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A Rule-Based Procedure for Graph Query
Solving*

Dominique Duval, Rachid Echahed, and Frédéric Prost

University Grenoble Alpes, Grenoble, France
firstname.lastname@imag.fr

Abstract. We consider a core language for graph queries. These queries,
which may transform graphs to graphs, are seen as formulas to be solved
with respect to graph databases. For this purpose, we first define a graph
query algebra where some operations over graphs and sets of graph ho-
momorphisms are specified. Then, the notion of pattern is introduced to
represent a kind of recursively defined formula over graphs. The syntax
and formal semantics of patterns are provided. Afterwards, we propose
a new sound and complete procedure to solve patterns. This procedure,
which is based on a set of rewriting rules, is terminating and develops
only one needed derivation per pattern to be solved. Our procedure is
generic in the sense that it can be adapted to different kinds of graph
queries provided that the notions of graph and graph homomorphism are
well defined.

Keywords: Rewriting systems, Graph Query Solving, Graph Databases

1 Introduction

Current developments in database theory show a clear shift from relational to
graph databases [35]. Relational databases are now well mastered and have been
largely investigated in the literature with an ISO standard language SQL [12,
15]. On the other side, graphs are being widely used as a flexible data model
for numerous database applications [35]. So that various graph query languages
such as SPARQL [37], Cypher [23] or G-CORE [2] to quote a few, as well as
an ongoing ISO project of a standard language, called GQL®, have emerged for
graph databases.

Representing data graphically is quite legible. However, there is always a
dilemma in choosing the right notion of graphs when modeling applications.
This issue is already present in some well investigated domains such as modeling
languages [8] or graph transformation [34]. Graph data representation does not
escape from such dilemma. We can quote for example RDF graphs [38] on which
SPARQL is based or variants of Property Graphs [23] currently used in several
languages such as Cypher, G-CORE or in GQL.

* This work has been partly funded by the project VERIGRAPH : ANR-21-CE48-0015
! https://www.gqlstandards.org/
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In addition to the possibility of using different graph representations for
data, graph database languages feature new kinds of queries such as graph-to-
graph queries, c¢f. CONSTRUCT queries in SPARQL or G-CORE, besides the
classical graph-to-relation (table) queries such as SELECT or MATCH queries
in SPARQL or Cypher. The former constitute a class of queries which transform
a graph database into another graph database. The latter transform a graph into
a multiset of solutions represented in general by means of a table just as in the
classical relational framework.

In general, graph query processing integrates features shared with graph
transformation techniques and goal solving or logic programming (variable as-
signments). Our main aim in this paper is to define an operational semantics,
based on rewriting techniques, for graph queries. We propose a generic rule-based
calculus, called gg-narrowing which is parameterized by the actual interpreta-
tions of graphs and their matches (homomorphisms). That is to say, the obtained
calculus can be adapted to different definitions of graphs and the corresponding
notion of match. The proposed calculus consists of a dedicated rewriting sys-
tem and a narrowing-like [4,25,25] procedure which follows closely the formal
semantics of patterns or queries, the same way as (SLD-)Resolution calculus is
related to formal models underlying Horn or Datalog [27] clauses. The use of
rewriting techniques in defining the proposed operational semantics paves the
way to syntactic analysis and automated verification techniques for the proposed
core language.

In order to define a sound and complete calculus, we first propose a uniform
formal semantics for queries. For practical reasons, we were inspired by existing
graph query languages and consider graph-to-graph queries and graph-to-table
queries as two facets of one same syntactic object that we call pattern. The
proposed patterns can be nested at will as in declarative functional terms and
may include aggregation operators as well as graph construction primitives. The
semantics of a pattern is defined as a set of matches, that is to say, a set of graph
homomorphisms and not only a set of variable assignments as proposed in [3,
23,22]. From such a set of matches, one can easily display either the table by
considering the images of the variables as defined by the matches or the graph,
target of the matches, or even both the table and the graph. The proposed
semantics for patterns allows also to write nested patterns in a natural way, that
is, new data graphs can be constructed on the fly before being queried.

The paper is organized as follows: The next section introduces a graph query
algebra featuring some key operations needed to express the proposed calculus.
Section 3 defines the syntax of patterns and queries as well as their formal se-
mantics. In Section 4, a sound and complete calculus is given. First we introduce
a rewriting system describing how query results are found. Then, we define gg-
narrowing, which is associated with the proposed rules. Concluding remarks and
related work are given in Section 5. Due to lack of space, omitted proofs as well
as a new query form combining CONSTRUCT and SELECT query forms can
be found in [20].
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2 A Graph Query Algebra

During graph query processing, different intermediate results can be computed
and composed. In this section, we introduce a Graph Query Algebra GQ which
consists of a family of operations over graphs, matches (graph homomorphisms)
and expressions. These different items are used later on to define the semantics
of queries in Sections 3 and 4.

The algebra GQ is defined over a signature Y'y,. The main sorts of Xy, are
Gr, Som, Exp and Var to be interpreted as graphs, sets of matches, expressions
and variables, respectively. The sort Var is a subsort of Exp. The main operators
of Xy, are:

Match : Gr, Gr — Som Join : Som, Som — Som
Bind : Som, Exp, Var — Som Filter : Som, Exp — Som
Build : Som, Gr — Som Union : Som, Som — Som

The above sorts and operators are given as an indication while being inspired by
concrete languages. They may be modified or tuned according to actual graph
query languages. Various interpretations of sorts Gr and Som can be given. In
order to provide concrete examples, we have to fix an actual interpretation of
these sorts. For all the examples given in the paper, we have chosen to interpret
the sort Gr as generalized RDF graphs [38]. This choice is not a limitation, we
might have chosen other notions of graphs such as property graphs [23]. Our
choice here is motivated by the simplicity of the RDF graph definition (set of
triples). Below, we define generalized RDF graphs. They are the usual RDF
graphs with the ability to contain isolated nodes. Let £ be a set, called the set
of labels, made of the union of two disjoint sets C and V), called respectively the
set of constants and the set of variables.

