1 + ξ2)β′′ + ξβ′ = 0 ξ ∈ (0,∞),

α(R) = 0 ,

β(0) = 0 .

Note that the domain of ξ was computed from ξ = z/r as z → 0 and as r → 0. The
solution of (24) is given by

(25)
α = c1 log(r/R),

β = c2 sinh−1(z/r),

where sinh−1(ξ) = log
(
ξ +

√
1 + ξ2

)
. Thus, we have obtained the following result.

Theorem 6. For each n ≥ 1, there is a family of solutions of the non-homogeneus Frank-
Oseen equation

(26)

{
∆d+ |∇d|2d = −f1 − f2 in C,

d · d = 1 in C,

in the cylinder C = {(r, θ, z) | 0 ≤ r ≤ R, 0 ≤ θ < 2π, 0 ≤ z ≤ H}, with right hand side
such that f1 · d = 0, f2 · d = 0 and f1 = O(1/r2) and f2 = O(z/r3), is given by

(27) d(r, θ, z) = Qc1 log(r/R)ê
(
nθ, c2 sinh−1(z/r)

)
,

where c1, c2 ∈ R are arbitrary constants, Qα is the rotation matrix defined in (16) and ê
was defined in (15).

3.3. Cylindrical case 3. We can go further and search for a solution that absorbs f1 (but
not f2). Equating the components of I⊥12 on the left hand side to zero and the components
of Qαe

⊥ on the left hand side to g1, we obtain
rα′′ + α′ = 0 r ∈ (0, R),

(1 + ξ2)β′′ + ξβ′ +
(
r2|α′|2 + n2

)
sinβ cosβ = 0 ξ ∈ (0,∞)

α(R) = 0 ,

β(0) = 0 .

The solution of the first equation is again given by α(r) = c1 log(r/R). Therefore,

(1 + ξ2)β′′ + ξβ′ +A2 sinβ cosβ = 0, β(0) = 0,
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where A2 = c2
1 + n2. Now making the change of variables γ(v) = β(sinh v), we see that γ

solves

γ′′ +A2 sin γ cos γ = 0, γ(0) = 0,

whose solution is γ(v) = am(c2v; k2), where am is the Jacobi elliptic amplitude function
with parameter (modulus) 0 < k2 < 1 and c2 = k/A [1]. This is because the am function
satisfies the second order equation am′′(ϕ) + k2 sn(ϕ) cn(ϕ) = 0, sin(am(ϕ)) = sn(ϕ) and
cos(am(ϕ)) = cn(ϕ). From this it follows that

α = c1 log(r/R),(28)

β = am(ϕ), ϕ = c2 sinh−1(z/r), c2 =
k√

c2
1 + n2

.(29)

If we use that am′(ϕ) = dn(ϕ) then

f2 = −2c1z

r3
dn(ϕ)QαI

⊥
12ê
⊥(nθ, am(ϕ))

that satisfies f2 · d = 0 and because cn, sn and dn are bounded, we have that f2 is of order
O(z/r3). Thus we have obtained the following result.

Theorem 7. For each n ≥ 1, there is a family of solutions of the non-homogeneus Frank-
Oseen equation

(30)

{
∆d+ |∇d|2d = −f2 in C,

d · d = 1 in C,

in the cylinder C = {(r, θ, z) | 0 ≤ r ≤ R, 0 ≤ θ < 2π, 0 ≤ z ≤ H}, with right hand side f2

such that f2 · d = 0 and f2 = O(z/r3) given by

(31) d(r, θ, z) = Qc1 log(r/R)ê
(
nθ, am(c2 sinh−1(z/r); k2)

)
, c2 =

k√
c2

1 + n2
,

where c1, c2 ∈ R are arbitrary constants, Qα is the rotation matrix defined in (16), am(·; k2)
is the Jacobi amplitude of modulus k2 ∈ (0, 1) and ê was defined in (15).

