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REDUCIBILITY OF 1-D QUANTUM HARMONIC OSCILLATOR WITH A NEW UNBOUNDED OSCILLATORY PERTURBATIONS

, we prove a similar lemma which is based upon oscillatory integrals and Langer's turning point theory. From it we show that the Schrödinger equation

can be reduced in H 1 (R) to an autonomous system for most values of the frequency vector ω, where Λ ⊂ R \ {0}, |Λ| < ∞ and x := √ 1 + x 2 . The functions a k (θ) and b k (θ) are analytic on T n σ and µ ≥ 0 will be chosen according to the value of β. Comparing with [25], the novelty is that the phase functions of oscillatory integral are more degenerate when β > 1.

Introduction of the main results

1.1. Main theorem. Following [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] we continue to consider the reducibility for the time dependent Schrödinger equation i∂ t u = H ǫ (ωt)u, x ∈ R,

H ǫ := -∂ xx + x 2 + ǫX(x, ωt), (1.1) 
where X(x, θ) = x µ k∈Λ a k (θ) sin(k|x| β ) + b k (θ) cos(k|x| β ) with Λ ⊂ R \ {0}, |Λ| < ∞ and x := √ 1 + x 2 . The functions a k (θ) and b k (θ) are analytic on T n σ = {a + bi ∈ C n /2πZ n : |b| < σ} with σ > 0 and β > 1 and µ ≥ 0 will be chosen in the following. We first introduce some functions and spaces. Hermite functions. The harmonic oscillator T = -∂ xx + x 2 has eigenfunctions (h m ) m≥1 , so called the Hermite functions, namely

T h m = (2m -1)h m , h m L 2 (R) = 1, m ≥ 1. (1.2)
Linear spaces. For s ≥ 0 denote by H s the domain of T s 2 endowed by the graph norm. For s < 0, the space H s is the dual of H -s . Particularly, for s ≥ 0 a integer we have

H s = {f ∈ L 2 (R) : x α ∂ β f ∈ L 2 (R), ∀ α, β ∈ N 0 , α + β ≤ s}.
We also define the complex weighted-ℓ 2 -space ℓ 2 s := {ξ = (ξ m ∈ C, m ≥ 1) : m≥1 m s |ξ m | 2 < ∞}. To a function u ∈ H s we associate the sequence ξ of its Hermite coefficients by the formula u = m≥1 ξ m h m (x). In the following we will identify the space H s with ℓ 2 s by endowing both space the norm

u H s = ξ s =   m≥1 m s |ξ m | 2   1 2 . Define l * = l(β, µ) =        1 4 β 6 -µ , 1 < β < 2, 1 4 2 9 -µ , β = 2, 1 4 
β-2
4β-2 -µ , β > 2.

(1.3)

Then we can state our main theorem.

Theorem 1.1. Assume a k (θ) and b k (θ) are analytic on T n σ with σ > 0 and β > 1 and µ satisfies

0 ≤ µ <      β 6 , 1 < β < 2, 2 9 , β = 2, β-2 4β-2 , β > 2.
(1.4)

There exists ǫ * > 0 such that for all 0 ≤ ǫ < ǫ * there is a closed set D ǫ ⊂ D 0 = [0, 2π] n of asymptotically full measure such that for all ω ∈ D ǫ , the linear Schrödinger equation (1.1) reduces to a linear autonomous equation in H 1 . More precisely, for any ω ∈ D ǫ there exists a linear isomorphism Ψ ∞ ω,ǫ (θ) ∈ L(H s ′ ) with 0 ≤ s ′ ≤ 1, analytically dependent on θ ∈ T n σ/2 and unitary on L 2 (R), where Ψ ∞ ω,ǫ -Id ∈ L(H 0 , H 2l * )∩L(H s ′ ) and a bounded Hermitian operator Q ∈ L(H 1 ) such that t → u(t, •) ∈ H 1 satisfies (1.1) if and only if t → v(t, •) = Ψ ∞ ω,ǫ u(t, •) ∈ H 1 satisfies the autonomous equation

i∂ t v = -v xx + x 2 v + ǫQ(v),
furthermore, there are constants C, K > 0 such that

Meas(D 0 \ D ǫ ) ≤ Cǫ 3l * 2(2l * +5)(2l * +1) , Q L(H p ,H p+4l * ) + ∂ ω Q L(H p ,H p+4l * ) ≤ K, ω ∈ D ǫ , p ∈ N, Ψ ∞ ω,ǫ (θ) -Id L(H 0 ,H 2l * ) , Ψ ∞ ω,ǫ (θ) -Id L(H s ′ ) ≤ Cǫ 1 3 , (ω, θ) ∈ D ǫ × T n σ/2 .
Consequently, Theorem 1.1 follows in the considered range of parameters the H 1 norms of the solutions are all bounded forever and the spectrum of the corresponding operator is pure point. 1.2. Related results and a critical lemma. In the following we recall some relevant reducibility results. For 1-D quantum harmonic oscillators('QHO' for short) with periodic or quasi-periodic in time bounded perturbations see [START_REF] Combescure | The quantum stability problem for time-periodic perturbations of the harmonic oscillator[END_REF], [START_REF] Enss | Bound states and propagating states for time -dependent hamiltonians[END_REF] , [START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF], [START_REF] Liang | Reducibility of 1-D quantum harmonic oscillator with decaying conditions on the derivative of perturbation potentials[END_REF], [START_REF] Wang | Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay[END_REF] and [START_REF] Wang | Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations[END_REF] .

In [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] Bambusi and Graffi proved the reducibility of 1-D Schrödinger equation with an unbounded time quasiperiodic perturbation in which the potential grows at infinity like |x| 2l with a real l > 1 and the perturbation is bounded by 1 + |x| β with β < l -1. The reducibility in the limiting case β = l -1 was proved by Liu and Yuan in [START_REF] Liu | Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient[END_REF]. Recently, the results in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] and [START_REF] Liu | Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient[END_REF] have been improved by Bambusi in [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF], in which he firstly obtained the reducibility results for 1-D QHO with unbounded perturbations.