Definition 1 (graph). Every element t = (s,p,0) of L is called a triple and
its members s, p and o are called respectively the subject, the predicate and the
object of t. A graph G is a pair G = (Gn,Gr) made of a finite subset Gy of L
called the set of nodes of G and a finite subset G of L3 called the set of triples
of G, such that the subject and the object of each triple of G are nodes of G. The
nodes of G which are neither a subject nor an object are called the isolated nodes
of G. The set of labels of a graph G is the subset L(G) of L made of the nodes
and predicates of G, then C(G) = CNL(G) and V(G) = VNL(G). The graph with
an empty set of nodes and an empty set of triples is called the empty graph and
is denoted by 0. Given two graphs Gy and Ga, the graph G is a subgraph of Ga,
written G1 C Ga, if (G1)n C (Ga2)n and (G1)r C (G2)71, thus L(G1) C L(G2).
The union G U Gy is the graph defined by (G1 U G2)ny = (G1)n U (G2)n and
(Gl U GQ)T = (GI)T @] (GQ)T, then £(G1 U Gg) = £(G1) U ﬁ(Gg)

In the rest of the paper we write graphs as sets of triples and nodes: for
example G = {(s1,01,p1),n1,n2} is the graph with four nodes ny,no, s1,p1 and
one triple (s1, 01, p1).
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Example 1. We define a toy database which is used as a running example through-
out the paper. The database consists of persons who are either professors or stu-
dents, with topics such that each professor (resp. student) teaches (resp. studies)
some topics. The graph G, is described below by its triples (on the left) and
by a diagram (on the right), in which plain arrows represent is relation, dashed
lines represent teaches relation and dotted lines represent studies relation.

Alice, is, Professor) (Alice, teaches, Math) Professor Student

Bob, is, Professor) (Bob, teaches, CS) /‘T / T\

( (
( (
(Charly, is, Student) (Charly, studies, Math) Alice Bob Charly David Eva
(David, is, Student) (David, studies, Math) N N

( (

Eva, is, Student) Eva, studies, CS) xll\/[at};\%. s CSL

Definition 2 (match). A graph homomorphism from a graph L to a graph G,
denoted m : L — G, is a function from L(L) to L(G) which preserves nodes and
preserves triples, in the sense that m(Ly) C Gy and m®*(Ly) C Gp. A match
is a graph homomorphism m : L — G which fixes C, in the sense that m(c) = ¢
for each ¢ in C(L).

A match m : L — G determines two functions my : Ly — Gy and mr :
Ly — G, restrictions of m and m? respectively. A match m : L — G is
invertible if and only if both functions my and my are bijections. This means
that a function m from L£(L) to £(G) is an invertible match if and only if
C(L) = C(G) with m(c) = ¢ for each ¢ € C(L) and m is a bijection from V(L)
to V(G): thus, L is the same as G up to variable renaming. It follows that
the symbol used for naming a variable does not matter as long as graphs are
considered only up to invertible matches.

Notice that RDF graphs [38] are graphs according to Definition 1 but without
isolated nodes, and where constants are either IRIs (Internationalized Resource
Identifiers) or literals and where all predicates are IRIs and only objects can be
literals. Blank nodes in RDF graphs are the same as variable nodes in our graphs.
An isomorphism of RDF graphs, as defined in [38], is an invertible match.

Below we introduce some useful definitions on matches. Notice that we do
not consider a match m as a simple variable assignment but rather as a graph
homomorphism with clear source and target graphs. This nuance in the definition
of matches is key in the rest of the paper since it allows us to define the notion
of nested patterns in a straightforward manner.

Definition 3 (compatible matches). Two matches my : L1 — Gy and mo :
Ly — G4 are compatible, written as my ~ ma, if mi(z) = ma(zx) for each
x € V(L1) NV(Ls2). Given two compatible matches my : Ly — Gy and my :
Lo — Ga, let my<xmo : L1 U Ly — G1 UGy denote the unique match such that
my X mg ~ my and my X mg ~ mg (which means that my < mg coincides with
my on Ly and with ma on Ls).

Definition 4 (building a match). Let m : L — G be a match and R a graph.
The match Build-match (m,R) : R — G U H,, r is the unique match (up to
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variable renaming) such that for each variable x in R:

Build-match (m, R)(z) = 4 "% Y@ €VIR)NV(L),
; some fresh variable var(m, ) if v € V(R) — V(L)

and H,, g is the image of R by Build-match (m, R).

Definition 5 (set of matches, assignment table). Let L and G be graphs.
A set m of matches, all of them from L to G, is denoted m : L = G and called
a homogeneous set of matches, or simply a set of matches, with source L and
target G. The image of L by m is the subgraph m(L) = Upem(m(L)) of G. We
denote Match(L,G) : L = G the set of all matches from L to G. When L is
the empty graph this set has one element which is the inclusion 0g : 0 — G.
We denote i o = Match(D,G) : § = G this singleton and S : 0 = G its empty
subset. The assignment table Tab(m) of m is the two-dimensional table with the
elements of V(L) in its first row, then one row for each m in m, and the entry
in row m and column x equals to m(x).

Thus, the assignment table Tab(m) describes the set of functions m|y(z) :
V(L) = L, made of the functions m|yy : V(L) — L for all m € m. A set of
matches m : L = G is determined by the graphs L and G and the assignment
table Tab(m).

Ezxample 2. In order to determine whether professor ?p teaches topic 7t which
is studied by student 7s, we may consider the following graph L.,, where 7p, 7t
and 7s are variables. In all examples, variables are preceded by a “?”.

