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REDUCIBILITY OF 1-D SCHR ÖDINGER EQUATION WITH UNBOUNDED OSCILLATION PERTURBATIONS BY

We build a new estimate for the normalized eigenfunctions of the operator -∂xx + V (x) based on the oscillatory integrals and Langer's turning point method, where V (x) ∼ |x| 2 at infinity with > 1. From this estimate and an improved reducibility theorem we show that the equation

, can be reduced in L 2 (R) to an autonomous system for most values of the frequency vector ω and ν, where W (ϕ, φ) is a smooth map from T d × T n to R and odd in ϕ.

Introduction of the main results

1.1. Main results. In this paper we study the problem of reducibility of the time dependent Schrödinger equation (1.1) i∂ t ψ(x, t) = -

d 2 dx 2 + V (x) + Q(x, ωt) ψ(x, t), i 2 = -1, ∈ R,
where V (x) ∈ C ∞ (R, R) and V (x) ∼ |x| 2 at infinity with > 1,

Q(x, φ) ∈ C ∞ (R × T n , R)
Received August 17, 2020 and in revised form August 29, 2021 1 with T n = R n /2πZ n and the frequencies ω ∈ R n . In [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] Bambusi and Graffi first proved the reducibility of 1-D Schrödinger equation (1.1) with an unbounded time quasiperiodic perturbation

|Q(x, φ)| |x| μ1 as |x| → ∞,
where μ 1 < -1. The reducibility in the limiting case μ 1 = -1 was obtained by Liu and Yuan in [START_REF] Liu | Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient[END_REF]. Recently, Bambusi [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] further improved the index by pseudodifferential calculus. In [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] Bambusi proved the reducibility when the potential V (x) is a polynomial of degree 2 and the perturbation functions belong to a class of pseudifferential symbols. In the latter paper [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF] Bambusi further proved the reducibility of the Schrödinger equation

H 0 (t)ψ(x, t) = i∂ t ψ(x, t), x ∈ R; H 0 (t) := - d 2 dx 2 + V (x) + W (ωt), ∈ R,
where V (x) ∼ |x| 2 with > 1 at infinity and satisfies some mild conditions. The perturbation operator W (ωt) belongs to a class of symbols S m1,m2 (refer to Subsection 2.5). For example, Bambusi [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF] dealt with the perturbations W (ωt) = a 0 (x, ωt)ia 1 (x, ωt)∂ x where the functions a i are of class C ∞ and fulfill

|∂ k x a 0 (x, ωt)| ≤ C k x β1-k , β 1 < , (1.2) |∂ k x a 1 (x, ωt)| ≤ C k x β2-k , β 2 < -1 (1 < ≤ 2) and β 2 < /2 ( > 2). (1.3)
In [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF] Bambusi made the following remark:

We also remark that the assumption that the functions a i in (1.2) and (1.3) are symbols rules out cases like a i (x, ωt) = cos(xωt).

Towards this remark we consider the time dependent Schrödinger equation (1.4)

H(t)ψ(x, t) = i∂ t ψ(x, t), x ∈ R; H(t) := - d 2 dx 2 + V (x) + x μ W (νx, ωt), ∈ R,
under the following conditions:

A(1) The potential V ∈ C ∞ (R; R), which satisfies V (x) = V (-x) ≥ 0, admits an asymptotic expansion of the form V (x) = x 2 (c 0 + j≥1 . Fix γ > 0 small, there exists * > 0 such that for all 0 ≤ < * there is a closed set Π * ⊂ Π := [0, 1] n and ∀ ω ∈ Π * the linear Schrödinger equation (1.4) reduces to a linear equation with constant coefficients in L 2 (R).

More precisely, for γ > 0, there exists * > 0 such that for all 0 ≤ < * there is a closed set Π * ⊂ Π satisfying meas(Π\Π * ) ≤ Cγ, and for ω ∈ Π * , there exists a unitary (in L 2 (R)) time quasiperiodic operator Ψ ω, (φ) such that t → ψ(t, •) ∈ L 2 (R) satisfies (1.4) if and only if t → ζ(t, •) = Ψ -1 ω, ψ(t, •) satisfies the equation

i∂ t ζ = H ∞ ζ with H ∞ = diag{λ ∞ j } and |λ ∞ j -λ j | ≤ C j ( μ +1 -1 +1 ( 1 3 ∧ μ+1 2μ+2 +1 ))∨0 .
Furthermore, one has that Ψ ω, (φ) is analytic in the norm

• B(L 2 (R)) on |Imφ| < ρ 2 and Ψ ω, (ωt) -Id B(L 2 (R)) ≤ C 2 3 . Remark 1.2: From - 2 3 ∧ √ 4 2 -2 + 1 -1 2 = ⎧ ⎨ ⎩ -2 3 , 1 < < 4 3 ; √ 4 2 -2 +1-1 2 = -3 4 + 1 16 -1 + O( -2 ), ≥ 4 3 ,
and

√ 4 2 -2 +1-1 2
≥ - 3 4 when ≥ 4 3 it is clear that the parameter μ has an improved upper boundedness than [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF].

Remark 1.3: In fact we can prove the reducibility under the assumption A(1) when the operator H(t) is replaced by H 1 (t) := -d 2 dx 2 + V (x) + x μ X(x, ωt), where V (x) is the same as in Theorem 1.1 and

X(x, φ) = k∈Λ (a k (φ) sin kx + b k (φ) cos kx)
with Λ ⊂ R\{0} and #Λ < ∞, a k (φ) and b k (φ) analytic on T n ρ and continuous on T n ρ .

A consequence of the above theorem is that, for the parameters ω ∈ Π * , all the Sobolev norms of the solutions ψ(t, •) are bounded in t and the spectrum of the Floquet operators is a pure point.

1.2.

A new oscillatory integral estimation. In the following we will present a critical lemma. We remark that the assumption on V (x) (Assumption 1.4) is weaker than A(1).

Assumption 1.4: The potential V (x) is real-valued and of C 3 -class. There exists a positive constant R 0 such that the following conditions are satisfied for V (x) when |x| ≥ R 0 :

(i) V (x) ≥ 0. (ii) For j = 1, 2, 3, |xV (j) where μ ≥ 0. Lemma 1.6: Assume V (x) satisfies Assumption 1.4 and f (x) satisfies Assumption 1.5. Let h n (x) be the normalized eigenfunction of H = -∂ xx + V (x) associated with the eigenvalue λ n . Then for any k = 0, one has

(1.5) R f (x)e ikx h m (x)h n (x)dx ≤ C(|k| ∨ |k| -1 )(λ m λ n ) μ 4 -1 4 ( 1 3 ∧ μ+1 2μ+2 +1 ) ,
where C depends on (μ, ) and μ ≥ 0.

The following lemma is helpful for us to understand the classical results in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF].

Lemma 1.7: Assume V (x) satisfies Assumption 1.4 and h n (x) is the same as in Lemma 1.6. If f (x) is continuous and satisfies

|f (x)| ≤ C 2 |x| μ for |x| ≥ R 0 with 0 ≤ μ < -1, then R f (x)h m (x)h n (x)dx ≤ C(λ m λ n ) μ 4 .
Here we would like to compare our approaches with those of Bambusi and Graffi [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], in which they proved the reducibility of the equation (1.6) i∂ t u(t) = (A + P (ω 1 t, ω 2 t, . . . , ω n t))u(t), ∈ R,

where A = diag{λ j } j≥1 with 0 < λ 1 < λ 2 < • • • and λ j ∼ cj ι , ι > 1, c > 0, and the map

T n φ → P (φ) ∈ B( 2 0 , 2 -δ
) is analytic on T n s with δ < ι -1 and [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF]). In the application to the equation ( 1

P j i (φ) = P i j (φ) for φ ∈ T n (see Theorem 1.1 in
.1) with |Q(x, φ)| |x| μ as |x| → ∞, they could show that the map T n φ → P (φ) ∈B( 2 0 , 2 -δ
) is analytic on T n s , where P (φ) is the matrix form of the perturbed operator Q(x, φ) if 0 ≤ μ ≤ δ( + 1). Choose δ = μ +1 and then the restriction condition δ < ι -1 turns out to be μ < -1 since ι = 2 +1 . We recall that the condition δ < ι -1 was essentially used in Kuksin's lemma by Bambusi and Graffi [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] to estimate the solution of the homological equation. The limit case μ ≤ -1 was solved by Liu and Yuan [START_REF] Liu | Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient[END_REF] by a refined Kuksin's lemma.

In this paper we introduce a new Banach space M β which will be defined in Section 2. If an infinite matrix P = (P j i ) i,j≥1 belongs to the space M β , it means that the matrix element P j i of P satisfies |P j i | ≤ C(ij) β with C > 0 and i, j ≥ 1. As [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], we consider the reducibility problem for the equation (1.6) where A is the same as in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] and the perturbed operator

P (φ) ∈ M β ∩B( 2 0 , 2 -δ
). We still apply Kuksin's lemma to solve the homological equation and now the critical condition δ < ι -1 in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] becomes 2β < ι -1. If we deal with the same model as [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], from Lemma 1.7 one can show that P ∈ M μ 2( +1) . The restriction condition 2β < ι -1 is equivalent to μ < -1, as [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF]. If the perturbed terms Q(x, ωt) in (1.1) have more information of the structure such as x μ W (νx, ωt) in Theorem 1.1, Lemma 1.6 shows us that P ∈ M β with

β = 1 2( + 1) μ - 1 3 ∧ μ + 1 2μ + 2 + 1 .
Comparing with [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] one can see that the oscillatory integrals actually improve the index, which shows us that the operator P is "less unbounded" than the one in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF]. Reconsidering the restriction condition 2β < ι -1, we obtain

μ < - 2 3 ∧ √ 4 2 -2 +1-1 2
for > 1.

In the proof we use the pseudodifferential calculus to show that the matrix form of the perturbed operator x μ W (νx, ωt) in fact satisfies

P (φ) ∈ B( 2 0 , 2 -δ ) if 0 ≤ μ ≤ δ( + 1
), which is close to [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] in spirit. We recall that Bambusi used the pseudodifferential calculus in [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] to prove the reducibility results for 1-D Schrödinger equations. Roughly speaking, when Bambusi dealt with the quantum homological equation, he turned to the corresponding homological equation for the symbols and put it into normal form in the classical way. Finally, by quantizing the homological equation, he put the Schrödinger equation into normal form with a "less unbounded" perturbed operator. More importantly, he could iterate the procedures. Comparing with [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] we can obtain the regularity from the oscillatory integrals in one step. But we have no idea how to iterate it for many steps up to now.

In the end we recall some relevant results. As mentioned above the pseudodifferential calculus will be used in Section 2. More applications of pseudodifferential calculus can be found in many previous works (e.g., [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Baldi | KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions for gravity-capillary water waves[END_REF][START_REF] Feola | Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations[END_REF][START_REF] Giuliani | Quasi-periodic solutions for quasi-linear generalized KdV equations[END_REF][START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF][START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF]). We mention that some higher dimensional results have been recently obtained in [START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF][START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF][START_REF] Liang | Reducibility of quantum harmonic oscillator on R d with differential and quasi-periodic in time potential[END_REF][START_REF] Montalto | A reducibility result for a class of linear wave equations on T d[END_REF]. We emphasize that the unique reducibility results on n-D quantum harmonic oscillators with polynomial time-dependent perturbation have been proved in [START_REF] Bambusi | Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation[END_REF]. The reducibility results on n-D quantum harmonic oscillators with more general unbounded perturbations are still open. Comparing with n-D, the reducibility results in 1-D quantum harmonic are more satisfactory (e.g., [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations[END_REF][START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF][START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF][START_REF] Wang | Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations[END_REF][START_REF] Wang | Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay[END_REF]).

The reducibility usually implies the boundedness of the solutions in some Sobolev space. There is much literature concerning the upper bound of the solution in some Sobolev space (e.g., [START_REF] Bambusi | Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori[END_REF][START_REF] Bambusi | Growth of Sobolev norms for abstract linear Schrödinger equations[END_REF][START_REF] Bourgain | Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential[END_REF][START_REF] Maspero | On time dependent Schrödinger equations: Global wellposedness and growth of Sobolev norms[END_REF][START_REF] Montalto | On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion[END_REF]). However, there are very many papers that study the lower bound of the PDEs. See the interesting examples given by Bourgain [START_REF] Bourgain | Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential[END_REF] for a Klein-Gordon and Schrödinger equation on T, by Delort [START_REF] Delort | Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential[END_REF] for the harmonic oscillator on R. The result in [START_REF] Delort | Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential[END_REF] was reproved in [START_REF] Maspero | Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations[END_REF] by exploiting the idea in [START_REF] Graffi | Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator[END_REF]. Combining the ideas in [START_REF] Bambusi | Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation[END_REF] and [START_REF] Eliasson | Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation[END_REF], Z. Zhao, Q. Zhou and the first author [START_REF] Liang | 1-d quasi-periodic quantum harmonic oscillator with quadratic time-dependent perturbations: Reducibility and growth of Sobolev norms[END_REF] classified the solutions of a family of the harmonic oscillator with quadratic time-dependent perturbations.