It seems that the reducibility method in [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF] is hard to be applied for 1-D Schrödinger equations with the unbounded oscillatory perturbations(see remark 2.7 in [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF]). The authors [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], [START_REF] Liang | Reducibility of 1-d Schrödinger equation with unbounded oscillation perturbations[END_REF] solved this problem by Langer's turning point and oscillatory integral estimates. We remark that the critical step in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] is to build up a decay estimate of the integral R x µ e ikx h m (x)h n (x)dx, in which the phase functions of oscillatory integral are φ mn (x

) := ζ m (x) -ζ n (x) + kx, where ζ m (x) = x Xm √ λ m -t 2 dt with X m = √ 2m -1 = √ λ m .
Comparing with [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], in this paper the phase functions Ψ mn (x) := ζ m (x) -ζ n (x) + kx β with β > 1 are more degenerate. For 1 < β ≤ 2, we use a similar method as [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF]. The most difficult part as [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] is the integral

Xm-X ν 2 m X 2 3 m
x µ e ikx β h m (x)h n (x)dx where ν 2 = 1 -β 3 for 1 < β < 2 and ν 2 = 5 9 when β = 2. We have to discuss different cases in order to obtain a suitable lower bound of the derivatives of the phase function. For β > 2 we find a new simple proof which follows from Corollary 3.2 in [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF], Lemma 6.1 and a straightforward computation. As Lemma 1.7 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] we have the following.

Lemma 1.2. Assume h m (x) satisfies (1.2). For any k = 0, R x µ e ik|x| β h m (x)h n (x)dx ≤ C • C k,β (mn) -l(β,µ) , m, n ≥ 1
for some absolute constant C > 0, where µ ≥ 0, β > 1, l(β, µ) defined in (1.3) and

C k,β =      |β(β -1)(β -2)k| -1 3 ∨ |k| -1 ∨ |k| 1 4-2β , 1 < β < 2, |k| -1 ∨ 1, β = 2, |βk| -1 ∨ 1, β > 2.
Remark 1.3. In fact l(1, µ) = 1 12 -µ 4 has been proved in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF].

In the end we review some relative results. Eliasson-Kuksin [START_REF] Eliasson | On reducibility of Schrödinger equations with quasiperiodic in time potentials[END_REF] initiated to prove the reducibility for PDEs in high dimension. See [START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF] and [START_REF] Liang | Reducibility of quantum harmonic oscillator on R d with differential and quasi-periodic in time potential[END_REF] for higher-dimensional QHO with bounded potential. The first reducibility result for n-D QHO was proved in [START_REF] Bambusi | Reducibility of the quantum harmonic oscillator in ddimensions with polynomial time-dependent perturbation[END_REF] by Bambusi-Grébert-Maspero-Robert. Towards other PDEs with unbounded perturbations see the reducibility results by Montalto [START_REF] Montalto | A reducibility result for a class of linear wave equations on T d[END_REF] for linear wave equations on T d and Bambusi, Langella and Montalto [START_REF] Bambusi | Reducibility of non-resonant transport equation on with unbounded perturbations[END_REF] for transportation equations( [START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF]). Feola and Grébert [START_REF] Feola | Reducibility of Schrödinger equation on the sphere[END_REF] set up a reducibility result for a linear Schrödinger equation on the sphere S n with unbounded potential( [START_REF] Feola | Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential[END_REF]).

The reducibility results usually imply the boundedness of Sobolev norms. Delort [START_REF] Delort | Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential[END_REF] constructed a t s/2 -polynomial growth for 1-D QHO with certain time periodic perturbation( [START_REF] Maspero | Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations[END_REF]). Basing on a Mourre estimate, Maspero [START_REF] Maspero | Growth of Sobolev norms in linear Schrödinger equations as a dispersive phenomenon[END_REF] proved similar results for 1-D QHO and half -wave equation on T and the instability is stable in some sense. For a polynomial periodic or quasi-periodic perturbations relative with 1-D QHO we refer to [START_REF] Bambusi | Reducibility of the quantum harmonic oscillator in ddimensions with polynomial time-dependent perturbation[END_REF], [START_REF] Graffi | Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator[END_REF], [START_REF] Liang | 1-d quasi-periodic quantum harmonic oscillator with quadratic time-dependent perturbations: Reducibility and growth of Sobolev norms[END_REF] and [START_REF] Luo | Growth of Sobolev norms in 1-D Quantum harmonic oscillator with polynomial time quasi-periodic perturbation[END_REF]. For 2-D QHO with perturbation which is decaying in t, Faou-Raphaël [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF] constructed a solution whose H 1 -norm presents logarithmic growth with t. For 2-D Schrödinger operator Thomann [START_REF] Thomann | Growth of Sobolev norms for linear Schrödinger operators[END_REF] constructed explicitly a traveling wave whose Sobolev norm presents polynomial growth with t, based on the study in [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF] for linear Lowest Landau equations(LLL) with a time-dependent potential. There are also many literatures, e.g. [START_REF] Bambusi | Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori[END_REF][START_REF] Bambusi | Growth of Sobolev norms for abstract linear Schrödinger equations[END_REF][START_REF] Berti | Long time dynamics of Schrödinger and wave equations on flat tori[END_REF][START_REF] Bourgain | Growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potentials[END_REF][START_REF] Bourgain | Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential[END_REF][START_REF] Fang | On growth of Sobolev norms in linear Schrödinger equations with time dependent Gevrey potentials[END_REF][START_REF] Maspero | On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms[END_REF][START_REF] Wang | Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations[END_REF], which are closely relative to the upper growth bound of the solution in Sobolev space.

Our article is organized as follows: in Section 2 we state the reducibility theorem, i.e. Theorem 2.1. In Section 3, through checking all the assumptions in Theorem 2.1 we prove Theorem 1.1. In Section 4 we prove Lemma 1.2 for 1 < β ≤ 2 and the case for β > 2 is delayed in Section 5. Some auxiliary lemmas are presented in the Appendix.

Notation: We use the notations N 0 = {0, 1, 2, • • • }, N = {1, 2, • • • }, T n = R n /2πZ n and T n σ = {a + bi ∈ C n /2πZ n : |b| < σ}.
For Hilbert spaces H 1 , H 2 we denote by L(H 1 , H 2 ) the space of bounded linear operators from H 1 to H 2 and write L(H 1 , H 1 ) as L(H 1 ) for simplicity.

A KAM theorem

Following [START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF][START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF] we introduce the KAM Theorem from [START_REF] Liang | Reducibility of quantum harmonic oscillator on R d with differential and quasi-periodic in time potential[END_REF] especially for 1-D case. 

