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Asymptotics of self-overlapping permutations

Sergey Kirgizov and Khaydar Nurligareev

LIB, Université de Bourgogne, France

Abstract

In this work, we study the concept of self-overlapping permutations, which is related to
the larger study of consecutive patterns in permutations. We show that this concept admits
a simple and clear geometrical meaning, and prove that a permutation can be represented as
a sequence of non-self-overlapping ones. The above structural decomposition allows us to ob-
tain equations for the corresponding generating functions, as well as the complete asymptotic
expansions for the probability that a large random permutation is (non-)self-overlapping. In
particular, we show that almost all permutations are non-self-overlapping, and that the corre-
sponding asymptotic expansion has the self-reference property: the involved coefficients count
non-self-overlapping permutations once again. We also establish complete asymptotic expan-
sions of the distributions of very tight non-self-overlapping patterns, and discuss the similarities
of the non-self-overlapping permutations to other permutation building blocks, such as inde-
composable and simple permutations, as well as their associated asymptotics.

Keywords: asymptotics, permutations, consecutive patterns, overlapping.

1 Introduction

The study of pattern-avoiding permutations is a dynamically developing area of mathematics that
has been exciting scientists since the mid-1980s. The center concept of this study is containment: a
permutation σ = σ1σ2 . . . σn contains another permutation π = π1π2 . . . πk as a pattern if there exists
a subsequence 1 ⩽ i1 < i2 < . . . < ik ⩽ n such that for all indices j and l the inequalities πj < πl

and σij < σil are equivalent. If σ does not contain π, then it is said that σ avoids π. Since the first
systematic enumeration by Simion and Schmidt [28], the interest in permutation patterns has grown
steadily, which can be explained by the presence of extensive connections with other mathematical
fields. For instance, the theorem of Marcus and Tardos [21] stating that the growth rate of every
permutation class avoiding a given pattern is singly exponential relates to words and 0–1 matrices
as well.

One of the important variations of the above study concerns the notion of consecutive patterns,
first systematically treated by Elizalde and Noy [18]. In terms of Bóna [6], we say that a permutation
σ = σ1σ2 . . . σn tightly contains a permutation π = π1π2 . . . πk if there exists an integer 0 ⩽ i ⩽ n− k
such that for all indices j and l the inequalities πj < πl and σi+j < σi+l are equivalent. A good
overview of the state of this topic for 2016 was provided by Elizalde [17]. To obtain generating
functions and distributions of tight pattern occurrences in various combinatorial objects, one can
employ the cluster method of Goulden and Jackson [19, 20, 25]. As a particular example, we would
like to cite the proofs of Elizalde–Noy and Nakamura conjectures [16].

Consecutive patterns can be thought as a restricted version of permutation patterns, where the
entries of σ that form a pattern must be in consecutive positions. It is natural to take one step further
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by forcing these entries to be consecutive themselves. Following Bóna [6], we say that a permutation
σ = σ1σ2 . . . σn very tightly contains a permutation π = π1π2 . . . πk if there exist two integers 0 ⩽
i, h ⩽ n − k such that σi+j = πj + h for all 1 ⩽ j ⩽ k. For the first time, these and more general
patterns were considered by Myers [23] who called the corresponding type of containment rigid. Myers
established distributions of non-self-overlapping patterns (see Definition 1.1). With the help of the
cluster method, her result was completed by Claesson [9] who also provided joint distributions for any
patterns of the same size. Note that Claesson called the patterns under consideration Hertzsprung.
In the following, we will use the term very tight pattern to refer to them.

Understanding the overlaps of combinatorial sub-structures is of core importance in the cluster
method. In the case of consecutive patterns, this need is reflected in the concept of non-overlapping
permutations [7], also known as minimally overlapping [14, 27]: a permutation of length k is non-
overlapping if it is not contained at the same time as a prefix and suffix in any permutation of size n
satisfying k < n < 2k − 1. In other words, if the intersecting prefix and suffix of a permutation are
isomorphic, then they represent an example of overlapping permutation. Here, we call two sequences
of distinct integers π = π1π2 . . . πk and τ = τ1τ2 . . . τk isomorphic if πi > πj ⇔ τi > τj for all possible
indices i and j. For instance, the permutation 132 is non-overlapping, but 1324 is overlapping, since
the prefix and suffix of size four of the permutation 132546 form a 1324-pattern. The counting
sequence of non-overlapping permutations starts with

1, 2, 4, 12, 48, 280, 1 864, 14 840, 132 276, 1 323 504, . . . ,

see A263867 entry in Sloane’s Encyclopedia [24].
Applying the notion of very tight containment to overlapping permutations, we come to the main

object of our interest. This is about the concept of self-overlapping permutations (called extendible
by Myers [23] and Bóna [6]), which is given by the following definition.