Notations. For x, y ∈ R, define x := √ 1 + x 2 and x ∨ y := max{x, y}, x ∧ y := min{x, y}; x ∼ y means that there exist some positive constants C, C such that Cy ≤ x ≤ Cy.
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A reducibility theorem

We build an abstract reducibility theorem following [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] and [START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF], which is a part of KAM theory. We refer to [START_REF] Berti | KAM for PDEs[END_REF] and [START_REF] Berti | KAM theory for partial differential equations[END_REF] for an almost complete picture of recent KAM theory. At the end of this section we will use the reducibility theorem to prove Theorem 1.1.

2.1. Setting. Following [START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF], we will introduce some spaces and norms and present relative algebraic properties.

Linear Space. Let s ∈ R. We define the complex weighted-2 -space

2 s = {ξ = (ξ j ∈ C, j ∈ Z + ) | ξ s < ∞}, where ξ 2 s = j∈Z+ j 2s |ξ j | 2 .
Infinite Matrices. Let 0 ≤ 2β < ι -1 and denote by M β the set of infinite matrices A :

Z + × Z + → C that satisfy |A| β := sup i,j≥1 |A j i |(ij) -β < ∞.
We will also denote the space M + β to be the subspace of

M β : A is in M + β if |A| + β := sup i,j≥1 |A j i |(ij) -β (1 + |i -j|)(i ι-1 + j ι-1 ) < ∞.
Remark 2.1: The Banach spaces M β and M + β are new here, for which we follow the original papers by Eliasson and Kuskin [START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF] and Grébert and Thomann [START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF]. See [START_REF] Grébert | KAM for the Klein Gordon equation on S d[END_REF], [START_REF] Grébert | On reducibility of quantum harmonic oscillator on R d with quasiperiodic in time potential[END_REF], [START_REF] Liang | Reducibility of quantum harmonic oscillator on R d perturbed by a quasi-periodic potential with logarithmic decay[END_REF] and [START_REF] Wang | Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay[END_REF] for recent developments.

Parameter. In this paper ω will play the role of a parameter belonging to Π = [0, 1] n . All the constructed operators or matrices will depend on ω in the Lipschitz sense.

Let D ⊂ Π and σ > 0. For a Banach space (B, • ), denote by B(D, σ) the set of mappings at T n σ × D (φ, ω) → F (φ, ω) ∈ B which is real analytic on φ ∈ T n σ and Lipschitz continuous on ω ∈ D. This parameterized space is equipped with the norm

F D,L B,σ := F (•, ω) D B,σ + F (•, ω) D,lip B,σ
, where

F (•, ω) B,σ = sup |Imφ|≤σ F (φ, ω) B , F D B,σ = sup ω∈D F (φ, ω) B,σ and F D,lip B,σ = sup ω, ω ∈D, ω =ω F (φ, ω) -F (φ, ω ) B,σ |ω -ω | .
If the Banach space B is chosen as C, we will often omit the notation B. For example, given a function f :

T n σ × D (φ, ω) → C, which is real analytic on φ ∈ T n σ and Lipschitz continuous on ω ∈ D, we denote f (•, ω) σ = sup |Imφ|≤σ |f (φ, ω)|. Similarly, f D σ = sup ω∈D f (φ, ω) σ , f D,lip σ = sup ω, ω ∈D, ω =ω f (φ, ω) -f (φ, ω ) σ |ω -ω | .
The space of mappings F ∈ B(D, σ) that are independent of φ will be denoted by B(D) and equipped with the norm

F D,L B = F D B + F D,lip B .

2.2.

A reducibility theorem. Combining with the ideas in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] and [START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF], we develop a new reducibility theorem as follows. As [START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF], we need more information of the matrix representation of the perturbing operator. More clearly, define

H 0 = -d 2 dx 2 + V (x). H 0 is self-adjoint in L 2 (R) and spec(H 0 ) is dis- crete, all eigenvalues 0 < λ 1 < λ 2 < λ 3 < • • • are simple, and λ j ∼ j 2 +1
when j → ∞ and all eigenfunctions {h j (x)} j≥1 form a complete basis in L 2 . As in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], equation (1.4) can be written as (2.1) i u(t) = (A + P (ω 1 t, ω 2 t, . . . , ω n t))u(t), ∈ R,

where A = diag{λ 1 , λ 2 , . . .} and P (φ) = (P j i (φ)) i,j≥1 with

P j i (φ) = R
x μ W (νx, φ)h i (x)h j (x)dx and P j i (φ) = P i j (φ) for φ ∈ T n .

From Assumption A(1) we can show that when |x| ≥ R 0 > 0 is large enough, Assumption 1.4 in Lemma 1.6 is satisfied for the potential V (x) and thus we have the following.

Lemma 2.2: The map P (φ) is analytic from T n s into M β , where s = ρ -> 0 and

β = ⎧ ⎨ ⎩ μ 2( +1) -1 2( +1) ( 1 3 ∧ μ+1 2μ+2 +1 ), 1 3 ∧ √ 2 +2- 2 ≤ μ< ( -2 3 ) ∧ √ 4 2 -2 +1-1 2 , 0, μ < 1 3 ∧ √ 2 +2- 2 .
Proof. We discuss the case when

1 3 ∧ √ 2 +2- 2 ≤ μ < ( -2 3 ) ∧ √ 4 2 -2 +1-1 2
. In this case, if |Imφ| < ρ -, then

|P j i (φ)| = R x μ k∈Z d ,l∈Z n W (k, l)e ik•νx e ilφ h i (x)h j (x)dx ≤ l∈Z n e |l|(ρ-) k∈Z d | W (k, l)| R e ik•νx x μ h i (x)h j (x)dx ≤ l∈Z n e |l|(ρ-) 0 =k∈Z d | W (k, l)| R e ik•νx x μ h i (x)h j (x)dx (W (-ϕ, φ) = -W (ϕ, φ)) ≤ C l∈Z n e |l|(ρ-) k =0 | W (k, l)|(|k • ν| ∨ |k • ν| -1 )(ij) β (Lemma 1.6) ≤ C γ l∈Z n e |l|(ρ-) k =0 | W (k, l)||k| 1∨τ1 (ij) β (Assumption A(2)) ≤ C γ l∈Z n e |l|(ρ-) k =0 e -|l|ρ |k| 1∨τ1 (ij) β k 1 [1∨τ1]+d+2 • • • k d [1∨τ1]+d+2 (Assumption A(3)) ≤ C γ (ij) β (∃ i 0 ∈ {1, . . . , d}, |k i0 | ≥ |k| d ).
Note that the upper bound of μ implies that

2β < -1 + 1 = ι -1,
from which it follows that P (φ) is an analytic map from T n s into M β with 0 ≤ 2β < ι -1.

We will prove the following reducibility theorem: Consider the non-autonomous, linear differential equation in a separable Hilbert space 2 0 , (2.2) i u(t) = (A + P (ω 1 t, ω 2 t, . . . , ω n t))u(t), ∈ R, under the following conditions:

B(1) A = diag{λ j } j≥1 with 0 < λ 1 < λ 2 < • • • . There exists an ι > 1 such that λ j ∼ cj ι as j → ∞. B(2) The map T n φ → P (φ) := (P j i (φ)) i,j≥1 ∈ M β is analytic on T n s and P j i (φ) = P i j (φ) for φ ∈ T n , where 0 ≤ 2β < ι -1. B(3) The map T n φ → P (φ) ∈ B( 2 0 , 2 -δ ) is analytic on T n s for some δ ∈ [0, ι -β -1 2 ).
Theorem 2.3: Assume that B(1)-B(3) are satisfied. Then for a γ > 0 small, there exists * > 0 such that for all 0 ≤ < * there exists Π * ⊂ Π := [0, 1] n satisfying meas(Π\Π * ) ≤ Cγ, such that for all ω ∈ Π * , the equation (2.2) reduces to a linear equation

(2.3) i v(t) = A ∞ (ωt)v(t), A ∞ (ωt) := diag{λ ∞ 1 + μ ∞ 1 (ωt), λ ∞ 2 + μ ∞ 2 (ωt), . . .},
where {λ ∞ j } j≥1 ∈ R and the function μ ∞ j (φ) :

T n → R is analytic on T n s 2
with zero average. More precisely, for γ > 0 small, there exists * such that for all 0 ≤ < * there exists Π * ⊂ Π := [0, 1] n satisfying meas(Π\Π * ) ≤ Cγ, and for ω ∈ Π * , there exists a linear unitary transformation U ∞ (φ) in 2 0 which depends ana-

lytically on φ ∈ T n s 2 such that t → v(t) ∈ C 0 (R, 2 0 ) ∩ C 1 (R, 2 -ι ) satisfies the equation (2.3) if and only if t → u(t) = U ∞ (ωt)v(t) ∈ C 0 (R, 2 0 ) ∩ C 1 (R, 2 -ι ) satisfies the equation (2.2), where (2.4) U ∞ (ωt) -I B( 2 0 ) ≤ C 2 3 , |λ ∞ j -λ j | ≤ Cj 2β , |μ ∞ j (ωt)| ≤ Cj 2β .
Corollary 2.4: Assume that B(1)-B(3) are satisfied. Then for a γ > 0 small, there exists * > 0 such that for all 0 ≤ < * there exists Π * ⊂ Π := [0, 1] n satisfying meas(Π\Π * ) ≤ Cγ, such that for all ω ∈ Π * , there is a unitary transformation U F (ωt) in 2 0 , quasiperiodic with frequency ω and such that

U F (ωt) -I B( 2 0 ) ≤ C 2 3 , which transforms (2.2) into the equation i ẇ(t) = A F w(t), A F = diag{λ ∞ 1 , λ ∞ 2 , . . .}. Moreover, if u(0) ∈ 2 0 , then u(t) = U F (ωt)diag{e -iλ ∞ j t}U -1 F (0)u(0) ∈ 2 0
is the solution of (2.2).

2.3.

Squaring the order of the perturbation. Before beginning the standard reducibility step, we first present an algebraic lemma and delay the proof until Section 4.

Lemma 2.5: If 0 ≤ 2β < ι -1, there exists a constant C > 0 such that:

(i) Let A ∈ M β , B ∈ M + β ; then AB and BA belong to M β and |AB| β , |BA| β ≤ C|A| β |B| + β . (ii) Let A, B ∈ M + β ; then AB belongs to M + β and |AB| + β ≤ C|A| + β |B| + β . (iii) Let A ∈ M + β ; then A ∈ B( 2 s ) and satisfies A B( 2 s ) ≤ C|A| + β , where |s| < ι -β -1 2 .
As in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], let Π -be a closed nonempty subset of Π of positive measure. If the map f :

T n s × Π -→ B( 2 s1 , 2 s2 ) is analytic on φ ∈ T n s and Lipschitz continuous on ω ∈ Π -, we define f Π -,L B( 2 s 1 , 2 s 2 ),s = f Π - B( 2 s 1 , 2 s 2 ),s + f Π -,lip B( 2 s 1 , 2 s 2 ) 
,s . For convenience we omit the symbol Π -here. Now we consider the equation in 2 0 , (

) i u(t) = (A -+ P -(ωt))u, 2.5 
under the following conditions:

H

(2.6)

A -= diag{λ - 1 (ω) + μ - 1 (ωt, ω), λ - 2 (ω) + μ - 2 (ωt, ω), . . .}. Here: H(1.a) ∀ i = 1, . . . , λ - i (ω) is positive and Lipschitz continuous w.r.t. ω ∈ Π -and satisfies C - 0 i ι ≤ λ - i ≤ C - 1 i ι with C - 0 , C - 1 > 0. We also assume that there is C - λ > 0 independent of ω such that |λ - i -λ - j | ≥ C - λ |i ι -j ι |. H(1.b) There is C - ω > 0 suitably small and 0 ≤ 2β < ι -1 such that sup ω, ω ∈Π -, ω =ω |λ - i (ω) -λ - i (ω )| |ω -ω | ≤ C - ω i 2β . H(1.c) ∀ i = 1, . . ., μ - i (φ, ω) : T n s × Π -→ R is analytic w.r.t.
φ, Lipschitz continuous w.r.t. ω, and has zero average, i.e.,

