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Abstract. We prove the reducibility of quantum harmonic oscillators in Rd perturbed
by a quasi-periodic in time potential V (x, ωt) with logarithmic decay. By a new estimate
built for solving the homological equation we improve the reducibility result by Grébert-
Paturel(Annales de la Faculté des sciences de Toulouse : Mathématiques. 28, 2019).
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1. Introduction and Main Results

1.1. Statement of the results. In this paper we consider the linear equation

i∂tu = (−∆+ |x|2)u+ ǫV (x, ωt)u, u = u(t, x), t ∈ R, x ∈ R
d, (1.1)

where ǫ ≥ 0 is a small parameter and frequency vector ω of the forced oscillations is
regarded as a parameter in D0 := [0, 2π)n. We assume that the potential V : Rd × Tn ∋
(x, ϕ) 7→ V (x, ϕ) ∈ R is continuous in all its variables and analytic in ϕ, where Tn =
R

n/2πZn denotes the n-dimensional torus. For σ > 0, the function V (x, ϕ) analytically
in ϕ extends to the strip Tn

σ = {(a+ bi) ∈ Cn/2πZn : |b| < σ} and for all (x, ϕ) ∈ Rd×Tn
σ

verifies
|V (x, ϕ)| ≤ C(1 + ln(1 + |x|2))−2ι, (1.2)

where ι ≥ 0 and C > 0.
Before state the main results, we need some notations. For readers’ convenience we

will follow the notations in [28]. Let H0 = −∆ + |x|2 = −∆+ x2
1 + x2

2 + · · ·+ x2
d be the

d-dimensional quantum harmonic oscillator. Its spectrum is the sum of d copies of the

odd integers set, i.e. the spectrum of H0 equals Ê := {d, d+ 2, d+ 4, · · · }. Denote by Ej

for j ∈ Ê the associated eigenspace whose dimension equals

#{(i1, i2, · · · , id) ∈ (2N+1)d : i1+i2+· · ·+id = j} := dj ≤ jd−1, where N = {0, 1, 2, · · · }.

Denote by {Φj,l, l = 1, 2, · · · , dj} the basis of Ej obtained by d-tensor product of Hermite
functions: Φj,l = ϕi1 ⊗ϕi2 ⊗· · ·⊗ϕid for some choice of i1+ i2+ · · ·+ id = j. Then setting

E := {(j, l) ∈ Ê × N : l = 1, 2, · · · , dj} and wj,l = j for (j, l) ∈ E

(Φa)a∈E forms the Hermite basis of L2(Rd), verifying H0Φa = waΦa, a ∈ E . We define on
E an equivalent relation: a ∼ b ⇐⇒ wa = wb and denote by [a] the equivalence class
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corresponding with a ∈ E . We notice for later use that #[a] ≤ wd−1
a and that abbreviate

the eigenspace Ewa
as E[a].

For s ≥ 0 denote by Hs the form domain of Hs
0 and the domain of H

s/2
0 endowed by

the graph norm. For negative s, the space Hs is the dual of H−s. In particular, for s ≥ 0
an integer we have

Hs = {f ∈ L2(Rd) : xα∂βf ∈ L2(Rd), ∀α, β ∈ N
d, |α|+ |β| ≤ s}.

For Hilbert spaces H1 and H2, we will denote by B(H1,H2) the space of bounded linear
operators from H1 to H2 and write B(H1,H1) as B(H1) for simplicity.

To a function u ∈ Hs we associate the sequence ξ of its Hermite coefficients by the
formula u(x) =

∑
a∈E ξaΦa(x) and define ℓ2s := {(ξa)a∈E :

∑
a∈E w

s
a|ξa|

2 < ∞}. Next we
will identify Hs with ℓ2s by endowing both spaces with the norm

‖u‖Hs = ‖ξ‖s =

(∑

a∈E

ws
a|ξa|

2

) 1
2

.

Our main theorem is the following.

Theorem 1.1. Assume that V satisfies (1.2) with ι ≥ n+d+1
2

. There exists ǫ∗ > 0 such
that for all 0 ≤ ǫ < ǫ∗ there exists Dǫ ⊂ D0 := [0, 2π)n such that for all ω ∈ Dǫ, the linear
Schrödinger equation (1.1) reduces to a linear equation with constant coefficients in H1.

More precisely, for any ω ∈ Dǫ, there exists a linear isomorphism Ψ(ϕ) = Ψω,ǫ(ϕ) ∈
B(Hp), for p ∈ [0, 1], unitary on L2(Rd), which analytically depends on ϕ ∈ Tn

σ/2 and a

bounded Hermitian operator W = Wω,ǫ ∈ B(Hs), for s ≥ 0, such that t 7→ u(t, ·) ∈ H1

satisfies

i∂tu = (−∆+ |x|2)u+ ǫV (x, ωt)u (1.3)

if and only if t 7→ v(t, ·) = Ψ(ωt)−1u(t, ·) satisfies the autonomous equation

i∂tv = (−∆+ |x|2)v +W(v). (1.4)

Furthermore, there exists C > 0 such that

Meas(D0\Dǫ) ≤ Cǫ
1
6 ,

‖W‖B(Hs) ≤ Cǫ, for all s ≥ 0,

‖Ψ(ϕ)±1 − Id‖B(Hp) ≤ Cǫ
5
12 , ∀ ϕ ∈ T

n
σ/2, for all p ∈ [0, 1].

(1.5)

Remark 1.2. The infinite matrix (W b
a)a,b∈E of the operator W written in the Hermite

basis (W b
a =

∫
Rd ΦaW(Φb)dx) is block diagonal and satisfies for some C > 0:

‖W [a]
[a] ‖ ≤

Cǫ

(1 + lnwa)2ι
, ∀ a ∈ E .

As a consequence, we obtain the following corollaries concerning the Sobolev norm
estimations on the solution of (1.1) and the spectra of the corresponding Floquet operator
defined by

K = −i

n∑

j=1

ωj
∂

∂ϕj
−∆+ |x|2 + ǫV (x, ϕ).
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Corollary 1.3. Assume that V satisfies (1.2) with ι ≥ n+d+1
2

. There exists ǫ∗ > 0 such
that for all 0 ≤ ǫ < ǫ∗ and ω ∈ Dǫ, there exists a unique solution u ∈ C(R,H1) such that
u(0) = u0. Moreover, u is almost-periodic in time and satisfies

(1− Cǫ)‖u0‖H1 ≤ ‖u(t)‖H1 ≤ (1 + Cǫ)‖u0‖H1 ,

for some C > 0.

Corollary 1.4. Assume that V satisfies (1.2) with ι ≥ n+d+1
2

. There exists ǫ∗ > 0 such
that for all 0 ≤ ǫ < ǫ∗ and ω ∈ Dǫ the spectrum of the Floquet operator K is a pure
point.

1.2. An introduction of the proof and related results. In this paper we will follow
the strategy in [28] or [19]. As [28], if we endow the phase space Hs × Hs with the
symplectic structure idu ∧ dū, the equation (1.3) can be rewritten as the Hamiltonian
system associated with the Hamiltonian

H(u, ū) = h(u, ū) + ǫq(ωt, u, ū), (1.6)

where h(u, ū) =
∫
Rd |∇u|2 + |x|2uūdx and q(ωt, u, ū) =

∫
Rd V (x, ωt)uūdx. Expanding u

and ū on the Hermite basis of real valued functions u =
∑

a∈E ξaΦa, ū =
∑

a∈E ηaΦa, the
Hamiltonian reads as h =

∑
a∈E waξaηa, q = 〈ξ, Q(ωt)η〉, where 〈·, ·〉 denotes the natural

scalar product (no complex conjugation) and Q is the infinite matrix whose entries are

Qb
a(ωt) =

∫

Rd

V (x, ωt)Φa(x)Φb(x)dx, (1.7)

and (ξ, η) ∈ Ys, in which Ys = {ζ = (ζa ∈ C2, a ∈ E) : ‖ζ‖s < ∞}. Therefore, Theorem
1.1 is equivalent to the reducibility problem for the non-autonomous Hamiltonian system
associated with the Hamiltonian∑

a∈E

waξaηa + ǫ〈ξ, Q(ωt)η〉. (1.8)

As [28] we will construct a canonical change of variables and conjugate the Hamiltonian
system with the Hamiltonian (1.8) to the Hamiltonian system associated with an au-
tonomous Hamiltonian

∑
a∈E waξaηa + 〈ξ,Wη〉, where W is block diagonal and will be

clear in the following sections.
Here we would like to compare our approaches with those of Grébert and Paturel [28].

By and large, because of the so-called small-divisor problem, in both [28] and the present
paper the KAM technique is used to eliminate the dependence on ϕ of the perturbation
〈ξ, Q(ϕ)η〉. There is, however, an apparent difference. In [28], the perturbation matrix
Q(ϕ) belongs to Ms,β. In other words, for any a, b ∈ E ,

wβ
aw

β
b ‖Q

[b]
[a]‖
(√min{wa, wb}+ |wa − wb|√

min{wa, wb}

) s
2
≤ C. (1.9)

The estimate comes from Cor. 3.2 from [30], the assumption of the perturbation and a
delicate analysis. In this paper, we have a weaker assumption on V (x, ϕ). Similarly, we

also need an estimate on the perturbation matrix element Q
[b]
[a] for every a, b ∈ E . The

following is the corresponding estimate:

Lemma 1.5. Assume that V satisfies (1.2) with ι ≥ 0, then we have∣∣∣∣
∫

Rd

V (x, ϕ)Ψa(x)Ψb(x)dx

∣∣∣∣ ≤
C

(1 + lnwa)ι(1 + lnwb)ι
(1.10)
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for all Ψa ∈ E[a],Ψb ∈ E[b] and ‖Ψa‖ = ‖Ψb‖ = 1, where the constant C ≡ C(d, ι) > 0
and ‖ · ‖ denotes the L2(Rd) norm.