Definition 1.1. A permutation σ ∈ Sn is self-overlapping, if there is an integer 1 ⩽ k < n called
overlapping range such that the following three conditions hold:

1. the interval {1, . . . , k} is invariant under σ,

2. the interval {n− k + 1, . . . , n} is invariant under σ,

3. the first and last k consecutive positions of σ form isomorphic patterns.

Otherwise, we call σ non-self-overlapping. We designate by sn and nn, respectively, the numbers of
self-overlapping and non-self-overlapping permutations of size n.

Here, we use the definition given by Bóna [6]. It has a particular property: if σ = σ1σ2 . . . σn

is self-overlapping, then σ1 < σn. Sometimes this property is too restrictive, since the reverse
σ = σnσn−1 . . . σ1 behaves similarly to σ in many senses. This is why both Myers [23] and Claesson [9]
understood σ as a self-overlapping permutation as well.

From a geometric point of view, if a permutation σ ∈ Sn is self-overlapping with an overlapping
range k, then its plot possesses two congruent blocks of size k×k: one of them is located at the lower
left corner, while the other is in the upper right one. For example, the permutation σ = 214365 is
self-overlapping with overlapping ranges k = 2 and k = 4 (Figure 1).

Figure 2 illustrates all self-overlapping permutation of size n ⩽ 4. Observing these and other
examples, the reader may give a guess that a self-overlapping permutation possesses an overlapping
range of no more than half its size. In Section 2, we show that this is, indeed, the case (Lemma 2.1).
This observation gives rise to a structural decomposition of permutations into direct sums of non-
self-overlapping ones (Theorem 2.4). In its turn, the decomposition leads to relations on generating
functions (Theorem 2.5), that allows us to establish counting sequences (sn) and (nn).
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2 1 4 3 6 5 2 1 4 3 6 5

Figure 1: Overlapping blocks in the permutation 214365.
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Figure 2: Self-overlapping permutations of size at most 4.

The first few values of the sequence (sn) are

sn = 0, 1, 1, 3, 7, 31, 131, 775, 5 211, 41 315, . . .

while the complementary sequence (nn) begins with

nn = 1, 1, 5, 21, 113, 689, 4 909, 39 545, 357 669, 3 587 485, . . .

A single glance at these numbers is enough to conjecture that with high probability a typical large
permutation is non-self-overlapping. We prove this conjecture at Section 3. Moreover, we establish
a complete asymptotic expansion of the probability that a uniform random permutation is self-
overlapping (Theorem 3.1). It turns out that the coefficients involved into the expansion admit
combinatorial interpretation: they are nn again. Remarkably, this result does not need the advanced
techniques typically used to establish combinatorial meaning of asymptotic expansions [22, 26]. The
proof follows directly from the above mentioned structural decomposition, supplemented by estimates
on the asymptotic behavior of the tails.

In Section 4, we discuss very tight patterns. As we have already mentioned, for the non-self-
overlapping case, the distributions of such patterns were established by Myers [23]. Here, based on
her results, we present complete asymptotic expansions of these distributions. For the self-overlapping
case, the distributions were given by Claesson [9]. Evaluating asymptotics requires advanced methods
in this case, such as Borinsky’s approach [8], which is beyond the scope of this work. We will provide
the full result in our next paper [5].

The established asymptotics raise several questions that we discuss in Section 5.

2 Structure and enumeration

Lemma 2.1. Any self-overlapping permutation of size n admits an overlapping range of size at most
n/2.

