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On the One-Dimensional Transition State Theory and the
Relation between Statistical and Deterministic Oscillation
Frequencies of Anharmonic Energy Wells

Stefano Giordano,* Fabrizio Cleri, and Ralf Blossey

The transition state theory allows the development of approximated models
useful to study the non-equilibrium evolution of systems undergoing
transformations between two states (e.g., chemical reactions). In a simplified
1D setting, the characteristic rate constants are typically written in terms of a
temperature-dependent characteristic oscillation frequency 𝝂s, describing the
exploration of the phase space. As a particular case, this statistical oscillation
frequency 𝝂s can be defined for an arbitrary convex potential energy well. This
value is compared here with the deterministic oscillation frequency 𝝂d of the
corresponding anharmonic oscillator. It is proved that there is a universal
relationship between statistical and deterministic frequencies, which is the
same for classical and relativistic mechanics. The independence of this
relationship from the adopted physical laws gives it an interesting
thermodynamic and pedagogical meaning. Several examples clarify the
meaning of this relationship from both physical and mathematical viewpoints.

1. Introduction

The dynamics of a thermodynamic system and the rate theories
that describe its behavior are essential to understanding many
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natural and engineered systems, such as
chemical reactions, biological processes,
combustion processes, and energy con-
version devices.[1–9] For instance, many
different rate theories have been devel-
oped to describe how the rate of a chem-
ical reaction depends on the properties
of the reactants, such as their concen-
trations, temperature, pressure, and so
on.[10, 11] In these schemes, an ideal sur-
face is introduced in phase space to sep-
arate the space into reactant and product
regions, and trajectories passing through
this surface generate products from re-
actants. Statistical analysis makes it pos-
sible to study these transitions, allow-
ing the efficiency of transformation pro-
cesses to be quantified. In addition to the
mentioned theoretical developments, im-
portant numerical applications have been

carried out, including molecular dynamics and rare event
simulations.[12] Moreover, transport theories are used to describe
how the rate of heat or mass transfer depends on the properties
of the system and the surrounding environment and how heat
and mass transfer is coupled to chemical reactions.[13,14] In the
physics and mechanics of solids, rate processes are important
in the study of thermally activated creep or dislocations in
crystals.[15] Interestingly, rate theories have also been general-
ized to consider relativistic effects and, in particular, the effects
of time dilation in chemical kinetics and the coupling effect
between electronic states with different spin multiplicities.[16–18]

Interestingly, such effects seem to be observable at the macro-
scopic scale.[16–18] For this reason, we adopt both classical and
relativistic equations of motion in this work.
More in general, nowadays, statistical mechanics, thermody-

namics, and rate theories play a crucial role in the description
of several nanosystems and nanophysical phenomena, in-
cluding folding and unfolding of two-state chains and macro-
molecules;[19–23] molecular motors;[24,25] muscle behavior;[26,27]

adhesion, cohesion, and fracture processes;[28–31] friction and
nanofriction;[32–35] micro- and nano-heat engines;[36–38] micro-
magnetism and spintronics;[39–43] as well as heat transfer in
nanostructures,[44–46] just to name a few. The most widely used
methodologies adopted to study these systems are based on the
Langevin and Fokker–Planck equations.[47–53] For instance, we
remember that the Kramers’ classical solution to the Fokker–
Planck equation for a bistable system[4] is the basis of most rate
theories.[6]
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Figure 1. Example of bistable potential energy separating two regions A
and B of the phase space.