T n μ - i (φ, ω)dφ = 0.
Moreover, it fulfills the estimates

μ - i s ≤ C - μ i 2β , μ - i Π -,lip s ≤ C - ω i 2β . H(2) The map P -: T n s × Π -→ X is analytic w.r.t. φ ∈ T n s and Lipschitz continuous w.r.t. ω ∈ Π -uniformly in φ ∈ T n s , where X = (M β , | • | β ) or (B( 2 0 , 2 -δ ), • B( 2 0 , 2 -δ )
). H(3) There exist γ -> 0 and τ > n+ 2 ι-1 such that, for any ω ∈ Π -, one has

| k, ω | ≥ γ - |k| τ , ∀ k ∈ Z n \{0}, |λ - i -λ - j + k, ω | ≥ γ -|i ι -j ι | 1 + |k| τ , ∀ k ∈ Z n , i = j. Let now B : T n s (φ 1 , . . . , φ n ) → B(φ 1 , . . . , φ n ) ∈ M +
β be an analytic map with B(φ 1 , . . . , φ n ) anti-self-adjoint for each real value of (φ 1 , . . . , φ n ). Consider the corresponding unitary operator e B(φ1,...,φn) and, for any ω ∈ Π -, consider the unitary transformation of basis u = e B(ωt) v. Substitution in equation (2.5) yields

i v = (A + + P + (ωt))v, A + := A -+ diag(P -). In fact, A + = diag{λ + i + μ + i (ωt)},
where

λ + i = λ - i + P - ii (φ)
(the overline denotes angular average) and

μ + i (ωt) = μ - i (ωt, ω) + P - ii (φ) -P - ii (φ).
Hence the functions μ + i (φ) have zero average and diag(P -) := diag{P - 11 (ωt), P - 22 (ωt), . . . }.

The new perturbation P + is given by

P + :=([A -, B] -i Ḃ + (P --diag(P -))) + (e -B A -e B -A --[A -, B]) + (e -B P -e B -P -) -i e -B d dt e B -Ḃ .
The main step of the proof is to construct B such that the following vanish, i.e., to solve for the unknown

B the equation [A -, B] -i Ḃ + (P --diag(P -)) = 0.
The construction is based on a lemma by Kuksin and a method from Bambusi and Graffi [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF]. The proof of Lemma 2.7 is similar to [6, Lemma 3.2] and we will emphasize the difference. In the following we introduce Kuksin's lemma for completeness.

On the n-dimensional torus consider the equation

(2.7) -i n k=1 ω k ∂ ∂φ k χ(φ) + E 1 χ(φ) + E 2 h(φ)χ(φ) = b(φ).
Here χ denotes the unknown, while b, h denote given analytic functions on T n s . Also, h has zero average; E 1 , E 2 are positive constants and h s ≤ 1. Concerning the frequency vector ω = (ω 1 , . . . , ω n ) the assumptions on ω are:

| k, ω | ≥ γ 2 |k| τ , ∀ k ∈ Z n \{0}, | k, ω + E 1 | ≥ γ 1 |k| τ + 1 , ∀ k ∈ Z n .
The important hypothesis is an order assumption, namely, given 0 < θ < 1 and C 0 > 0 we assume

(2.8) E θ 1 ≥ C 0 E 2 .
Lemma 2.6 (Kuksin): Under the above assumptions, equation (2.7) has a unique analytic solution χ which, for any 0 < σ < s, fulfills

χ s-σ ≤ C 1 γ 1 σ a4 exp C 2 γ a5 2 σ a3 b s .
Here

a 3 , a 4 , a 5 , C 1 , C 2 are constants independent of E 1 , E 2 , σ, s, γ 1 , γ 2 , ω.
By Kuksin's lemma, as [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], we have

Lemma 2.7: Let γ -≥ γ 0 /2, 0 ≤ C - ω ≤ 1, (2.9) and θ = 2β ι-1 in (2.8
). For any 0 < σ < s, the equation

(2.10) [A -, B] -i Ḃ + (P --diag(P -)) = 0 has a unique solution B ∈ M + β,s-σ analytic on T n s-σ , fulfilling the estimate (2.11) B L,+ β,s-σ ≤ exp C σ a3 P -L β,s ,
where

C = C(γ 0 , β, ι, n, τ), a 3 = n + τ + θ(n + τ + 2) 1 -θ .
Proof. The equation is equal to

-i n k=1 ω k ∂ ∂φ k B ij +(λ - i -λ - j )B ij +(μ - i (φ)-μ - j (φ))B ij = -P ij , i = j, ω ∈ Π -. Assume E 1 = (λ - i -λ - j ) ≥ 0 and h i,j (φ) = μ - i (φ) -μ - j (φ) μ - i (φ) -μ - j (φ) s + 1 , E 2 = μ - i (φ) -μ - j (φ) s + 1, also denote γ 1 = γ -|i ι -j ι | and γ 2 = γ -. We can choose θ = 2β
ι-1 and a suitable constant C 0 such that (2.8) holds. In fact, since

|λ - i -λ - j | ≥ C - λ |i ι -j ι | ≥ C - λ 2 |i -j|(i ι-1 + j ι-1 )
and

μ - i (φ) -μ - j (φ) s ≤ C - μ (i 2β + j 2β
), as in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], one has E θ 1 ≥ C 0 E 2 with θ defined above. Then a direct application of Kuksin's lemma yields

B ij s-σ ≤ C 1 γ -|i ι -j ι |σ a4 exp C 2 (γ -) a5 σ a3 P ij s , for i = j.
Note that our assumptions on P -, result in

B ij s-σ (ij) -β (1 + |i -j|)(i ι-1 + j ι-1 ) ≤ 4C 1 γ -σ a4 exp C 2 (γ -) a5 σ a3 P - β,s , ∀i = j. When i = j, B ij (φ) = 0. Therefore, B(φ) ∈ M + β for any |Imφ| < s -σ and B(φ) + β,s-σ ≤ 4C 1 γ -σ a4 exp C 2 (γ -) a5 σ a3 P - β,s .
A similar computation follows for ω = ω , i = j,

ΔB ij s-3σ |ω -ω | (ij) -β (1 + |i -j|)(i ι-1 + j ι-1 ) ≤ C (γ -) 2 σ 2a4+1 exp 2C 2 (γ -) a5 σ a3 P -L β,s .
Thus,

B(φ) L,+ s-3σ ≤ C(γ 0 , n, τ) (3σ) 2a4+1 exp C(γ 0 , β, ι, n, τ) (3σ) a3 P -L β,s ,
where

a 4 = n + τ, a 5 = 1 1-θ , a 3 = n + τ + θ(n+τ +2) 1-θ > 1. So if we de- note m = [2a 4 + 3] and choose 3σ ≤ min{ 1 m!C(γ0,n,τ ) , 1}, then C(γ 0 , n, τ) (3σ) 2a4+1 ≤ 1 (3σ) m m! ≤ exp 1 3σ .
Redefining 3σ as σ one obtains

B(φ) L,+ β,s-σ ≤ exp C σ a3 P -L β,s ,
where

C = C(γ 0 , β, ι, n, τ).
Lemma 2.8: Consider the system

(2.12) i u = (A -+ P -(ωt))u
with the stated assumptions. Assume furthermore that also (2.9) holds. Then there exists an anti-self-adjoint operator B ∈ M + β,s-σ depending analytically on φ ∈ T n β,s-σ , and Lipschitz continuous in ω ∈ Π -such that (1) B fulfills the estimate (2.11);

(2) for any ω ∈ Π -the unitary operator e B(ωt) transforms the system (2.12)

into the system i v = (A + + P + (ωt))v;

(3) the new perturbation P + fulfills the estimate

P + L β,s-2σ + P + L B( 2 0 , 2 -δ ),s-2σ ≤ exp 2C σ a3 ( P -L β,s + P -L B( 2 0 , 2 -δ ),s ) 2
, where we assume that 0 < σ < s 2 and τ > 1; (4) for any positive K such that

2( P -L β,s + P -L B( 2 0 , 2 -δ ),s )(1 + K τ ) < γ --γ + , there exists a closed set Π + ⊂ Π -fulfilling |Π -\Π + | ≤ Cγ0 K τ -n-2 ι-1
, 

under
C + λ = C - λ -2( P -L β,s + P -L B( 2 0 , 2 -δ ),s ), C + ω = C - ω + 2( P -L β,s + P -L B( 2 0 , 2 -δ ),s ), C + μ = C - μ + 2( P -L β,s + P -L B( 2 0 , 2 -δ ),s ), γ + = γ --2( P -L β,s + P -L B( 2 0 , 2 -δ ),s )(1 + K τ ).
Remark 2.9:

If P -L β,s + P -L B( 2 0 , 2 -δ ),s ≤ -, we can choose C + λ = C - λ -2 -, C + ω = C - ω + 2 -, C + μ = C - μ + 2 -, γ + = γ --2 -(1 + K τ )
in place of (2.13).

Proof. Similar to [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], we can prove that B is an anti-self-adjoint operator and e B(ωt) is a unitary operator, and ( 1) and ( 2) follow easily. For (3), we write the new perturbation

P + := e -B A -e B -A --[A -, B] + (e -B P -e B -P -) -i e -B d dt e B -Ḃ . By the assertions (iii)-(v) of Lemma 4.1, if B L,+ β,s-σ
1 and 0 < σ < s 2 , then one has

P + L β,s-2σ ≤ C(β, ι, n) exp C σ a3 ( P -L β,s-2σ ) 2 , P + L B( 2 0 , 2 -δ ),s-2σ ≤ C(β, ι, n) exp C σ a3 P -L β,s ( P -L β,s + P -L B( 2 0 , 2 -δ ),s ),
where

a 3 = n + τ + θ(n+τ +2) 1-θ
with τ > 1, θ ∈ (0, 1). The last two estimations imply [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF].

In the following we turn to prove (4) and [START_REF] Bambusi | Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori[END_REF]. As [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], if we choose

C + λ = C - λ -2( P -L β,s + P -L B( 2 0 , 2 -δ ),s ), C + ω = C - ω + 2( P -L β,s + P -L B( 2 0 , 2 -δ ),s )
and

C + μ = C - μ + 2( P -L β,s + P -L B( 2 0 , 2 -δ ),s ), then we have H(1.a) |λ + i -λ + j | ≥ C + λ |i ι -j ι |, H(1.b) sup ω, ω ∈Π -, ω =ω |λ + i (ω)-λ + i (ω )| |ω-ω | ≤ C + ω i 2β , H(1.c) μ + i s ≤ C + μ i 2β and μ + i Π -,lip s ≤ C + ω i 2β . H(3)
To check H(3) for the next step, one needs to discard suitable parameter sets. This step is very similar to [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] and we only give a sketch here. In fact, if choose

γ + = γ --2( P -L β,s + P -L B( 2 0 , 2 -δ ),s )(1 + K τ ), then | k, ω | ≥ γ + |k| τ , ∀ k ∈ Z n \{0}, |λ + i -λ + j + k, ω | ≥ γ + |i ι -j ι | 1 + |k| τ , ∀ |k| ≤ K, i = j.
For |k| > K and i = j, we need to discard a suitable parameter set in Π -to guarantee the last inequality holds true. Clearly, a standard procedure shows us that

Π -\Π + := |k|>K i =j i,j≥1 ω ∈ Π -: |λ + i -λ + j + k, ω | < γ + |i ι -j ι | 1 + |k| τ .
Similar to [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], one has

|Π -\Π + | ≤ Cγ0 K τ -n-2 ι-1
, provided that (2.14)

C + λ ≥ 1 2 C λ , C + ω < C λ 16n , γ + ≤ γ 0 < C λ 4 , τ > n + 2 ι -1 and K ≥ 2.
2.4. Iteration. In this section we set up the iteration. First we preassign the value of the various constants. Hence we keep 0 , K, s 0 and γ 0 fixed which satisfy

(2.15) 0 < s 0 < 1, 0 ≤ min{C * , exp (-a 6 s -a3 0 )}, γ 0 < 1 4 C λ , K = 4 3 ,
where C * and a 6 depend on β, C λ , n, τ, γ 0 , ι, τ 1 , γ, d, and a 3 ∼ n, τ, β, ι and

0 := ( P L β,s + P L B( 2 0 , 2 -2s ) ). For l ≥ 1 we define l = 4 3 l-1 , σ l = 3C | ln l-1 | 1 a 3 , s l = s l-1 -2σ l , K l = lK, γ l = γ l-1 -2 l-1 (1 + K τ l ), C λ,l = C λ,l-1 -2 l-1 , C ω,l = C ω,l-1 + 2 l-1 , C μ,l = C μ,l-1 + 2 l-1 .
The initial values of the sequences are chosen as follows:

γ 0 := γ, s 0 = s, C λ,0 := C λ , C ω,0 := 0, C μ,0 := 0.
These settings lead to

γ 0 2 ≤ γ l ≤ γ 0 < C λ 4 , 0 ≤ C ω,l ≤ C λ 16n ∧ 1, C λ,l ≥ 1 2 C λ , ∀ l ≥ 0.
Proposition 2.10: There exist * = * (γ, s) > 0 and, for any l ≥ 1, a closed set Π γ l ⊂ Π such that, if 0 ≤ < * , one can construct for ω ∈ Π γ l a unitary transformation U l , analytic and quasi-periodic in t with frequencies ω, mapping the system i u = (A + P (ωt))u into the system i u = (A l + P l (ωt))u, where: (ωt) , and the antiself-adjoint operators B j ∈ M + β depending analytically on φ ∈ T n sj-1 -σj , are Lipschitz continuous in ω ∈ Π γ l and fulfilling (2.11) with P j-1 , s j-1 , σ j in place of P -, s, σ, respectively.