Proof. Suppose that an overlapping range k of a self-overlapping permutation σ ∈ Sn is greater
than n/2. In this case, the lower left and upper right blocks of size k × k are congruent and have
non-empty intersection. The intersection is a (2k−n)×(2k−n) block, which is congruent to the lower
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left and upper right blocks of the same size. Therefore, σ admits overlapping range (2k − n) < k. If
(2k − n) < n/2, we are done. Otherwise, repeat the procedure until the overlapping block sizes are
less than n/2 (Figure 3).

⇝ ⇝

Figure 3: Schema for reducing an overlapping range. If overlapping blocks have a non-empty in-
tersection (gray areas on the figure), then this intersection can be slided to get smaller overlapping
blocks (blue and violet areas).

Recall that the direct sum of permutations π ∈ Sm and τ ∈ Sn is the permutation π⊕ τ of length
(m+ n) defined by

(π ⊕ τ)(i) =

{
π(i) for 1 ⩽ i ⩽ m,
τ(i−m) +m for m+ 1 ⩽ i ⩽ n.

Lemma 2.1 allows us to decompose self-overlapping permutations into a direct sum of smaller per-
mutations (schematically, the summands are represented by consecutive non-intersecting blocks, see
the right part of Figure 3). More precisely, we get the following structural result.

Lemma 2.2. Any self-overlapping permutation σ can be uniquely decomposed into a direct sum

σ = π ⊕ τ ⊕ π,

where π is non-self-overlapping permutation and τ is arbitrary (possibly, empty) permutation.

Proof. Let k be the minimal overlapping range of σ. According Lemma 2.1, k ⩽ n/2. Hence,
σ possesses three consecutive invariant intervals: {1, . . . , k}, {k+1, . . . , n−k} and {n−k+1, . . . , n} (it
may happen that the second of them is empty). This gives us the above decomposition σ = π⊕τ⊕π.
Note that the permutation π ∈ Sk is non-self-overlapping due to minimality of the overlapping range
k. Indeed, if π is self-overlapping with an overlapping range l, then l < k is the overlapping range of
σ too, which leads to a contradiction (see Figure 4).

π

τ

π

Figure 4: Structure of self-overlapping permutations. If the overlapping block π is a self-overlapping
permutation itself, then its size is not the minimal overlapping range of the permutation σ = π⊕τ⊕π.
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Corollary 2.3. The counting sequence (sn) of self-overlapping permutations satisfies

sn =

⌊n/2⌋∑
k=1

nk · (n− 2k)!.

Theorem 2.4. Any permutation σ can be uniquely decomposed into a direct sum of non-self-overlapping
permutations,

σ = π1 ⊕ . . .⊕ πm ⊕ τ ⊕ πm ⊕ . . .⊕ π1, (1)

where the permutation τ is, possibly, empty.

Proof. If σ is non-self-overlapping, then decomposition (1) is done with m = 0 and τ = σ. Oth-
erwise, let us apply Lemma 2.2 iteratively. In other words, express σ as π1 ⊕ τ1 ⊕ π1. If τ1 is
self-overlapping, then express it as π2 ⊕ τ2 ⊕ π2, etc. Thus, after a finite number of iterations, we
obtain decomposition (1).

Now, let us show the uniqueness of the above decomposition. Suppose the contrary, that is,
suppose that we have two different decompositions of form (1):

π1 ⊕ . . .⊕ πm ⊕ τ ⊕ πm ⊕ . . .⊕ π1 = π′
1 ⊕ . . .⊕ π′

m′ ⊕ τ ′ ⊕ π′
m′ ⊕ . . .⊕ π′

1.

Without loss of generality, we can assume that π1 ̸= π′
1, which means that they are of different sizes,

say, l and l′. However, if l < l′, then π′
1 is self-overlapping with the overlapping range l (see Figure 5).

The case l′ < l leads to a similar contradiction. Thus, π1 = π′
1, and decomposition (1) is unique.

π1 π′
1

. . .

π1

π′
1

Figure 5: Uniqueness of decomposition (1).

Let us consider the generating functions S(z) andN(z) of self-overlapping and non-self-overlapping
permutations, respectively:

S(z) =
∞∑
n=1

snz
n and N(z) =

∞∑
n=1

nnz
n.