Remark 1.6. The above estimate was firstly proved by Z. Wang and one of the authors
in [43] when d = 1.

Remark 1.7. From the above lemma, we obtain

(1 + lnwa)
β(1 + lnwb)

β‖Q[b]
[a]‖ ≤ C.

Thus we need to introduce a new space Mβ which can be compared with the correspond-

ing one Ms,β in [28]. See section 2 for the definition of Mβ.

In [28] Grébert and Paturel used Lemma 4.3 called the key lemma to solve the homo-
logical equation, in which they assume |µa − λa| ≤

C0

wδ
a
for all a ∈ E . We remark this

lemma was first built up in Proposition 2.2.4 [17] and also applied in [23] and [27]. But
in our case we only have a weaker assumption |µa − λa| ≤

C0

(1+lnwa)δ
for all a ∈ E which

comes from Q ∈ Mβ. On the first try one can follow the proof of Lemma 4.3 in [28], the
estimate should be

‖B(k)
[b]
[a]‖ ≤

CdK
d−1 exp{Cδ,dκ

− 1
δ }

κ(1 + |wa − wb|)
‖A[b]

[a]‖. (1.11)

If we choose κ ∼ ǫα, the term exp{Cδ,dκ
− 1

δ } is too big for KAM iteration whatever

α > 0 is chosen. If one chooses κ ∼ 1
| ln ǫ|δ

, it follows exp{Cδ,dκ
− 1

δ } ∼ ǫ−
1

100 which seems

to be enough for KAM. But from a further investigation we find that one will face big
troubles relative with measure estimates. Now it is clear that we need to develop some

new estimate for ‖B(k)
[b]
[a]‖. In the following we denote by M the set of infinite matrices

A : E × E 7→ C which satisfies sup
a,b∈E

‖A[b]
[a]‖ < ∞, where A

[b]
[a] denotes the restriction of A

on the block [a]× [b] and ‖ · ‖ denotes the operator norm. Here is the new estimate.

Lemma 1.8. Let A ∈ M and B(k) defined for k ∈ Zn with |k| ≤ K by

B(k)lj =
Al

j

k · ω − µj + µl
, j ∈ [a], l ∈ [b], (1.12)

where ω ∈ [0, 2π)n and (µa)a∈E is a sequence of positive real numbers satisfying

|µa − λa| ≤
C0

(1 + lnwa)δ
, for all a ∈ E (1.13)

such that for all a, b ∈ E and all |k| ≤ K,

|k · ω − λa + λb| ≥ γ(1 + |wa − wb|), (1.14)

|k · ω − µj + µl| ≥ κ(1 + |wa − wb|), j ∈ [a], l ∈ [b] (1.15)

where γ, κ, δ, C0 > 0. Then B(k) ∈ M and there exists a positive constant Cδ,d such that

‖B(k)
[b]
[a]‖ ≤

exp{Cδ,dγ
−1/δ}

κ(1 + |wa − wb|)
‖A[b]

[a]‖,

where ‖ · ‖ denotes the operator norm and Cδ,d =
d−1
2
(2C0)

1
δ .
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Remark 1.9. The term exp{Cδ,dγ
−1/δ} is clearly better than the one exp{Cδ,dκ

− 1
δ } in

(1.11). We explain it in a heuristic way. For example, if choose γ ∼ K−α, it follows that

exp{Cδ,dγ
−1/δ} ∼ exp

{
K

α
δ

}
and exp

{
K

α
δ

}
≤ Cǫ−

1
4 when α < δ. The KAM iteration

can be easily set up as [28].

In the end let us review the previous works on the reducibility of some important PDEs
and the behaviors of solutions in Sobolev spaces. We begin with the quantum harmonic
oscillators(for short “QHO”). See [15, 29, 43, 44] for the reducibility results on 1-d QHO
with bounded perturbations. Bambusi [3, 4] firstly built the reducibility results for 1-
d QHO with unbounded perturbations. His proof was based on the pseudodifferential
calculus, in which he generalized the ideas from [1, 40](see also [11, 25, 38]). It seems
that the pseudodifferential calculus method hasn’t been applied for the unbounded per-
turbation terms such as 〈x〉µ cos(x − ωt)(µ > 0) (Remark 2.7 in [3]), which have been
solved recently by Luo and one of the authors( [31]) when 0 ≤ µ < 1

3
. For a general 1-d

Schrödinger equation we recall the classical results [7] in which the potential grows at
infinity like |x|2ℓ with ℓ > 1 and the perturbation is bounded by |x|β with β < ℓ−1. The
limit case was solved by Liu-Yuan([35]). Recently the upper bound for β was improved
further by Bambusi([3, 4]). When the perturbation is limited to a class of terms such as
〈x〉µ cos(x − ωt) we([33]) can improve the original upper boundedness from ℓ − 1 to at
least ℓ− 3

4
.

Reducibility for PDEs in high dimension was initiated by Eliasson-Kuksin [19]. We
can refer to [28] and [32] for higher-dimensional QHO with bounded potential. The re-
ducibility result for n-d QHO was first built in [9] by Bambusi-Grébert-Maspero-Robert.
Towards other PDEs Montalto [39] obtained the first reducibility result for linear wave
equations with unbounded perturbations on Td, which can be applied to the linearized
Kirchhoff equation in higher dimension. Bambusi, Langella and Montalto [5] obtained
the reducibility results for transportation equations with unbounded perturbations([22]).
See also [23, 24] for a linear Schrödinger equation on zoll manifold with unbounded po-
tential. We remark that by implementing the above techniques the KAM-type results
of quasi - linear PDEs such as incompressible Euler flows in 3D [2] and forced Kirchhoff
equation on Td [14] have been built recently.

The reducibility results usually imply the boundedness of Sobolev norms. For the
growth rate of the solutions with time in Hs−norm, see [9] and [26] for a ts- polynomial
growth for 1-d QHO with time periodic perturbations. Delort [16] constructed a ts/2-
polynomial growth for 1-d QHO with certain time periodic order zero perturbation(see
[36] for a short proof). Combining with the ideas in [9] and [18], Zhao, Zhou and one
of the authors [34] obtained the precise dynamics for one class of 1-d QHO with quasi
- periodic in time quadratic perturbations, in which they also presented an exponential
growth in time for 1-d QHO. Recently, for 2-d QHO with perturbation which is decay-
ing in t, Faou-Raphaël [21] constructed a solution whose H1−norm presents logarithmic
growth with t. For 2-d QHO with perturbation being the projection onto Bargmann-
Fock space, Thomann [42] constructed explicitly a traveling wave whose Sobolev norm
presents polynomial growth with t, based on the study in [41] for linear Lowest Landau
equations(LLL) with a time-dependent potential. There are also many literatures, e.g.
[6, 8, 10, 12, 13, 20, 37, 45], which are closely relative to the upper growth bound of the
solution in Sobolev space.

The rest paper will be organized as follows. In Section 2, a new reducibility theorem
is presented. In Section 3, we check all the hypothesis of the reducibility theorem are
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satisfied which follows the main theorem. In Section 4, after present the proof of key
lemma we prove the reducibility theorem. Finally, the appendix contains some technical
Lemmas.

2. Reducibility Theorem

In this section we state an abstract reducibility theorem for quadratic quasiperiodic in
time Hamiltonians of a general form

∑
a∈E λaξaηa + ǫ〈ξ, Q(ωt)η〉.

2.1. Setting. Following [28], we will introduce some spaces and relative algebraic prop-
erties for later use.
Linear space. Let s ∈ R, we consider the complex weighted ℓ2 space

ℓ2s = {ξ = (ξa ∈ C, a ∈ E) : ‖ξ‖s < ∞}, where ‖ξ‖2s =
∑

a∈E

ws
a|ξa|

2.

Then we define

Ys = ℓ2s × ℓ2s = {ζ = (ζa = (ξa, ηa) ∈ C
2, a ∈ E) : ‖ζ‖s < ∞},

where
‖ζ‖2s =

∑

a∈E

ws
a|ζa|

2 =
∑

a∈E

ws
a(|ξa|

2 + |ηa|
2).

We equip the space Ys, s ≥ 0, with the symplectic structure idξ ∧ dη. Let f be a C1

smooth function, defined on a domain O ⊂ Ys, then we have the associated Hamiltonian
system {

ξ̇ = −i∇ηf(ξ, η),

η̇ = i∇ξf(ξ, η),

where ∇f = (∇ξf,∇ηf)
T is the gradient with respect to the scalar product in Y0. Natu-

rally, define the Poisson bracket for any C1 smooth functions f and g, defined on a domain
O ⊂ Ys

{f, g} = −i
(∑

a∈E

∂f

∂ξa
·
∂g

∂ηa
−

∂g

∂ξa
·
∂f

∂ηa

)
.