(1) U l (ωt) is as follows: U l (ωt) = e B 1 (ωt) e B 2 (ωt) • • • e B l
(2) A l has the form of (2.6) with the upper index "minus" replaced by l, i.e.,

A l := diag{λ l 1 (ω) + μ l 1 (ωt, ω), λ l 2 (ω) + μ l 2 (ωt, ω), . . .}.
(3) The corresponding λ l i and μ l i fulfill conditions H(1), H(3) of the previous section, provided λ - i , μ - i are replaced by λ l i , μ l i , respectively. (4) P l fulfills condition H(2) with the upper index "minus" replaced by l and the following estimates hold:

P l L β,s l + P l L B( 2 0 , 2 -δ ),s l ≤ exp 2C σ a3 l ( P l-1 L β,s l-1 + P l-1 L B( 2 0 , 2 -δ ),s l-1 ) 2 ≤ l , B l L,+ β,s l-1 -σ l ≤ exp C σ a3 l ( P l-1 L β,s l-1 + P l-1 L B( 2 0 , 2 -δ ),s l-1 ) ≤ 2 3 l-1
and

|Π γ l \Π γ l+1 | ≤ Cγ K b1 l+1 = Cγ ((l + 1)K) b1 with b 1 = τ -n -2 ι-1 > 1.
Proof. We proceed by induction from Lemma 2.8. For the first step notice that all assumptions are satisfied except the non-resonance conditions H3 on the frequencies. We define

U 0 1 (γ) = k =0 ω ∈ Π := [0, 1] n : | k, ω | < γ |k| τ , U 0 2 (γ) = k∈Z n i,j≥1 i =j ω ∈ Π : |λ i -λ j + k, ω | < γ|i ι -j ι | 1 + |k| τ and V 0 (γ) = U 0 1 (γ) U 0 2 (γ).
When τ > n + 2 ι-1 , we obtain meas(V 0 (γ)) ≤ C(n, ι)γ. Denote Π γ 0 = Π\V 0 (γ), for ω ∈ Π 0 , if the initial data are given suitably as (2.15). Then we can apply Lemma 2.8 and the starting point of our induction is established. Now we assume that (2.16) i u = (A l + P l (ωt))u and all assumptions are satisfied for Lemma 2.8. Then there exists an anti-selfadjoint operator B l+1 which satisfies

B l+1 L,+ β,s l -σ l+1 ≤ exp C σ a3 l+1 ( P l L β,s l + P l L B( 2 0 , 2 -δ ),s l ) ≤ -1 3 l l = 2 3 l ,
where B l+1 is depending analytically on φ ∈ T n s l -σ l+1 and Lipschitz continuous in ω ∈ Π γ l . The unitary operator e B l+1 (ωt) transforms the system (2.16) into the system i u = (A l+1 + P l+1 (ωt))u, so the new perturbation P l+1 fulfills

P l+1 L β,s l+1 + P l+1 L B( 2 0 , 2 -δ ),s l+1 ≤ exp 2C σ a3 l+1 ( P l L β,s l + P l L B( 2 0 , 2 -δ ),s l ) 2 ≤ l+1 .
Moreover, there exists a closed set Π γ l+1 ⊂ Π γ l and b

1 = τ -n -2 ι-1 > 1 fulfilling |Π γ l \Π γ l+1 | ≤ Cγ K b 1 l+1
. If ω ∈ Π γ l+1 , then assumptions H(1)-H(3) are fulfilled by A l+1 , P l+1 provided that the constants are replaced by new ones defined by

C λ,l+1 = C λ,l -2 l , C ω,l+1 = C ω,l + 2 l , C μ,l+1 = C μ,l + 2 l , γ l+1 = γ l -2 l (1 + K τ l+1 ).
Proof of Theorem 2.3. In view of Proposition 2.10, there exists * = * (γ, s) > 0 such that for 0 ≤ < * ,

lim l→∞ γ l = γ ∞ ≥ γ 2 , lim l→∞ s l = s ∞ ≥ s 2 and lim l→∞ P l (φ) = 0. Writing A ∞ (φ) := diag{lim l→∞ (λ l i + μ l i )}, one has lim l→∞ A l (φ) -A ∞ (φ) β = 0 uniformly on T n s 2 .
There follows (2.3) of Theorem 2.3. The second two estimates of (2.4) are also clearly implied by the above convergence. Let now Π * = l≥0 Π γ l . By the assertion (4) of Proposition 2.10 we have |Π\Π * | ≤ Cγ. Now collecting Lemmas 4.2 and 4.3 and Lemma 2.5, we conclude the first estimation on the transformation in (2.4). Then we only need to prove the equivalence of two relative equations. From the construction we can prove the reducibility identity

U l (ωt)(A l (ωt) + P l (ωt)) = -i d dt U l (ωt) + (A 0 + P 0 )U l (ωt) in B( 2 0 , 2 -ι )(Π * ).
From Lemma 4.4 and a straightforward computation we obtain

U ∞ (ωt)A ∞ (ωt) = -i d dt U ∞ (ωt) + (A 0 + P 0 (ωt))U ∞ (ωt), ω ∈ Π * ,
where the identity holds in

B( 2 0 , 2 -ι ). If t → v(t) ∈ C 0 (R, 2 0 ) ∩ C 1 (R, 2 -ι ) satisfies equation (2.3), define u(t) = U ∞ (ωt)v(t). From the above identity we have i u(t) = i d dt U ∞ (ωt) v(t) + U ∞ (ωt)i v(t) = i d dt U ∞ (ωt) v(t) + U ∞ (ωt)A ∞ (ωt)v(t) = (A 0 + P 0 (ωt))U ∞ (ωt)v(t) = (A 0 + P 0 (ωt))u(t) = (A + P (ωt))u(t). From v(t) ∈ C 0 (R, 2 0 ) ∩ C 1 (R, 2 -ι ), we can obtain u(t) ∈ C 0 (R, 2 0 ) ∩ C 1 (R, 2 -ι ). On the contrary, if C 0 (R, 2 0 )∩C 1 (R, 2 -ι ) u(t) satisfies equation (2.2), we define v(t) = (U ∞ (ωt)) -1 u(t). Similarly, one has v(t) belongs to C 0 (R, 2 0 ) C 1 (R, 2 - 
ι ) which fulfills equation (2.3). Thus, we complete the proof of Theorem 2.3.

Proof of Corollary 2.4. See [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] for details.

2.5. Proof of Theorem 1.1. In the following we will prove Theorem 1.1 based on Theorem 2.3. All the assumptions B(1)-B(3) should be checked. As [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF] and [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF], the assumption B(1) is satisfied. From Lemma 2.2, B(2) is checked. In the following we will show that B(3) is satisfied, for which we have to introduce some symbols and spaces following [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF].

Symbol. The space S m1,m2 is the space of the symbols g ∈ C ∞ (R 2 ) such that ∀ k 1 , k 2 ≥ 0. There exists C k1,k2 with the property that (2.17)

|∂ k1 ξ ∂ k2 x g(x, ξ)| ≤ C k1,k2 (λ(x, ξ)) m1-k1 x m2-k2 .
The best constants C k1,k2 such that (2.17) holds form a family of semi-norms for that space S m1,m2 .

Quantization. To a symbol g ∈ S m1,m2 , we associate its Weyl quantization, namely, the operator g w (x, -i∂ x ) defined by

g w (x, -i∂ x )ψ(x) := 1 2π R 2 e (x-y)•ξ g x + y 2 , ξ ψ(y)dydξ.
We use the symbol λ(x, ξ)

= (1 + ξ 2 + |x| 2 ) 1 2
and, for s ≥ 0, define the spaces H s = D([λ w (x, -i∂ x )] s( +1) ) (domain of the (s( + 1))th power of the operator operator λ w (x, -i∂ x )) endowed by the graph norm. For negative s, the space H s is the dual of H -s . We will denote by B(H 1 , H 2 ) the space of bounded linear operators from H 1 to H 2 , where H 1 , H 2 are Banach spaces. In particular, B(H 1 , H 1 ) is usually abbreviated as B(H 1 ). As [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] in what follows we will identify L 2 with 2 0 by introducing the basis denoted by {h j (x)} j≥1 of the eigenvector of H 0 := -∂ xx + V (x). Similarly we will identify H s with the space 2 s of the sequences ψ j such that j≥1 j 2s |ψ j | 2 < ∞. Following [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations[END_REF], we have Lemma 2.11: Let g ∈ S m1,m2 . Then one has

g w (x, -i∂ x ) ∈ B(H s+s1 , H s ), ∀ s ∈ R, ∀ s 1 ≥ m 1 + [m 2 ] with [m 2 ] := m 2 ∨ 0.
Definition 2.12: An operator G will be said to be pseudodifferential of class OP S m1,m2 if there exists a symbol g ∈ S m1,m2 such that G = g w (x, -i∂ x ). Definition 2.13: An operator F will be said to be a pseudodifferential of class O m1,m2 if there exists a sequence f ∈ S m (j) 1 ,m

(j) 2 with m (j) 1 + [m (j) 2 ] ≤ m (j-1) 1 + [m (j-1) 2 ]
and, for any κ, there exist N and an operator

R N ∈ B(H s-κ , H s ) for any s such that F = N j=1 f w j + R N .
From [START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations[END_REF][START_REF] Bambusi | Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I[END_REF] Corollary 2.14:

If A ∈ OP S m1,m2 , B ∈ OP S m 1 ,m 2 , then AB ∈ OP S m1+m 1 ,m2+m 2 .
Lemma 2.15:

If 0 ≤ μ ≤ δ( + 1), then (λ w (x, D x )) -δ( +1) x μ ∈ B(H 0 ). Proof. It is clear that (2.18) (λ w (x, D x )) -δ( +1) ∈ O -δ( +1),0 .
From the definition, there exists N , and an operator

R N ∈ B(H -μ , H 0 ) and (λ w (x, D x )) -δ( +1) = N j≥0 f w j + R N . From (2.18) we have N j≥0 f w j ∈ OP S -δ( +1),0 .
On the other hand, x μ ∈ OP S μ,0 since μ ≥ 0. From Lemma 2.11, it follows that x μ ∈ B(H 0 , H -μ ) and thus (

N j≥0 f w j ) • x μ ∈ OP S μ-δ( +1),0 ⊂ OP S 0,0 by μ ≤ δ( + 1). Therefore, N j≥0 f w j • x μ ∈ B(H 0 ).
Combining with R N x μ ∈ B(H 0 ) we finish the proof.

From the self-adjointness, Hölder's inequality and Lemma 2.15 , we have Lemma 2.16: If 0 ≤ μ ≤ δ( + 1), then the multiplication operator

x μ ∈ B(H 0 , H -δ ).
From the bound of g(x, φ) on φ ∈ T n s and the definition, we have Lemma 2.17: Suppose that g(x, φ) is continuous on x ∈ R and analytic on φ ∈ T n s and there exists a positive constant C > 0 such that

|g(x, φ)| ≤ C on (x, φ) ∈ R × T n s . Then if 0 ≤ μ ≤ δ( + 1), for any φ ∈ T n s , x μ g(x, φ) is an analytic map from T n s to B(H 0 , H -δ ).
On the other hand, if μ < 0, then x μ g(x, φ) is an analytic map from T n s to B(H 0 ).