We formally assume that an empty permutation is neither self-overlapping nor non-self-overlapping.
Hence, the generating function P (z) of all permutations can be represented as the following sum:

P (z) = 1 + S(z) +N(z) =
∞∑
n=0

n! zn. (2)

This observation, together with Lemma 2.2, helps us establish relations that determine the behavior
of S(z) and N(z).
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Theorem 2.5. The generating functions S(z) and N(z) satisfy the following relations:

N(z) = P (z)
(
1−N(z2)

)
− 1 (3)

and

S(z) =
1 +N(z)

1−N(z2)
·N(z2). (4)

Proof. In terms of generating functions, Lemma 2.2 can be interpreted as the following relation:

S(z) = P (z) ·N(z2).

At the same time, it follows from (2) that

S(z) = P (z)−N(z)− 1.

Equating the right-hand sides of these two identities, we obtain relation (3). Meanwhile, to get (4),
it is sufficient to take the first of the identities and replace P (z) with the expression obtained via
relation (3).

Remark 2.6. Relation (3) rewritten as

P (z) =
1 +N(z)

1−N(z2)
(5)

is another face of Theorem 2.4. Indeed, the factor 1+N(z) corresponds to the central block of decom-

position (1), while
(
1−N(z2)

)−1
represents the sequence of non-self-overlapping permutations. Note

that the argument z2 reflects the fact that each element of the sequence is taken twice. Relation (4)
carries a similar meaning. The only difference is the presence of the additional factor N(z2) that
guarantees that the decomposition consists of at least two blocks.

3 Asymptotics

Theorem 3.1. For any positive integer r, the probability that a uniform random permutation σ ∈ Sn

is self-overlapping, as n → ∞, satisfies

P(σ is self-overlapping) =
r−1∑
k=1

nk
n2k

+O

(
1

n2r

)
, (6)

where nk = n(n− 1) . . . (n− k + 1) are the falling factorials.

Proof. It follows from Corollary 2.3, that the counting sequence of self-overlapping permutations
satisfies

sn ⩽
r−1∑
k=1

nk · (n− 2k)! +

⌊n/2⌋∑
k=r

k! · (n− 2k)!.

Let us estimate the second summand. For n large enough and r < k ⩽ n/2, we have

k! · (n− 2k)! ⩽ (r + 1)! · (n− 2r − 2)!.

As a consequence,

⌊n/2⌋∑
k=r

k! · (n− 2k)! ⩽ r! · (n− 2r)! + (n− r) · (r + 1)! · (n− 2r − 2)! = O
(
(n− 2r)!

)
,
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which leads us to

sn =
r−1∑
k=1

nk · (n− 2k)! +O
(
(n− 2r)!

)
.

Now, since P(σ is self-overlapping) = sn/n!, it is sufficient to divide the obtained inequality by n!.

Let s
(m)
n be the number of permutations of size n whose decomposition (1) consists of (2m + 1)

summands (in particular, s
(0)
n = nn). Define also n

(m)
n to be the number of permutations that can be

represented as a direct sum of m non-self-overlapping permutations (in particular, n
(0)
0 = 1, n

(0)
n = 0

for n > 0, and n
(1)
n = nn).

Theorem 3.2. For any positive integer r, the probability that decomposition (1) of a uniform random
permutation σ ∈ Sn consists of (2m+ 1) summands, as n → ∞, satisfies

P(σ consists of 2m+ 1 blocks) =
r−1∑
k=1

n
(m)
k − n

(m+1)
k

n2k
+O

(
1

n2r

)
, (7)

where nk = n(n− 1) . . . (n− k + 1) are the falling factorials.

Proof. Due to Lemma 2.2 and Theorem 2.4, the number of permutations whose decomposition (1)
consists of at least (2m+ 1) summands is equal to

⌊n/2⌋∑
k=1

n
(m)
k · (n− 2k)!.

Therefore, the sequence
(
s
(m)
n

)
satisfies

s(m)
n =

⌊n/2⌋∑
k=1

(
n
(m)
k − n

(m+1)
k

)
· (n− 2k)!.

Similarly to the previous theorem, for any tail of this sum, we have an estimation

⌊n/2⌋∑
k=r

(
n
(m)
k − n

(m+1)
k

)
· (n− 2k)! = O

(
(n− 2r)!