Remark 8. The solutions in (31) can be easily computed using the Jacobi elliptic functions
sn and cn because ê defined in (15) satisfies

(32) ê (a, am(b)) =

 − sin a cn b
cos a cn b
− sn b

 .
Remark 9. It is natural to ask why we have not provided the computations for the fully
harmonic case in which both load vectors f1 and f2 are absorbed through the scalar functions
as in the previous cases. In fact, this is not possible, because the differential equations
obtained in such case are given by

r2α′′ + rα′ + 2ξrα′β′ tanβ = 0, α(R) = 0
(1 + ξ2)β′′ + ξβ′ +

(
r2|α′|2 + n2

)
sinβ cosβ = 0, β(0) = 0, with ξ = z/r.(33)
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Performing the changes of variables

δ(u) = α(eu), u = log(r), γ(v) = β(sinh v), v = sinh−1(ξ)

we obtain the following system of second order non linear ordinary differential equations

δ′′ + 2δ′γ′ tan γ = 0, δ(logR) = 0,
γ′′ +

(
|δ′|2 + n2

)
sin γ cos γ = 0, γ(0) = 0.(34)

We note that this implies that α the variables depend on the argument of the other variable,
which contradicts the form of the ansatz considered. Indeed, previous computations were
successful because they allowed for a decoupling of the scalar functions α and β.

Remark 10. Notice that the singularity at the origin in all the cases of this section is of
type log(r) as for the two dimensional case, but around all the vertical axis z = 0, so it
is a vortex [22]. We could also remove this singularity by considering the equations in a
perforated cylinder C \ Cε with Cε = {(r, θ, z) | |r| < ε, 0 ≤ θ < 2π, |z| ≤ H}. Otherwise,
we will see in Section 5 that these solutions are not in H1(C) but in W 1,p(C) for p < 2.

We have numerically computed the solutions of equations (20), (26), and (30), consider-
ing a symmetric cylinder with z ∈ (−H,H). The 3D plot of the streamlines obtained from
the solution is shown in Figure 3, where we highlight the presence of the orbits (n = 1)
or spirals (n ≥ 2) in the xy-plane and a vortex in the z axis for all the solutions. In-
stead, in Figure 5 we have plotted the first component of the solution in three different
settings: the mid-xy plane, its sum on the same plane and then the solution on the mid-xz
plane. Interestingly, self-similar structures are observable aloso along the xz plane (see the
third column of Figure 5). In Figure 4 we provide the observation of the structure of a
proto-planetary disk to see the similarities that motivated us to build this type of solutions.

4. Approximate solutions in a ball

Let us now consider the ball in spherical coordinates

B =
{

(r, θ, φ) | |r| ≤ R, 0 ≤ θ < 2π, −π
2
≤ φ < π

2

}
where θ is the azimuth angle and φ is the elevation angle, i.e., φ = 0 corresponds to the
mid horizontal plane. The non-homogeneous Frank-Oseen equation in spherical coordinates
given by searching for a unitary field d such that:

(35) drr +
2

r
dr +

1

r2 cos2 φ
dθθ +

1

r2 cosφ
(cosφdφ)φ + 2λ2d = −f in B

where f · d = 0 and

(36) λ2 =
1

2

(
|dr|2 +

1

r2 cos2 φ
|dθ|2 +

1

r2
|dφ|2

)
.

As in the cylinder case, we separate our cases according to the treatment of the right hand
side.
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Figure 3. Trajectories of the 3D cylindrical solutions for Theorems 5, 6
and 7 for R = 1 and H = tan(π/10). The coefficients used were n = 1,
c1 = 6π, c2 = π for the first figure; n = 1, c1 = 6π, c2 = π/2−arctan(H/R)

for the second one; n = 1, c1 = 3π, A =
√
c2

1 + n2, k = 0.87, c2 = A/k for
the third one.

Figure 4. Protoplanetary disk HH-30 with jet, Taurus. Credit C. Burrows
(STScI & ESA), the WFPC 2 Investigation Definition Team, and NASA
[11].

4.1. Spherical case 1. We will look for solutions in the form of

(37) d(r, θ, φ) = Qα(r)ê(nθ, β(φ))

where α(r) and β(φ) are functions to be determined such that α(R) = 0, β(0) = 0, that
is, the vector field rotates horizontally in the central plane xy. The partial derivatives are
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Figure 5. First component of the unitary field d from the cylinder case in
the mid xy plane (left), sum in the z axis (center) and first component in
the mid xz plane (right). The same three cases of Figure 3 are plotted in
each row correspondingly.

given by

dr = α′I⊥12d, drr = (−|α′|2I12 + α′′I⊥12)d,

dθ = −nI⊥12d, dθθ = −n2I12d,
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dφ = β′Qαê
⊥, dφφ = −|β′|2d+ β′′Qαê

⊥.