From Lemma 2.17 it follows that the map

T n φ → P (φ) ∈ B( 2 0 , 2 -δ ) is analytic on T n s if 0 ≤ μ ≤ δ( + 1). If choose δ = +1 , the assumption δ < ι -β -1
2 is equivalent to 2β < ι -1. This confirms the assumption B(3).

Proof of Theorem 1.1. As we mentioned above, equation (1.4) can be written as (2.2). Since all the assumptions B(1)-B(3) are checked, we can use Theorem 2.3 and Corollary 2.4 to finish the proof. For details, see [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF].

Estimates on eigenfunctions

In this section we will prove Lemma 1.6 based on Langer's turning point method (see [START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF][START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF]) and oscillatory integrals. Yajima and Zhang [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF] first applied it to the L p norm estimations on the eigenfunctions of 1-D Schrödinger operators with superquadratic potential. Moreover, Wang and the first author applied it to the weighted L 2 norm estimations and obtained the reducibility of 1-D quantum harmonic oscillators in [START_REF] Wang | Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay[END_REF]. See [START_REF] Liang | Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations[END_REF] for a similar result to Lemma 1.6 for 1-D quantum harmonic oscillators. Now we turn to explain how to obtain the proof of Lemma 1.6. Roughly speaking, as a first step we rewrite the eigenfunction h n (x) of the operator -∂ xx + V (x) as a sum of two functions ψ 1 (x) and ψ 2 (x). The exact forms for ψ 1 and ψ 2 will be clear in the following proof. Then we use oscillatory integrals to estimate the corresponding integrals in (1.5).

As a preparation we give a figure of the potential function V(x). Note that V(x) satisfies Assumption 1.4 in this section: there is a R ≥ 2R 0 > 0 such that

V (x) ≤ xV (x), for x ∈ [ R 2 , ∞), (3.1) |V (x)| < V (R), for x ∈ [0, R). (3.2)
See Figure 1 for the growth trend of V (x) and the relations of the above parameters.

y = V (x) x y O R 0 V (R 0 ) R 2 R V (R) X n0 λ n0 Figure 1.
Let n 0 := min{n ∈ Z + |λ n ≥ V (R)}. From Langer's turning point method we can rewrite h n (x) as ψ [START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF]Sect. 22.27]): Assume that V (x) satisfies Assumption 1.4 and

(n) 1 (x) + ψ (n) 2 (x): Lemma 3.1 (see
(3.3) h n (x) + (λ n -V (x))h n (x) = 0, x ≥ 0.
Then for n ≥ n 0 , one has

(3.4) h n (x) = ψ (n) 1 (x) + ψ (n) 2 (x) with |ψ (n) 2 (x)| ≤ C X +1 n |ψ (n) 1 (x)|, ∀ x ≥ 0,
where

ψ (n) 1 (x) := C n (λ n -V (x)) -1 4 πζ n 2 1 2 H (1) 1 3 (ζ n ) and C n ∼ X -1 2 n , X n = V -1 (λ n ), ζ n (x) = x Xn (λ n -V (t)) 1 2 dt with arg ζ n (x) = ⎧ ⎨ ⎩ π 2 , x > X n , -π, x < X n ,
and for 1 ≤ n < n 0 one has

h n (x) = ψ (n) 1 (x) + ψ (n) 2 (x) with |ψ (n) 2 (x)| ≤ C xV 1 2 (x) |ψ (n) 1 (x)|, ∀ x ≥ 2R,
where

X n = R and ζ n (x) = x Xn (λ n -V (t)) 1 2 dt with arg ζ n (x) = π 2 .
For the proof see Section 4.

In the following we want to give a rough description of the proof. In fact we only need to estimate the integral on [0, ∞) since the remainder is attained by a reflection transformation. In view of Lemma 3.1, the integral estimation in (1.5) is divided into four parts, among which the integral

∞ 0 f (x)e ikx ψ (m) 1 (x)ψ (n)
1 (x)dx will be of most importance. From a straightforward computation we have

∞ 0 f (x)e ikx ψ (m) 1 (x)ψ (n) 1 (x)dx = C m C n ∞ 0 e i(ζm-ζn+kx) f (x)Ψ(x)dx, where C m ∼ X -1 2 m , C n ∼ X -1 2 n
and Ψ(x) will be clear in the subsequent introduction as shown in (3.5). We remark that the above term is a standard oscillatory integral with the phase ζ mζ n + kx, from which we can get the regularity that is the highlight of all the proof. For the proof we will split the above integral into two parts,

∞ 0 dx = ( Xn 0 + ∞ Xn )dx,
where the latter can be estimated by a straightforward computation as in [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF] and the former relative to oscillatory integrals is our key proof. To cut down the proof we delay the estimate on [X n , ∞) to Section 4. For the estimate on [0, X n ] we will discuss the zero points of the derivatives of the real-valued phase function ζ m (x)-ζ n (x)+kx on [0, X n ] and then use Lemma 4.9 to estimate the corresponding integrals.

3.1.

Preparations for the proof of Lemma 1.6. We first present the following lemma in order to obtain Lemma 1.6.

Lemma 3.2: If f (x) satisfies Assumption 1.5, then one has

+∞ 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨|k|)(λ m λ n ) μ 4 -1 4 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0,
where C only depends on μ, and m, n ≥ 1.

For the readers' convenience we present the diagram in Figure 2. More precisely, we distinguish two cases to prove Lemma 3.2, depending on whether m ∧ n < n 0 or not. Without losing the generality, we assume 1 ≤ m ≤ n in the following proof. Lemma 3.2 is a direct corollary of Lemma 3.3 and Lemma 3.4. Lemma 3.4 comes from Lemma 3.5 and Lemma 3.6. We remark that the proof of Lemma 3.6 is the highlight, among which oscillatory integrals are used. 

f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 6 , ∀ k ∈ R,
where C only depends on μ, and 1 ≤ m ≤ n, m < n 0 . Lemma 3.4: If f (x) satisfies Assumption 1.5, then one has

+∞ 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨|k|)(X m X n ) μ 2 -1 2 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

Lemma 3.5: If f (x) satisfies Assumption 1.5, then one has

+∞ Xn f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 3 , ∀ k ∈ R,
where C only depends on μ, and n 0 ≤ m ≤ n.

Lemma 3.6: If f (x) satisfies Assumption 1.5, then one has

Xn 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨|k|)(X m X n ) μ 2 -1 2 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

For simplicity, we will introduce some notation used later. Given m ≥ n 0 , define

f m (x) := e -5π 12 i Γ( 5 6 ) ∞ 0 e -t t -1 6 1 + it 2ζ m -1 6 dt. When x ∈ [0, X m ), one has ψ (m) 1 (x) = C m e i(ζm-5π 12 ) (λ m -V (x)) 1 4 Γ( 5 6 ) ∞ 0 e -t t -1 6 1 + it 2ζ m -1 6 dt = C m (λ m -V (x)) -1 4 e iζm(x) f m (x),
where

C m ∼ X -1 2 m and ψ (n) 1 (x) = C n (λ n -V (x)) -1 4 e -iζn(x) f n (x) with C n ∼ X -1 2 n . Letting Ψ(x) := (λ m -V (x)) -1 4 (λ n -V (x)) -1 4 f m (x)f n (x), (3.5) F (x) := f (x)e ikx ψ (m) 1 (x)ψ (n) 1 (x) = C m C n e i(ζm-ζn+kx) f (x)Ψ(x), (3.6) g(x) := (ζ n (x) -ζ m (x) -kx) = (λ n -V (x)) 1 2 -(λ m -V (x)) 1 2 -k, a straightforward computation infers g (x) = V (x) 2 ((λ m -V (x)) -1 2 -(λ n -V (x)) -1 2 )
and

Ψ (x) = 1 4 V (x)(λ m -V (x)) -5 4 (λ n -V (x)) -1 4 f m (x)f n (x) + 1 4 V (x)(λ m -V (x)) -1 4 (λ n -V (x)) -5 4 f m (x)f n (x) + (λ m -V (x)) -1 4 (λ n -V (x)) -1 4 (f m (x)f n (x) + f m (x)f n (x)). Clearly, |f m (x)|, |f n (x)| ≤ 1 and g (x), g (x) ≥ 0, for x ∈ [0, X m ).
In addition, we also need the following estimations as in [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF].

Lemma 3.7: Assume V (x) satisfies Assumption 1.4. There exist positive constants a 1 ≤ 1 ≤ a 2 and A 1 ≤ 1 ≤ A 2 such that the following estimates are satisfied uniformly for n ≥ n 0 :

a 1 X 2 -1 n (X n -x) ≤ λ n -V (x) ≤ a 2 X 2 -1 n (X n -x), for 0 ≤ x < X n , V (x) -λ n ≥ a 1 X 2 -1 n (x -X n ), for x ≥ X n ; A 1 X -1 2 n (X n -x) 3 2 ≤ -ζ n (x) ≤ A 2 X -1 2 n (X n -x) 3 2 , for 0 ≤ x < X n , -iζ n (x) ≥ A 1 X -1 2 n (x -X n ) 3 2 , for x ≥ X n . Furthermore, if n 0 ≤ m ≤ n, then for x ∈ [0, X m ) one has |Ψ(x)| ≤ CX -+ 1 2 m (X m -x) -1 2 , |Ψ (x)| ≤ C(J 1 + J 2 + J 3 + J 4 ) ≤ C(J 1 + J 3 ),
where we define

J 1 := x 2 -1 (λ m -V (x)) -5 4 (λ n -V (x)) -1 4 , J 2 := x 2 -1 (λ m -V (x)) -1 4 (λ n -V (x)) -5 4 , J 3 := (λ m -V (x)) 1 4 (λ n -V (x)) -1 4 X 2 -1 m (X m -x) 3 , J 4 := (λ m -V (x)) -1 4 (λ n -V (x)) 1 4 X 2 -1 n (X n -x) 3 .
3.2. Proof of Lemma 3.6. We will distinguish two cases depending on whether X n > 4X m or not; they will be presented in Lemmas 3.8 and 3.9. The proof of Lemma 3.8 is divided into Lemma 3.8.1 and Lemma 3.8.2. Compared with Lemma 3.8, the proof of Lemma 3.9 is more complex, and is divided into Lemma 3.9.1, Lemma 3.9.2 and Lemma 3.9.3.

The integral on

[0, X n ) when X n > 4X m .
In this part the inequality (3.1) implies

λ m = V (X m ) ≤ V ( 1 4 X n ) ≤ 1 4 V (X n ) = 1 4 λ n , ∀ m ≥ n 0 .
Our main aim is to prove the following lemma in this subsection.

Lemma 3.8: If f (x) satisfies Assumption 1.5 and X n > 4X m , then one has

Xn 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| 1/ ∨ 1)(X m X n ) μ 2 -1 2 , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

The proof follows by the two subsequent lemmas.

Lemma 3.8.1: If f (x) satisfies Assumption 1.5 and X n > 4X m , then one has

Xm-X -1 3 m 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| 1/ ∨ 1)(X m X n ) μ 2 -1 2 , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

Proof. We distinguish two cases, depending on whether k <

√ 2D1 8 X n or not. Case a: 0 = k < √ 2D1 8 X n . By (3.
2) and the assertion (iii) in Assumption 1.4 one has

g(x) ≥ λ n -λ m √ 2λ m + √ 2λ n -k ≥ √ 2 4 λ n -k ≥ √ 2D 1 8 X n , x ∈ [0, X m -X -1 3 m ].
Recalling equation (3.6), by Lemmas 3.7 and 4.9 one has

Xm-X -1 3 m 0 F (x)dx ≤ CX μ+ -1 2 m X -+1 2 n |Ψ(Xm-X -1 3 
m )| + Xm-X -1 3 m 0 |Ψ (x)| + x -1 |Ψ(x)|dx ≤ CX μ-2 + 1 6 m X -+1 2 n ≤ C(X m X n ) μ 2 -1 2 .
In view of (3.4) one has

Xm-X -1 3 m 0 f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 2 . Case b: k ≥ √ 2D1 8 X n . In this case X n ≤ Ck 1/ . Hölder inequality infers that Xm-X -1 3 m 0 f (x)e ikx h m (x)h n (x)dx ≤ CX μ m ≤ Ck 1/ (X m X n ) μ 2 -1 2 .
From the above results we complete the proof.