Infinite matrices. Let β ≥ 0, we denote byMβ the set of infinite matrices A : E×E 7→ C

that satisfy

|A|β := sup
a,b∈E

(1 + lnwa)
β(1 + lnwb)

β‖A[b]
[a]‖ < ∞,

where A
[b]
[a] denotes the restriction of A on the block [a]× [b] and ‖ · ‖ denotes the operator

norm. Further we denoteM = M0. We will also need the more regular spaceM+
β ⊂ Mβ:

an infinite matrix A ∈ M belongs to M+
β if

|A|β+ := sup
a,b∈E

(1 + |wa − wb|)(1 + lnwa)
β(1 + lnwb)

β‖A[b]
[a]‖ < ∞.

The following structural lemma is proved in Appendix 5.1:

Lemma 2.1. Let β > 1
2
, there exists an absolute constant C ≡ C(β) > 0 such that

(i). Let A ∈ Mβ and B ∈ M+
β . Then AB and BA belong to Mβ and

|AB|β, |BA|β ≤ C|A|β|B|β+.

(ii). Let A,B ∈ M+
β . Then AB belongs to M+

β and |AB|β+ ≤ C|A|β+|B|β+.
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(iii). Let A ∈ M+
β . Then eA − Id belongs to M+

β and |eA − Id|β+ ≤ eC|A|β+|A|β+.

(iv). Let A ∈ Mβ. Then for any s ≥ 1, A ∈ B(ℓ2s, ℓ
2
−s) and ‖A‖B(ℓ2s,ℓ2−s)

≤ C|A|β.

(v). Let A ∈ M+
β . Then for any s ∈ [−1, 1], A ∈ B(ℓ2s) and ‖A‖B(ℓ2s) ≤ C|A|β+.

Normal form.

Definition 2.2. A matrix Q : E × E 7→ C is in normal form, denoted by Q ∈ NF , if

(i). Q is block diagonal, i.e. Qb
a = 0 for all wa 6= wb.

(ii). Q is Hermitian, i.e. Qa
b = Qb

a.

Notice that a block diagonal matrix with bounded blocks in operator norm defines
a bounded operator on ℓ2s, ∀s ∈ R, which implies Mβ ∩ NF ⊂ B(ℓ2s). To a matrix
Q = (Qb

a)a,b∈E ∈ B(ℓ2s, ℓ
2
−s) for s ≥ 0, define in a unique way a quadratic form on Ys ∋

(ζa)a∈E = (ξa, ηa)a∈E by the formula q(ξ, η) = 〈ξ, Qη〉 =
∑

a,b∈E Q
b
aξaηb. A straightforward

computation leads to
{q1, q2}(ξ, η) = i〈ξ, [Q1, Q2]η〉, (2.1)

where [Q1, Q2] is the communicator of two matrices Q1 and Q2.
In the following, by abuse of language, we will call both of q and Q the Hamiltonian.

Parameter. In all the paper ω will play the role of a parameter belonging to D0 =
[0, 2π)n. All the constructed maps will be dependent on ω with C1 regularity. When a
map is only defined on a Cantor subset of D0 the regularity has to be understood in the
Whitney sense.
A class of quadratic Hamiltonian. Let β > 1

2
, σ > 0 and D ⊂ D0 and denote by

Mβ(D, σ) the set of C1 mappings D×Tn
σ ∋ (ω, ϕ) 7→ Q(ω, ϕ) ∈ Mβ, which is real analytic

in ϕ ∈ Tn
σ. Endow the space with the norm

[Q]D,σ
β := sup

ω∈D,j=0,1
|ℑϕ|<σ

|∂j
ωQ(ω, ϕ)|β.

In view of Lemma 2.1 (iv), to a matrix Q ∈ Mβ(D, σ) define the quadratic form in Y1

q(ξ, η;ω, ϕ) = 〈ξ, Q(ω, ϕ)η〉 and a straightforward computation leads to

|q(ξ, η;ω, ϕ)| ≤ C[Q]D,σ
β ‖(ξ, η)‖21, for (ξ, η) ∈ Y1, (ω, ϕ) ∈ D × T

n
σ.

Denote by M+
β (D, σ) the subspace of Mβ(D, σ) formed by Hamiltonians S, verifying

S(ω, ϕ) ∈ M+
β and endow it with the norm [S]D,σ

β+ := supω∈D,j=0,1
|ℑϕ|<σ

|∂j
ωS(ω, ϕ)|β+. The

space of Hamiltonians N ∈ Mβ(D, σ) that are independent on ϕ will be denoted by
Mβ(D) and equipped with the norm [N ]Dβ := supω∈D,j=0,1 |∂

j
ωN(ω)|β.

Hamiltonian flow. To any R ∈ M+
β with β > 1

2
, define in a unique way the symplectic

linear change of variables on Ys: (ξ, η) 7→ (e−iRT

ξ, eiRη). It is well-defined and invertible
in B(ℓ2s) for all s ∈ [−1, 1] by the assertion (v) of Lemma 2.1. Concretely, the change of
variables can be regarded as the time-one flow generated by the quadratic Hamiltonian
χ(ξ, η) = 〈ξ, Rη〉 and it preserves the symmetry η = ξ̄ for any initial datum considered
in the paper if and only if R is a Hermitian matrix, i.e.

RT = R. (2.2)

When R also depends smoothly on ϕ, Tn
σ ∋ ϕ 7→ R(ϕ) ∈ M+

β we associate to R the
symplectic linear change of variables on the extended phase space

φ1
χ(y, ϕ, ξ, η) = (ỹ, ϕ, e−iRT

ξ, eiRη), (2.3)
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where the Hamiltonian χ(y, ϕ, ξ, η) = 〈ξ, R(ϕ)η〉 and ỹ = y −
∫ 1

0
〈e−itRT

ξ,∇ϕReitRη〉dt.

2.2. Hypothesis on the spectrum. Now we present our hypothesis on λa, a ∈ E :

Hypothesis H1 (asymptotics). Assume that there exists an absolute constant c0 > 0
such that

λa ≥ c0 and |λa − λb| ≥ c0|wa − wb|, for all a, b ∈ E . (2.4)

Hypothesis H2 (second Melnikov condition in measure). There exist absolute positive
constants τ1, τ2 and C such that the following holds: for each γ > 0 and K ≥ 1 there
exists a closed subset D′ = D′(γ,K) ⊂ D0 satisfying

Meas(D0 \ D
′) ≤ CKτ1γτ2

such that for all ω ∈ D′, all k ∈ Z
n with 0 < |k| ≤ K and all a, b ∈ E we have

|k · ω − λa + λb| ≥ γ(1 + |wa − wb|).

2.3. The reducibility theorem. Consider the Hamiltonian

Hω(t, ξ, η) =
∑

a∈E

λaξaηa + ǫ〈ξ, Q(ωt)η〉 (2.5)

and the associated non-autonomous Hamiltonian system on Ys:{
ξ̇ = −iN0ξ − iǫQT (ωt)ξ,

η̇ = iN0η + iǫQ(ωt)η,
(2.6)

where N0 = diag(λa : a ∈ E).

Theorem 2.3. Let α = α1

α2
+1 with α1 = max{τ1, n+d} and α2 = max{τ2, 1}. Fix β ≥ α

2

and σ > 0. Assume that (λa)a∈E satisfies Hypothesis H1, H2 and that Q ∈ Mβ(D0, σ),
then there exists ǫ∗ > 0 such that for all 0 ≤ ǫ < ǫ∗, there exists C > 0 and

(i). a Cantor set Dǫ ⊂ D0 of asymptotically full measure:

Meas(D0 \ Dǫ) ≤ Cǫα2/6; (2.7)

(ii). a C1 family (in ω ∈ Dǫ) of real analytic (in ϕ ∈ Tn
σ/2) linear, unitary and symplectic

coordinate transformations on Y0:

Φω(ϕ) : (ξ, η) 7→ (Mω(ϕ)ξ,Mω(ϕ)η), (ω, ϕ) ∈ Dǫ × T
n
σ/2;

(iii). a C1 family of quadratic autonomous Hamiltonians in normal formHω = 〈ξ, Nωη〉,
where Nω ∈ NF is close to N0:

‖Nω −N0‖β ≤ Cǫ, ω ∈ Dǫ, (2.8)

such that t 7→ (ξ(t), η(t)) ∈ Y1 is a solution of autonomous Hamiltonian system
associated with Hω: {

ξ̇ = −iNT
ω ξ

η̇ = iNωη

if and only if t 7→ Φω(ωt)(ξ(t), η(t)) ∈ Y1 is a solution of the original Hamiltonian
system (2.6). Furthermore, Φω(ϕ) is a bounded operator from Yp into itself for all
p ∈ [0, 1] and close to identity:

‖Mω(ϕ)− Id‖B(ℓ2p) ≤ Cǫ
5
12 . (2.9)
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3. Applications to the quantum harmonic oscillator on Rd

In this section we will prove Theorem 2.3 which concludes Theorem 1.1.

3.1. Verification of the hypothesis. We first verify the Hypothesis of Theorem 2.3
for the quantum harmonic oscillator equation (1.3).

Lemma 3.1 (see [27]). When λa = wa, a ∈ E . Hypothesis H1 and H2 hold true with
c0 = 1 and D0 = [0, 2π)n and τ1 = n + 1, τ2 = 1.

Proof of Lemma 1.5: Let Ψa ∈ E[a],Ψb ∈ E[b] and ‖Ψa‖ = ‖Ψb‖ = 1, then

∣∣∣∣
∫

Rd

V (x, ϕ)Ψa(x)Ψb(x)dx

∣∣∣∣ ≤ ‖V
1
2 (x, ϕ)Ψa(x)‖‖V

1
2 (x, ϕ)Ψb(x)‖. (3.1)

By the symmetry we only need to estimate ‖V
1
2 (x, ϕ)Ψa(x)‖.