One of the main ingredients of the transition rate theory is the
frequency of transition between the two states A and B, calculated
under thermodynamic equilibrium conditions. We denote it by
𝜈ABs and it can be determined with Equation (10) discussed be-
low, for a simple 1D case. It represents the number of transitions
per second from state A to state B, induced simply by thermal
fluctuations at thermodynamic equilibrium. It is the basic build-
ing block for determining the rate constants that appear in the
rate equations, which are the fundamental outcome of transition
rate theory. Although approximate, these equations are able to de-
scribe, at least qualitatively, the behavior of most of the systems
mentioned above,[6–9] in a regime out of equilibrium. The con-
cept of transition frequency can be applied to the classical case
of two energy wells separated by a barrier (as in Figure 1), and
it provides the foundation for the classical results of the tran-
sition state theory (TST).[54] In principle, the relationship that
gives the statistical frequency is valid for any form of the po-
tential energy of the system. Hence, it can also be applied to
the simpler case of a single convex, generally anharmonic en-
ergy well (as in Figure 2). For this case, we denote the statisti-
cal frequency by 𝜈s, to distinguish it from the case with bistable
energy. Although the convex case is less interesting for applica-
tions related to TST, it is important from a theoretical point of
view because it allows to define a statistical, that is, thermally
induced, oscillation frequency for an anharmonic oscillator. It
is therefore of interest to compare the two types of frequencies
associated with the anharmonic oscillator: statistical frequency
and deterministic frequency. Moreover, this comparison can be
drawn by a simple analytical procedure that emphasizes the phys-
ical interpretation, as discussed in the following sections of the
paper. The statistical frequency refers to the frequency of oscil-
lations when the oscillator is subjected to thermal fluctuation (at
a temperature T). The statistical frequency 𝜈s(T) is a probabilis-
tic quantity, and its determination requires the use of statistical
methods, as described below. We use the Gibbs–Boltzmann dis-
tribution for the classical case and the Maxwell–Jüttner distribu-
tion for the relativistic case. On the other hand, the determin-

Figure 2. Example of potential energy well studied to compare the statis-
tical and deterministic oscillation frequencies.

istic frequency is obtained by solving the (classical or relativis-
tic) equations of motion that describe the behavior of the (non-
linear) oscillator. The deterministic frequency is a deterministic
quantity 𝜈d(E), and it can be calculated analytically (or numeri-
cally) as a function of the initial energy E. We prove that the two
analytic expressions for statistical and deterministic frequencies,
although they appear completely different, are related by a sim-
ple mathematical relationship, expressed through the Carson–
Laplace transform. This relation turns out to be valid for every
anharmonic oscillator and takes the same form for both clas-
sical and relativistic behavior. From the physical point of view,
this result affirms that the statistical period of oscillation (at tem-
perature T) is obtained by averaging the deterministic period

(at energy E) through the density probability 𝜌(E) = 1
kBT

e
− E

kBT 1(E)

(being 1(x) the Heaviside step function). This means that each
deterministic period 1∕𝜈d(E), associated with the initial energy

E, is weighted with the Boltzmann factor 1
kBT

e
− E

kBT in order to

find the statistical period 1∕𝜈s(T), induced by thermal fluctua-
tions. Although this interpretation may seem obvious a priori, its
mathematical demonstration allows for a deeper understanding
of the frequency 𝜈s used in TST. This result is not only method-
ologically and pedagogically stimulating, but its independence
from the adopted physical laws (classical or relativistic) gives it
an interesting thermodynamic meaning. We discuss several ex-
amples by clarifying the physical andmathematical aspects of the
subject matter.
The paper is organized as follows: In Section 2, we introduce

a brief outline of the 1D TST, where we define the frequency 𝜈ABs .
In Section 3, we discuss the oscillation frequency for a classical
anharmonic oscillator: We derive the statistical and determinis-
tic frequencies 𝜈s and 𝜈d, their relationship, and some examples.
Then, in Section 4, we perform the same analysis for the rela-
tivistic anharmonic oscillator, and we prove that the relationship
between statistical and deterministic frequency is invariant with
respect to the physical laws adopted.
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2. Brief Outline of the 1D TST