Replacing in (35) yields

(38)

−|α′|2I12d+

(
α′′ +

2α′

r

)
I⊥12d−

n2

r2 cos2 φ
I12d

−|β
′|2

r2
d+

1

r2
(β′′ − tan(φ)β′)Qαê

⊥ + 2λ2I = −f3 − f4,

λ2 =
1

2

(
cos2 β

(
|α′|2 +

n2

r2 cos2 φ

)
+

1

r2
|β′|2

)
,

f3 = g3Qαê
⊥, g3 = sinβ cosβ|α′|2, f4 = g4Qαê

⊥, g4 = sinβ cosβ
n2

r2 cos2 φ
.

Equating the components of I⊥12 and of Qαê
⊥ on the left hand side, we obtain

rα′′ + 2α′ = 0 r ∈ (0, R),

β′′ − tan(φ)β′ = 0 φ ∈
(
−π

2
,
π

2

)
,

α(R) = 0,

β(0) = 0,

from which we have that

α = c1

(
1

R
− 1

r

)
,(39)

β = c2 log

(
1 + sinφ

cosφ

)
,(40)

We have thus obtained the following result.

Theorem 11. For each n ≥ 1 there is a family of solutions of the non-homogeneous
Frank-Oseen equations

(41)

{
∆d+ |∇d|2d = −f3 − f4 in B,

d · d = 1 in B,

in the ball B =
{

(r, θ, φ) | |r| ≤ R, 0 ≤ θ < 2π, −π
2 ≤ φ <

π
2

}
with f3 · d = 0, f4 · d = 0,

f3 = O(1/r2) and f4 = O(1/r4) of the form

(42) d(r, θ, φ) = Qc1( 1
R
− 1
r )
ê

(
nθ, c2 log

(
1 + sinφ

cosφ

))
,

where c1, c2 ∈ R are arbitrary constants, Qα is the rotation matrix defined in (16) and ê
was defined in (15).

Remark 12. For the solutions (42) of the spherical case in the previous theorem, they do
not present orbits in the mid xy-plane, but only spirals.
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4.2. Spherical case 2. If we want to absorb f3 from (35) we would need to solve

(43)



rα′′ + 2α′ = 0 r ∈ (0, R),

cos2 φβ′′ − sinφ cosφβ′ + n2 sinβ cosβ = 0 φ ∈
(
−π

2
,
π

2

)
,

α(R) = 0 ,

β(0) = 0 .

The solution for α is the same as for the previous case. For β, if we define

(44) v = h(φ) = log

(
1 + sinφ

cosφ

)
with h(0) = 0, now if we make the change of variables γ(v) = β(h−1(v)) then γ′′ =
cos2 φβ′′ − sinφ cosφβ′ and γ is a solution of

(45) γ′′ + n2 sin γ cos γ = 0, γ(0) = 0.

Again, the solution is given by γ(v) = am(c2v; k2) of modulus k, where c2 = n/k. From
the previous analysis we have that

α = c1

(
1

R
− 1

r

)
,(46)

β = am

(
c2 log

(
1 + sinφ

cosφ

)
; k2

)
, c2 =

k

n
,(47)

and we obtain the following result.

Theorem 13. For each n ≥ 1 there is a family of solutions of the non-homogeneous
Frank-Oseen equations

(48)

{
∆d+ |∇d|2d = −f4 in B,

d · d = 1 in B,

in the ball B =
{

(r, θ, φ) | |r| ≤ R, 0 ≤ θ < 2π, −π
2 ≤ φ <

π
2

}
with f4 · d = 0, f4 = O(1/r4)

of the form

(49) d(r, θ, φ) = Qc1( 1
R
− 1
r )
ê

(
nθ, am

(
c2 log

(
1 + sinφ

cosφ

)
; k2

))
, c2 =

k

n
,

where c1, c2 ∈ R are arbitrary constants, Qα is the rotation matrix defined in (16), am(·; k2)
is the Jacobi amplitude of modulus k2 ∈ (0, 1) and ê was defined in (15).

Remark 14. Again, all the solutions (49) of the spherical case in the previous theorem
do not exhibit orbits in the mid xy-plane, but only spirals. See Figure 8 and compare with
Figure 2.