. Professor Student
(?p, is, Professor) (?p, teaches, 7t) T 1
(7s, is, Student) (?s, studies, 7t) 7 ?s
~
Hopt

There are three matches from L., to the graph G, given in Example 1. The
set m,, of all these matches is m,, = {m1,ma,m3} : Ley = Gey:

i) 47 7s
my ||Alice|Maths|Charly
mo ||Alice|Maths|David
mgs ||Bob |CS Eva

Mgy * Leg = Gep with Tab(m,,) =

Query languages usually provide a term algebra dedicated to express operations
over integers, booleans and so forth. We do not care here about the way basic
operations are chosen but we want to deal with aggregation operations as in
most database query languages. Thus, one can think of any kind of term algebra
with operators which are classified as either basic operators (unary or binary)
and aggregation operators (always unary). For defining the syntax and semantics
of aggregation functions we follow [19]. We consider that all expressions are well
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typed. Typically, and not exclusively, the sets Op,, Opy and Agg of basic unary
operators, basic binary operators and aggregation operators can be:

Opl = {*a nOt} )

Opy = {+,—, %, /,=,>,<,and,or},

Agg = {max, min, sum, avg, count}.

Definition 6 (syntax of expressions). Expressions e and their sets of in-
scope variables V(e) are defined recursively as follows, with ¢ € C, x € V, op, €
Opy, ops € Op,, agg € Agg and g a set of expressions:
ex=clx|opel|eopyelagg(e) | agg(eby g),
V(e) =2, V(z)={z}, V(opye)=V(e), V(eopye)=V(e)UV(e),
V(agg(e)) = V(e) and V(agg(e by g)) = V(e)
(variables in g must be distinct from those in e).

The wvalue of an expression e with respect to a set of matches m, as stated
in Definition 7, is a family of constants m(e) = (m(€)m)mem indexed by the
set m. In general m(e),, depends on e and m and it may also depend on other
matches in m when e involves aggregation operators. Whenever e is free from
any aggregation operator then m(e),, does not depend on the matches different
from m in m, so that it can be written simply m(e). To each basic operator
op is associated a function [[op]] (or simply op) from constants to constants if
op is unary and from pairs of constants to constants if op is binary. To each
aggregation operator agg is associated a function [[agg]] (or simply agg) from
multisets of constants to constants. Note that each family of constants ¢ =
(¢m)mem determines a multiset of constants { ¢, | m € ml}, which is also denoted
¢ when there is no ambiguity.

Definition 7 (evaluation of expressions). Let L,G be graphs, e an expres-
sion such that V(e) C V(L) and m : L = G a set of matches. The value of e
with respect to m is the family
m(e) = (m(€)m)mem
defined recursively as follows. It is assumed that each m(e)y in this definition
15 a constant.
m(©)m =, Mm@y =m(), Mm(opy N = [op,]] M)
m(e 0py ) = m() [10pa]] M( s m(agg(€))m = laggll(me)),
m(agg(e by 9))m = [[aggll(m|g,m(€)) where m|gm is
the group of m in m with respect to g, i.e., the subset of m made of the
matches m' in m such that m'(e)y, = m(e’)m for every expression e’ in g.
Note that m(agg(e))m is the same for all m in m, while m(agg(e by g))m is the
same for all m in m which are in a common group with respect to g.

Ezample 3. Consider m,, = {mi,ma,m3} : Loy = G¢; as in Example 2, de-
noted simply m for readability. Let us evaluate the expressions count(?s) and
count(?s by ?p).

The evaluation of count(?s) with respect to m runs as follows:
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m(count(?s)) = (m;(count(?s))m )i=1,2.3

m; (count(?s)),, = count(m(?s))

m(?s) = (mi(?8)m )i=1,2,3

M (78)m =m;(?s) fori=1,2,3

Since my(?s) = Charly, ma(?s) = David and ms(?s) = Eva we get:
m(?s) = (Charly, David, Eva )

count(m(?s)) =3

m;(count(?s)),, =3 fori=1,2,3
m(count(?s)) =1(3,3,3)
The evaluation of count(?s by ?p) with respect to m runs as follows:
m(count(?s by 7p)) = (m;(count(?s by 7p))m )i=1,2.3
mg(count(?s by ?p))m = count(m|(zpy,m,(?s))
Since m1(?p) = ma(?p) = Alice and m3(?p) = Bob we get
m'{?p},ml = m|{?p},m2 = {m17m2} and m‘{?p},mg, = {mS}
Then count(m|{7py,m,(?s)) = 2 for i = 1,2 and count(m|{7py,m,(?s)) =1
and finally m(count(?s by ?p)) = (2,2,1).

We conclude this section with the definition of the algebra GO over Xg,.
Whenever needed, we extend the target of matches: for every graph H and
every match m : L — G where G is a subgraph of H we write m : L — H when
m is considered as a match from L to H.

Definition 8 (GQ algebra). The algebra GO is the algebra over the signature
Y4q where the sorts Gr, Som, Exp and Var are interpreted respectively as the
set of graphs (Definition 1), the set of sets of matches (Definition 5), the set of
expressions (Definition 6) and its subset of variables, and where the operators
are interpreted by the operations with the same name, as follows.

— For all graphs L and G:
Match(L,G) : L = G is the set of all matches from L to G.

— For all sets of matchesm: L =G andp: R= H:
Join(m,p) = {m>=p|memApepAm~p}: LUR=GUH.

— For each set of matches m : L = G and each expression e, let H, =
{m(e)m | mem} and for each match m in m let py, : {&} = H,, be the
match such that py,(z) = m(e)m. Then for each fresh variable v ¢ V(L):

Bind(m,e,z)={mip,, | mem}:LU{z}=GU H,,.

— For each set of matches m : L = G and each expression e:

Filter(m,e) ={m | m e m A m(e)y, = true} : L = G.

— For each set of matches m : L = G and each graph R:

Build(m, R) = { Build-match (m, R) | m € m} : R = G U Build(m, R)(R)
where Build(m, R)(R) = Upem Build-match (m, R)(R).
— For all sets of matchesm : L =G andp: L= H:

Union(m,p) =(m:L=GUH) U (p: L=GUH):L=GUH.

Note that we could handle other kinds of graphs in the same way. Here, the Bind
operation illustrates the interest of accepting isolated nodes in graphs as done
in Definition 1 contrary to RDF graphs.
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Example 4. As in Example 2 consider the set of matches m,, : Ley = Gey. We

know from Example 3 that the value of count(?s) with respect to m,, is (3,3, 3)

and that the value of count(?sby ?p) with respect to m,, is (2,2,1).