The TST is amethod to obtain the rates of physical–chemical pro-
cesses such as chemical reactions, phase transformations, and so
forth.[1–3,5,7–9,54] It is based on some approximations, which are
described in the following discussion. For the sake of simplicity,
we briefly introduce here this technique for 1D geometry. Multi-
dimensional extensions are straightforward and can be found in
the literature. We consider a 1D potential energyΦ(x), where x is
the so-called reaction coordinate.We separate the configurational
space in region A with x < x0, and region B with x > x0. We con-
sider the density probability w(x, v, t) describing the 1Dmotion of
a particle within the potential energy Φ(x), where x and v repre-
sent position and velocity, respectively. It means thatw(x, v, t)dxdv
is the probability of finding the particle in the interval (x, x + dx)
with a velocity within (v, v + dv) at time t. To develop the cross-
ing statistics more easily, let us consider a population of N inde-
pendent (non-interacting) particles described by the same density
w(x, v, t). This facilitates the following counting. We observe that
if dN particles pass through x0 in the time interval (t, t + dt) and
with velocity within (v, v + dv) (v > 0), then they were dispersed at
time t in the space interval (x0 − dx, x0), where dx = vdt. It means
that dN = Nw(x0, v, t)dxdv = Nvw(x0, v, t)dvdt (if we want to refor-
mulate this reasoningwith a single particle, we need only observe
that dN∕N is the fraction of particle passing through x0). If we in-
tegrate over all the positive velocities, we get the rate of particles
crossing x0 at time t from left to right(
dPB(t)
dt

)
A→B

=
(
1
N
dN
dt

)
A→B

= ∫
+∞

0
vw

(
x−0 , v, t

)
dv (1)

Here, PB is the probability to be in the region B of the real axis.
Of course, we can prove a similar relation that gives the rate of
particles crossing x0 at time t from right to left

(
dPB(t)
dt

)
B→A

=
(
1
N
dN
dt

)
B→A

= ∫
0

−∞
vw

(
x+0 , v, t

)
dv (2)

In Equations (1) and (2), we have indicated x−0 (from the left) and
x+0 (from the right) so that the formulas are exact even with any
density discontinuities. Summing the two contributions, we ob-
tain the time variation of the probability PB

dPB(t)
dt

=
(
dPB(t)
dt

)
B→A

+
(
dPB(t)
dt

)
A→B

(3)

We discussed here the evolution of PB(t) but we can similarly ob-
tain the evolution of PA(t) through the relation PB(t) = 1 − PA(t).
It is interesting to see what happens when we are at thermody-

namic equilibrium. The equilibrium density probability is given
by the following canonical (or Gibbs–Boltzmann) distribution

weq(x, v) =
1
eq

exp
{
− 1
kBT

[1
2
mv2 + Φ(x)

]}
(4)

Here,m is themass of the particle, T is the absolute temperature,
and kB is the Boltzmann constant. The quantity eq represents

the partition function and can be explicitly written as follows:

eq = ∫
+∞

−∞ ∫
+∞

−∞
exp

{
− 1
kBT

[1
2
mv2 + Φ(x)

]}
dxdv

=
√

2𝜋kBT
m ∫

+∞

−∞
exp

[
−
Φ(x)
kBT

]
dx (5)

Then, at equilibrium, from Equations (1) and (2), we have the
results(
dPB(t)
dt

)eq

A→B

= ∫
+∞

0
vweq

(
x0, v

)
dv (6)

=
kBT exp

[
−Φ(x0)

kBT

]
meq

=
√

kBT
2𝜋m

exp
[
−Φ(x0)

kBT

]
∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

and(
dPB(t)
dt

)eq

B→A

= ∫
0

−∞
vweq

(
x0, v

)
dv (7)

= −
kBT exp

[
−Φ(x0)

kBT

]
meq

= −
√

kBT
2𝜋m

exp
[
−Φ(x0)

kBT

]
∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

Hence, we obtain, dPB(t)∕dt = 0, whichmeans that PA and PB are
constant at equilibrium and assume indeed the values

PA,eq =
∫ 0
−∞ exp

[
−Φ(x)

kBT

]
dx

∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

(8)

PB,eq =
∫ +∞
0 exp

[
−Φ(x)

kBT

]
dx

∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

(9)