)
.

Thus, dividing the above relation by n!, we obtain asymptotic expression (7).

4 Asymptotics of pattern distributions

Let π be a permutation of size p. Denote by an,m(π) the number of permutations of size n with
exactly m very tight occurrences of the pattern π. Assume that both π and its reverse π are non-
self-overlapping. In this case, as it was showed by Myers [23], we have

an,m(π) =

⌊n/(p−1))⌋∑
k=m

(−1)m−k

(
k

m

)(
n− (p− 1)k

k

)
(n− (p− 1)k)!. (8)

The goal of this section is to answer the following Myers’ question: for a fixed constant m, what is the
asymptotics of the probability that a pattern π very tightly occurs exactly m times in a permutation
of size n, as n → ∞? A possible answer is given by the following theorem.
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Theorem 4.1. If π ∈ Sp is such a permutation that both π and π are non-self-overlapping, then for
any positive integer r, the probability that a uniform random permutation σ ∈ Sn has exactly m very
tight occurrences of π, as n → ∞, satisfies

P(π very tightly occurs in σ m times) =
1

m!

r−1∑
k=m

(−1)k−m

(k −m)!
·
(
n− (p− 1)k

)k
n(p−1)k

+O

(
1

n(p−2)r

)
, (9)

where nk = n(n− 1) . . . (n− k + 1) are the falling factorials. In particular,

P(π very tightly occurs in σ m times) =
1

m!
· 1

n(p−2)m
+O

(
1

n(p−2)m+1

)
.

Proof. Relation (8) implies that

an,m(π) =
1

m!

 r−1∑
k=m

(−1)k−m

(k −m)!
· dk(n) +

⌊n/(p−1)⌋∑
k=r

(−1)k−m

(k −m)!
· dk(n)

 ,

where dk(n) =
(
n− (p−1)k

)k ·(n− (p−1)k
)
!. Clearly, dk(n) ⩽ dr+1(n) for any k > r+1. Therefore,

⌊n/(p−1))⌋∑
k=r

1

(k −m)!
· dk(n) ⩽

dr(n)

(r −m)!
+

dr+1(n)

(r −m)!
· n = O

(
dr(n)

)
.

Thus, we obtain

an,m(π) =
1

m!

r−1∑
k=m

(−1)k−m

(k −m)!
· dk(n) +O

(
dr(n)

)
,

which is sufficient to be divided by n! to get relation (9).

In some sense, it would be more natural to have a complete asymptotic expansion of an,m(π)/n!
over the basis 1/nk, as it is the case for self-overlapping permutations (see relations (6) and (7)).
This is indeed possible, which is reflected by the following theorem.

Theorem 4.2. If π ∈ Sp is such a permutation that both π and π are non-self-overlapping, then for
any positive integer r, the probability that a uniform random permutation σ ∈ Sn has exactly m very
tight occurrences of π, as n → ∞, satisfies

P(π very tightly occurs in σ m times) =
r−1∑

k=(p−2)m

ck
nk

+O

(
1

nr

)
, (10)

where nk = n(n− 1) . . . (n− k + 1) are the falling factorials and

ck = (−1)m
⌊k/(p−2)⌋∑

i=⌈k/(p−1)⌉

(
i

m

)
(−1)(p−1)i−k(
(p− 1)i− k

)
!

(
i

k − (p− 2)i

)
.

Example 4.3. If m = 0, then relation (10) corresponds to the probability that a uniform permutation
σ ∈ Sn very tightly avoids a pattern π. For instance, for π = 132 this relation reads

P(σ very tightly avoids π) = 1− 1

n
+

3

2n2
− 13

6n3
+

61

24n4
− 441

120n5
+

3031

720n6
− 28813

5040n7
+O

(
1

n8

)
.
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Before passing to the proof of Theorem 4.2, we need to establish one technical lemma related to
the rising and falling factorials, that is

nk = n(n+ 1) . . . (n+ k − 1) and nk = n(n− 1) . . . (n− k + 1),

respectively.

Lemma 4.4. For any non-negative integers n, k and l,

(n− k)l =
l∑

i=0

(−1)i

i!
ki li nl−i.