(ab) α |A b a | < ∞.
We also denote M + α be the subspace of M α satisfying that an infinite

matrix A ∈ M + α if |A| α+ := sup a,b∈N (ab) α (1 + |a -b|)|A b a | < ∞.
In fact one can prove that for all α > 0, a matrix in M + α defines a bounded operator on ℓ 2 0 . However, when α ∈ (0, 1 2 ), we can't insure that M α ⊂ L(ℓ 2 0 , ℓ 2 s ) for any s ∈ R. This means that P x makes no sense when the perturbation operator P ∈ M α and x ∈ ℓ 2 0 . Fortunately, from Lemma 2.1 in [START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF] or Lemma 2.2 in [START_REF] Liang | Reducibility of quantum harmonic oscillator on R d with differential and quasi-periodic in time potential[END_REF] one can show

M α ⊂ L(ℓ 2 1 , ℓ 2 -1
) and thus the reducibility in H 1 can be built up in Theorem 1.1 instead of L 2 .

Parameters. In this paper ω will play the role of a parameter belonging to D 0 = [0, 2π] n . All the constructed maps will depend on ω with C 1 regularity. When a map is only defined on a Cantor subset of D 0 the regularity is understood in Whitney sense.

A class of quadratic Hamiltonians. Let D ⊂ D 0 , α > 0 and σ > 0. We denote by M α (D, σ) the set of mappings as

T n σ × D ∋ (θ, ω) → Q(θ, ω) ∈ M α which is real analytic on θ ∈ T n σ and C 1 continuous on ω ∈ D. And we endow this space with the norm [Q] D,σ α := sup ω∈D,|ℑθ|<σ |k|=0,1 |∂ k ω Q(θ, ω)| α .
The subspace of M α (D, σ) formed by

F (θ, ω) such that ∂ k ω F (θ, ω) ∈ M + α , |k| = 0, 1, is denoted by M + α (D, σ) and endowed with the norm [F ] D,σ α+ := sup ω∈D,|ℑθ|<σ |k|=0,1 |∂ k ω F (θ, ω)| α+ .
Besides, the subspace of M α (D, σ) that are independent of θ will be denoted by M α (D) and for

N ∈ M α (D), [N ] D α := sup ω∈D,|k|=0,1 |∂ k ω N (ω)| α .
2.2. The reducibility theorem. In this section we present an abstract reducibility theorem for a quadratic Hamiltonian quasiperiodic in time of the form

H(t, ξ, η) = ξ, N η + ǫ ξ, P (ωt)η , (ξ, η) ∈ X 1 ⊂ X 0 , (2.1) 
and the corresponding Hamiltonian system

ξ = -iN ξ -iǫP T (ωt)ξ, η = iN η + iǫP (ωt)η, (2.2) 
where N = diag{λ a , a ∈ N} satisfies the following spectrum assumptions: Hypothesis A1-Asymptotics. There exist positive constants c 0 , c 1 , c 2 such that

c 1 a ≥ λ a ≥ c 2 a and |λ a -λ b | ≥ c 0 |a -b|, ∀ a, b ∈ N.
Hypothesis A2-Second Melnikov condition in measure estimates. There exist positive constants α 1 , α 2 and c 3 such that the following holds: for each 0 < κ < 1 4 and K > 0 there exists a closed subset

D ′ = D ′ (κ, K) ⊂ D 0 with Meas(D 0 \D ′ ) ≤ c 3 K α1 κ α2 such that for all ω ∈ D ′ , k ∈ Z n with 0 < |k| ≤ K and a, b ∈ N we have |k • ω + λ a -λ b | ≥ κ(1 + |a -b|).
Then we can state our reducibility results.

Theorem 2.1. Given a nonautonomous Hamiltonian (2.1), we assume that (λ a ) a∈N satisfies Hypothesis A1-A2 and P (θ) ∈ M α (D 0 , σ) with α, σ > 0. Let γ 1 = max{α 1 , n + 3} and γ 2 = αα2 2αα2+5 , then there exists ǫ * > 0 such that for all 0 ≤ ǫ < ǫ * there are (i) a Cantor set

D ǫ ⊂ D 0 with Meas(D 0 \ D ǫ ) ≤ Cǫ 3δα 2α+1 for a δ ∈ (0, γ2 24 ); 
(ii) a C 1 family in ω ∈ D ǫ (in Whitney sense), linear, unitary, analytically dependent on θ ∈ T n σ/2

and symplectic coordinate transformation Φ ∞ ω (θ) :

X 0 → X 0 , (ω, θ) ∈ D ǫ × T n σ/2 , of the form (ξ + , η + ) → (ξ, η) = Φ ∞ ω (θ)(ξ + , η + ) = (M ω (θ)ξ + , M ω (θ)η + ), where Φ ∞ ω (θ) -Id satisfies for 0 ≤ s ′ ≤ 1 Φ ∞ ω (θ) -Id L(X0,X2α) , Φ ∞ ω (θ) -Id L(X s ′ ) ≤ Cǫ 1 3 ; (iii) a C 1 family of autonomous quadratic Hamiltonian in normal forms H ∞ (ξ + , η + ) = ξ + , N ∞ (ω)η + = m≥1 λ ∞ m ξ +,m η +,m , ω ∈ D ǫ , where N ∞ (ω) = diag{λ ∞ m , m ∈ N} is diagonal and is close to N in the sense of [N ∞ (ω) -N ] Dǫ α ≤ Cǫ, such that H(t, Φ ∞ ω (ωt)(ξ + , η + )) = H ∞ (ξ + , η + ), t ∈ R, (ξ + , η + ) ∈ X 1 , ω ∈ D ǫ .

Application to the quantum harmonic oscillator

In this section we will prove Theorem 1.1 by applying Theorem 2.1 to the original equation (1.1). Following the strategies in [START_REF] Eliasson | On reducibility of Schrödinger equations with quasiperiodic in time potentials[END_REF], we expand u on the Hermite basis (h m ) m≥1 as well as ū by the following formula

u = m≥1 ξ m h m , ū = m≥1 η m hm .
Therefore the equation (1.1) is equivalent to a nonautonomous Hamiltonian system

ξm = -i ∂H ∂ηm = -i(2m -1)ξ m -iǫ P T (ωt)ξ m , ηm = i ∂H ∂ξm = i(2m -1)η m + iǫ (P (ωt)η) m , m ≥ 1, (3.1) 
where H(t, ξ, η) = ξ, N η + ǫ ξ, P (ωt)η , (ξ, η) ∈ X 1 ⊂ X 0 , and N = diag{2m -1, m ≥ 1} and

P n m (ωt) = k∈Λ a k (ωt) R x µ sin k|x| β h m (x)h n (x)dx + k∈Λ b k (ωt) R x µ cos k|x| β h m (x)h n (x)dx, (3.2)
where the frequencies ω ∈ D 0 = [0, 2π] n are the external parameters.