Moreover, we observe from Equations (6) and (7) that(
dPB(t)
dt

)eq

A→B

= −
(
dPB(t)
dt

)eq

B→A

= 𝜈ABs (10)

where 𝜈ABs is defined as the thermally induced (or statistical)
oscillation frequency between the two states A and B at equi-
librium. It represents the number of times per second a single
particle passes through x0 from left to right. The result is valid for
any shape of the energetic landscape Φ(x). Although the motion
is not periodic because it is generated by thermal fluctuations,
we still name this value frequency (or statistical frequency). This
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frequency 𝜈ABs will be further studied in the following. All results
obtained up to this point are free of approximations.
Within the TST, the system is considered out-of-equilibrium

and its evolution is studied under the following approximation.
The probability density is not the one we have already seen at
equilibrium but rather the following

wTST (x, v, t) =
PB(t)
PB, eq

weq(x, v), x > x0 (11)

wTST (x, v, t) =
PA(t)
PA, eq

weq(x, v), x < x0 (12)

which represents a sort of local equilibrium distribution, pro-
portional to the equilibrium distribution weq(x, v) by means of
weights representing the normalized probabilities of being in
the two states (it shows a discontinuity for x = x0).

[54] It is not
difficult to prove that this function fulfills the correct normal-
ization ∫ +∞

−∞ ∫ +∞
−∞ wTST (x, v, t)dxdv = PA(t) + PB(t) = 1. The choice

made in Equations (11) and (12) evidently represents an approx-
imation to introduce a simple, out of equilibrium behavior of
the system described by compact expressions written in closed
form.[54] We reiterate that these are not the exact solutions of
the problem but only a particular working assumption, useful for
the following developments of the TST. It is easy to realize that
this approximation is more true when the two energy wells cor-
responding to states A and B are strongly populated and thus the
two wells can be imagined as unlimited reservoirs of particles.
Of course, this may be true at the beginning of the process but
turns out to be a strong approximation when one of the two wells
tends to empty due to the dynamics of the system. Anyway, by
using this approximation in Equations (1) and (2), we obtain(
dPB(t)
dt

)TST

A→B

= ∫
+∞

0
v
PA(t)
PA, eq

weq(x0, v)dv =
PA(t)
PA, eq

𝜈ABs (13)

and(
dPB(t)
dt

)TST

B→A

= ∫
0

−∞
v
PB(t)
PB, eq

weq

(
x0, v

)
dv = −

PB(t)
PB, eq

𝜈ABs (14)

where 𝜈ABs is the equilibrium frequency between the two states A
and B, as defined previously. We see here that the value of this
frequency is crucial to define the main elements of the TST. In-
tuitively, this frequency is important in this context because it
measures the probability of moving from one state to another,
and thus overcoming the energy barrier, due to thermal fluctua-
tions alone. By summing the two last expressions, we get the rate
equations

d
dt
PA(t) = KABPB(t) − KBAPA(t) (15)

d
dt
PB(t) = KBAPA(t) − KABPB(t) (16)

where KBA = 𝜈ABs ∕PA,eq and KAB = 𝜈ABs ∕PB,eq are the so-called
rate constants (see, e.g., Equation (19) in ref. [12], or Equa-

tion (4.16) in ref. [54]). More explicitly, we can write these rate
constants as

KBA =
√

kBT
2𝜋m

exp
[
−Φ(x0)

kBT

]
∫ 0
−∞ exp

[
−Φ(x)

kBT

]
dx

(17)

KAB =
√

kBT
2𝜋m

exp
[
−Φ(x0)

kBT

]
∫ +∞
0 exp

[
−Φ(x)

kBT

]
dx

(18)

The rate equations stated in Equations (15) and (16) with rate con-
stants given in Equations (17) and (18) are strongly approximated
since they are based on the assumption of the local equilibrium
within the two regionsA andB, introduced through the transition
state density in Equations (11) and (12). However, they are largely
used to study the dynamics of complex systems and sometimes
give reasonable results (see, e.g., ref. [55]).
A classical example concerns a bistable potential energy, as

shown in Figure 1. We can see a barrier at the point (x0,Φ0 =
Φ(x0)), which separates the two potential wells with minima at
(xA,ΦA = Φ(xA)) and (xB,ΦB = Φ(xB)). We can approximate the
shape of the potential energy with a quadratic function near the
two minima. It means that Φ(x) ≃ ΦP + (1∕2)hP(x − xP)

2 with
= A, B. The integrals in the denominators of Equations (17) and
(18) can be approximated by extending the integral to the whole
real axis and we get

KBA = 1
2𝜋

√
hA
m

exp
[
−
Φ0 − ΦA

kBT

]
(19)