Lemma 3.8.2: If f (x) satisfies Assumption 1.5 and X n > 4X m , then one has

Xn Xm-X -1 3 m f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 2 , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

The integral on

[0, X n ) when X m ≤ X n ≤ 4X m .
Our main aim is to prove the following. Lemma 3.9: If f (x) satisfies Assumption 1.5 and X m ≤ X n ≤ 4X m , then one has

Xn 0 f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨|k|)(X m X n ) μ 2 -1 2 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

The proof follows easily from the subsequent three lemmas.

Lemma 3.9.1: If f (x) satisfies Assumption 1.5 and X m ≤ X n ≤ 4X m , then one has

X 2 3 m 0 f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 6 , ∀ k = 0,
where C only depends on μ, and n 0 ≤ m ≤ n.

Lemma 3.9.2: If f (x) satisfies Assumption 1.5 and X m ≤ X n ≤ 4X m , then one has

Xm-X 1 3 m X 2 3 m f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨ |k|)(X m X n ) μ 2 -1 2 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0,
where C only depends on μ, and

n 0 ≤ m ≤ n. Proof. If k > X 1 3 m , then X 1 3
n ≤ Ck. Hölder's inequality implies that

(3.7) Xm-X 1 3 m X 2 3 m f (x)e ikx h m (x)h n (x)dx ≤ CX μ m ≤ Ck(X m X n ) μ 2 -1 6 , ∀ k > X 1 3 m . Next let 0 = k ≤ X 1 3
m . For simplicity we denote

g(x) = (ζ n (x) -ζ m (x) -kx) = (λ n -V (x)) 1 2 -(λ m -V (x)) 1 2 -k.
By abuse of language, we also call g(x) the phase in the following figures. From a straightforward computation we have g (x) ≥ 0, which means that g(x) has at most one zero point ξ. In the following we will assume that ξ is in the chosen interval [a, b], which will be given clearly, if it does exist. We will distinguish six different cases, depending on the relative position between the intervals [a, b]

and [X 2 3 m , X m -X 1 3 m ]. (i) The case a -1 2 1 X -+ 1 3 m (λ n -λ m ) < k ≤ X 1 3
m . Clearly, in this case Lemma 3.7 implies that g(Xm-X

1 3 m ) ≤ √ a 1 kX -1 3 m 2 λ m -V (X m -X 1 3 m ) -k ≤ √ a 1 kX -1 3 m 2 √ a 1 X -1 3 m -k = - k 2
as shown in Figure 3. In view of (3.6), Lemma 4.9 leads to

(3.8) Xm-X 1 3 m X 2 3 m F (x)dx ≤ CX μ+ -1 m k |Ψ(Xm-X 1 3 m )| + Xm-X 1 3 m X 2 3 m |Ψ (x)| + x -1 |Ψ(x)|dx ≤ Ck -1 X μ-2 3 m ≤ Ck -1 (X m X n ) μ 2 -1 3 . y = g(x) x y O X 2 3 m X m -X 1 3 m -k 2 Figure 3. Phase in case (i).
(ii) The case a

-1 2 1 X -+ 1 6 m (λ n -λ m ) < k ≤ a -1 2 1 X -+ 1 3 m (λ n -λ m ). In this case let b = X m -a1 16a2 X 1 3 m . Lemma 3.7 implies that g(b) ≥ √ a 1 kX -1 3 m λ n -λ m + a1 16 X 2 -2 3 m + a1 16 X 2 -2 3 m -k ≥ kX -1 3 m X -1 3 m 2 + X -1 3 m 4 -k = k 3 , g(Xm-X 2 3 m ) ≤ √ a 1 kX -1 6 m 2 λ m -V (X m -X 2 3 m ) -k ≤ k √ a 1 X -1 6 m 2 √ a 1 X -1 6 m -k = - k 2 .
Choose a such that g(a) = -kX

-1 3 m ≥ -k 2 as shown in Figure 4. The mono- tonicity infers a ∈ (X m -X 2 3 m , b), from which follows g (a) = V (a)(g(a) + k) 2 λ n -V (a) λ m -V (a) ≥ CkX -2 3 m .
By Lemma 4.9 the above estimations on g(x) and g (x) conclude that

a X 2 3 m F (x)dx ≤ Ck -1 X μ+ -2 3 m |Ψ(a)| + a X 2 3 m |Ψ (x)| + x -1 |Ψ(x)|dx ≤ Ck -1 X μ-1 3 m , b a F (x)dx ≤ Ck -1 2 X μ+ -2 3 m |Ψ(b)| + b a |Ψ (x)| + x -1 |Ψ(x)|dx ≤ Ck -1 2 X μ-1 3 m . A straightforward computation leads to b Xm-X 1 3 m F (x)dx ≤ CX μ-1 3 m .

Collecting the last three integral estimates it follows that

Xm-X

1 3 m X 2 3 m F (x)dx ≤ C(k -1 ∨ 1)(X m X n ) μ 2 -1 6 . y = g(x) x y O b b = X m -a1 16a2 X 1 3 m k 3 a X m -X 2 3 m -k 2 X 2 3 m X m -X 1 3 m Figure 4. Phase in case (ii). (iii) The case a -1 2 1 X - m (λ n -λ m ) < k ≤ a -1 2 1 X -+ 1 6 m (λ n -λ m ). In this case let b = X m -a1 16a2 X 2 3
m and we will choose

a such that [a, b] is contained in [X 2 3 m , X m -X 1 3
m ] as shown in Figure 5. Similarly as before, Lemma 3.7 infers that g(b) ≥ k 3 and g( Xm 2 ) ≤ -k 4 . Choose a such that g(a) = -k 4 and it follows that a ∈ ( Xm 2 , b) and g (a) ≥ CkX -1 m . By Lemma 4.9 one has

a X 2 3 m F (x)dx ≤ Ck -1 X μ+ -1 m |Ψ(a)| + a X 2 3 m |Ψ (x)| + x -1 |Ψ(x)|dx ≤ Ck -1 X μ-5 6 m , b a F (x)dx ≤ Ck -1 2 X μ+ -1 2 m |Ψ(b)| + b a |Ψ (x)| + x -1 |Ψ(x)|dx ≤ Ck -1 2 X μ-1 3 m , Xm-X 1 3 m b F (x)dx ≤ CX μ+ -1 m k |Ψ(Xm-X 1 3 m )|+ Xm-X 1 3 m b |Ψ (x)|+x -1 |Ψ(x)|dx ≤ CX μ-2 3 m k .

Collecting the last three integral estimates it follows that

Xm-X 

1 3 m X 2 3 m F (x)dx ≤ C(k -1 ∨ 1)(X m X n ) μ 2 -1 6 . y = g(x) x y O b a -k 4 Xm 2 X 2 3 m X m -X 1 3 m k 3 b = X m -a1 16a2 X 2 3 m Figure 5. Phase in case (iii). (iv) The case 1 3 D -1 2 2 X - n (λ n -λ m ) < k ≤ a -1 2 1 X - m (λ n -λ m ). In this case le a = X 2μ+2 2μ+2 +1 m and b = (1 -a1 16a2 )X m . It follows that [a, b] is also contained in [X 2 3 m , X m -X
F (x)dx ≤ C k 1 2 X μ+ -μ+1 2μ+2 +1 m Ψ(b)| + b a |Ψ (x)| + x -1 |Ψ(x)|dx ≤ C k 1 2 X μ-μ+1 2μ+2 +1 m , Xm-X 1 3 m b F (x)dx ≤ CX μ+ -1 m k |Ψ(Xm-X 1 3 m )|+ Xm-X 1 3 m b |Ψ (x)|+x -1 |Ψ(x)|dx ≤ CX μ-2 3 m k . A straightforward computation leads to a X 2 3 m F (x)dx ≤ CX μ-μ+1 2μ+2 +1 m .

Collecting the last three integral estimates yields

Xm-X

1 3 m X 2 3 m F (x)dx ≤ C(k -1 ∨ 1)(X m X n ) μ 2 - μ+1 2(2μ+2 +1) . y = g(x) x y O X 2 3 m X m -X 1 3 m a b k 3 a = X 2μ+2 2μ+2 +1 m , b = (1-a1 16a2 )X m Figure 6. Phase in case (iv). (v) The case 0 < k ≤ 1 3 D -1 2 2 X - n (λ n -λ m ).
Clearly, in this case the assertion (iii) in Assumption 1.4 leads to

g(x) ≥ 3 √ D 2 kX n √ λ n + √ λ m -k ≥ k 2
as shown in Figure 7, which follows the same estimation as (3.8). (vi) The case k < 0. Clearly, in this case g(x) ≥ -k = |k| as shown in Figure 8, which follows the same estimation as (3.8). Collecting all the results of the above six different cases we conclude that Xm-X

y = g(x) x y O X 2 3 m X m -X 1 3 m k 2
1 3 m X 2 3 m f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨ 1)(X m X n ) μ 2 - μ+1 2(2μ+2 +1) , 0 = k ≤ X 1 3 m .
Combining the above estimation with (3.7) we complete the proof.

Lemma 3.9.3:

If f (x) satisfies Assumption 1.5 and X m ≤ X n ≤ 4X m , then one has Xn Xm-X 1 3 m f (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μ 2 -1 6 , ∀ k = 0,
where C only depends on μ, and

n 0 ≤ m ≤ n. y = g(x) x y O X 2 3 m X m -X 1 3 m -k Figure 8
. Phase in case (vi).

3.3. Proof of Lemmas 1.6 and 1.7.

Proof of Lemma 1.6.

Letting V (x) = V (-x), h n (x) = h n (-x) and f (x)= f (-x), one has - d 2 dx 2 + V (x) h n (x) = λ n h n (x), x ∈ R.
Clearly, V (x) satisfies Assumption 1.4, while f (x) satisfies Assumption 1.5. Lemma 3.2 implies

+∞ 0 f (y)e -iky h m (y) h n (y)dy ≤ C(|k| -1 ∨|k|)(λ m λ n ) μ 4 -1 4 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0.
The identity

+∞ 0 f (y)e i(-k)y h m (y) h n (y)dy y=-x = 0 -∞ f (x)e ikx h m (x)h n (x)dx implies that 0 -∞ f (x)e ikx h m (x)h n (x)dx ≤ C(|k| -1 ∨|k|)(λ m λ n ) μ 4 -1 4 ( 1 3 ∧ μ+1 2μ+2 +1 ) , ∀ k = 0.
By combining Lemma 3.2 with the last estimation we complete the proof.

Proof of Lemma 1.7. Similarly as above, in view of Lemmas 3.3 and 3.5 we only need to prove (3.9)

Xn 0 f (x)h m (x)h n (x)dx ≤ C(X m X n ) μ 2 , n ≥ m ≥ n 0 .
We distinguish two cases, depending on whether X n ≤ 4X m or not.

Case a: X m ≤ X n ≤ 4X m . Hölder inequality implies (3.9).

Case b: X n > 4X m . In this case we split the integral into three parts:

Xn 0 f (x)h m (x)h n (x)dx = 2Xm 0 + Xn-X -1 3 n 2Xm + Xn Xn-X -1 3 n dx. Clearly, 2Xm 0 f (x)h m (x)h n (x)dx ≤ C(X m X n ) μ 2 .
From Lemma 3.7 we have

λ n -V (X n -X -1 3 n ) ≥ a 1 X 2 -4 3 n , V (X n -X -1 3 n ) -λ m ≥ a 1 X 2 m and |ζ m (x)| ≥ A 1 2 X m x, ∀ x ≥ 2X m , from which it follows that Xn-X -1 3 n 2Xm f (x)h m (x)h n (x)dx ≤ CX -1 4 m X -1 6 n Xn-X -1 3 n 2Xm x μ-1 4 e -A 1 2 x dx ≤ C, Xn Xn-X -1 3 n f (x)h m (x)h n (x)dx ≤ CX -1 2 m X -1 4 n Xn Xn-X -1 3 n x μ e -A 1 2 x (X n -x) -1 4 dx ≤ C.
Collecting the last three integral estimations concludes (3.9).

Appendix

4.1. Some lemmas for Section 2.

Proof of Lemma 2.5 (iii). We distinguish two different cases.