The spectrum assumptions can be easily checked by the following two lemmas.

Lemma 3.1. When λ a = 2a -1, a ∈ N, Hypothesis A1 holds true with c 0 = c 2 = 1 and c 1 = 2. Lemma 3.2. When λ a = 2a-1, a ∈ N, Hypothesis A2 holds true with α 1 = n+1, α 2 = 1, c 3 = c(n) and D 0 = [0, 2π] n , D ′ = {ω ∈ [0, 2π] n : |k • ω + j| ≥ κ(1 + |j|), ∀ j ∈ Z, k ∈ Z n \ {0}}.
The following lemma is a direct corollary of Lemma 1.2. More precisely, in new variables given in Theorem 2.1, (ξ, η) = (M ω ξ + , M ω η + ), system (3.1) is conjugated into an autonomous system of the form:

ξ+,a = -iλ ∞ a (ω)ξ +,a , η+,a = iλ ∞ a (ω)η +,a , a ∈ N.
Therefore the solution subject to the initial datum (ξ + (0), η + (0)) reads

(ξ + (t), η + (t)) = (e -itN∞ ξ + (0), e itN∞ η + (0)), t ∈ R,
where

N ∞ = diag{λ ∞ a , a ≥ 1}.
Then the solution of (1.1) with the initial datum

u 0 (x) = a≥1 ξ a (0)h a (x) ∈ H 1 is formulated by u(t, x) = a≥1 ξ a (t)h a (x) with ξ(t) = M ω (ωt)e -itN∞ M T ω (0)ξ(0)
, where we use the fact

M ω -1 = M T ω since M is unitary. Now we define the coordinate transformation Ψ ∞ ω (θ) by Ψ ∞ ω (θ)   a≥1 ξ a h a (x)   := a≥1 M T ω (θ)ξ a h a (x) = a≥1 ξ +,a h a (x).
Then we have u(t, x) satisfies (1.1) if and only if v(t, x) = Ψ ∞ ω (ωt)u(t, x) satisfies the autonomous

equation i∂ t v = -v xx + x 2 v + ǫQ(v), where ǫQ   a≥1 ξ a h a (x)   = a≥1 ((N ∞ -N 0 )ξ) a h a (x) = a≥1 (λ ∞ a -λ a )ξ a h a (x).
The rest estimates are standard (see Lemma 3.4 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] for the details).

4. Proof of Lemma 1.2 when 1 < β ≤ 2 For reader's convenience, we will use the notations in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF]. In the whole section we will always suppose µ ≥ 0 and don't point it out in the following lemmas.

The eigenfunction of the quantum oscillator operator

T is h n (x) = (n!2 n π 1 2 ) -1 2 e -1 2 x 2 H n (x)
, where H n (x) is the n -th Hermite polynomial. Since h n (x) is an even (or odd) function when n is odd (or even), we only need to estimate

+∞ 0 x µ e ikx β h m (x)h n (x)dx, 1 ≤ m ≤ n. (4.1) 
By Lemma 4.4 and Remarks 4.5, 4.6 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], when m > m 0 ,

h m (x) = (λ m -x 2 ) -1 4 ( πζ m 2 ) 1 2 H (1) 1 3 
(ζ m ) + (λ m -x 2 ) -1 4 ( πζ m 2 ) 1 2 H (1) 1 3 (ζ m )O( 1 λ m ) := ψ (m) 1 (x) + ψ (m) 2 (x),
where

ζ m (x) = x Xm λ m -t 2 dt with X 2 m = λ m (X m > 0). Otherwise, when m ≤ m 0 , then h m (x) = ψ (m) 1 (x) + ψ (m) 2 (x) for x > 2X m0 , where ψ (m) 1 (x) = (λ m -x 2 ) -1 4 ( πζm 2 ) 1 2 H (1) 1 3 
(ζ m ) and

|ψ (m) 2 (x)| ≤ C x 2 |ψ (m) 1 (x)|.
Following the same strategies in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] we distinguish 3 cases to estimate (4. .

Proof. When x ≤ X 0 , from Hölder inequality and n, m < C 0 , we have

X0 0 x µ e ikx β h m (x)h n (x)dx ≤ X µ 0 ≤ C (mn) 1 4 ( β 6 -µ)
.

where X 0 is a positive constant depending on

C 0 only. When x > X 0 , |X 2 m -x 2 | -1 4 < 1, we have πζm 2 H (1) 1 3 
(ζ m ) ≤ e -|ζm| by Lemma 5.4 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF]. By Lemma 5.5 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] we have

|ζ m | ≥ 2 √ 2 3 X 1 2 m (x -X m ) 3 2 ≥ x -X 0 for x > X 0 . Thus +∞ X0 x µ e ikx β h m (x)h n (x)dx ≤ +∞ X0
x µ e -2(x-X0) dx ≤ Ce 2X0 ≤ C

(mn)

1 4 ( β 6 -µ)
.

Lemma 4.2. For m ≤ m 0 and n ≥ C 0 and µ ≥ 0,

+∞ 0 x µ e ikx β h m (x)h n (x)dx ≤ C (mn) 1 4 ( β 6 -µ) 
.

Proof. We divide the integral into two parts.

+∞ 0 x µ e ikx β h m (x)h n (x)dx = X 1 3 n 0 + +∞ X 1 3 n . Since x > 2X m0 , we have |h m (x)| ≤ 2(x 2 -X 2 m ) -1 4 | πζ m 2 H (1) 1 3 (ζ m )| ≤ 2e -|ζm| .
On the other hand, for x ∈ [0, X

1 3 n ], one has |h n (x)| ≤ C(X 2 n -x 2 ) -1 4 . Note 1 < β < 2, it follows X 1 3 n 0 x µ e ikx β h m (x)h n (x)dx ≤ C X 1 3 n 0 x µ (X 2 n -x 2 ) -1 4 dx ≤ CX -1 6 + µ 3 n ≤ C (mn) 1 4 ( β 6 -µ) . When x ≥ X 1 3
n ≥ 2X m0 , from Lemma 5.5 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], e -|ζm| ≤ e -C(x-Xm) . Note h n (x) L 2 = 1, from Hölder inequality,

+∞ X 1 3 n x µ e ikx β h m (x)h n (x)dx ≤ C +∞ X 1 3 n x 2µ e -Cx dx 1 2 ≤ e -CX 1 3 n .

4.2.

The estimate for Case III. In the following we will turn to the complicated case when m, n > m 0 . We divide the integral into two parts +∞ 0

x µ e ikx β h m (x)h n (x)dx = Xn 0 + +∞ Xn . We first go to the latter case +∞ Xn .