Remark 15. Note that the singularity of the solution at the origin in the spherical cases
are of type 1/r. There is also a singularity on the vertical axis (elevation φ = ±π/2) of
type log

(
π
2 − |φ|

)
which is a vortex [22]. This means the solutions are not in H1(B). We
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could remove these singularities on the origin and the vertical axis by considering the ball
B minus Bε = {(r, θ, φ) | |r| < ε, 0 ≤ θ < 2π, |φ| < arctan(R/ε)}.

Remark 16. All of the missing combinations of terms that can be absorbed into the left
hand side yield the same contradiction detailed in Remark 9. We omit further details.

We have numerically computed the solutions of (41) and (48), with its streamlines
shown in Figure 6, where the presence of a radial spiral instead of the logarithmic orbits
can be appreciated. In Figure 7 we plot the first component of both solutions in the xy
and xz planes. Interestingly, the solution quickly fades to the origin, which prevents the
formation of orbits. It is also possible to see the discontinuity along the ±π/2 elevations.
We conclude this by showing how the solution changes in the partially non-homogeneous
case as the angle parameter n changes in Figure 8. We stretch the analogy of liquid
crystals and protoplanets formation to show that, only anecdotically, the solutions resemble
protoplanetary jet observations, as the one shown in Figure 4.

Figure 6. Streamlines for the spherical solutions of Theorems 11 and 13
in the unit sphere given by (42) and (49) respectively. Left: n = 1, c1 = 3
and c2 = −π/2. Right: n = 1, c1 = 3, k = 0.87.

5. p-nematic fields

In the previously constructed solutions, we have obtained that they satisfy the Frank-
Oseen equations (2), but they have infinite energy in H1(Ω), where Ω is either a disk in
two dimension or a cylinder or a sphere in three dimensions. It is natural to ask if there
is a modified potential which is (i) finite and (ii) such that the solutions are critical points
(or minima). Given that the functions have been observed to belong to W 1,p(Ω), we define
a vector field to be p-nematic by the following definition.
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Figure 7. First component of the unitary field d of the same spherical
cases shown in Figure 6, first component of the solution (left), sum over z
(center) and mid xz plane (right).

Figure 8. Streamlines for spherical solutions in the spherical case of The-
orem 13 for varying values of the parameter n. From left to right n = 1, 2, 5.

Definition 17. Given a regular domain Ω ∈ RN , N = 2, 3, we say that d is a p-nematic
liquid crystal in W 1,p(Ω), if given f in the dual space of W 1,p(Ω), it is a critical point of:

(50) min
s.t.|d|=1

1

p

∫
Ω
|∇d|p −

∫
Ω
f · d

for p ≥ 1 in a certain domain Ω. That is, a unit vector field d that satisfies the generalized
Frank-Oseen equations:

∆pd+ pλp(d)d = −f, d · d = 1 in Ω,
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λp(d) :=
1

p

(
|∇d|p − |∇d|p−2f · d

)
,(51)

where

(52) ∆pd = ∇ · (|∇d|p−2∇d)

is the p−Laplacian [16]. We say that the p-nematic field is homogeneous if f = 0, non-
homogeneous otherwise and conservative if f ·d = 0 with total energy Ep(Ω) =

∫
Ω λp in the

latter case.

Notice that the case p = 2 corresponds to the 2-nematic solutions encountered in the
previous sections and introduced in Definition 1, but we recall that they had finite energy
only away from the the origin or the vertical axis. We have the following purely algebraic
relationship between the p = 2 case and the general case that will be useful in the following.

Lemma 18. Let d be a vector field in RN , then

(53) λp =
2

p
|∇d|p−2λ2,

which in the conservative case f · d = 0 reduces to

(54) λp =
2p/2

p
λ
p/2
2 ,

and the corresponding energy in the conservative case is given by

(55) Ep(Ω) =

∫
Ω
λp =

2p/2

p

∫
Ω
λ
p/2
2 .

In the following, we provide estimates of the p-energy for most of the solutions obtained
in the previous sections.

Theorem 19. The energy of the solutions of the Frank-Oseen solutions of the previous
sections are estimated by:

• Disk case: The solutions of Theorem 2 in the disk D of radius R > 0 do not
belong to H1(D) and they belong to W 1,p(D) for all 1 ≤ p < 2. More precisely, if
Dε = {(r, θ), |r| < ε, 0 ≤ θ < 2π}, then

E2(D) = +∞
E2(D \Dε) = π(c2

1 + n2) log(R/ε),

Ep(D) =
2π

p(2− p)
(c2

1 + n2)p/2R2−p.