Thus, Bind (m,,,count(?s), ?n) = m., : Le,U{?n} = G, U{3} and Build (m.,,{n}) =
m? :{"n} = G U{3} with assignment tables:

p 7s 7c |Tn
Alice|Charly|Maths|3 ™
/ _ " _
Tab(me, ) = Alice|David |Maths|3 Tab(me,) =
Bob |[Eva |CS 3

Bind (m,,,,count(?s by ?p),™n) =nl, : L U{"n} = G, U{2,1} with Tab(n,)
below. Now let R,, = {(?p,supervises,?n)}, then Build (n.,,R.,) = n. :

R, = Gy U{(Alice, supervises, 2), (Bob, supervises, 1)} with assignment tables:

7 7s ¢ |Tn 7 7n
Alice|Charly|Maths|2 1
/ _ " _
Tab(n,) = Alice|David [Maths|2 Tab(ne,) = é(l)llc)c%
Bob [Eva |CS 1

3 Patterns and Queries

The syntax of graph databases is still evolving. We do not consider all technical
syntactic details of a real-world language nor all possible constraints on matches.
We focus on a core language. Its syntax reflects significant aspects of graph
queries. Conditions on graph paths, which can be seen as constraints on matches,
are omitted in this paper in order not to make the syntax too cumbersome. We
consider mainly two syntactic categories: patterns and queries, in addition to
expressions already mentioned. Queries are either SELECT queries, as in most
query languages or CONSTRUCT queries, as in SPARQL and G-CORE. A
SELECT query applied to a graph returns a table which describes a multiset of
solutions or variable bindings, while a CONSTRUCT query applied to a graph
returns a graph. Besides that, a pattern applied to a graph returns a set of
matches. Patterns are the basic blocks for building queries. They are defined in
Section 3.1 together with their semantics. Queries are defined in Section 3.2 and
their semantics is easily derived from the semantics of patterns. In this Section,
as in Section 2, the set of labels L is the union of the disjoint sets C and V,
of constants and wvariables respectively. We assume that the set C of constants
contains the numbers and strings and the boolean values true and false.

3.1 Patterns

In Definition 9, the signature for patterns is built by extending the signature
Y4q with a sort Pat for patterns and several operators involving patterns. For
instance the operator BASIC in the term BASIC (L) turns a graph L into a
pattern. Other operators such as JOIN, BIND or FILTER are rather classical
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and were inspired by existing database query languages. Operator BUILD is
specific to graph-to-graph queries. The following definition of patterns can be
enriched by more specific operators if needed. The formal semantics of patterns
is given by an evaluation function in Definition 10.

Definition 9 (syntax of patterns). The signature X 44 is extended with a sort
Pat for patterns and the following operators:

— If P is a pattern then [P] is a graph, called the scope graph of P.

— The symbol 1 is a pattern, called the empty pattern,

— If L is a graph then P = BASIC (L) is a pattern, called a basic pattern.

— If Py and P» are patterns then P = Py JOIN P, is a pattern.

— If Py is a pattern, e an expression such that V(e) C V([P1]) and x a variable
such that x ¢ V([Py]) then P = Py BIND e ASx is a pattern.

— If Py is a pattern and e an expression such that V(e) C V([P1]) then P =
P, FILTER e is a pattern.

— If Py is a pattern and R a graph then P = P; BUILD R is a pattern.

— If Py and Py are patterns such that [Py] = [Ps] then P = P UNION P, is a
pattern.

The semantics of a pattern P over a graph G is a set of matches [[P]lg :
[P] = GP) where the source of matches is [P], the so-called scope graph of
P and the target graph is G(). The target graph is obtained by transforming
the initial graph G according to the shape of pattern P. These notions are made
precise in the following Definition 10. The different pattern operations defined in
Definition 9 could be seen as elementary actions that may be used to transform
graph databases while computing sets of matches. The induced graph trans-
formation by patterns is similar to traditional algebraic graph transformation
processes like DPO [14], AGREE [13] etc. in the following sense. An algebraic
graph transformation process does not only transform a graph G into a graph
H, but it also transforms an instance of a left-hand side graph L (of a rule) in
G into an instance of a right-hand side graph R in H. Such instances are similar
to matches. Moreover, patterns are interpreted as sets of matches, so that the
induced graph transformation can be seen as a kind of conflict-free simultaneous
“parallel” graph transformation process [16].

Definition 10 (evaluation of patterns, set of solutions). The set of solu-
tions or the value of a pattern P over a graph G is a set of matches [[P)la :
[P] = G from the scope graph [P] of P to a graph G\") that contains G. This
value [[P)lg : [P] = G is defined inductively as follows:

D]]G=®G2@=>G.

BASIC (L)]l¢ = Match (L,G): L = G

P1LJOIN Pyl = Join ([Pi]]a: [Po]]aern) © [P1] U [Pa] = GO

Py BIND e AS 7] = Bind ([P1]]g, e, ) : [P |U{z} = GFIU{m(e) m |mEm}
where m = [[P1]]a

[P, FILTER ¢]|¢ = Filter ([[P]]a,€) : [P1] = G

|
[
|
[
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— [[Py BUILD R]|¢ = Build ([[Pi]]a, R) : R = G") U[[P]]a(R)
~ [P UNION Pyl = Union ([[P1]]e, [Pallgeen) : [P1] = GO,

Remark 1. In all cases, the graph GP) is built by adding to G “whatever is
required” for the evaluation. When P is the empty pattern, the value of P over
G is the empty subset @g of Match (0, G). When P is a BIND, isolated nodes
have to be added to G, justifying the use of isolated nodes in graphs.