Proof. Let us apply induction on l. The base case holds, since (n− k)0 = 1 = n0. Suppose that the
statement holds for some arbitrary l. Therefore,

(n− k)l+1 =
(
n− (k − 1)

)l+1 − (l + 1)
(
n− (k − 1)

)l
= nl+1 − (l + 1)

k−1∑
s=0

(n− s)l

= nl+1 − (l + 1)
k−1∑
s=0

l∑
i=0

(−1)i

i!
si li nl−i

= nl+1 +
l∑

i=0

(−1)i+1

i!
(l + 1)i+1 n(l+1)−(i+1).

k−1∑
s=0

si.

To finish the proof, it is sufficient to note that

k−1∑
s=0

si =
k−1∑
s=0

(s+ 1)i+1 − si+1

i+ 1
=

ki+1

i+ 1
.

Proof of Theorem 4.2. The main idea is to take expression (9) and rewrite it with the help of
Lemma 4.4. For simplicity, let us denote N = n − (p − 1)k + 1. Thus, Lemma 4.4 applied to
l = k gives us(

n− (p− 1)k
)k

n(p−1)k
=

(N − k)k

N (p−1)k
=

k∑
i=0

(−1)i (ki)2 Nk−i

i! ·N (p−1)k
=

k∑
i=0

(
k

i

)
(−1)i ki

(N + k − i)(p−2)k+i
.

Taking into account that (N + k − i)(p−2)k+i = n(p−2)k+i, we can rewrite expression (9) as

P(π very tightly occurs in σ m times) =
r−1∑
k=m

ak

k∑
i=0

bk,i e(p−2)k+i +O

(
1

n(p−2)r

)
, (11)

where

ak = (−1)m
(
k

m

)
, bk,i =

(−1)k−i

(k − i)!

(
k

i

)
, ek =

1

nk
.
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Now, reverse the summation order in the right hand side of relation (11). Designating s = (p−2)k+i,
we have

∞∑
k=m

ak

∞∑
i=0

bk,i 1i⩽k e(p−2)k+i =
∞∑

k=m

ak

∞∑
s=(p−2)k

bk,s−(p−2)k 1s⩽(p−1)k es

=
∞∑

s=(p−2)m

es

⌊s/(p−2)⌋∑
k=⌈s/(p−1)⌉

ak bk,s−(p−2)k,

where 1 is the indicator function. Substituting es, ak and bk,s−(p−2)k leads to the desired form of the
asymptotics.

5 Conclusion

As we have seen in Section 2, each permutation can be represented as a direct sum of non-self-
overlapping ones. Therefore, we can consider non-self-overlapping permutations as a sort of basic
irreducible blocks that can serve for constructing the whole class of permutations. There are other
examples of this kind in the literature related to permutations. One of them concerns so called
indecomposable permutations, that is, permutations with no proper invariant interval of the form
{1, . . . , k} (see, for example, the paper of Cori [11]). It is known that each permutation can be
represented as a sequence of indecomposable ones. In particular, the generating function I(z) of
indecomposable permutations satisfies

I(z) = 1− 1

P (z)
.

In the class of permutations, the non-self-overlapping ones form the majority. In other words,
almost all permutations are non-self-overlapping. The same is true for indecomposable permutations.
Moreover, this analogy can be extended to complete asymptotic expansions. It was Comtet [10] who
first studied the probability that a large permutation is indecomposable, and established its expansion
over the basis 1/nk. Later, it turned out that the involved coefficients have combinatorial meaning.
More precisely, the following result was recently shown [26]: for any positive integer r, the probability
that a uniform random permutation σ ∈ Sn is indecomposable satisfies

P
(
σ is indecomposable

)
= 1−

r−1∑
k=1

2ik − i
(2)
k

nk
+O

(
1

nr

)
, (12)

where (ik) is the counting sequence of indecomposable permutations, and (i
(2)
k ) counts permutations

with exactly two indecomposable parts. From Theorem 3.1, we can see that the asymptotic expansion
of the probability that a uniform random permutation is non-self-overlapping has the same spirit:

P(σ is non-self-overlapping) = 1−
r−1∑
k=1

nk
n2k

+O

(
1

n2r

)
. (13)

Another example of irreducibilities involves simple permutations that do not map non-trivial
intervals onto intervals (see [2]). The generating function M(z) of simple permutations of size at
least 4 can be found iteratively from the equation

P (z)− P 2(z)

1 + P (z)
= z +M

(
P (z)

)
.
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The asymptotic expansion of the probability that a uniform random permutation σ ∈ Sn is simple
was established by Borinsky [8]:

P(σ is simple) =
1

e2

(
1− 4

n
+

2

n2
− 40

3n3
− 182

3n4
− . . .