Let Da = {x ∈ Rd : |x| ≤ w
1/(4d)
a } and denote by Dc

a its complement, then one has

‖V
1
2 (x, ϕ)Ψa(x)‖ ≤ ‖V

1
2 (x, ϕ)Ψa(x)‖L2(Da) + ‖V

1
2 (x, ϕ)Ψa(x)‖L2(Dc

a)
. (3.2)

Clearly, since |V (x, ϕ)| ≤ C then one has

‖V
1
2 (x, ϕ)Ψa(x)‖L2(Da) ≤ ‖Ψa(x)‖Lp(Da)‖V

1
2 (x, ϕ)‖Lq(Da)

1

p
+

1

q
=

1

2

≤C‖Ψa(x)‖Lp(Rd) (Meas(Da))
1
q

≤Cw
− 1

2
( 1
2
− 1

p
)

a w1/(4q)
a by Cor. 3.2 in [30] with p =

2(d+ 2)

d+ 1

≤Cw
− 1

4q
a = Cw

− 1
8(d+2)

a . (3.3)

Besides, for x ∈ Dc
a we have |x| ≥ w

1/(4d)
a . Then 1+ ln(1+ |x|2) ≥ 1+ lnw

1/(2d)
a ≥ 1+lnwa

2d
.

By (1.2) one has |V (x, ϕ)| ≤ C
(1+ln(1+|x|2))2ι

≤
Cd,ι

(1+lnwa)2ι
for x ∈ Dc

a. Hence, we obtain

‖V
1
2 (x, ϕ)Ψa(x)‖L2(Dc

a)
≤

Cd,ι

(1 + lnwa)ι
‖Ψa(x)‖L2(Rd) ≤

Cd,ι

(1 + lnwa)ι
.

Combining (3.2), (3.3) with the last estimation we have

‖V
1
2 (x, ϕ)Ψa(x)‖ ≤

Cd,ι

(1 + lnwa)ι
. (3.4)

Collecting (3.1) and (3.4) concludes the result (1.10). �

Remark 3.2. Using Lemma 1.5 and a similar method as [27] we have Q, defined by
Qb

a(ϕ) =
∫
Rd V (x, ϕ)Φa(x)Φb(x)dx, belongs to Mι(D0, σ).

Remark 3.3. For quantum harmonic oscillator equation (1.3), we have α = n + d + 1
since α = α1

α2
+ 1 with α1 = max{τ1, n + d} and α2 = max{τ2, 1}, where τ1 = n + 1 and

τ2 = 1.



10 ZHENGUO LIANG1
· ZHIQIANG WANG1

3.2. Proof of Theorem 1.1. The Schrödinger equation (1.3) is a Hamiltonian system
on Hs × Hs (s ≥ 1) associated with the Hamiltonian function (1.6). Written on the
orthonormal basis (Φa)a∈E , it is equivalent to the Hamiltonian system on Ys associated
with (1.8) which reads as (2.5) with λa = wa and Q given by (1.7). By Lemma 3.1
and Remark 3.2, if V satisfies (1.2) with ι ≥ n+d+1

2
, we can apply Theorem 2.3 to the

Hamiltonian(1.8) which concludes Theorem 1.1. More precisely, in the new coordinates

under a unitary transformation given by Theorem 2.3, (ξ, η) = (Mω(ωt)ξ
′,Mω(ωt)η

′), the
original system {

ξ̇a = −iwaξa − iǫ(QT (ωt)ξ)a,

η̇a = iwaηa + iǫ(Q(ωt)η)a,
a ∈ E

conjugates to an autonomous system as follows:
{
ξ̇′a = −i(NT

ω ξ
′)a,

η̇′a = i(Nωη
′)a,

a ∈ E ,

where Nω ∈ NF and Mω(ωt)M
T
ω (ωt) = Id. Furthermore, corresponding to the initial

datum u0(x) =
∑

a∈E ξ(0)aΦa(x) ∈ H1 the solution u(t, x) of (1.3) reads

u(t, x) =
∑

a∈E

ξ(t)aΦa(x) with ξ(t) = Mω(ωt)e
−itNT

ω MT
ω (0)ξ(0).

Concretely, define the transformation Ψ(ϕ) ∈ B(Hs) by

Ψ(ϕ)

(∑

a∈E

ξ′aΦa(x)

)
=
∑

a∈E

(
Mω(ϕ)ξ

′
)
a
Φa(x).

Then v(t, x) satisfies (1.4) if and only if u(t, x) = Ψ(ωt)v(t, x) satisfies the original equa-
tion (1.3), where W is defined by

W
(∑

a∈E

ξ′aΦa(x)
)
=
∑

a∈E

(Wξ′)aΦa(x) with W = Nω −N0.

By construction collecting (2.7)-(2.9) leads to (1.5) in Theorem 1.1. �

For the proofs of Corollary 1.3 and 1.4 refer to [27].

4. Proof of Reducibility Theorem

In this section we will prove the reducibility theorem presented in Sec.2 by the KAM
methods. As we mentioned before, Lemma 1.8 is very important for solving homological
equations, whose proof we present below.

4.1. Proof of Lemma 1.8.

Proof. Denote by D[a] the diagonal (square) matrix with entries µj for j ∈ [a]. The
equation (1.12) reads

k · ωB[b]
[a] −D[a]B

[b]
[a] +B

[b]
[a]D[b] = A

[b]
[a]. (4.1)

From (1.14) for all a, b ∈ E and all |k| ≤ K, k ·ω−λa+λb 6= 0. We distinguish two cases.
Case 1: suppose that k · ω − λa + λb > 0. Clearly, in this case by (1.14) we have
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k · ω − λa + λb ≥ γ(1 + |wa −wb|) ≥ γ. By (1.13) for j ∈ [a] and l ∈ [b], if min{wa, wb} >

exp

{(
2C0

γ

)1/δ}
, we obtain

k · ω − µj + µl = k · ω − λa + λb − µj + λa − λb + µl

≥ γ −
C0

(1 + lnwa)δ
−

C0

(1 + lnwb)δ

≥ γ −
2C0

(1 + lnmin{wa, wb})δ
> 0.

It follows that

k · ω +min
l∈[b]

{µl} > max
j∈[a]

{µj} > 0. (4.2)

Subcase 1: min{wa, wb} > exp

{(
2C0

γ

)1/δ}
. (4.2) proves that k ·ωI[b]+D[b] is an invertible

operator and ‖
(
k · ωI[b] +D[b]

)−1
‖ = 1

k·ω+minl∈[b]{µl}
. Thus (4.1) is equivalent to

B
[b]
[a] −D[a]B

[b]
[a]

(
k · ωI[b] +D[b]

)−1
= A

[b]
[a]

(
k · ωI[b] +D[b]

)−1
.

Denote by L[a]×[b] the operator acting on matrices of size [a]× [b] such that

L[a]×[b](B
[b]
[a]) = D[a]B

[b]
[a]

(
k · ωI[b] +D[b]

)−1
.

Then we have ‖L[a]×[b](B
[b]
[a])‖ ≤

maxj∈[a]{µj}

k · ω +minl∈[b]{µl}
‖B[b]

[a]‖ and ‖L[a]×[b]‖ < 1 by (4.2).

The operator Id− L[a]×[b] is invertible and thus

‖B(k)
[b]
[a]‖ = ‖

(
Id− L[a]×[b]

)−1
A

[b]
[a]

(
k · ωI[b] +D[b]

)−1
‖

≤
1

1−
maxj∈[a]{µj}

k · ω +minl∈[b]{µl}

·
‖A[b]

[a]‖

k · ω +minl∈[b]{µl}

=
‖A[b]

[a]‖

k · ω +minl∈[b]{µl} −maxj∈[a]{µj}
(4.3)

≤
‖A[b]

[a]‖

κ(1 + |wa − wb|)
by (1.15) and (4.2) .

Subcase 2: min{wa, wb} ≤ exp

{(
2C0

γ

)1/δ}
. In this situation we have |B(k)lj| ≤

|Al
j |

κ(1+|wa−wb|)
.

Then for any ξ ∈ ℓ20

‖B(k)
[b]
[a]ξ[b]‖

2 =
∑

j∈[a]

∣∣∣
∑

l∈[b]

B(k)ljξl

∣∣∣
2

≤
1

κ2(1 + |wa − wb|)2

∑

j∈[a]


∑

l∈[b]

|Al
j||ξl|




2

.
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On the other hand,

∑

j∈[a]


∑

l∈[b]

|Al
j||ξl|




2

≤
∑

j∈[a]


∑

l∈[b]

|Al
j|
2




∑

l∈[b]

|ξl|
2


 ≤ ‖ξ[b]‖

2
∑

j∈[a]

∑

l∈[b]

|Al
j|
2

≤ ‖ξ[b]‖
2
∑

j∈[a]

‖A[b]
[a]‖

2 ≤ wd−1
a ‖A[b]

[a]‖
2‖ξ[b]‖

2.

Similarly,

∑

j∈[a]


∑

l∈[b]

|Al
j ||ξl|




2

≤ ‖ξ[b]‖
2
∑

j∈[a]

∑

l∈[b]

|Al
j|
2 ≤ ‖ξ[b]‖

2
∑

l∈[b]

∑

j∈[a]

|Al
j|
2

≤ ‖ξ[b]‖
2
∑

l∈[b]

‖A[b]
[a]‖

2 ≤ wd−1
b ‖A[b]

[a]‖
2‖ξ[b]‖

2.