Syntactically, each operator OP builds a pattern P from a pattern P; and
a parameter param, which is either a pattern P, (for JOIN and UNION), a
pair (e,z) made of an expression and a variable (for BIND), an expression e
(for FILTER) or a graph R (for BUILD). Semantically, for every pattern P =
Py, OP param, let us denote m; : X; = Gy for [P]]l¢ : [P1] = G and
m: X = G’ for [Pllg : [P] = G). In every case it is necessary to evaluate
m; before evaluating param: for JOIN and UNION this is because pattern P
is evaluated on Gy, for BIND and FILTER because expression e is evaluated
with respect to m,, and for BUILD because of the definition of Build. Note that
the semantics of P, JOIN P, and P, UNION P, is not symmetric in P; and P»
in general, unless G(") = G and G(») = @, which occurs when P, and P, are
basic patterns. Given a pattern P = P; OP param, the pattern P, is called a
subpattern of P, as well as P, when P = P; JOIN P, or P = P, UNION P,. The
semantics of patterns is defined in terms of the semantics of its subpatterns (and
the semantics of its other arguments, if any).

Definition 11. For every pattern P, the set V(P) of in-scope variables of P
is the set V([P]) of variables of the scope graph [P]. An expression e is over a
pattern P if V(e) C V(P).

Ezample 5. Let R., be the graph R., = {(?p,teaches,?z), (?s,studies, ?z)},
where ?p, 7z and 7s are variables. Note that R, is the same as L., (in Exam-
ple 2), except for the name of one variable. In order to determine when professor
7p teaches some topic which is studied by student ?s, whatever the topic, we
consider the following pattern P, .

P., = BASIC(L.,) BUILD R,
= BASIC ({(?p, teaches, 7t), (?s, studies, 7¢)} )
BUILD {(?p, teaches, ?z), (?s, studies, 7z)}
Note that the variable 7z in R., does not appear in L.,. Since there are three
matches from L., to G., (Example 2), the value of P, over G, is:

W |?7z| 7s
Alice|?z1 |Charly
Alice|? 25| David
Bob |?z3|Eva

p,, : Rex = G, with Tab(p_ )=

where 7z, 729 and 723 are three fresh variables and G, is the union of G, with
the following graph H.;:

(Alice, teaches, ?7z1) (Charly, studies, 721) Alice Bob _Charly David Eva
(Alice, teaches, ?z2) (David, studies, 7z2) \L RS ~ L\\ _ ~
(Bob, teaches, ?z3) (Eva, studies, ?23) 22 5 * 92, T P2,
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3.2 Queries

We consider two kinds of queries: CONSTRUCT queries, specific to graph database
languages, as one may find in SPARQL or G-CORE and SELECT queries, rather
classical, close to SQL language, also called MATCH queries in some languages
such as Cypher. The semantics of queries is defined from the semantics of pat-
terns. According to Definition 10, all patterns have a graph-to-set-of-matches
semantics. In contrast, CONSTRUCT queries have a graph-to-graph semantics
and SELECT queries have a graph-to-multiset-of-solutions or graph-to-table se-
mantics.

Definition 12 (syntax of queries). Let S be a set of variables, R a graph and
P a pattern. A query Q has one of the following shapes:
either CONSTRUCT R WHERE P or SELECT S WHERE P

Definition 13 (result of CONSTRUCT queries). Given a pattern Py and
a graph R, consider the query @ = CONSTRUCT R WHERE P, and the pat-
tern P = P; BUILD R. The result of the query @ over a graph G, denoted
Resulto(Q, G), is the subgraph of GF) image of R by the set of matches [[P]]q.

Thus, the result of a CONSTRUCT query @ over a graph G is the graph
Resultc(Q,G) = [[P]le(R) built by “gluing” the graphs m(R) for all matches
m in [[P]]g, where m(R) is a copy of R with each variable z € V(R) — V(P)
replaced by a fresh variable (which means, fresh for each m and each z).

Ezxample 6. Consider the query:

Qc.ex = CONSTRUCT R, WHERE BASIC (L.,)
= CONSTRUCT { (?p, teaches, 7z), (7s, studies, 7z) }
WHERE BASIC ({ (?p, teaches, ?t), (7s, studies, ?¢t) })

The corresponding pattern P., and the value P, - Rer = G, of P, over G,
are as in Example 5. It follows that the result of the query Q¢ e, over G, is the
subgraph of G, image of R.; by p,,:itis the graph H,, from Example 5.

Remark 2. CONSTRUCT queries in SPARQL are similar to CONSTRUCT
queries considered in this paper: the variables in V(R) — V(P;) play the same
role as the blank nodes in SPARQL. By considering BUILD patterns, thanks
to the functional orientation of the definition of patterns, our language allows
BUILD subpatterns: this is new and specific to the present study.

For SELECT queries we proceed as for CONSTRUCT queries: we define
a transformation from each SELECT query @ to a BUILD pattern P and a
transformation from the result of pattern P to the result of query Q. Definition 14
below would deserve more explanations. However this is not the subject of this
paper, see [18] for details about how turning a table into a graph (reification).

Definition 14 (result of SELECT queries). For every set of variables S =
{s1,.-,sn}, let Gr(S) denote the graph made of the triples (r,c;j,s;) for j €
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{1,...,n} where r is a fresh variable and c; is a fresh constant string for each
j. Given a pattern Py and a set of variables S = {s1,...,8,} consider the query
@ = SELECT S WHERE P, and the pattern P = P; BUILD Gr(S). The value
of P over a graph G is a set of matches [[P]lg whose assignment table has n+1
columns, corresponding to the variables r,s1, ...,8,. The result of the query @
over a graph G, denoted Results(Q,G), is the multiset of solutions made of the
rows of the assignment table of [[Pll¢ after dropping the column ?r.