• Cylindrical cases: The solutions of Theorems 5, 6 and 7 in the cylinder C of
radius R > 0 and height 2H > 0 do not belong to H1(C) and they belong to W 1,p(C)
for all 1 ≤ p < 2. More precisely, if Cε = {(r, θ, z), |r| < ε, 0 ≤ θ < 2π, |z| ≤ H},
then

E2(C) = +∞
E2(C \ Cε) = O (log(R/ε)) as ε→ 0,
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Ep(C) = O
(
R2−p

2− p

)
as p→ 2.

• Spherical cases: The solutions of Theorems 11 and 13 in the ball B of radius
R > 0 do not belong to H1(B) and they belong to W 1,p(B) for all 1 ≤ p < 3/2.
More precisely, if Bε,δ = {(r, θ, φ), |r| < ε, 0 ≤ θ < 2π, |φ| < π/2− δ}, then

E2(B) = +∞

E2(B \Bε,δ) = O
((

1

ε
− 1

R

)
log(1/δ)

)
as ε→ 0 and δ → 0,

Ep(B) = O
(
R3−2p

3− 2p

)
as p→ 3/2.

Proof. In the two dimensional case of a disk, it is easy to verify from (9), (10) and that

E2(D \Dε) =

∫
D\Dε

λ2 = π

∫ R

ε

[
c2

1 + n2

r2

]p/2
r dr = π(c2

1 + n2) log(R/ε)

where we see that as ε→ 0 the integral diverges to +∞ and using the previous proposition
for 1 ≤ p < 2

Ep(D) =
2p/2

p

∫
D
λ
p/2
2 =

2π

p

∫ R

0

[
c2

1 + n2

r2

]p/2
r dr =

2π

p(2− p)
(c2

1 + n2)p/2R2−p

from which we obtain the statement of the theorem for this case.
In the cylindrical case 1, using (17) and (19), we see that the energy in the cylinder C

is given by

Ep(C) =
2p/2

p

∫ 2π

0

∫ H

−H

∫ R

0
λ
p/2
2 r drdzdθ

=
2π

p

∫ H

−H

∫ R

0
| cos(c2z)|p

[
c2

1 + n2

r2
+ c2

2

]p/2
r drdz

≤ 4πH

p

(c2
1 + n2 + c2

2R
2)p/2

2− p
Rp−2.

For 1 ≤ p < 2 we have xp ≥ x2 for x ∈ [0, 1] and
∫ H
−H cos

2(c2z)dz = H (1 + sinc(2c2H)),

using also that |x|p/2 is a non decreasing function we have that

Ep(C) ≥ 2πH(1 + sinc(2c2H))

p

(c2
1 + n2)p/2

2− p
Rp−2.

In the same way, it is easy to check that

E2(C \ Cε) ≤ 2πH(c2
1 + n2 + c2R

2) log(R/ε)

and

E2(C \ Cε) ≥ πH(1 + sinc(2c2H))(c2
1 + n2) log(R/ε).
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In the cylindical case 2, from (23) and (25), the energy in the cylinder C for 1 ≤ p < 2
is given by

Ep(C) =
2π

p

∫ H

−H

∫ R

0

(
cos2(β(z/r))

[
c2

1 + n2

r2

]
+ |β′(z/r)|2

[
1

r2
+
z2

r4

])p/2
rdrdz

≤ 4πH

p

∫ R

0

(
c2

1 + n2 + 2c2
2

r2

)p/2
rdr ≤ 4πH

p(2− p)
(c2

1 + n2 + 2c2
2)p/2R2−p,

where β(ξ) = c2 sinh−1(ξ), and we used that | cos(β)| ≤ 1 and ξ(sinh−1)′(ξ) = ξ(1 +

ξ2)−1/2 ≤ 1 for ξ = z/r. It is also easy to see that since (1 + ξ2)−1/2 ≥ (1 + (H/R)2)−1/2

then

Ep(C) ≥ 4πH

p(2− p)
(1 + (R/H)2)−p/2R2−p.

In the same way, it is easy to check in this case that

E2(C \ Cε) ≤ 2πH(c2
1 + n2 + 2c2) log(R/ε)

and
E2(C \ Cε) ≥ 2πH(1 + (R/H)2)−1 log(R/ε).