It follows that

∑

j∈[a]


∑

l∈[b]

|Al
j||ξl|




2

≤ (min{wa, wb})
d−1‖A[b]

[a]‖
2‖ξ[b]‖

2.

Therefore,

‖B(k)
[b]
[a]‖ ≤

exp{Cδ,dγ
−1/δ}

κ(1 + |wa − wb|)
‖A[b]

[a]‖,

where Cδ,d =
(d−1)

2
(2C0)

1/δ.
Case 2: suppose that k · ω − λa + λb < 0. Similarly, by (1.14) we have λa − λb − k · ω ≥
γ(1 + |wa − wb|) ≥ γ. Then (4.1) is equivalent to

−
(
D[a] − k · ωI[a]

)
B

[b]
[a] +B

[b]
[a]D[b] = A

[b]
[a].

The following proof is similar as case 1 in which we use L ′
[a]×[b] instead of L[a]×[b], where

L
′
[a]×[b](B

[b]
[a]) =

(
D[a] − k · ωI[a]

)−1
B

[b]
[a]D[b].

�

Remark 4.1. In (4.3), we use a cancellation.

4.2. Homological equation. In this section consider a homological equation of the form

−ω · ∇ϕS + i[N, S] +Q = remainder

where N ∈ NF close to N0 and Q ∈ Mβ. We will construct a solution S ∈ M+
β in the

following proposition.

Proposition 4.2. Denote D ⊂ D0. Let D ∋ ω 7→ N(ω) ∈ NF be a C1 mapping that
verifies

[N −N0]
D
β ≤ 2ǫ0 (4.4)

and Q ∈ Mβ(D, σ). Assume that K ≥ 1 and 0 < κ ≤ γ ≤ c0
4
, verifying

exp

{
8d

(
ǫ0
γ

) 1
2β

}
κ ≤ γ. (4.5)
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Then there exists a subset D′ = D′(γ, κ,K), satisfying

Meas(D \ D′) ≤ CKα1γα2 (4.6)

and C1 mappings Ñ : D′ 7→ Mβ ∩ NF , R : D′ × Tn
σ′ 7→ Mβ and S : D′ × Tn

σ′ 7→ M+
β ,

Hermitian and analytic in ϕ, such that

− ω · ∇ϕS + i[N, S] = Ñ −Q +R (4.7)

and for any 0 < σ′ < σ

[Ñ ]D
′

β ≤ [Q]D,σ
β , (4.8)

[R]D
′,σ′

β ≤
Ce−

K
2
(σ−σ′)

(σ − σ′)n
[Q]D,σ

β , (4.9)

[S]D
′,σ′

β+ ≤
CKγ

κ3(σ − σ′)n
[Q]D,σ

β , (4.10)

where the constant C > 0 depends on n, d, β and α1 = max{τ1, n+ d}, α2 = max{τ2, 1}.

Proof. Written in Fourier variables (w.r.t. ϕ), the homological equation (4.7) reads

−ik · ωŜ(k) + i[N, Ŝ(k)] = δk,0Ñ − Q̂(k) + R̂(k),

where δk,j denotes the Kronecker symbol.
Decompose the equation on each product block [a]× [b]:

LŜ
[b]
[a](k) = iδk,0Ñ

[b]
[a] − iQ̂

[b]
[a](k) + iR̂

[b]
[a](k), (4.11)

where L := L(k, [a], [b], ω) is the linear operator, acting on the space of complex [a]× [b]-
matrices defined by

LM = (k · ω −N[a](ω))M +MN[b](ω) with N[a] = N
[a]
[a] . (4.12)

First solve this equation when |k|+ |wa − wb| = 0 (i.e. k = 0, wa = wb) by defining

Ŝ
[a]
[a](0) = 0, R̂

[a]
[a](0) = 0 and Ñ

[a]
[a] = Q̂

[a]
[a](0).

Then setting Ñ
[b]
[a] = 0 for wa 6= wb we obtain Ñ ∈ Mβ ∩ NF satisfies |Ñ |β ≤ |Q̂(0)|β.

The estimates of the derivatives (w.r.t.ω) are obtained by differentiating the expressions

of Ñ . Taking all the estimates leads to (4.8).
Now turn to the other cases when |k|+ |wa−wb| > 0. Diagonalize the (Hermitian) ma-

trix N[a] in an orthonormal basis: P T
[a]N[a]P[a] = D[a] and denote Ŝ ′

[b]

[a] = P T
[a]Ŝ

[b]
[a]P[b], Q̂′

[b]

[a] =

P T
[a]Q̂

[b]
[a]P[b] and R̂′

[b]

[a] = P T
[a]R̂

[b]
[a]P[b]. Here we note for later use that ‖M̂ ′

[b]

[a]‖ = ‖M̂ [b]
[a]‖ for

M = S,Q,R. In this new variables the homological equation (4.11) reads

(k · ω −D[a])Ŝ ′
[b]

[a](k) + Ŝ ′
[b]

[a](k)D[b] = −iQ̂′
[b]

[a](k) + iR̂′
[b]

[a](k).

We solve it term by term: let a, b ∈ E and set

R̂′
[b]

[a](k) = 0, for |k| ≤ K,

R̂′
jl(k) = Q̂′

jl(k), j ∈ [a], l ∈ [b], for |k| > K
(4.13)
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and

Ŝ ′
[b]

[a](k) = 0, for |k| > K or |k|+ |wa − wb| = 0,

(
Ŝ ′

[b]

[a](k)
)
jl
=

−i
(
Q̂′

[b]

[a](k)
)
jl

k · ω − αj + βl
, in the other cases,

(4.14)

where αj(ω) and βl(ω) denote eigenvalues of N[a](ω) and N[b](ω), respectively. Before the
estimations of such matrices, first remark the following assertion:

(
Q̂′

[b]

[a](k)
)
jl
=
(
Q̂′

[a]

[b] (−k)
)
lj
⇒
(
Ŝ ′

[b]

[a](k)
)
jl
=
(
Ŝ ′

[a]

[b] (−k)
)
lj
.

Hence, if Q′ verifies condition (2.2), so it is with S ′ which implies the flow generated by
S preserves the symmetry η = ξ̄.

Canonically, (4.13) leads to

|R(ϕ)|β = |R′(ϕ)|β ≤
Ce−

K
2
(σ−σ′)

(σ − σ′)n
sup

|ℑϕ|<σ

|Q(ϕ)|β, for |ℑϕ| < σ′. (4.15)

Facing the small divisors

k · ω − αj(ω) + βl(ω), j ∈ [a], l ∈ [b] and [a], [b] ∈ Ê ,

we distinguish two cases depending on whether k = 0 or not.

The case k = 0. In this case we know that wa 6= wb which implies |wa −wb| ≥ 2. Using
(2.4) and (4.4) we get that, if κ ≤ γ ≤ c0

4
and ǫ0 ≤

c0
4
,

| − λa + λb| ≥ c0|wa − wb| ≥
c0
2
(1 + |wa − wb|) ≥ 2γ(1 + |wa − wb|)

and

| − αj(ω) + βl(ω)| ≥ | − λa + λb| − 4ǫ0 ≥
c0
2
|wa − wb| ≥ κ(1 + |wa − wb|).

Collecting the last two estimates and condition (4.4) allows us to utilize Lemma 1.8 to
conclude that

|Ŝ(0)|β+ ≤ κ−1 exp

{
d

(
ǫ0
γ

) 1
2β

}
|Q̂(0)|β. (4.16)

The case k 6= 0. Concretely, in this case we only solve the main terms of Fourier series
truncated at order K. Utilizing Hypothesis H2, for any γ > 0, there exists a subset
D1 = D(2γ,K), satisfying Meas(D0 \ D1) ≤ CKτ1γτ2 , such that for all ω ∈ D1 and
0 < |k| ≤ K, |k · ω − λa + λb| ≥ 2γ(1 + |wa − wb|). By (4.4) this implies

|k · ω − αj(ω) + βl(ω)| ≥ |k · ω − λa + λb| − |αj(ω)− λa| − |βl(ω)− λb|

≥ 2γ(1 + |wa − wb|)−
2ǫ0

(1 + lnwa)2β
−

2ǫ0
(1 + lnwb)2β

≥ γ(1 + |wa − wb|), if wb ≥ wa ≥ exp

{(
4ǫ0
γ

) 1
2β

}
.
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Now let wa ≤ exp

{(
4ǫ0
γ

) 1
2β

}
. In fact if |wa − wb| ≥ CK, we can prove that

|k · ω − αj(ω) + βl(ω)| ≥ κ(1 + |wa − wb|).

We face the case |wa − wb| ≤ CK which follows wb ≤ CK exp

{(
4ǫ0
γ

) 1
2β

}
. Since

|∂ω(k · ω)( k
|k|
)| = |k| ≥ 1, condition (4.4) implies

∣∣∣∂ω
(
k · ω − αj(ω) + βl(ω)

)(
k
|k|

)∣∣∣ ≥ |k|
2
.