Ezxample 7. Consider the query:
Qs,ex = SELECT {?p, 7s} WHERE BASIC (L)

Let Rg ex = Gr({?p, 7s}) = {(?r, Ap, ™), (?r, As,?s)} where ?r is a fresh vari-
able and A,, A, are fresh distinct strings. Then the corresponding pattern is:

PS,ez = BASIC (Lez) BUILD RS’,ez

The value of Pg ¢, over G is:

7s
Charly
David
Eva

’p
Alice
Alice
Bob

Py op i RSicx = G ., Wwith Tab(g&ez) Py

where 7rq, ?ro and ?r3 are three fresh variables and Gls,ez is the union of G,
with the following graph Hg c;:

(?r1, Ap, Alice) (?7r1, As, Charly)

Alice‘(Bob Charly
(?r2, Ap, Alice) (772, As, David) T T

~
O
| ~

]Qavid Eva

L
—

(?T37 AP? BOb) (?T’g, Asa Eva) 7y = Tro » o= rs
It follows that:
p 7s
Alice|Charl
Results(@s, ez, Gea) = Alice Dawidy
Bob |Eva

4 A Sound and Complete Calculus

In this section we propose a calculus for solving patterns and queries based on
a relation over patterns called gg-narrowing. It computes sets of solutions of
patterns (Definition 10) and results of queries (Definitions 13 and 14) over any
graph. This calculus is sound and complete with respect to the set-theoretic
semantics given in Section 3. It is based on the notion of configuration (Defini-
tion 15) and a function Solve for transforming configurations, which is defined
by a rewriting system R4, (Fig. 1).
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In logic-oriented programming languages, narrowing [4] or resolution [30]
derivations are used to solve goals and may have the following shape :

9o ~loo] 91 ~[o1] 92 - - Yn ~o,] In+1

where go is the initial goal to solve (e.g., conjunction of atoms, equations or a
(boolean) term), g,4+1 is a “terminal” goal such as the empty clause, unifiable
equations or the constant true and g;41 is deduced from g; by using a clause or
a rule in the considered program via subtitution ¢;. From such a derivation, a
solution is obtained by simple composition of local substitutions ¢,, o...01 0 0
with restriction to variables of the initial goal go.

In this paper, gg is a configuration and the underlying program is a set of
rewriting rules augmented by the graph of a considered database. This rewriting
system R4, defines the behavior of the function Solve for rewriting configura-
tions. Then three functions are easily derived from Solve: Solvep for solving
patterns, Solvec and Solveg for solving CONSTRUCT and SELECT queries,
respectively.

An important difference between the setting developed in this paper and
classical logic-oriented languages comes from the use of functional composition
“o” in o, 0...01 0 0g. Depending on the shape of the considered patterns, so-
lutions can be obtained by using additional composition operators such as Join
(Definitions 8 and 10) which composes only compatible substitutions computed
by different parts of a derivation (e.g., Join(og o...00,0p0...0k41))-

Remember from the previous sections that () is the empty graph, i, =
Match(0,G) = {0g : ® — G} and O is the empty pattern.

Definition 15 (configuration). A4 configuration [P, m] is made of a pattern
P and a set of matches m : L = G. Let Config denote the set of configurations.
An initial configuration is of the form [P, i o : 0 = G] for some graph G and a
terminal configuration is of the form [0, m].

Roughly speaking, a configuration [ P, m : L = (] represents a state where
the considered pattern is P and the current graph database is G, which is the
target of the current set of matches m. In this section we define a function:

Solve : Config — Config by a rewriting system Rgq.

This function gives rise to three functions Solvep, Solvec and Solveg such that:

Solvep(P,G)=][P]]¢ for every pattern P and graph G,

Solvec(Q, G) = Resultc(Q, G) for every CONSTRUCT query @ and graph G,

and Solves(Q, G)= Results(Q, G) for every SELECT query @ and graph G.
For patterns this runs as follows: in order to find the set of solutions [[P]]g of
a pattern P over a graph G we start from the initial configuration [P, i o] and
we apply the rewriting system R4 to Solve([ P, i ]) until we reach a terminal
configuration [0, m : L = G'], then m is the value [[P]]g of P over G. Notice
that graph G’ contains G but it is not necessarily equal to G.

In Fig. 1, we provide the rewriting system R,, which defines the function
Solve. This function is defined by structural induction on the first component
of configurations, i.e., on the patterns. The second argument of configurations,
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i.e., the sets of matches, in the left-hand sides of the rules, is always a variable
of the form m : L = G or simply m. This variable can be handled easily in
the pattern-matching process of the left-hand sides of the rules: there is no
need to use higher-order pattern-matching nor unification. In the rules of R,
the letters P, P, and P, are variables ranging over patterns (sort Pat) while
variables L, G and R are ranging over graphs (sort Gr) and () is the constant
denoting the empty graph. Symbol e is a variable of sort Exp and « is a variable
of subsort Var while m, m’ and p are variables ranging over sets of matches
(sort Som). The rules of Fig. 1 are not dedicated to the graphs used in this
paper (Definition 1) but are rather parameterized by the kind of graphs and
their corresponding homomorphisms. Indeed, rule r; needs the computation of
possible matches between two graphs (cf. Match(L,G)). The nature of graphs
is not specified. They can be RDF graphs, Property graphs, attributed oriented
graphs, attributed hypergraphs, constrained graphs etc. The other rules use some
operations already introduced in Definition 8, such as Match, Join, Bind, Filter,
Build and Union. These operations are to be straightforwardly tuned according
to the considered definitions of graphs and graph homomorphisms.

Fig. 1. R,q: Rewriting rules for patterns

ro : Solve ([, m:L=G])— [0, 0g:0=G]

r1 : Solve ([BASIC(L), m: L = G|) — [0, p] where p= Match(L,G)
ro Solve ([ Py JOIN P, m]) — Solve . (Solve ([ Pi, m]), P2)
r3 Solver, ([0, m], P) — Solver (m, Solve ([ P, m])

ra Solve jr (m [ m']) — [0, p] where p = Join(m,m")
rs Solve ([ P BINDeASx m]) —>Sol’ueB] (Solve ([P, m]),e,x)
re : Solvepr ([0, m],e,x) — [0, p] where p = Bind(m,e, )
re o Solve ([ P FILTER e,m]) — SolveFR (Solve ([P, m]),e)

rg Solverr ([0, m],e) — [0, p] where p = Filter(m, e)
ro Solve ([ P BUILD R m]) — SolveBU(Solve ([P, m]),R)

r10 : Solvepy ([0, m], R) — [0, p] where p = Build(m, R)
ri1 Solve ([ Py UNION Pz, m]) — Sol’ueUL (Solve ([ P1, m]), P2)
rig : Solveyr, ([0 ], P) — Solveyr (m, Solve ([P, m])