For the cylindrical case 3, in which β is given this time by (28)), the analysis is analogous
to the previous one by replacing β(ξ) = am(c2 sinh−1(ξ)), because in this case β′(ξ) =

c2 dn(c2 sinh−1(ξ))(1 + ξ2)−1/2 and the Jacobi function dn is strictly positive and more

precisely has range in [
√

1− k2, 1]. We obtain thus the same upper bounds of the previous

case and the same lower bounds up to the factor
√

1− k2.
For the spherical case 1, given by (38) and (39), the energy in the ball B (since in this

case β′(φ) = c2/ cosφ) is given by

Ep(B) =
2π

p

∫ π/2

−π/2

∫ R

0

(
c2

1 cos2 β(φ)

r4
+
n2 cos2 β(φ) + c2

2

r2 cos2 φ

)p/2
r2 cosφdrdφ.

We can bound the energy from above by

Ep(B) ≤ 2π

p
max{cp1, (n

2 + cp2)p}
∫ π/2

−π/2

∫ R

0

(
1 +R2

r4 cos2 φ

)p/2
r2 cosφdrdφ,

≤ 2π

p
max{cp1, (n

2 + cp2)p}(1 +R2)p/2
∫ R

0
r2−2p dr

∫ π/2

−π/2
(cosφ)1−p dφ,

which gives that the radial integral is finite for p < 3/2, and for the angular integral for
the elevation angle φ we have∫ π/2

−π/2
(cosφ)1−p dφ = 2

∫ π/2

0
(sinψ)1−pdψ

and sinψ ≈ ψ for ψ small so the integral is finite (say a constant C3 > 0) for p < 2. Finally

Ep(B) ≤ C3
2π

p
max{cp1, (n

2 + cp2)p}(1 +R2)p/2
R3−2p

3− 2p
.
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For a lower bound, we have that

Ep(B) ≥ 2πcp1
p

∫ R

0
r2−2pdr

∫ π/2

−π/2
cos2(β(φ)) cosφdφ,

and the integral in φ is strictly positive, since its argument is non negative, continuous and
thus positive at some point φ = φ0 with −π/2 < φ0 < π/2, so we conclude by continuity
that there exists a constant C4 > 0 such that

Ep(B) ≥ C4
2πcp1
p

R3−2p

3− 2p
.

In the same way, using the same arguments as before, it is easy to check that there exist
positive constants C5 and C6 such that

E2(B \Bε,δ) ≤ C5

(
1

ε
− 1

R

)
log(1/δ)

and

E2(B \Bε,δ) ≥ C6

(
1

ε
− 1

R

)
log(1/δ).

The factor log(1/δ) comes from the fact that∫ π/2−δ

−π/2+δ
(cosφ)−1 dφ = 2

∫ π/2−δ

0
(sinψ)−1dψ = O (log(1/δ)) .

The proof for spherical case 2 given as in the precedent case by (38) but only changing the
function β by (46), is analogous to the previous one. �

One may naturally wonder if a 2-nematic solution behaves also as a p-nematic solution,
under certain circumstances. We have the following.

Theorem 20. If d is a non-homogeneous 2-nematic solution associated to f with f ·d = 0,
then d is also a p-nematic non homogeneous solution associated to f̃ defined by

(56) f̃ = |∇d|p−2f − (p− 2)|∇d|p−4∇d · [∇d : ∇2d]

with the property that f̃ · d = 0.

Proof. For this, we consider d a 2-nematic solution, and compute its p-Laplacian:

∆pd = ((dk,ldk,l)
p−2
2 di,j),j = (p− 2)(dk,ldk,l)

p−4
2 dk,ljdk,ldi,j + |∇d|p−2di,jj

= (p− 2) |∇d|p−4∇d · [∇d : ∇2d] + |∇d|p−2∆d,
= (p− 2)|∇d|p−4∇d · [∇d : ∇2d] + |∇d|p−2(−|∇d|2 + f · d)d− |∇d|p−2f

= −(|∇d|p + |∇d|p−2f · d)d− f̃ ,(57)

where f̃ was defined in (56). Also we have that

(58) f̃ · d = |∇d|p−2f · d.
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Indeed, the second term in (56) vanishes when multiplying by d as can be seen by differen-
tiating the unitary condition d · d = 1. This yields (∇d)t d = 0, that is di,jdi = 0, and then

also dk,ljdk,ldi,jdi = 0. In particular if f · d = 0 then also f̃ · d = 0. Notice that if f · d = 0

then f̃ · d = 0 so in this case λp = 1
p |∇d|

p. �

Let us see, in the case of the 2-nematic two dimensional disk solution of Theorem 2,
which is the p-nematic equation that this solution satisfies. We have the following result.