KAB = 1
2𝜋

√
hB
m

exp
[
−
Φ0 − ΦB

kBT

]
(20)

Interestingly, we observe in the rate constants the familiar Ar-
rhenius activation energiesΦ0 − ΦA andΦ0 − ΦB,

[56] and the fre-

quency prefactors 1
2𝜋

√
hA
m
and 1

2𝜋

√
hB
m
. In general, these prefac-

tors are approximated and are correct only if each region can be
considered as an unlimited reservoir of particles at equilibrium.
More refined forms for the prefactors can be obtained through
the Kramers’ theory or more advanced approaches,[4,6,57] which
are outside the scope of this work. Although the TST is used in
systems characterized by at least one energy barrier separating
two regions, the characteristic frequency 𝜈ABs defined above re-
mains valid for an arbitrary form of potential energy. In particu-
lar, if the potential energy is arbitrary but convex, the statistical
frequency describe the behavior of an anharmonic oscillator at
temperature T , as discussed in the next section. Studying more
thoroughly the problem with a single energy well is indeed cer-
tainly easier and can provide a broader understanding of the re-
lationship between deterministic and stochastic phenomena in
statistical mechanics. To be precise, we used the symbol 𝜈ABs to
denote the statistical frequency describing the transitions at equi-
librium between the A and B states of a bistable potential, as in
Figure 1, and we will use the symbol 𝜈s to indicate the statistical
frequency induced by thermal fluctuations in a convex potential
energy, as in Figure 2.
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3. Oscillation Frequency of a Classical Anharmonic
Oscillator

We compare here the statistical frequency 𝜈s of an anharmonic
oscillator, as introduced in the previous section through the TST,
with the deterministic frequency 𝜈d of the same oscillator with-
out thermal fluctuations. We determine a universal relationship
between these two quantities which is based on purely thermo-
dynamic grounds.

3.1. Statistical Oscillation Frequency

Let us try to give a deeper interpretation to the expression which
gives the characteristic frequency 𝜈s of the TST. To fix ideas, we
now consider a system at thermodynamic equilibrium composed
of a single particle. It is described by an energy potential wellΦ(x)
as shown in Figure 2, withΦ(0) = 0. If we fix x0 = 0, then we can
calculate the frequency of oscillation as

𝜈s = ∫
+∞

0
vweq(0, v)dv (21)

where the equilibrium density probability is given by the canon-
ical (or Gibbs) distribution (see Equation (4)). The quantity 𝜈s
can be interpreted as an oscillation frequency as it measures the
rate (times per second) of the particle crossing (from left to right)
through the point x = 0, which corresponds to the minimum of
the potential energy (see Figure 2). In Equation (4), the quan-
tityeq represents the partition function, explicitly given in Equa-
tion (5). By substituting Equations (4) and (5) into Equation (21),
we obtain the final result

𝜈s(T) =
√

kBT
2𝜋m

1

∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

(22)

representing the statistical frequency of oscillation for a particle
embedded in an arbitrary potential well Φ(x) at a given temper-
ature T . It corresponds to Equation (6) or to Equation (7) when
x0 = 0.

3.2. Deterministic Oscillation Frequency

We consider now the same potential energy Φ(x) introduced in
the previous section, and we approach the problem from a purely
mechanical point of view. It means that we neglect here the ther-
mal fluctuations and therefore we take into account the energy
conservation

1
2
m
(
dx
dt

)2

+ Φ(x) = E (23)

where E is the total energy of the system, imposed through suit-
able initial conditions. As usual, this integral of motion yields a
first-order differential equation for the dynamics of the system

dx
dt

= ±
√

2
m

[
E − Φ(x)

]
(24)

If we integrate this equation over a period, we simply obtain a
direct expression for the deterministic frequency of oscillation

𝜈d(E) =
√

1
2m

1

∫
xM

xm

dx√
E − Φ(x)

(25)

where Φ(xm) = Φ(xM) = E, with xm < 0 and xM > 0 (see
Figure 2).