T13 : Solveyr (m [ m']) — [0, p] where p = Union(m,m’)

Rule 7o considers the degenerated case when one looks for solutions of the empty
pattern [J. In this case there is no solution and the empty set of matches @q
is computed. Rule r; is key in this calculus because it considers basic patterns
of the form BASIC(L) where L is a graph which may contain variables. In this
case Solve( [BASIC(L), m]) consists in finding all matches from L to G. These
matches can instantiate variables in L. Thus, the constraint p = Match(L,G) of
rule r; instantiates variables occurring in graph L. This variable instantiation
process is close to the narrowing or the resolution-based calculi.
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In the context of functional-logic programming languages, several strategies
of narrowing-based procedures have been developed to solve goals including even
a needed strategy [4]. In this paper, we do not need all the power of narrowing
procedures because manipulated data are mostly flat (mainly constants and vari-
ables). Thus the unification process used at every step in the narrowing relation
is beyond our needs while simple pattern-matching as in classical rewriting is not
enough since variables in patterns P cannot be instantiated by simply rewriting
the initial term Solve([P, i : § = G]). Consequently, we propose hereafter a new
relation induced by the above rewriting system that we call gg-narrowing. Before
the definition of this relation, we recall briefly some notations about first-order
terms. Readers not familiar with such notations may consult, e.g., [5].

Definition 16 (position, subterm replacement, substitution, ¢],,). A
position is a sequence of positive integers identifying a subterm in a term. For
a term t, the empty sequence, denoted A, identifies t itself. When t is of the
form g(t1,...,t,), the position i.p of t with 1 < i < m and p a position in
t;, identifies the subterm of t; at position p. The subterm of t at position p is
denoted t|p and the result of replacing the subterm of t at position p with term s
is written t[s],. We write tlqq for the term obtained from t where all expressions
of GQ-algebra (i.e., operations such as Join, Bind, Filter, Match, etc.) have been
evaluated. A substitution o is a mapping from variables to terms. When o(x) = u
with w # x, we say that x is in the domain of o. We write o(t) to denote the
extension of the application of o to a term t which is defined inductively as
o(c) = c if ¢ is a constant or ¢ is a variable outside the domain of o. Otherwise

o(f(tr, - tn)) = fo(ta), ..., o(tn)).

We write Pyq(V) for the term algebra over the set of variables V' generated
by the operations occurring in the rewriting system R g4,.

Definition 17 (gq-narrowing ~+). The rewriting system Ry, defines a binary
relation ~ over terms in Pyq(V) that we call gg-narrowing relation. We write
t ~[u,lhs—rhs,o] T 0T simply t ~~ 1" and say that t is gg-narrowable to t' iff there
exists a rule lhs — rhs in the rewriting system Rgyq, a position u in t and a
substitution o such that o(lhs) = t|, and t' = tlo(rhs)leqlu. Then ~* denotes
the reflexive and transitive closure of the relation ~-.

Notice that in the definition of term ¢’ = t[o(rhs)] ¢¢] above, the substitution
o is not applied to ¢ as in narrowing (o(t[rhs], lgq) but only to the right-
hand side (o(rhs)). This is mainly due to the possible use of additional function
composition such as Join operation. If we consider again rule r; in Fig. 1, ¢/
would be of the following shape t' = t[0, (Match(o(L),G) : 0(L) = G)lgqlu-
In this case, the evaluation of Match operation instantiates possible variables
occurring in the pattern BASIC(o (L)) just like classical narrowing procedures.

The first nice property of the proposed calculus is termination (Proposi-
tion 1). In addition, all gg-narrowing derivation steps for solving patterns are
needed since at each step only one position is candidate to a gg-narrowing step
(Proposition 2). Last but not least, the proposed calculus is sound and complete
with respect to the formal semantics given in Section 3 (Theorems 1 and 2).
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Proposition 1 (termination). The relation ~ is terminating.

Proposition 2 (determinism). Let tg ~ t1 ~ ... ~ t, be a gg-narrowing
derivation with to = Solve([ P, i ). For all i € [0..n — 1], there exists at most
one position u; in t; such that t; is gg-narrowable.

Theorem 1 (soundness). Let G be a graph, P a pattern and m a set of
matches such that Solve([P,ig]) ~* [O,m]. Then for all morphisms m in m,
there exists a morphism m’ equals to m up to renaming of variables such that
m’ is in [[P]lc.

Theorem 2 (completeness). Let G1,Go and X be graphs, P a pattern and
h : X = Ga a match in [[P]]g,. Then there exist graphs G4 and X', a set
of matches m : X' = GY, a derivation Solve([P,ig,] ~* [O0,m] and a match
m: X' = G in m such that m and h are equal up to variable renaming.

Now we use the Solve function for tackling patterns and queries as in Sec-
tion 3.2. The following three corollaries are obvious consequences of the above re-
sults. Remember that the value of a pattern P over a graph G is a set of matches
[[P]]G, while the result of a query @ over a graph G is a graph Resultc(Q, G)
when @ is a CONSTRUCT query and a table Results(Q,G) when @ is a SE-
LECT query. For SELECT queries we use the graph Gr(S) associated to the set
of variables S as in Definition 14 (see [18] for details).

Corollary 1 (solving patterns). Let P be a pattern. For every graph G there
is exactly one gg-narrowing derivation of the form:

Solve([P,ig : 0 = G]) ~* [0,m]
and then m is the value Solvep(P,G) = [[P)]c of P over G.