The last estimate allows us to use Lemma 5.2 to conclude that

|k · ω − αj(ω) + βl(ω)| ≥ κ(1 + |wa − wb|), ∀ j ∈ [a], l ∈ [b]

except a set F[a],[b],k whose measure is smaller than Cwd−1
a wd−1

b
κ(1+|wa−wb|)

|k|
. Denoting F

be the union of F[a],[b],k for [a], [b] ∈ Ê and 0 < |k| ≤ K such that wa ≤ exp

{(
4ǫ0
γ

) 1
2β

}

and wb ≤ CK exp

{(
4ǫ0
γ

) 1
2β

}
with |wa − wb| ≤ CK, condition (4.5) leads to

Meas(F ) ≤ Cwd
aw

d
bK

nκ ≤ CKn+d exp

{
8d

(
ǫ0
γ

) 1
2β

}
κ ≤ CKn+dγ.

Let D′ = D1 ∪D2 with D2 = D \ F and α1 = max{τ1, n+ d} and α2 = max{τ2, 1}, then

Meas(D \ D′) ≤ Meas(D0 \D1) + Meas(F ) ≤ CKτ1γτ2 + CKn+dγ ≤ CKα1γα2 .

Further, by construction, for all ω ∈ D′, 0 < |k| ≤ K, a, b ∈ E and j ∈ [a], l ∈ [b] we have

|k · ω − λa + λb| ≥ 2γ(1 + |wa − wb|) and |k · ω − αj(ω) + βl(ω)| ≥ κ(1 + |wa − wb|).

Hence, in view of (4.14), utilizing Lemma 1.8 concludes that Ŝ ′(k) ∈ M+
β satisfies

|Ŝ(k)|β+ = |Ŝ ′(k)|β+ ≤ κ−1 exp

{
d

(
ǫ0
γ

) 1
2β

}
|Q̂(k)|β, 0 < |k| ≤ K.

Combining the last estimate with (4.16) we obtain a solution S satisfying for all |ℑϕ| < σ′

|S(ϕ)|β+ ≤
C

κ(σ − σ′)n
exp

{
d

(
ǫ0
γ

) 1
2β

}
sup

|ℑϕ|<σ

|Q(ϕ)|β. (4.17)

To obtain the estimates for the derivative (w.r.t.ω) we differentiate (4.11):

L(∂ωŜ
[b]
[a](k, ω)) = −(∂ωL)Ŝ

[b]
[a](k, ω)− i∂ωQ̂

[b]
[a](k, ω) + i∂ωR̂

[b]
[a](k, ω)

which is an equation of the same type as (4.11) for ∂ωŜ
[b]
[a](k, ω) and ∂ωR̂

[b]
[a](k, ω) where

−iQ̂
[b]
[a](k, ω) is replaced by B

[b]
[a](k, ω) = −(∂ωL)Ŝ

[b]
[a](k, ω)− i∂ωQ̂

[b]
[a](k, ω). Solve this equa-

tion by defining

∂ωŜ
[b]
[a](k, ω) = χ|k|≤KL

−1(k, [a], [b], ω)B
[b]
[a](k, ω),

∂ωR̂
[b]
[a](k, ω) = iχ|k|>KB

[b]
[a](k, ω) = χ|k|>K∂ωQ̂

[b]
[a](k, ω).
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Collecting condition (4.4) and the definition (4.12) leads to |(∂ωL)Ŝ(k, ω)|β ≤ CK|Ŝ(k, ω)|β
which implies

|B(k, ω)|β ≤
CK

κ
exp

{
d

(
ǫ0
γ

) 1
2β

}(
|Q̂(k)|β + |∂ωQ̂(k)|β

)
.

Following the same strategy as in the resolution of (4.11) we get for |ℑϕ| < σ′

|∂ωS(ϕ)|β+ ≤
CK

κ2(σ − σ′)n
exp

{
2d

(
ǫ0
γ

) 1
2β

}(
sup

|ℑϕ|<σ

|Q(ϕ)|β + sup
|ℑϕ|<σ

|∂ωQ(ϕ)|β

)
,

|∂ωR(ϕ)|β ≤
Ce−

K
2
(σ−σ′)

(σ − σ′)n
sup

|ℑϕ|<σ

|∂ωQ(ϕ)|β.

(4.18)

Collecting (4.15),(4.17) and the last estimates (4.18) and taking into account (4.5) leads
to (4.9) and (4.10). �

4.3. The KAM iteration. In this section we will prove Theorem 2.3 by an iterative
KAM procedure. Let us begin with the initial Hamiltonian Hω = h0 + q0 where

h0(y, ϕ, ξ, η) = ω · y + 〈ξ, N0η〉,

N0 = diag(λa : a ∈ E), ω ∈ D0 and the quadratic perturbation q0(ϕ, ξ, η) = 〈ξ, Q0(ϕ)η〉
with Q0 = ǫQ ∈ Mβ(D0, σ0) and σ0 = σ. Building iteratively the change of variables
φ1
χm

, we obtain the normal form hm = ω · y + 〈ξ, Nm(ω)η〉 and the perturbation qm =
〈ξ, Qm(ω, ϕ)η〉 with Qm ∈ Mβ(Dm, σm) as follows: assume that the construction has
been built up to step m ≥ 0 then

(i). we utilize Proposition 4.2 to construct Sm+1(ω, ϕ) solution of the homological
equation verifying for (ω, ϕ) ∈ Dm+1 × Tn

σm+1

− ω · ∇ϕSm+1 + i[Nm, Sm+1] = Ñm −Qm +Rm (4.19)

where Ñm(ω), Rm(ω, ϕ) defined for (ω, ϕ) ∈ Dm+1 × T
n
σm+1

by

Ñm(ω) =
(
δ[j],[l]Q̂m(0)jl

)
j,l∈E

, (4.20)

Rm(ω, ϕ) =
∑

|k|>Km+1

Q̂m(ω, k)e
ik·ϕ; (4.21)

(ii). we define Nm+1, Qm+1 for (ω, ϕ) ∈ Dm+1 × Tn
σm+1

by

Nm+1 = Nm + Ñm, (4.22)

Qm+1 = Rm + i

∫ 1

0

e−itSm+1 [(1− t)(Ñm +Rm) + tQm, Sm+1]e
itSm+1dt. (4.23)

By construction, if Qm and Nm are Hermitian, so it is with all of Ñm, Rm and Sm+1, by
resolution of the homological equation, and also Nm+1 and Qm+1. Let

hm+1(y, ϕ, ξ, η;ω) = ω · y + 〈ξ, Nm+1(ω)η〉,

χm+1(y, ϕ, ξ, η;ω) = 〈ξ, Sm+1(ω, ϕ)η〉,

qm+1(y, ϕ, ξ, η;ω) = 〈ξ, Qm+1(ω, ϕ)η〉.

(4.24)
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Recall that φt
χ denotes the time t flow generated by S (see (2.3)), then

f ◦ φ1
χm+1

= f +

∫ 1

0

{f, χm+1} ◦ φ
t
χm+1

dt

or

f ◦ φ1
χm+1

= f + {f, χm+1}+

∫ 1

0

(1− t){{f, χm+1}, χm+1} ◦ φ
t
χm+1

dt.

Therefore collecting (2.1) and (2.3) leads to for ω ∈ Dm+1

(hm + qm) ◦ φ
1
χm+1

= hm ◦ φ1
χm+1

+ qm ◦ φ1
χm+1

=hm + {hm, χm+1}+ qm +

∫ 1

0

{(1− t){hm, χm+1}+ qm, χm+1} ◦ φ
t
χm+1

dt

=hm + 〈ξ, (Ñm +Rm)η〉+

∫ 1

0

{〈ξ,
(
(1− t)(Ñm +Rm) + tQm

)
η〉, χm+1} ◦ φ

t
χm+1

dt

:=hm+1 + qm+1.

4.4. Iterative lemma. Following the general iterative procedures (4.19)-(4.24) we have

(h0 + q0) ◦ φ
1
χ1

◦ φ1
χ2

◦ · · · ◦ φ1
χm

= hm + qm

where hm = ω ·y+ 〈ξ, Nmη〉 with Nm ∈ NF and qm = 〈ξ, Qmη〉 with Qm ∈ Mβ(Dm, σm).
At the step m the Fourier series are truncated at order Km and the small divisors are
controlled by γm and κm. Specifically, we choose all of the parameters for m ≥ 0 in
term of ǫm which will control [Qm]

Dm,σm

β as follows: first define σ0 = σ and ǫ0 verifying

[Q0]
D0,σ0

β ≤ ǫ0 and denote α = α1

α2
+ 1, then for m ≥ 1 let

ǫm = ǫ
5/4
m−1, κm = ǫ

1/4
m−1, γm = ǫ

1/6
0 (ln ǫ−1

m−1)
−α,

σm−1 − σm = C∗σ0m
−2, Km = 2(σm−1 − σm)

−1 ln ǫ−1
m−1,

(4.25)

where (C∗)
−1 = 2

∑
m≥1m

−2 and α1 = max{τ1, n+ d}, α2 = max{τ2, 1}.

Remark 4.3. From (4.25), the assumption (4.5) in the KAM iteration is equivalent to

8dǫ
5

12β

0

(
ln ǫ−1

m−1

) α
2β +

1

6
ln ǫ−1

0 + α ln
(
ln ǫ−1

m−1

)
≤

1

4
ln ǫ−1

m−1, ∀ m ≥ 1. (4.26)

Clearly, if β ≥ α
2
, (4.26) or (4.5) always holds true for ǫ0 ≪ 1.

Lemma 4.4. Let α = α1

α2
+ 1 with α1 = max{τ1, n + d}, α2 = max{τ2, 1} and β ≥ α

2
.