The integral on

[X n , +∞). Lemma 4.3. For m 0 < m ≤ n, +∞ Xn x µ e ikx β h m (x)h n (x)dx ≤ C m 1 12 -µ 4 n 1 12 -µ 4 ≤ C (mn) 1 4 ( β 6 -µ)
.

We first estimate the integral on [2X n , +∞]. The following result is clear from [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF]. x µ e ikx β h m (x)h n (x)dx ≤ e -Cn .

For the integral on [X n , 2X n ], we prove that Lemma 4.5. For m 0 < m ≤ n,

2Xn Xn x µ e ikx β h m (x)h n (x)dx ≤ C m 1 12 -µ 4 n 1 12 -µ 4 .
Proof. As [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], we only need to estimate the following integral I := 2Xn Xn

x µ e ikx β ψ (m)

1 (x)ψ (n)
1 (x)dx since the rest three ones are higher order. I can be divided into two parts as

|I| = 2Xn Xn+X 1 3 n + Xn+X 1 3 n Xn x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤CX µ n 2Xn Xn+X 1 3 n + Xn+X 1 3 n Xn ψ (m) 1 (x)ψ (n) 1 (x) dx.
From Lemma 5.5 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], when x ≥ X n + X

1 3 n , |ζ n | ≥ 2 √ 2 3 X 1 2 n (x -X n ) 3 2 ≥ 2 √ 2 3 X n . Thus 2Xn Xn+X 1 3 n ψ (m) 1 (x)ψ (n) 1 (x) dx ≤C 2Xn Xn+X 1 3 n (x 2 -λ m ) -1 4 (x 2 -λ n ) -1 4 e -|ζn| dx ≤Ce -2 √ 2 3 Xn 2Xn Xn+X 1 3 n (x 2 -λ n ) -1 2 dx ≤ Ce -2 √ 2 3 Xn .
For the second part,

Xn+X 1 3 n Xn ψ (m) 1 (x)ψ (n) 1 (x) dx ≤C Xn+X 1 3 n Xn (x 2 -λ m ) -1 4 (x 2 -λ n ) -1 4 dx ≤ C Xn+X 1 3 n Xn (x 2 -λ n ) -1 2 dx ≤CX -1 2 n Xn+X 1 3 n Xn (x -X n ) -1 2 dx ≤ CX -1 3 n . It follows |I| ≤ CX µ-1 3 n ≤ C m 1 12 - µ 4 n 1 12 - µ 4 
.

Combining with the above two lemmas we finish Lemma 4.3.

In the following we will estimate the integral on [0, X n ], which is the most complicated case. Note m 0 < m ≤ n, the following two cases have to be considered respectively: I.

X n > 2X m ; II. X m ≤ X n ≤ 2X m .
4.2.2. the integral estimate on [0, X n ] when X n > 2X m . Our aim in this part is to build the following Lemma 4.6.

For k = 0, if X n > 2X m and 1 < β ≤ 2, then Xn 0 x µ e ikx β h m (x)h n (x)dx ≤ C(|k| ι ∨ 1) m 1 8 -µ 4 n 1 12 -µ 4 
, where m 0 < m ≤ n and ι =

1 4-2β , 1 < β < 2, 0, β = 2.
As [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] we will use the following notation in the remained parts. We denote

f m (x) = ∞ 0 e -t t -1 6 1 + it 2ζm -1 6 dt and f n (x) = ∞ 0 e -t t -1 6 1 + it 2ζn -1 6 dt. When x ∈ [0, X m ], from a straightforward computation we have ψ (m) 1 (x) = (X 2 m -x 2 ) -1 4 πζ m 2 H (1) 1 3 (ζ m ) = (X 2 m -x 2 ) -1 4 e i(ζm-π 6 -π 4 ) Γ 5 6 ∞ 0 e -t t -1 6 1 + it 2ζ m -1 6 dt = C(X 2 m -x 2 ) -1 4 e iζm(x) f m (x).
Similarly, ψ [START_REF] Bambusi | Growth of Sobolev norms for abstract linear Schrödinger equations[END_REF] ). Thus, Corollary 4.7. For x ∈ [0, X m ) and m ≤ n,

(n) 1 (x) = C(X 2 n -x 2 ) -1 4 e -iζn(x) f n (x). For x ∈ [0, X m ], denote Ψ(x) = (X 2 m - x 2 ) -1 4 (X 2 n -x 2 ) -1 4 • f m (x)f n (x) and g(x) = (ζ n (x) -ζ m (x) -kx β ) ′ = X 2 n -x 2 -X 2 m -x 2 - kβx β-1 ,then Ψ ′ (x) = 1 2 x(X 2 m -x 2 ) -5 4 (X 2 n -x 2 ) -1 4 • f m (x)f n (x) + 1 2 x(X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -5 4 • f m (x)f n (x) +(X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 • f ′ m (x)f n (x) + f m (x)f ′ n (x) . When x ∈ [0, X m ], |f m (x)| ≤ Γ( 5 6 ) and |f n (x)| ≤ Γ( 5 
|Ψ ′ (x)| ≤C x(X 2 m -x 2 ) -5 4 (X 2 n -x 2 ) -1 4 + x(X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -5 4 + (X 2 m -x 2 ) 1 4 (X 2 n -x 2 ) -1 4 X m (X m -x) 3 + (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) 1 4 X n (X n -x) 3 =C J 1 + J 2 + J 3 + J 4 ≤ C(J 1 + J 3 ).
We first estimate the integral on [0, X m -X

-1 3 m ]. Lemma 4.8. For k = 0, 1 < β < 2, if X n > 2X m , then Xm-X -1 3 m 0 x µ e ikx β h m (x)h n (x)dx ≤ C(|k| 1 4-2β ∨ 1) m 1 8 -µ 4 n 1 8 -µ 4
, where m 0 < m ≤ n.