Ezxample 8. As in Example 5 we consider the pattern:
P., = BASIC (L.,) BUILD R,,
= BASIC ({ (?p, teaches, ?t), (?s, studies, 7t) })
BUILD { (?p, teaches, ?z), (?s, studies, 7z) }
The gg-narrowing derivation is as follows:
Solve ([ Peg, i, |) ~ry Solvepy(Solve (| BASIC (Lez), i, |, Rex))
~op Solvepy ([0, Match(Leg, Ges) ], Rex )
~ro |0, Build(Match(Leg, Gez), Rex) |
We know from Example 5 that Build(Match(Ley, Ges), Rex) = P, " Rer = G,
thus we get the required result. a

Corollary 2 (solving CONSTRUCT queries). Let R be a graph and P a
pattern. Consider the query @ = CONSTRUCT R WHERE P. For every graph
G there is exactly one gg-narrowing derivation of the form:

Solve([P BUILD R, is]) ~* [0, m]
and then the graph image of R by m is the result Solvec(Q, G) = Resultc(Q, G)
of Q over G.



A Rule-Based Procedure for Graph Query Solving 17

Corollary 3 (solving SELECT queries). Let S be a set of variables and P
a pattern. Consider the query @ = SELECT S WHERE P. For every graph G
there is exactly one gg-narrowing derivation of the form:

Solve([ P BUILD Gr(S),ig]) ~* [0, m]
and then the table obtained by dropping the first column from Tab(m), as in
Definition 14, is the result Solves(Q,G) = Results(Q,G) of Q over G.

5 Conclusion and Related Work

We propose a sound and compete rule-based calculus for a core graph query lan-
guage (cf. Fig. 1 and Corollaries 2 and 3). The calculus is generic. We illustrate
it on RDF graphs to keep examples concise but it can easily be extended and
adapted to various data graphs, e.g. Property Graphs, provided that the no-
tion of matches is well defined (cf. rule r; in Fig. 1). The syntax of queries was
inspired by current implemented languages such as SPARQL, Cypher or prelim-
inary papers about GQL. We were particularly keen to tackle graph-to-graph
queries in addition to classical graph-to-relation queries.

Due to the different outcomes of SELECT and CONSTRUCT queries, the
composition of graph queries is not straightforward, which contrasts with the
situation in the context of relational databases [28,15]. A particular query nest-
ing, namely EXISTS subqueries, has been implemented in some languages such
as Cypher [23] or PGQL [33]. In this paper, we propose the notion of patterns
as the main syntactic means to formulate queries. Patterns are defined as terms
(trees) on purpose, in order to make it easier to nest patterns at will. Classical
composition of (graph) homomorphisms ensures for free the composition of the
semantics of nested patterns. It is only at the end of the resolution of a pattern
that one chooses to act as a SELECT query and return a table or to act as a
CONSTRUCT query and return a graph. One may also choose to act as both
kinds of queries in a novel query form we call CONSELECT in [20] by returning
at the same time a table and a graph when a pattern is solved.

The results of this paper can be extended to actual graph query languages.
For instance, path variables may be added to the syntax and matches between
two graphs L and G, as in rule r; of Fig. 1, can be constrained by positive,
negative or path constraints and written Match(L,G,®) where ¢ represents
constraints in a given logic (e.g., [31]).

To our knowledge, the proposed calculus is the first sound and complete
rule-based calculus dedicated to graph query languages featuring graph-to-graph
queries and aggregation operators. The proposed procedure is terminating and
does not develop unnecessary derivations. The reader familiar with rewriting
systems would notice that a naive and straightforward operationalization of the
formal semantics would lead to a rewriting system with fewer rules than those
proposed in Fig. 1 but which is not confluent and not all of its derivations yield
sound answers.

Among related work, we quote first the use of declarative (functional and
logic) languages in the context of relational databases (see, e.g. [9, 26, 1]). In these
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works, the considered databases follow the relational paradigm which differs from
the graph-oriented one that we are tackling in this paper. Our aim here is not
to make connections between graph query languages and functional logic ones.
We are rather interested in investigating formally graph query languages, and
particularly in using dedicated rewriting techniques for such languages.

The notion of pattern present in this paper is close to the syntactic notions
of clauses in [23] or graph patterns in [3]. For such syntactic notions, some
authors associate as semantics sets of variables bindings (tables) as in [23, 32,
22] or simply graphs as in [2]. In our case, we associate both variable bindings
and graphs since we associate sets of graph homomorphisms to patterns. This
semantics is borrowed from a previous work on formal semantics of graph queries
based on category theory [17]. Our semantics allows composition of patterns in
a natural way. Such composition of patterns is not easy to catch if the semantics
is based only on variable bindings but can be recovered when queries have graph
outcomes as in G-CORE [2].

Last but not least, the patterns and queries considered in this paper may be
seen as formulas of a logic having graphs as interpretations or models. In [24,
21], a graph logic, called Nested Graph Conditions (NGC) has been introduced
and used to express conditions on graphs. NGC Formulas can be nested and
have graph homomorphisms as semantics just like the patterns considered in the
present paper. NGC allows one to state conditions on the shape of graphs. In [36],
an extension of NGC to attributed graphs has been proposed. NGC formulas can
be used as graph queries but do not provide some of desirable query features
such as aggregation operators nor do they allow graph transformations as in
CONSTRUCT queries or patterns with BUILD operator. Actually, a pattern
with a BUILD operator acts as a formula of a dynamic logic (see, e.g. [6]).
An operationalization of NGC graph queries has been proposed in [7] where
the authors define a set of rewrite rules based on the PO (pushout) approach
to compute query solutions. With [7], we share the same abstract definition of
queries [7, Definition 2] in the sense that any query is characterized by a so-
called request graph which corresponds to the notion of scope graph of patterns.
However, the notion of a query answer according to [7, Definition 3] is defined
as a graph homomorphism having the queried graph G as co-domain. This is a
particular case of our definition of a query answer. Indeed, the co-domain of a
query answer, as we define in the present paper, is the graph G’ equals to the
queried graph G augmented by the different actions underlying the BUILD and
BIND operators involved in the considered pattern or query. So, the proposed
rewriting system in [7] departs from ours. Their rules are well adapted to NGC
conditions and thus fail to add new items (nodes or edges) to queried graphs
and do not take into account aggregations.

Future work includes an implementation of the proposed calculus as well as
the investigation of validation techniques for graph database languages, including
verification methods e.g., [10,11] or test techniques as proposed for example in
[29].
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