Case 1: s ∈ [0, ι -β -1 2 ). For any s ∈ [0, ι -β -1 2 ), one can choose p, q ≥ 1 with 1/p + 1/q = 1 such that j |A j i |( i j ) 2s p , i |A j i |( i j ) 2s q ≤ C(β, ι, s)|A| + β
. By Hölder's inequality, we have

Aξ 2 s = i≥1 i 2s j≥1 A j i ξ j 2 ≤ i≥1 j≥1 |A j i | i j s |ξ j |j s 2 ≤ i≥1 j≥1 |A j i | i j 2s p j≥1 |A j i | i j 2s q |ξ j | 2 j 2s ≤ C(β, ι, s)|A| + β i≥1 j≥1 |A j i | i j 2s q |ξ j | 2 j 2s = C(β, ι, s)|A| + β j≥1 |ξ j | 2 j 2s i≥1 |A j i | i j 2s q ≤ (C(β, ι, s)|A| + β ) 2 ξ 2 s . It follows that A B( 2 s ) ≤ C(β, ι, s)|A| + β .
Case 2: s ∈ (-ι + β + 1 2 , 0). Define the conjugated pair (p, q) as above. For any s ∈ [0, ιβ - 1 2 ), a similar proof implies that i≥1

|A j i |( j i ) 2s p , j≥1 |A j i |( j i ) 2s q ≤ C(β, ι, s)|A| + β .
In view of Hölder's inequality the last estimation results in (iv) Let B ∈ M + β (Π + , sσ) be the solution of (2.10) and 0

Aξ 2 -s ≤ i≥1 j≥1 |A j i | j i 2s q j≥1 |A j i | j i 2s p |ξ j | 2 j -2s ≤ (C(β, ι, s)|A| + β ) 2 ξ 2 -s , from which iy follows that A B( 2 -s ) ≤ C(β, ι, s)|A| + β . Lemma 4.1: If 0 ≤ 2β < ι -1 and 0 ≤ δ < ι -β -1 2 ,
≤ 1 0 e -s1B [P, B]e s1B B( 2 0 , 2 -δ ) ds 1 ≤ 1 0 e -s1B B( 2 -δ ) [P, B] B( 2 0 , 2 -δ ) e s1B B( 2 0 ) ds 1 ≤ Ce C|B| + β [P, B] B( 2 0 , 2 -δ ) ≤ Ce C|B| + β P B( 2 0 , 2 -δ ) |B| + β . (iii) Let B ∈ M + β (Π + , s -σ)
< σ < s 2 . If B Π + ,L,+ β,s-σ 1, then e -B A -e B -A --[A -, B] Π + ,L β,s-2σ ≤ C B Π + ,L,+ β,s-σ 1 σ B Π + ,L,+ β,s-σ + P Π -,L β,s .
Proof. By (2.10) we have [A -, B] = i Ḃ + P -diag(P -). From Cauchy's estimate we get

[A -, B] β,s-2σ ≤ Ḃ β,s-2σ + 2 P - β,s ≤ C 1 σ B + β,s-σ + P - β,s , since |[[A -, B], B]| β ≤ |[A -, B]B| β + |B[A -, B]| β ≤ C|B| + β |[A -, B]| β .
From Lemma 5.4 in [START_REF] Bambusi | Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods[END_REF] we have The rest of the proof is clear by a straightforward computation and the above assertion (i).

(v) Let B ∈ M + β (Π + * , sσ) be the solution of (2.10) and 0

< σ < s 2 . If B Π + ,L,+ β,s-σ 1, then e -B A -e B -A --[A -, B] Π + ,L B( 2 0 , 2 -δ ),s-2σ ≤ C B Π + ,L,+ β,s-σ 1 σ B Π + ,L,+ β,s-σ + P -Π -,L B( 2 0 , 2 -δ ),s .
Proof. By (2.10) we have [A -, B] = i Ḃ + P -diag(P -). By Cauchy's estimate and Lemma 2.5 we get

[A -, B] B( 2 0 , 2 -δ ),s-2σ ≤ Ḃ B( 2 0 , 2 -δ ),s-2σ + 2 P - B( 2 0 , 2 -δ ),s ≤ C 1 σ B + β,s-σ + P - B( 2 0 , 2 -δ ),s . From [[A -, B], B] B( 2 0 , 2 -δ ) ≤ [A -, B]B B( 2 0 , 2 -δ ) + B[A -, B] B( 2 0 , 2 -δ ) ≤ [A -, B] B( 2 0 , 2 -δ ) B B( 2 0 ) + B B( 2 -δ ) [A -, B] B( 2 0 , 2 -δ ) ≤ C|B| + β [A -, B] B( 2 0 , 2 - 
δ ) , (4.1) and a straightforward computation, we obtain the proof.

Lemma 4.2: Let U l (φ) = e B 1 (φ) • • • e B l (φ) , l ≥ 1. Then for | | < * , one has (4.2) U l (φ) -I Π * ,L,+ β, s 2 ≤ l-1 i=0 3 2 3 i .
Proof. Combining the assertion (4) of Proposition 2.10 with Lemma 2.5, we have

e B 1 (φ) -I Π * ,L,+ β, s 2 ≤ e C B 1 Π * ,+ β, s 2 B 1 Π * ,L,+ β, s 2 ≤ 2 2 3
0 . This concludes that the above estimation (4.2) holds true for l = 1. Assume that it is true for l ≥ 1; then we consider the case for l + 1. Since l , then one obtains

U l+1 -I Π * ,L,+ β, s 2 ≤ U l -I Π * ,L,+ β, s 2 + e B l+1 -I Π * ,L,+ β, s 2 + (U l -I)(e B l+1 -I) Π * ,L,+ β, s 2 ≤ l-1 i=0 3 2 3 i + 2 2 3 l + U l -I Π * ,L,+ β, s 2 e B l+1 -I Π * ,L,+ β, s 2 ≤ l-1 i=0 3 2 3 i + 2 2 3 l + 12 2 3 0 2 3 l ≤ l i=0 3 2 3 i .
By induction we complete the proof. 

Lemma 4.3: The sequence U ∞ (φ) -I Π * ,L,+ β, s 2 ≤ 6 2 3 0 implies that U ∞ (φ) is analytic on φ ∈ T n
(U l+1 -I)-(U l -I) Π * ,L,+ β, s 2 ≤ U l -I Π * ,L,+ β, s 2 (e B l+1 -I) Π * ,L,+ β, s 2 + (e B l+1 -I) Π * ,L,+ β, s 2 ≤ 3 2 3 l . Then for l 2 > l 1 ≥ 1, one obtains (U l2 -I) -(U l1 -I) Π * ,L,+ β, s 2 = l2-1 i=l1 (U i+1 -I) -(U i -I) Π * ,L,+ β, s 2 ≤ l2-1 i=l1 (U i+1 -I) -(U i -I) Π * ,L,+ β, s 2 ≤ l2-1 i=l1 3 2 3 i ≤ 6 2 3 l1 → 0, as l 1 → ∞.
We conclude that {U l (φ) -I} is a Cauchy sequence. The rest is clear.

Lemma 4.4: The sequence {U

l A l } is a Cauchy one in B( 2 0 , 2 -ι )(Π * , s 2 ).
Proof. We first state that for any (ω, φ) ∈ Π * × T n s 2

, one has that U l A l (ω, φ) belongs to B( 2 0 , 2 -ι ) and fulfills

||U l A l || Π * ,L B( 2 0 , 2 -ι ), s 2 ≤ C l-1 i=0 (1 + 1 2 i ) + l-1 i=0 1 2 i , ∀ l ≥ 1.
From the construction, one has for l ≥ 0

A l+1 = A l + diag(P l ), [A l , B l+1 ] -i Ḃl+1 + P l -diag(P l ) = 0, e B l+1 A l e -B l+1 -A l = [B l+1 , A l ]+ 1 0 ds 1 s1 0 e s2B l+1 [B l+1 , [B l+1 , A l ]]e -s2B l+1 ds 2 := P l .
Let U 0 = I. Then one obtains that P l ∈ B( 2 0 , 2 -δ ) and (4.3)

U l+1 A l+1 = U l e B l+1 (A l + diag(P l )) = U l A l e B l+1 + U l P l e B l+1 + U l+1 diag(P l ).
Clearly,

U 1 = A 0 e B 1 + P 0 e B 1 + e B 1 diag(P 0 ).
Note from Lemma 2.1(iii) and Proposition 2.8 that one has

U 1 A 1 (ω, φ) belongs to B( 2 0 , 2 -ι ), which fulfills U 1 A 1 Π * ,L B( 2 0 , 2 -ι ), s 2 ≤ A 0 e B 1 Π * ,L B( 2 0 , 2 -ι ), s 2 + P 0 e B 1 Π * ,L B( 2 0 , 2 -ι ), s 2 + e B 1 diag(P 0 ) Π * ,L B( 2 0 , 2 -ι ), s 2 ≤ A 0 B( 2 0 , 2 -ι ) e B 1 Π * ,L B( 2 0 ), s 2 + P 0 e B 1 Π * ,L B( 2 0 , 2 -δ ), s 2 + e B 1 diag(P 0 ) Π * ,L B( 2 0 , 2 -δ ), s 2 ≤C(1 + 1 2 0 ) + 1 2 0 .
By induction we complete the proof of the statement.

Next we will prove the convergence. From the statement and Proposition 2.8, we have

U l+1 A l+1 -U l A l Π * ,L B( 2 0 , 2 -ι ), s 2 ≤ U l A l Π * ,L B( 2 0 , 2 -ι ), s 2 e B l+1 -I Π * ,L B( 2 0 ), s 2 + U l Π * ,L B( 2 -δ ), s 2 P l Π * ,L B( 2 0 , 2 -δ ), s 2 e B l+1 Π * ,L B( 2 0 ), s 2 + U l+1 Π * ,L B( 2 -δ ), s 2 diag(P l ) Π * ,L B( 2 0 , 2 -δ ), s 2 ≤C 2 3 l + 4C 2 3 l + 2 l ≤ 6C 2 3 l → 0, as l → ∞. It follows that {U l A l } is a Cauchy sequence in B( 2 0 , 2 -ι )(Π * , s 2 ).
4.2. Some lemmas for Section 3.

Proof of Lemma 3.1. The proof is almost from [START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF] (see [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF]Lemma 2.1]). As in [START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF] we set η(x) = (λ -V (x))

1 4 h(x) and ζ(x) = x X (λ -V (t)) 1 2 dt, where arg ζ(x) = ⎧ ⎨ ⎩ π 2 , x > X, -π, x < X. Then equation (3.3) is transformed into d 2 η dζ 2 +η+ V (x)
4(λ-V (x)) 2 + 5V (x) 2 16(λ-V (x)) 3 η = 0 and it can be rewritten as

d 2 η dζ 2 + 1 + 5 36ζ 2 η = f (x)η, (4.4) where f (x) = 5 36ζ 2 - V (x) 4(λ -V (x)) 2 - 5V (x) 2 16(λ -V (x)) 3 .
As we know, the Bessel equation

d 2 G dζ 2 +(1+ 5 36ζ 
2 )G = 0 has two linearly independent solutions ( πζ 2 )

1 2 J 1 3 (ζ) and ( πζ 2 ) 1 2 H (1) 1 3 
(ζ), where J ν (x) and H

(1) ν (x) are the first kind Bessel function and one of the third kind Bessel function, respectively. By the property of Bessel functions that x(J ν (x)H

(1) (1)

ν (x) -J ν (x)H (1) ν (x)) = 2i π , then (4.4) is formally equivalent to the integral equation η = πζ 2 1 2 H (1) 1 
3 (ζ) + πi 2 ∞ x (H (1) 1 
3 (ζ)J 1 3 (θ) -J 1 3 (ζ)H (1) 1 
3 (θ))ζ 1 2 θ 1 2 f (t)(λ -V (t))
1 3 (ζ), β(x) = e iζ πζ 2 1 2 J 1 3 (ζ), χ(x) = e -iζ η(x), then χ(x) = α(x) + i ∞ x (α(x)β(t) -e 2i(θ-ζ) β(x)α(t))f (t)(λ -V (t)) 1 2 χ(t)dt.
From [START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF], α(x) and β(x) are bounded, and Im(θ-ζ) = Im( t x (λ-q(s))

1 2 ds) ≥ 0 together with Lemmas 4.7 and 4.6enables us to prove that the iteration converges. In fact, if we denote

∞ 0 |f (t)||λ -V (t)| 1 2 dt = M 0 = O 1 Xλ 1 2 , and |α(x)β(t) -e 2i(θ-ζ) β(x)α(t)| ≤ M uniformly, then |χ 0 (x)| = |α(x)| ≤ C, |χ 1 (x) -χ 0 (x)| ≤ CM M 0 , and generally, if |χ n (x) -χ n-1 (x)| ≤ CM n M n 0 , then |χ n+1 (x) -χ n (x)| = ∞ x (α(x)β(t) -e 2i(θ-ζ) β(x)α(t))f (t)(λ -V (t)) 1 2 (χ n (t) -χ n-1 (t))dt ≤ CM n+1 M n 0 ∞ x f (t)(λ -V (t)) 1 2 dt ≤ CM n+1 M n+1 0 .
Thus,

|χ n (x)| ≤ |χ 0 (x)| + |χ 1 (x) -χ 0 (x)| + • • • + |χ n (x) -χ n-1 (x)| ≤ C(1 + M M 0 + • • • + M n M n 0 ) ≤ C 1 -M M 0 . If n ≥ n 0 , then X n ≥ R and X n ∼ λ 1 2
n . Thus, choose n ≥ n * ≥ n 0 large enough such that M M 0 < 1, and by the theorem of dominated convergence,

when n → ∞, χ n (x) → χ(x) = α(x) + O( 1 Xλ 1 2
) uniformly w.r.t. x, which means that χ(x) is bounded.