Proof. First we estimate the main term of the integral

Xm-X -1 3 m 0 x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx = C Xm-X -1 3 m 0
x µ e i(ζm-ζn+kx β ) Ψ(x)dx, by method of oscillating integral estimate, where

Ψ(x) = (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 • f m (x)f n (x). We discuss two different cases. Case 1: k ≤ X 2-β n 8 . In this case, we have g(x) ≥ X 2 n -x 2 - X 2 n 4 -x 2 -βkX β-1 n ≥ X n 2 -2 • X 2-β n 8 X β-1 n ≥ X n 4 .
Thus, by Lemma 6.1,

Xm-X -1 3 m 0 e i ζm-ζn+kx β Xn Xn x µ Ψ(x)dx ≤CX -1 n   ( x µ Ψ) (X m -X -1 3 m ) + Xm-X -1 3 m 0 ( x µ Ψ) ′ (x) dx   ≤CX -1 n   X µ m Ψ(X m -X -1 3 m ) + Xm-X -1 3 m 0 2 x µ (J 1 + J 3 ) + µ x µ-1 x x |Ψ(x)| dx   ≤CX -1 n X µ m   Ψ(X m -X -1 3 m ) + Xm-X -1 3 m 0 (J 1 + J 3 ) dx   + CµX -1 n Xm-X -1 3 m 0 x µ-1 |Ψ(x)| dx. Clearly, X µ m Ψ(X m -X -1 3 m ) ≤ CX µ m X 2 m -(X m -X -1 3 m ) 2 -1 4 X 2 n -(X m -X -1 3 m ) 2 -1 4 ≤ CX -1 3 +µ m , and Xm-X -1 3 m 0 µ x µ-1 |Ψ(x)| dx ≤ C X 2 m -(X m -X -1 3 m ) 2 -1 4 X 2 n -(X m -X -1 3 m ) 2 -1 4 Xm 0 µx µ-1 dx ≤C X 2 m -(X m -X -1 3 m ) 2 -1 4 X 2 n -(X m -X -1 3 m ) 2 -1 4 X µ m ≤ CX -1 3 +µ m , together with Xm-X -1 3 m 0 J 1 dx ≤ C Xm-X -1 3 m 0 x(X 2 m -x 2 ) -5 4 (X 2 m -x 2 ) -1 4 dx ≤ CX -1 3 m ,
and

Xm-X -1 3 m 0 J 3 dx ≤ CX -1 m Xm-X -1 3 m 0 (X m -x) -3 dx ≤ CX -1 3 m .

So we obtain

Xm-X

-1 3 m 0 x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤ CX -1 3 +µ m X -1
n . Now we turn to remained three terms. Since m 0 < m ≤ n,

Xm-X -1 3 m 0 x µ e ikx β ψ (m) 2 (x)ψ (n) 1 (x)dx ≤ C Xm-X -1 3 m 0 X -2+µ m (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 dx ≤ CX -3 2 +µ m X -1 2 n ≤ Cn -1 4 + µ 2 .
Similarly, when m 0 < m ≤ n, we have

Xm-X -1 3 m 0 x µ e ikx β ψ (m) 1 (x)ψ (n) 2 (x)dx ≤ Cn -1+ µ 2 and Xm-X -1 3 m 0 x µ e ikx β ψ (m) 2 (x)ψ (n) 2 (x)dx ≤ Cn -1+ µ 2 .
Thus,

Xm-X -1 3 m 0 x µ e ikx β h m (x)h n (x)dx ≤ C n 1 4 -µ 2 ≤ C m 1 8 -µ 4 n 1 8 -µ 4 , m 0 < m ≤ n. Case 2: k > X 2-β n 8 > 0. Since m ≤ n, we have 2n ≤ (8k) 2 2-β + 1. It follows that Xm-X -1 3 m 0 x µ e ikx β h m (x)h n (x)dx ≤ CX µ m ≤ CX µ m m 1 8 n 1 8 m 1 8 n 1 8 ≤ Ck 1 4-2β m 1 8 -µ 4 n 1 8 -µ 4 .
Combining with these two cases we finish the proof. Lemma 4.9.

For k = 0, if X n > 2X m , then Xm-X 2 3 m 0 x µ e ikx 2 h m (x)h n (x)dx ≤ C m 1 8 -µ 4 n 1 8 -µ 4 
, where m 0 < m ≤ n.

Proof. We first estimate the main part of the integral. By the oscillating integral estimate,

Xm-X 2 3 m 0 x µ e ikx 2 ψ (m) 1 (x)ψ (n) 1 (x)dx = C Xm-X 2 3 m 0 x µ e i(ζm-ζn+kx 2 ) Ψ(x)dx, where Ψ(x) = (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 • f m (x)f n (x). Since g ′′ (x) ≥ g ′′ (0) = 1 Xm -1 Xn ≥ 1 2 X -1 m , by Lemma 6.1, Xm-X 2 3 m 0 e i ζm-ζn +kx 2 Xn Xn x µ Ψ(x)dx ≤CX 1 3 m   ( x µ Ψ) (X m -X 2 3 m ) + Xm-X 2 3 m 0 ( x µ Ψ) ′ (x) dx   ≤CX 1 3 m   X µ m Ψ(X m -X 2 3 m ) + Xm-X 2 3 m 0 2 x µ (J 1 + J 3 ) + µ x µ-1 x x |Ψ(x)| dx   ≤CX 1 3 m X µ m   Ψ(X m -X 2 3 m ) + Xm-X 2 3 m 0 (J 1 + J 3 ) dx   + CµX 1 3 m Xm-X 2 3 m 0 x µ-1 |Ψ(x)| dx.
The estimate comes from three terms. Clearly, for x ∈ [0, X m -X

2 3
m ] we have

|Ψ(x)| ≤ C(X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 ≤ C(X m X n ) -1 4 (X m -x) -1 4 (X n -x) -1 4 ≤ CX -5 12 m X -1 2 n . It follows that X µ m Ψ(X m -X 2 3 m ) ≤ CX µ-5 12 m X -1 2 n , and 
Xm-X 2 3 m 0 µ x µ-1 |Ψ(x)| dx ≤ CX -5 12 m X -1 2 n Xm 0 x µ-1 dx ≤ CX µ-5 12 m X -1 2 n , together with Xm-X 2 3 m 0 J 1 dx ≤ C Xm-X 2 3 m 0 x(X 2 m -x 2 ) -5 4 (X 2 n -x 2 ) -1 4 dx ≤ CX -5 12 m X -1 2 n ,
and

Xm-X 2 3 m 0 J 3 dx ≤ CX -3 4 m X -1 2 n Xm-X 2 3 m 0 (X m -x) -11 4 dx ≤ CX -5 12 m X -1 2 n , we obtain Xm-X 2 3 m 0 x µ e ikx 2 ψ (m) 1 (x)ψ (n) 1 (x)dx ≤ CX -1 12 +µ m X -1 2 n ≤ C(X m X n ) µ 2 -1
4 . The estimate of rest parts of the integral is similar with Lemma 4.8. Thus, Xm-X , where m 0 < m ≤ n and

ν 1 = -1/3, 1 < β < 2, 2/3, β = 2. Proof. First, Xm Xm-X ν 1 m x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤C Xm Xm-X ν 1 m x µ (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 dx ≤CX -1 4 +µ m (X 2 n -X 2 m ) -1 4 Xm Xm-X ν 1 m (X m -x) -1 4 dx ≤CX -1 4 +µ m (X 2 n - X 2 n 4 ) -1 4 X 3 4 ν1 m ≤ CX -3 8 + 3 8 ν1+ µ 2 m X -3 8 + 3 8 ν1+ µ 2 n . Similarly, Xm Xm-X ν 1 m x µ e ikx β ψ (m) j1 (x)ψ (n) j2 (x)dx ≤ CX -3 8 + 3 8 ν1+ µ 2 m X -3 8 + 3 8 ν1+ µ 2 n
, j 1 , j 2 ∈ {1, 2}.