Theorem 21. The 2-nematic solutions d ∈ W 1,p(D) for 1 ≤ p < 2 of Theorem 2 defined
in the disk D = {(r, θ), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π} satisfy the non-homogeneous p− nematic
equations of Definition (17) with right hand side given by

(59) f̃(r, θ) =
c1(p− 2)2p/2−2(c2

1 + n2)p/2−1

rp/2
I⊥d(r, θ), (r, θ) ∈ D

with f̃ · d = 0, f̃ = O
(

1
rp/2

)
and f̃ ∈ Lq(D) for all q < 4

p .

Proof. In this case, the solution is homogeneous (f = 0), so by Theorem 20 we have that

f̃ = −(p− 2)|∇d|p−4∇d · [∇d : ∇2d].

Changing variables we obtain

∇x,y d =
1

r
∇r,θ d

[
r cos θ r sin θ
− sin θ cos θ

]
=

1

2
I⊥
[
c1
r d −nd

] [r cos θ r sin θ
− sin θ cos θ

]
,

and we notice the following simplification (in tensor notation):

∇d : ∇2d = dk,ldk,lj =
1

2
(dk,ldk,l)j = ∇

(
1

2
|∇d|2

)
= ∇λ2,

which allows us to compute

∇d : ∇2d = ∇λ2(x, y) =
−2

r2
λ2

[
x
y

]
.

Using that |∇d|p−4 = 2p/2−2λ
p/2−2
2 , we can finally compute the desired term:

f̃ = −(p− 2)2p/2−2λ
p/2−2
2 ·

(
−2λ2

r2

)[
x
y

]
=

(p− 2)2p/2−1

r2
λ
p/2−1
2 ∇d

[
x
y

]
=

(p− 2)2p/2−1(c2
1 + n2)p/2−1

rp/2+1
∇d
[
x
y

]
=

(p− 2)2p/2−1(c2
1 + n2)p/2−1

rp/2
∇d
[
cos θ
sin θ

]
,
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and we note that

∇d
[
cos θ
sin θ

]
=

1

2
I⊥
[
c1
r d −nd

] [r
0

]
=
c1

2
I⊥d.

This results in

f̃ =
c1(p− 2)2p/2−2(c2

1 + n2)p/2−1

rp/2
I⊥d,

which naturally yields f̃ · d = 0 and the required order. The regularity Lq-regularity of f̃
is given by ∫ R

0

(
1

rp/2

)q
rdr =

R2−pq/2

2− pq/2
where the integral is finite if q < 4/p, this complete the proof. �

6. Summary and discussion

In this work we have obtained analytical solutions of the Frank-Oseen equations that are
homogeneous or exact on a disk, and non-homogenoeus or approximate in a cylinder and
a ball. The solutions possess infinite energy in the natural H1 energy space, but they have
instead finite energy in W 1,p spaces for some p < 2. We have shown that the exponent p
is strictly smaller than 2 for the disk and cylinder cases, whereas for the sphere solution
there are cases where the energy is finite only for p < 3/2. We have additionally defined a
modification of the Frank-Oseen equations for allow infinite energy solutions as p-nematic
liquid crystals. There is an interesting algebraic connection between 2-nematic and p-
nematic liquid crystals, whose regularity properties will be addressed in future studies.
One of the main difficulties lies in the non-homogeneous loading term that arises on such
a formulation, which we have shown it depends on the second order derivatives of the
original solution. The solutions exhibit qualitative behavior with self-similar orbits or
spirals in the horizontal plane and vortices in the vertical axis. This type of singularities
naturally appear in nematic fluids. Finally, notice that some of the ansatz of the solutions
were inspired in hydrodynamics orbits and singularities observed in proto-planet formation
models. The rigorous connection between nematic fluids and these type of hydrodynamic
or magneto-hydrodynamic models has not been yet established, and it will be matter of
further research.
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