Next we show that (4.5)

χ(x) = α(x) 1 + O 1 Xλ 1 2 .
In fact, similar to Lemma 4.8, if ζ(x) < -c 0 or iζ(x) < -c 0 , where c 0 are two arbitrary positive constants, then we can prove that |α(x)| > C and (4.5) holds, while for 0

< |ζ(x)| ≤ c 0 we have |β(x)| ≤ C|α(x)|. Thus, |χ(x) -α(x)| = ∞ x (α(x)β(t) -e 2i(θ-ζ) β(x)α(t))f (t)(λ -V (t)) 1 2 χ(t)dt ≤ C|α(x)| Xλ 1 2
.

From the above proof with λ > c * > 0 large enough such that

(4.6) M ∞ 0 |f (t)||λ -V (t)| 1 2 dt ≤ CM Xλ 1 2 < C 1 λ 1 2 + 1 2 < 1,
the solution of (3.3) can be written as

h(x) = (λ -V (x)) -1 4 πζ 2 1 2 H (1) 1 
3 (ζ) 1 + O 1 Xλ 1 2 . It follows that h n (x) = (λ n -V (x)) -1 4 πζ n 2 1 2 H (1) 1 
3 (ζ n ) 1 + O 1 X n λ 1 2 n
with n ≥ n 0 large enough. Note that C n h n (x) is also the solution of (3.3).

Titchmarsh ([37, 38]) has proved that C n ∼X -1 2 n and thus we finish the proof.

Remark 4.5: For (4.6) we let R be large enough. Then n ≥ n 0 implies

λ n ≥ λ n0 ≥ V (R) ≥ c * > 0.
Proof of Lemma 3.3. We distinguish two cases, depending on X 1 3

n < 2X n0 or not.

Case a: X 1 3

n < 2X n0 . In this case n is finite. Hölder's inequality implies that n ≥ 2X n0 . By Lemmas 3.1 and 3.7 one has

X 1 3 n 0 f (x)e ikx h m (x)h n (x)dx ≤ CX -1 2 + μ 3 n X 1 3 n 0 (λ n -V (x)) -1 4 dx ≤ C(X m X n ) μ 2 -1 6 .
Similarly, we have V (x)λ m ≥ C 0 and |ζ m (x)| ≥ C 0 x for x ≥ X For the latter, Lemma 3.7 implies that

V (x) -λ n ≥ a 1 X 2 -1 n (x -X n ) and |ζ n (x)| ≥ A 1 X -2 3 n (x -X n ) ≥ A 1 X -1 n ,
from which it follows that

∞ Xn+X -1 3 n F (x)dx ≤ Ce -A 1 2 X -1 n X -1 2 n ∞ Xn+X -1 3 n x μ (x -X n ) -1 2 e -A 1 2 (x-Xn) dx ≤ Ce -A 1 4 X -1 n .
For the former we will distinguish two cases as follows.

Case a: X m ≤ X n < 2X m . In this case m ∼ n; collecting Lemmas 3.1 and 3.7 we conclude that

Xn+X -1 3 n Xn F (x)dx ≤ CX μ-1 2 n Xn+X -1 3 n Xn (x -X n ) -1 2 dx ≤ CX μ-2 3 n ≤ C(X m X n ) μ 2 -1 3 .
Case b: X n ≥ 2X m . Lemma 3.7 implies that

V (x) -λ m ≥ a 1 X 2 m and |ζ m (x)| ≥ A 1 2 x.

It follows that

Xn+X

-1 3 n Xn F (x)dx ≤ CX -1 2 m X -1 4 n Xn+X -1 3 n Xn (x -X n ) -1 4 dx ≤ C(X m X n ) μ 2 -1 2 .
Collecting all the above estimations and (3.4) yields the results.

Proof of Lemma 3.8.2. First consider the following integral which is divided into four parts: In view of X n > 4X m , Lemma 3.7 implies that

λ n -V ( Xn 2 ) ≥ a 1 2 X 2 n , V (X n -X -1 3 n ) -λ m ≥ a 1 X 2 m and |ζ m (x)| ≥ A 1 X -2 3 m (x -X m ) ≥ A 1 X -1 m for x ≥ X m + X -1 3 m . It follows that Xm+X -1 3 m Xm-X -1 3 m F (x)dx ≤ CX μ-1 4 m X -1 2 n Xm+X -1 3 m Xm-X -1 3 m |x -X m | -1 4 dx ≤ C(X m X n ) μ 2 -1 2 , Xn 2 Xm+X -1 3 m F (x)dx ≤ CX -1 2 n Xn 2 Xm+X -1 3 m x μ (x -X m ) -1 4 e -A1X -2 3 m (x-Xm) dx ≤ C(X m X n ) μ 2 -1 2 , Xn-X -1 3 n Xn 2 F (x)dx ≤ Ce -A 1 8 Xn Xn-X -1 3 n Xn 2 x μ-1 4 e -A 1 4 x dx ≤ C(X m X n ) μ 2 -1 2 , Xn Xn-X -1 3 n F (x)dx ≤ CX -1 2 m X -1 4 n Xn Xn-X -1 3 n (X n -x) -1 4 dx ≤ C(X m X n ) μ 2 -1 2 .
Collecting the last estimations and (3.4) yields the results.

Proof of Lemma 3.9.1. From (3.6) and Lemma 3.7 we have

X 2 3 m 0 F (x)dx ≤ CX 2μ 3 + -1 m X 2 3 m 0 (λ m -V (x)) -1 2 dx ≤ C(X m X n ) μ 2 -1 6 .
In view of (3.4) a straightforward computation leads to the results.

Proof of Lemma 3.9.3. Lemmas 3.1 and 3.7 imply Xm Xm-X

1 3 m F (x)dx ≤ CX μ-1 2 m Xm Xm-X 1 3 m (X m -x) -1 2 dx ≤ C(X m X n ) μ 2 -1 6 .
For the remainder integral, we will distinguish two cases as follows.

Case a: X n -X 

n -V (X m + X -1 3 m ) ≥ λ n -V (X n -X -1 3 n ) ≥ a 1 X 2 -4 3 n , V (X n -X -1 3 n ) -λ m ≥ a 1 X 2 -4 3 m and |ζ m (x)| ≥ A 1 X -2 3 m (x -X m ) for x ≥ X m + X -1 3 m . It follows that Xm+X -1 3 m Xm F (x)dx ≤ CX μ-1 4 m X -1 6 n Xm+X -1 3 m Xm (x -X m ) -1 4 dx ≤ C(X m X n ) μ 2 -1 3 , Xn-X -1 3 n Xm+X -1 3 m F (x)dx ≤ CX μ-1 4 m X -1 6 n Xn-X -1 3 n Xm+X -1 3 m (x -X m ) -1 4 e -A1(x-Xm) dx ≤ C(X m X n ) μ 2 -1 6 , Xn Xn-X -1 3 n F (x)dx ≤ CX μ-1 6 m X -1 4 n Xn Xn-X -1 3 n (X n -x) -1 4 dx ≤ C(X m X n ) μ 2 -1 3 .
Collecting all the integral estimations yields that Xn Xm-X

1 3 m F (x)dx ≤ C(X m X n ) μ 2 -1 6 .
In view of (3.4) a straightforward computation leads to the results. (z) satisfies the following:

πz 2 H (1) 1 3 
(z) ≤ 1, z ∈ (-∞, -c 1 ), πz 2 H

(1) 
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  be the solution of(2.10) and 0 < σ < s 2 . If B Π + ,L+ ,L,+ β,s-σ ) 2 .Proof. Since e -B d dt e B -Ḃ = (e -B -I) d dt (e B -I) + d dt (e B -B -I), the rest of the proof is clear by Cauchy's estimate and Lemma 2.5.

(4. 1 )e

 1 e -B A -e B -A --[A -, B] -s2B [[A -, B], B]e s2B ds 2 .

U

  l+1 -I = U l e B l+1 -I = U l -I + e B l+1 -I + (U l -I)(e B l+1 -I), and e B l+1 -I Π * ,L,+

s 2 and

 2 Lipschitz continuous on ω ∈ Π * . Proof. Since (U l+1 -I)-(U l -I) = U l+1 -U l = U l (e B l+1 -I) = (U l -I)(e B l+1 -I)+e B l+1 -I, in view of Lemma 4.2 one has

1 2 η

 2 (t)dt, where we write ζ = ζ(x) and θ = ζ(t) for convenience. Set α(x) = e -iζ πζ 2 1 2 H

2Xn 0 0 f 2 -1 6 .

 026 (x)e ikx h m (x)h n (x)dx ≤ C(X m X n ) μIn view of m < n 0 , there exists a C 0 > 0 such that V (x)λ m ≥ C 0 and |ζ m (x)| ≥ C 0 x for x ≥ 2X n0 . From Lemmas 3.1 and 3.7 we obtain+∞ 2Xn 0 f (x)e ikx h m (x)h n (x)dx ≤ C ∞ 2Xn 0 x μ (V (x)λ m ) -1 4 e -|ζm(x)| dx ≤ C(X m X n )

f 2 ≤

 2 (x)e ikx h m (x)h n (x)dx ≤ C ∞ X 1 3 n x 2μ |h m (x)| 2 dx 1 Ce -C 0 2 X 1 3 n .All the above estimations imply the results.Proof of Lemma 3.5. First consider the following integral:

-1 3 n≤ X m + X - 1 3m 1 3 n + X - 1 3m 2 -1 4 . 1 3 n> X m + X - 1 3m

 311124131 . In this case X n -X m ≤ X -≤ C, from which it follows that Xn Xm F (x)dx ≤ CX μ-1 2 m Xn Xm (x -X m ) -1 4 (X nx) -1 4 dx ≤ C(X m X n ) μ Case b: X n -X -.In this case we split the integral into three parts as follows:

  λ

Lemma 4 . 6 ( 1 2 dx = O 1 1 2

 46111 See[START_REF] Titchmarsh | Eigenfunction Expansions Associated With Second-Order Differential Equations[END_REF] Lemma 22.27 (i)]): ∞ 0 |f (x)||λ -V (x)| Xλ as λ → ∞.

Lemma 4 . 7 (,

 47 See Lemma[38, 22.27 (ii)]): For fixed λ, one has∞ x |f (t)(λ -V (t)) ∀ x > 2X,where C is independent of x and λ. Lemma 4.8 (See [26, Lemma 5.4]): The Bessel function of the third kind H

1 3 (

 13 z) ≤ e -|z| , z ∈ (c 4 , ∞)i,where c 1 > 0, c 2 ∈ (0, 1], c 3 , c 4 can be arbitrary positive numbers and C is a positive constant.

Lemma 4 . 9 (

 49 See [36, Chap. VIII: Sect. 1.2]): Suppose φ is real-valued and smooth in (a, b), ψ is complex-valued, and |φ (k) (x)| ≥ 1 for all x ∈ (a, b). Then b a e iλφ(x) ψ(x)dx ≤ c k λ -1/k |ψ(b)| + b a |ψ (x)|dx holds when: (i) k ≥ 2, or (ii) k = 1 and φ (x) is monotonic, where c k is independent of φ, ψ, λ.

  Proof. Since e -B P e B -P = (e -B -I)P (e B -I)+(e -B -I)P +P (e B -I), the rest of the proof is clear by a straightforward computation and Lemma 2.5.

	(ii) If B ∈ M + β and P ∈ B( 2 0 , 2 -δ ), then e -B P e B belongs to B( 2 0 , 2 -δ ) and
	e -B P e B -P B( 2 0 , 2 -δ ) ≤ Ce C|B| + β P B( 2 0 , 2 -δ ) |B| + β .
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