There exists ǫ∗ depending on σ, d, n, β, τ1, τ2 and h0 such that, for 0 ≤ ǫ0 < ǫ∗ and

ǫm = ǫ
(5/4)m

0 , m ≥ 0, the followings hold for all m ≥ 1: there exists Dm ⊂ Dm−1, Sm ∈
M+

β (Dm, σm), hm = ω · y + 〈ξ, Nmη〉 with Nm ∈ NF and Qm ∈ Mβ(Dm, σm) such that

(i). for p ∈ [−1, 1] the transformation

φm(·, ω, ϕ) := φ1
χm

: Yp 7→ Yp, ∀ (ω, ϕ) ∈ Dm × T
n
σm

(4.27)

is linear (unitary in Y0) isomorphism conjugating the Hamiltonian at step m− 1
to the Hamiltonian at step m, i.e.

(hm−1 + qm−1) ◦ φm = hm + qm;
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(ii). the following estimations hold:

Meas(Dm−1 \ Dm) ≤ ǫ
α2/6
0 (ln ǫ−1

m−1)
−

α2
2 , (4.28)

[Ñm−1]
Dm

β ≤ ǫm−1, (4.29)

[Qm]
Dm,σm

β ≤ ǫm, (4.30)

[Sm]
Dm,σm

β+ ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
2α2 ǫ

1/4
m−1

and for all p ∈ [−1, 1] the transformation satisfies

‖φm(·, ω, ϕ)− Id‖B(Yp) ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
3α2 ǫ

1/4
m−1, ∀ (ω, ϕ) ∈ Dm × T

n
σm

. (4.31)

Proof. At step 1, the initial h0 = ω · y + 〈ξ, N0η〉 and thus condition (4.4) is trivially

satisfied. Remark 4.3 allows us to apply Proposition 4.2 for constructing S1, Ñ0, R0 and

D1, σ1 such that for (ω, ϕ) ∈ D1 × Tn
σ1
, −ω · ∇ϕS1 + i[N0, S1] = Ñ0 − Q0 + R0. Then

utilizing (4.6), we obtain for ǫ0 ≪ 1

Meas(D0 \ D1) ≤ CKα1
1 γα2

1 ≤ Cǫ
α2/6
0 (ln ǫ−1

0 )−α2 ≤ ǫ
α2/6
0 (ln ǫ−1

0 )−
α2
2 .

Due to (4.10) we have for ǫ0 ≪ 1

[S1]
D1,σ1

β+ ≤
CK1γ1

κ3
1(σ0 − σ1)n

[Q0]
D0,σ0

β ≤ Cǫ
1/6
0 (ln ǫ−1

0 )
−

α1
α2 ǫ

1/4
0 ≤ ǫ

1/6
0 (ln ǫ−1

0 )
−

α1
2α2 ǫ

1/4
0 .

Thus, in view of (2.3), (4.27) and assertion (iii),(v) of Lemma 2.1 we get for all p ∈ [−1, 1]

‖φ1(·, ω, ϕ)− Id‖B(Yp) ≤ CeC[S1]
D1,σ1
β+ [S1]

D1,σ1

β+ ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
3α2 ǫ

1/4
0 , if ǫ0 ≪ 1.

Collecting (4.8) and (4.9) leads to [Ñ0]
D1
β ≤ ǫ0 and for ǫ0 ≪ 1

[R0]
D1,σ1

β ≤
Ce−

K1
2

(σ0−σ1)

(σ0 − σ1)n
[Q0]

D0,σ0

β ≤ Cǫ20 ≤
1

2
ǫ
5/4
0 =

ǫ1
2
.

Besides, (4.23) infers that for ǫ0 ≪ 1

[Q1]
D1,σ1

β ≤ [R0]
D1,σ1

β + C[Q0]
D0,σ0

β [S1]
D1,σ1

β+ ≤
ǫ1
2
+ Cǫ

5/4+1/6
0 ≤ ǫ1.

Now assume that we have verified Lemma 4.4 up to step m, then we consider the step

m + 1. Since hm = ω · y + 〈ξ, Nmη〉 and [Nm − N0]
Dm

β ≤
∑m−1

l=0 [Ñl]
Dl+1

β ≤
∑m−1

l=0 ǫl ≤
2ǫ0, if ǫ0 ≪ 1. Then condition (4.4) verifies and Remark 4.3 allows us to apply Proposition

4.2 for constructing Sm+1, Ñm, Rm and Dm+1, σm+1 such that for (ω, ϕ) ∈ Dm+1 × T
n
σm+1

−ω · ∇ϕSm+1 + i[Nm, Sm+1] = Ñm −Qm +Rm.

Similarly, utilizing (4.6) we obtain for ǫ0 ≪ 1

Meas(Dm \ Dm+1) ≤ CKα1
m+1γ

α2
m+1 ≤ Cǫ

α2/6
0

(m+ 1)2α1

(ln ǫ−1
m )α2

≤ ǫ
α2/6
0 (ln ǫ−1

m )−
α2
2 .

Due to (4.10) we have for ǫ0 ≪ 1

[Sm+1]
Dm+1,σm+1

β+ ≤
CKm+1γm+1

κ3
m+1(σm − σm+1)n

[Qm]
Dm,σm

β ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
2α2 ǫ1/4m

Thus, in view of (2.3),(4.27) and assertion (iii),(v) of Lemma 2.1 we get for p ∈ [−1, 1]

‖φm+1(·, ω, ϕ)− Id‖B(Yp) ≤ C[Sm+1]
Dm+1,σm+1

β+ ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
3α2 ǫ1/4m , if ǫ0 ≪ 1.
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Collecting (4.8) and (4.9) leads to [Ñm]
Dm+1

β ≤ ǫm and

[Rm]
Dm+1,σm+1

β ≤
Ce−

Km+1
2

(σm−σm+1)

(σm − σm+1)n
[Qm]

Dm,σm

β ≤
ǫm+1

2
, if ǫ0 ≪ 1.

In addition, (4.23) implies that for ǫ0 ≪ 1

[Qm+1]
Dm+1,σm+1

β ≤ [Rm]
Dm+1,σm+1

β + C[Qm]
Dm,σm

β [Sm+1]
Dm+1,σm+1

β+

≤
ǫm+1

2
+ Cǫ

1/6
0 (ln ǫ−1

0 )
−

α1
2α2 ǫ5/4m ≤ ǫm+1.

�

4.5. Transition to the limit and proof of reducibility theorem. Let Dǫ = ∩m≥0Dm.
In view of (4.28), this is a Borel set satisfying for ǫ0 ≪ 1

Meas(D0 \ Dǫ) ≤
∑

m≥0

ǫ
α2/6
0 (ln ǫ−1

m )−
α2
2 = ǫ

α2/6
0 (ln ǫ−1

0 )−
α2
2

∑

m≥0

(
(4/5)

α2
2

)m
≤ ǫ

α2/6
0 .

This leads to the assertion (i) of Theorem 2.3.
In the following, let p ∈ [0, 1], (ω, ϕ) ∈ Dǫ × T

n
σ/2 and ǫ0 ≪ 1. Collecting (4.30) and

(4.29) we conclude the direct lemmas as follows:

Lemma 4.5.
{
Qm(ω, ϕ)

}
m≥1

is a Cauchy sequence inMβ and Qm(ω, ϕ) → 0 when m →

∞. Furthermore, (4.30) infers the uniformly convergence on (ω, ϕ).

Lemma 4.6.
{
Nm(ω)− N0

}
m≥1

is a Cauchy sequence in Mβ. Letting W (ω) ∈ Mβ be

the limit mapping we have Nm(ω)−N0 → W (ω) when m → ∞. Moreover, (4.29) implies
the uniformly convergence on ω, which leads to the C1 regularity.

To estimate the change of variables, we need the following two lemmas.

Lemma 4.7. Let Φm = φ1 ◦ φ2 ◦ · · · ◦ φm for m ≥ 1, then we have

‖Φm(·, ω, ϕ)− Id‖B(Yp) ≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
4α2

m−1∑

l=0

ǫ
1/4
l . (4.32)

Proof. First (4.31) implies the above estimate (4.32) holds true for m = 1. Now assume
that we have verified (4.32) up to m > 1, then we consider the case for m+ 1. From the
definition,

Φm+1 − Id = Φm ◦ φm+1 − Id = Φm ◦ (φm+1 − Id) + Φm − Id.

Therefore, collecting the assumption and (4.31) leads to

‖Φm+1(·, ω, ϕ)− Id‖B(Yp) ≤ ‖Φm(·, ω, ϕ)− Id‖B(Yp) + C‖φm+1(·, ω, ϕ)− Id‖B(Yp)

≤ ǫ
1/6
0 (ln ǫ−1

0 )
−

α1
4α2

m−1∑

l=0

ǫ
1/4
l + Cǫ

1/6
0 (ln ǫ−1

0 )
−

α1
3α2 ǫ1/4m ≤ ǫ

1/6
0 (ln ǫ−1

0 )
−

α1
4α2

m∑

l=0

ǫ
1/4
l .