Thus we finish the proof.

Lemma 4.11. When X n > 2X m and 1 < β ≤ 2,

Xn Xm x µ e ikx β h m (x)h n (x)dx ≤ C m 1 8 -µ 4 n 1 12 -µ 4 
, where m 0 < m ≤ n.

Proof. When X n > 2X m0 , X m + X -1 3 m ≤ Xn 2 + 1 ≤ 3 4 X n . It follows Xm+X -1 3 m Xm x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤CX µ m Xm+X -1 3 m Xm (x 2 -X 2 m ) -1 4 (X 2 n -x 2 ) -1 4 dx ≤CX -1 4 +µ m X 2 n -(X m + X -1 3 m ) 2 -1 4 Xm+X -1 3 m Xm (x -X m ) -1 4 dx ≤CX -1 2 + µ 2 m X -1 2 + µ 2 n . From X n > 2X m , we have X n -X -1 3 n ≥ 3 
2 X m , together with Lemma 5.5 in [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF], thus

3 2 Xm Xm+X -1 3 m x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤CX µ m 3 2 Xm Xm+X -1 3 m (x 2 -X 2 m ) -1 4 (X 2 n -x 2 ) -1 4 e iζm dx ≤CX -1 4 +µ m X 2 n -(X n -X -1 3 n ) 2 -1 4 3 2 Xm Xm+X -1 3 m (x -X m ) -1 4 e -(x-Xm) dx ≤CX -1 4 +µ m X -1 6 n ∞ 0 t -1 4 e -t dt ≤ CX -1 4 + µ 2 m X -1 6 + µ 2 n . When x ≥ 3 2 X m , x -X m ≥ 1 3 x, it follows Xn-X -1 3 n 3 2 Xm x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤C Xn-X -1 3 n 3 2 Xm x µ (x 2 -X 2 m ) -1 4 (X 2 n -x 2 ) -1 4 e iζm dx ≤CX -1 4 m X 2 n -(X n -X -1 3 n ) 2 -1 4 Xn-X -1 3 n 3 2 Xm (x -X m ) -1 4 +µ e -(x-Xm) dx ≤CX -1 4 m X -1 6 n ∞ 0 t -1 4 +µ e -t dt ≤ CX -1 4 m X -1 6 n . Thus, Xn Xn-X -1 3 n x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤C Xn Xn-X -1 3 n x µ (x 2 -X 2 m ) -1 4 (X 2 n -x 2 ) -1 4 e iζm dx ≤C (X n -X -1 3 n ) 2 -X 2 m -1 4 X -1 4 n Xn Xn-X -1 3 n (X n -x) -1 4 x µ e -1 3 x dx ≤CX -1 2 m X -1 4 n Xn Xn-X -1 3 n (X n -x) -1 4 dx ≤CX -1 2 m X -1 2 n ≤ C(X m X n ) -1 2 + µ 2 .
Combining with all the above, we have

Xn Xm x µ e ikx β ψ (m) 1 (x)ψ (n) 1 (x)dx ≤ C m 1 8 - µ 4 n 1 12 - µ 4 
. The rest estimates are similar as above.

Combining with Lemma 4.8, 4.9, 4.10, 4.11, we finish the proof of Lemma 4.6.

The integral estimate on

[0, X n ] when X m ≤ X n ≤ 2X m . One can split the integral into Xn 0 x µ e ikx β h m (x)h n (x)dx =   X 2 3 m 0 + Xm-X ν 2 m X 2 3 m + Xn Xm-X ν 2 m   x µ e ikx β h m (x)h n (x)dx,
and estimate them respectively, where

ν 2 = 1 -β 3 , 1 < β < 2, 5 9 , β = 2. 
Our main aim in this part is to build the following two lemmas.

Lemma 4.12. For X m ≤ X n ≤ 2X m and k = 0,

Xn 0 x µ e ikx 2 h m (x)h n (x)dx ≤ C(|k| -1 ∨ 1) m 1 18 -µ 4 n 1 18 -µ 4 , where C > 0, m 0 < m ≤ n. Lemma 4.13. For X m ≤ X n ≤ 2X m , k = 0 and 1 < β < 2, Xn 0 x µ e ikx β h m (x)h n (x)dx ≤ C(|k| -1 ∨ |β(β -1)(β -2)k| -1 3 ∨ 1) m β 24 -µ 4 n β 24 -µ 4 , where C > 0, m 0 < m ≤ n.
From a straightforward computation we have

Lemma 4.14. For X m ≤ X n ≤ 2X m and 1 < β ≤ 2, X 2 3 m 0 x µ e ikx β h m (x)h n (x)dx ≤ C m 1 12 -µ 4 n 1 12 -µ 4 ,
where C > 0, m 0 < m ≤ n.

Next we estimate the integral on [X

2 3 m , X m -X 5 9
m ], for which we discuss different cases as the following.

Lemma 4.15. If X m ≤ X n ≤ 2X m , when k > 0 and 0 ≤ X 2 n -X 2 m ≤ kX 4 3 m , then Xm-X 5 9 m X 2 3 m x µ e ikx 2 h m (x)h n (x)dx ≤ Ck -1 2 m 7 36 -µ 4 n 7 36 -µ 4 
, where m 0 < m ≤ n.

Proof. We first estimate

Xm-X 5 9 m X 2 3 m x µ e ikx 2 ψ (m) 1 (x)ψ (n) 1 (x)dx = C Xm-X 5 9 m X 2 3 m
x µ e i(ζm-ζn+kx 2 ) Ψ(x)dx .