)
. (14)

Again, we observe the role of the basis 1/nk. However, compared to the cases related to non-self-
overlapping and indecomposable permutations, this expansion has two important differences. First,
the leading term is not 1 anymore: the proportion of simple permutations tends to e−2. Second, the
involved coefficients are not integers anymore.

These observations raise a number of questions. First of all, it would be of interest to unite
the three above discussed permutation classes under the same theory that could explain both the
similarities and differences. Relations (7) and (10) could also fit into this theory if we added the
ability to account for various statistics. A priori, this question is quite complicated. It would
be natural to try employing the wreath product introduced by Atkinson and Stitt [3] for studying
restricted permutations. Indeed, constructing the class of permutations from the simple ones admits
description in terms of the wreath product [1]; that is true for indecomposable permutations as well.
However, it looks like the non-self-overlapping permutations do not allow such a description.

Another question is the following: is it possible to naturally modify the basis in asymptotics (14),
so that the coefficients become integers? At first glance, it seems that it could be sufficient to divide
the basis vectors 1/nk by k!. This change suggests switching from the ordinary generating functions
to the exponential ones. That trick works well for establishing complete asymptotic expansions
of indecomposable permutations and indecomposable perfect matchings, see [26, Chapter 9]. The
potential of its applicability for simple permutations needs to be verified.

Finally, if we get a positive answer to the previous question, what is the combinatorial interpre-
tation of these coefficients? Unfortunately, there is no clue in the OEIS [24]. The only thing one can
be sure of is that the coefficients cannot be interpreted as a counting sequence of combinatorial class:
some of them are negative. Thus, we would rather expect linear combinations of different counting
sequences, as is the case for indecomposable permutations (12).

In addition, there are various questions about patterns in permutations and other structures.
Thus, one may wonder if it is possible to extend Theorems 4.1 and 4.2 to any very tight pattern. We
will address this problem and propose a solution in our next paper [5]. We will also show that this kind
of permutation patterns can be treated similarly to the special family of matching patterns that we
call endhered. Studying endhered patterns in matchings were originally motivated by their relations
to distributions of special kind of patterns in RNA secondary structures with allowed pseudoknots,
modelled as fixed-point free involutions [4]. However, it turns out that endhered patterns are also
of independent interest, since their asymptotic behavior is somewhat similar to that of very tight
permutation patterns.

A much more ambitions goal would be to study patterns and their asymptotics in graphs. This
problem is very hard in its generality. A possible approach would be to start with so-called ordered
graphs [15]. On the one hand, they can be considered as a generalization of matchings, which
potentially allows to employ ideas that are useful for treating matchings. On the other hand, we
anticipate the need for advances techniques for both enumeration and asymptotic analysis. This may
include, but is not limited to, tools such as graphic generating functions for enumeration [12] and
coefficient generating functions for asymptotics [13].
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11



References

[1] M. H. Albert and M. D. Atkinson. Simple permutations and pattern restricted permutations.
Discrete Math., 300(1-3):1–15, 2005.

[2] M. H. Albert, M. D. Atkinson, and M. Klazar. The enumeration of simple permutations. J.
Integer Seq., 6(4):art. 03.4.4, 18, 2003.

[3] M. D. Atkinson and T. Stitt. Restricted permutations and the wreath product. Discrete Math.,
259(1-3):19–36, 2002.

[4] C. Biane, G. Hampikian, S. Kirgizov, and K. Nurligareev. Endhered patterns in matchings and
RNA, 2024. arXiv preprint https://arxiv.org/abs/2404.18802.

[5] C. Biane, S. Kirgizov, and K. Nurligareev. Clusters of endhered patterns in permutations and
matchings. In preparation.
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