3.3. Classical Relation between 𝝂s and 𝝂d

The aim of this section is to elucidate the conceptual relation be-
tween Equations (22) and (25). Both expressions give a frequency
oscillation of the system for an arbitrary potential energy Φ(x),
but they show a completely different mathematical form. We
prove, however, a simple and direct relationship between them.
While we describe here such a relation for the classical mechan-
ics (Newton theory), we postpone the relativistic analysis to the
following section. To begin, we calculate the ensemble average of
the deterministic period 1∕𝜈d (corresponding to the energy E) by
means of the Boltzmann weight e

− E
kBT . The use of Equation (25)

immediately leads to the double integral

∫
+∞

0

1
𝜈d(E)

e
− E

kBT dE =
√
2m∫

+∞

0 ∫
xM

xm

e
− E

kBT dxdE√
E − Φ(x)

(26)

It can be easily handled by observing that ∫ +∞
0 ∫ xM

xm
f (x, E)dxdE =

∫ +∞
−∞ ∫ +∞

Φ(x) f (x, E)dEdx is true for any function f (x, E), and there-
fore, we get

∫
+∞

0

1
𝜈d(E)

e
− E

kBT dE =
√
2m∫

+∞

−∞ ∫
+∞

Φ(x)

e
− E

kBT dEdx√
E − Φ(x)

(27)

This expression can nowbe simplified by considering the integral

∫
+∞

a

e−bzdz√
z − a

=
√

𝜋

b
e−ab, b > 0 (28)

which can be directly proved by applying the change of variable
y =

√
z − a. Hence, the double integral in Equation (27) simpli-

fies eventually delivering

∫
+∞

0

1
𝜈d(E)

e
− E

kBT dE =
√
2𝜋kBTm∫

+∞

−∞
e
− Φ(x)

kBT dx (29)

and, by using Equation (22), this can be finally written as

1
kBT ∫

+∞

0

1
𝜈d(E)

e
− E

kBT dE = 1
𝜈s(T)

(30)

This is an important result introducing a conceptual relationship
between Equations (22) and (25). It means that the statistical pe-
riod of oscillation (at temperature T) is obtained by averaging
the deterministic period (at energy E) through the density proba-

bility 𝜌(E) = 1
kBT

e
− E

kBT 1(E) (which is correctly normalized). Here,
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1(x) represents the Heaviside step function defined as 1(x) = 1 if
x ≥ 0, and 1(x) = 0 if x < 0. In other words, each deterministic
period, associated with the initial energy E, is weighted with the

Boltzmann factor 1
kBT

e
− E

kBT in order to find the statistical period

induced by thermal fluctuations. It is interesting to observe that
if we define s = 1∕kBT , we obtain a Laplace–Carson transform
between 1∕𝜈d and 1∕𝜈s, that is,

s∫
+∞

0

1
𝜈d(E)

e−sEdE = 1
𝜈s(s)

(31)

In general, the Laplace–Carson transform c{f } of a func-
tion f (E) is defined as follows: c{f }(s) = s ∫ +∞

0 f (E)e−sEdE.[58]

It corresponds to the classical Laplace transform {f }(s) =
∫ +∞
0 f (E)e−sEdE multiplied by the variable s of the transformed
domain:c{f }(s) = s{f }(s).[59] To conclude, we can say that from
themathematical point of view, the statistical period of oscillation
at a given temperature is given by the Laplace–Carson transform
of the purely mechanical period of oscillation (integrated with re-
spect to the energy of the system).
Let us add an important remark to avoid ambiguity. When

we consider a physical observable f (q, p) in statistical mechan-
ics, we define its average value as ⟨f ⟩ = ∬ f (q, p) exp[−H(q, p)∕
KBT ]dqdp∕Z, where Z = ∬ exp[−H(q, p)∕KBT ]dqdp is the classi-
cal partition function and H(q, p) is the Hamiltonian of the sys-
tem. Now, if the function f (q, p) depends on (p, q) only through
the Hamiltonian, we can write f (q, p) = f (H(q, p)), and its aver-
age value can be eventually calculated by