Notice that

g ′ (x) ≤ kX 4 3 m X m 2X 14 9
m -X x µ e i 2 3k (ζm-ζn+kx

2 )• 3k 2 (X 2 m -x 2 ) -1 4 (X 2 n -x 2 ) -1 4 • f m (x)f n (x)dx ≤Ck -1 2   ( x µ Ψ)(X m -X 5 9 
m ) +

Xm-X Notice that g(x) = X 2 n -x 2 -X 2 m -x 2 -βkx β-1 ≥ -kX Proof. First,

. Combining with the above two cases, we finish the proof. Lemma 4.12 and 4.13 follow directly by the lemmas in subsection 4.2.3. Combining with all the lemmas in this section we finish the proof of Lemma 1.2 for 1 < β ≤ 2.

Proof of Lemma 1.2 when β > 2

In the following we will suppose that m ≤ n without losing the generality. As the case 1 < β ≤ 2 we only need to estimate the integral on [0, ∞]. We first apply Theorem 3.1 in [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF] to obtain the integral estimates on [2X m , ∞) as follows.

Lemma 5.1. For µ ≥ 0, then we have ∞ 2Xm

x µ e ikx β h m (x)h n (x)dx ≤ C (mn) .

Proof. By Theorem 3.1 in [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF] we have ∞ 2Xm

x µ e ikx β h m (x)h n (x)dx

≤C ∞ 2Xm x -1 x µ+1 |h m (x)||h n (x)|dx ≤C x -1 1 2 L 2 (R) • x µ+1 h m (x) 1 2 L 2 ({x:|x|≥2Xm}) • h n L ∞ (R) ≤CX -1 6 m X -1 6 n ≤ C(mn) 1 4 (µ-1 3 ) . ≤C|kβ| -1 X -ν3(β-1)+1 n X µ m ≤ C|kβ| -1 (X m X n ) µ 2 X -β-2
4β-2 n ≤C|kβ| -1 (mn) .

Proof. The proof is similar as Lemma 5.2, we omit it.

Hence, combining the above four Lemmas we obtain Lemma 1.2 when β > 2.
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Appendix

In the following we will introduce two technical lemmas without proof. The first lemma provides an estimate of oscillatory integral. For more details, see [START_REF] Stein | Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals[END_REF]. Lemma 6.1. ( [START_REF] Stein | Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals[END_REF]) Suppose φ is real-valued and smooth in (A, B), ψ is complex-valued, and that |φ (k) (x)| ≥ 1 for all x ∈ (A, B). Then The second lemma shows that the L p -norm of the eigenfunction of harmonic oscillating operator can be controlled by its L 2 -norm. Lemma 6.2 ( [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF]). Sppose that h(x) is the eigenfunction of Herimite operator with the corresponding eigenvalue µ 2 . Then h L p ≤ µ ρ(p) h L 2 , where

ρ(p) = -( 1 2 -1 p ), 2 ≤ p < 4, -1 3 + 1 3 ( 1 2 -1 p ), 4 < p ≤ ∞.

Lemma 3 . 3 .

 33 Assume that a k (θ) and b k (θ) are analytic on T n σ for any nonzero k ∈ Λ with σ > 0 and β > 1 and µ satisfies (1.4), then there exists α = l(β, µ) > 0 such that the matrix functionP (θ) defined by (3.2) is analytic from T n σ into M α .Proof of Theorem 1.1. Expanding the Hermite basis (h m ) m≥1 , the Schrödinger equation (1.1) becomes Hamiltonian system (3.1), which is the form of equation (2.2) with λ a = 2a -1. By lemmas above, we can apply Theorem 2.1 to (3.1) with γ 1 = n + 3, γ 2 = α 2α+5 and δ = γ2 48 . This follows Theorem 1.1.

  1): I. m, n < C 0 := 2 8 m 3 0 ; II. m ≤ m 0 and n ≥ C 0 ; III. m, n > m 0 . 4.1. the estimates for Case I and Case II. Lemma 4.1. When n, m < C 0 , +∞ 0x µ e ikx β h m (x)h n (x)dx ≤ C

Lemma 4 . 4 .

 44 For m 0 < m ≤ n, +∞ 2Xn

x 4 ,

 4 µ e ikx 2 h m (x)h n (x)dx ≤ m 0 < m ≤ n. Lemma 4.10. If X n > 2X m and 1 < β ≤ 2, then Xm Xm-X ν 1 mx µ e ikx β h m (x)h n (x)dx ≤

  computation, g ′′ (x) ≥ 0. It follows |g ′ (x)| ≥ 3 2 k on x ∈ [X

  The estimates for the rest three terms are easier. In fact, by m > m 0 ,

Lemma 5 . 4 . 3 n 0 x

 5430 For X ν3 n < 2X m and β > 2, thenX ν µ e ikx β h m (x)h n (x)dx ≤ C

e

  iλφ(x) ψ(x)dx ≤ c k λ -1/k |ψ(B)| + B A |ψ ′ (x)|dx holds when: (i) k ≥ 2, or (ii) k = 1 and φ ′ (x) is monotonic.The bound c k is independent of φ, ψ and λ.

  2.1. Setting. Linear spaces. For p ≥ 0 we defineX p := ℓ 2 p × ℓ 2 p = {ζ = (ζ a = (ξ a , η a ) ∈ C 2 ) a∈N , ζ p < ∞} with ζ 2 p = a∈N a p (|ξ a | 2 + |η a | 2). We equip the space with the symplectic

	structure i	a∈N	dξ a ∧ η a .
	Infinite matrices. Denote by M α the set of infinite matrices A : N × N → C with the norm |A| α := sup a,b∈N

9 m

.

Lemma 4.20. For k = 0, X m ≤ X n ≤ 2X m and 1 < β ≤ 2, we have

Proof. For the integral on [X m , X n ], we discuss two different cases:

We split the integral into three parts. First,

Finally, from

Xn Xn-X -ν 2 n

x µ e ikx β ψ

Thus,

Next we consider the integral on [0, 2X m ]. Define ν 3 = 5β-4 2(β-1)(2β-1) ∈ (0, 1) when β > 2. In the following we will discuss two different cases depending on whether X ν3 n ≥ 2X m or not.

The case X ν3 n ≥ 2X m . In this case we directly estimate the rest integral on [0, 2X m ]. Lemma 5.2. For X ν3 n ≥ 2X m and β > 2, then 2Xm 0

x µ e ikx β h m (x)h n (x)dx ≤ C

(mn)

.

Proof. From Lemma 6.2, 2Xm 0

x µ e ikx β h m (x)h n (x)dx

The case X ν3 n < 2X m . In this case we split the rest integral into two parts as follows. Lemma 5.3. For k = 0, X ν3 n < 2X m and β > 2, then