By induction, we complete the proof. �

Lemma 4.8.
{
Φm(·, ω, ϕ)

}
m≥1

is a Cauchy sequence in B(Yp). Letting Φ∞(·, ω, ϕ) ∈

B(Yp) be the limit mapping we have Φm(·, ω, ϕ) → Φ∞(·, ω, ϕ) when m → ∞. Further-
more, (4.32) implies the uniformly convergence on (ω, ϕ), which leads to Φ∞(·, ω, ϕ) is
analytic in ϕ and C1 in ω. Moreover, (4.32) implies

‖Φ∞(·, ω, ϕ)− Id‖B(Yp) ≤ ǫ
5/12
0 . (4.33)
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Proof. From the definition we have

Φm+1 − Φm = Φm ◦ φm+1 − Φm = Φm ◦ (φm+1 − Id).

Collecting (4.31) and (4.32) leads to

‖Φm+1(·, ω, ϕ)− Φm(·, ω, ϕ)‖B(Yp) ≤ C‖φm+1(·, ω, ϕ)− Id‖B(Yp) ≤ ǫ1/4m .

Hence, given m2 ≥ m1 ≥ 1 we have

‖Φm2
(·, ω, ϕ)− Φm1

(·, ω, ϕ)‖B(Yp) ≤

m2−1∑

l=m1

ǫ
1/4
l ≤ 2ǫm1 → 0 when m1 → ∞.

The last estimate implies the Cauchy sequence, which concludes the results. �

Define B(ℓ2p) ∋ Mm(ω, ϕ) = eiS1(ω,ϕ) ◦ eiS2(ω,ϕ) ◦ · · · ◦ eiSm(ω,ϕ) for m ≥ 1. In view of (2.3)
we get that

φm(ξ, η, ω, ϕ) =
(
e−iST

m(ω,ϕ)ξ, eiSm(ω,ϕ)η
)

and

Φm(ξ, η, ω, ϕ) =
(
Mm(ω, ϕ)ξ,Mm(ω, ϕ)η

)
. (4.34)

From a straightforward computation, given m2 ≥ m1 ≥ 1

‖Mm2
(ω, ϕ)−Mm1

(ω, ϕ)‖B(ℓ2p) ≤ ‖Φm2
(·, ω, ϕ)− Φm1

(·, ω, ϕ)‖B(Yp).

This implies that
{
Mm(ω, ϕ)

}
m≥1

is a Cauchy sequence in B(ℓ2p). Letting M∞(ω, ϕ) be

the limit mapping, the uniformly convergence leads to that (ω, ϕ) 7→ M∞(ω, ϕ) is analytic
in ϕ and C1 in ω. Moreover, due to (4.34)

Φ∞(ξ, η, ω, ϕ) =
(
M∞(ω, ϕ)ξ,M∞(ω, ϕ)η

)
(4.35)

and taking into account (4.33) leads to

‖M∞(ω, ϕ)− Id‖B(ℓ2p) = ‖M∞(ω, ϕ)− Id‖B(ℓ2p) ≤ ‖Φ∞(·, ω, ϕ)− Id‖B(Yp) ≤ ǫ
5/12
0 . (4.36)

By construction the map Φm(·, ω, ωt) conjugates the original Hamiltonian system asso-
ciated with Hω(t, ξ, η) = 〈ξ, N0η〉 + ǫ〈ξ, Q(ωt)η〉 into the Hamiltonian system associ-
ated with Hm(t, ξ, η) = 〈ξ, Nm(ω)η〉 + 〈ξ, Qm(ω, ωt)η〉. Collecting Lemma 4.5 and 4.6
one concludes Qm(ω, ωt) → 0 and Nm(ω) → Nω when m → ∞, where the operator
Nω ≡ N∞(ω) = N0 +W (ω) ∈ NF is C1 in ω with

|W |β = |Nω −N0|β ≤ 2ǫ0. (4.37)

Let Φω(ϕ) := Φ∞(·, ω, ϕ) and Mω(ϕ) = M∞(ω, ϕ), then (4.35) reads Φω(ϕ)(ξ, η) =(
Mω(ϕ)ξ,Mω(ϕ)η

)
. Furthermore, denoting the limiting Hamiltonian Hω = 〈ξ, Nωη〉 =

〈ξ, N0η〉+ 〈ξ,Wη〉, the symplectic coordinate transformation Φω(ϕ) conjugates the orig-
inal Hamiltonian system associated with Hω into the autonomous Hamiltonian system
associated with Hω. Collecting (4.36) and (4.37) leads to (2.8) and (2.9) in Theorem
2.3. �
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5. Appendix

5.1. Proof of Lemma 2.1. Recall that β > 1
2
.

(i). The proof results from Lemma 5.1 with β > 1
2
and

∑

c∈Ê

1

(1 + lnwc)2β(1 + |wb − wc|)
≤ C. (5.1)

(ii). Similarly, collecting (5.1) and β > 1
2
conludes the results.

(iii). Use assertion (ii) of Lemma 2.1.
(iv). Let A ∈ Mβ and s ≥ 1. Then for any ξ ∈ ℓ2s, we have

‖Aξ‖2−s =
∑

a∈Ê

w−s
a ‖

∑

b∈Ê

A
[b]
[a]ξ[b]‖

2 ≤
∑

a∈Ê

w−s
a


∑

b∈Ê

‖A[b]
[a]‖ · ‖ξ[b]‖




2

≤ |A|2β
∑

a∈Ê

w−s
a


∑

b∈Ê

w
s/2
b ‖ξ[b]‖

(1 + lnwa)β(1 + lnwb)βw
s/2
b




2

≤ |A|2β
∑

a∈Ê

1

(1 + lnwa)2βws
a


∑

b∈Ê

1

(1 + lnwb)2βw
s
b




∑

b∈Ê

ws
b‖ξ[b]‖

2




≤ |A|2β
∑

a∈Ê

1

(1 + lnwa)2βwa


∑

b∈Ê

1

(1 + lnwb)2βwb


 ‖ξ‖2s

≤ C2|A|2β‖ξ‖
2
s.

(v). Case 1: s ∈ [0, 1]. In this case we first prove

(I) :=
∑

b∈Ê

(wa/wb)
s

(1 + lnwb)2β(1 + |wa − wb|)
≤ C, ∀ s ∈ [0, 1] and β >

1

2
. (5.2)

We split the series above into two parts as follows:

(I) =


 ∑

wb>
wa
2

+
∑

wb≤
wa
2


 (wa/wb)

s

(1 + lnwb)2β(1 + |wa − wb|)
:= (I1) + (I2).

For the former, (wa/wb)
s ≤ 2s ≤ 2. Thus

(I1) ≤
∑

b∈Ê

2

(1 + lnwb)2β(1 + |wa − wb|)
≤ C. (5.3)

Then turn to the latter. Since wb ≤
wa

2
, then 1+ |wa −wb| ≥ wa −wb ≥

wa

2
≥ wb.

Thus 1+ |wa−wb| = (1+ |wa−wb|)s(1+ |wa−wb|)1−s ≥ (wa/2)
sw1−s

b ≥ 1
2
ws

aw
1−s
b .

Therefore, one obtains (I2) ≤
∑

b∈Ê
2

(1+lnwb)2βwb
≤ C. Collecting the last estimate

and (5.3) leads to the results (5.2).
Now, we prepare to prove the assertion of (v) when s ∈ [0, 1]. Since A ∈ M+

β ,
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then for any ξ ∈ ℓ2s,

‖Aξ‖2s ≤
∑

a∈Ê

ws
a


∑

b∈Ê

‖A[b]
[a]‖ · ‖ξ[b]‖




2

≤
∑

a∈Ê

|A|2β+
(1 + lnwa)2β


∑

b∈Ê

(wa/wb)
s/2

(1 + lnwb)β(1 + |wa − wb|)1/2
w

s/2
b ‖ξ[b]‖

(1 + |wa − wb|)1/2




2

≤
∑

a∈Ê

|A|2β+
(1 + lnwa)2β


∑

b∈Ê

(wa/wb)
s

(1 + lnwb)2β(1 + |wa − wb|)




∑

b∈Ê

ws
b‖ξ[b]‖

2

1 + |wa − wb|




≤C|A|2β+
∑

b∈Ê

ws
b‖ξ[b]‖

2
∑

a∈Ê

1

(1 + lnwa)2β(1 + |wa − wb|)
by (5.2)

≤C2|A|2β+‖ξ‖
2
s. by Lemma 5.1

Next turn to the other case: s ∈ [−1, 0). Repeating similar procedures as the
first case and noting that

∑

a∈Ê

(wa/wb)
s

(1 + lnwa)2β(1 + |wa − wb|)
≤ C, ∀ s ∈ [−1, 0) and β >

1

2
,

we complete the proof.

�

5.2. Some auxiliary lemmas.

Lemma 5.1 (see Lemma A1 in [43]). For j ≥ 1 and δ > 1, there exists a positive constant
C ≡ C(δ) independent of j such that

∑
l≥1

1
(1+ln l)δ(1+|l−j|)

≤ C.

The following lemma is classical.

Lemma 5.2. Let f : [0, 1] 7→ R be a C1 map satisfying |f ′(x)| ≥ δ for all x ∈ [0, 1] and
let κ > 0 then Meas

(
{x ∈ [0, 1] : |f(x)| ≤ κ}

)
≤ 2κ

δ
.
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[8] Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear
Schrödinger equations. J. Eur. Math. Soc. 23, 557-583 (2021)
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[21] Faou, E., Raphaël, P.: On weakly turbulent solutions to the perturbed linear harmonic oscillator.
arXiv: 2006.08206 (2020)

[22] Feola, R., Giuliani, F., Montalto, R., Procesi, M.: Reducibility of first order linear operators on tori
via Moser’s theorem. J. Funct. Anal., 276(3), 932-970 (2019).
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