⟨f ⟩ = ∫ +∞

0 f (E)Ω(E) exp[−E∕KBT ]dE

∫ +∞

0 Ω(E) exp[−E∕KBT ]dE
(32)

where we introduced the density of statesΩ(E) = dΘ(E)
dE

= ∫ 𝛿(E −
H(q, p))dqdp through the auxiliary function Θ(E) = ∫H(q,p)<E dqdp.
All this to say that Equations (30) and (31) do not represent canon-
ical average values in phase space as the density of states that
can be seen in Equation (32) is absent (moreover, Ω(E) cannot
be constant with an arbitrary potential Φ(x)). Therefore, Equa-
tions (30) and (31) must be interpreted as the average of the de-
terministic period (at energy E) through the density probability

𝜌(E) = 1
kBT

e
− E

kBT 1(E), which is a correct averaging process but not

coinciding with the canonical averaging in the phase space.

3.4. Frequency Calculation Examples

The simpler example concerns the harmonic oscillator with po-
tential energy Φ(x) = 1

2
kSx

2, where kS is the spring constant.
The direct calculation of the statistical frequency leads to 𝜈s =
𝜔0∕(2𝜋), where 𝜔0 =

√
kS∕m. This value clearly coincides with

the deterministic frequency 𝜈d. In this simple case, both frequen-
cies assume the same constant value. Hence, the relationship in
Equation (31) is satisfied since the Laplace–Carson transform of
1 is 1 (or, equivalently, the Laplace transform of 1 is 1/s).
A second example concerns the particle in a box or, equiva-

lently, in an infinite square well having a width a. By means of

Figure 3. Example of phase space trajectories for the anharmonic oscilla-
tor with different values of the exponent n = 1, 2, 4, and 20 and the energy
E = 1∕k (k = 1,… , 10). We adopted the parameters k0 = 1∕2 and m = 1
in arbitrary units.

Equation (22), we obtain the statistical frequency as

𝜈s(T) =
1
a

√
kBT
2𝜋m

(33)

As regards the deterministic frequency, if we consider a constant
velocity v0, we have a period of oscillation given by 1∕𝜈d = 2a∕v0.
Moreover, sinceE = 1

2
mv20, we have that v0 =

√
2E∕m. This is true

since, in this case, the total energy coincides with the kinetic en-
ergy. We then obtain the deterministic frequency as

𝜈d(E) =
1
a

√
E
2m

(34)

Now, Equation (31), relating statistical and deterministic frequen-
cies, is confirmed by the Laplace–Carson transform of 1∕

√
E,

which is 2
√
𝜋s (or, equivalently, by the Laplace transform of

1∕
√
E, which is 2

√
𝜋∕s).

As a more complicated example, we take into consideration
the anharmonic potential well described by Φ(x) = k0|x|n, where
k0 and n are parameters. The phase space trajectories are charac-
terized bymv2∕2 + k0|x|n = E, as shown in Figure 3 for different
values of the parameters. We see that the circular trajectories, ob-
served for n = 2, correspond to a linear oscillator while the other
values of n generate a strongly nonlinear behavior. The expres-
sion for the statistical frequency yields

𝜈s(T) =
√

kBT
2𝜋m

[
2∫

+∞

0
exp

(
−
k0x

n

kBT

)
dx

]−1
(35)

where the integral can be calculated through the result

∫
+∞

0
exp (−Axn)dx = 1

nA1∕n Γ
( 1
n

)
, A > 0 (36)
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This property can be easily proved by using the change of variable
y = xn and by introducing the Euler gamma function[60–62]

Γ(z) = ∫
+∞

0
tz−1e−tdt (37)

The statistical frequency is eventually given by

𝜈s(T) =
n
2

√
kBT
2𝜋m

(
k0
kBT

)1∕n
1

Γ
(
1
n

) (38)

On the other hand, the deterministic frequency is given by

𝜈d(E) =
√

1
2m

[
2∫

xM

0

dx√
E − k0xn

]−1

(39)

where xM = (E∕k0)1∕n. The change of variable yn = (k0∕E)xn de-
livers

𝜈d(E) =
1
2

√
E
2m

(
k0
E

)1∕n
[
∫

1

0

dy√
1 − yn

]−1

(40)

The integral in the brackets can be solved by the change of vari-
able u = yn, by reminding that Γ(1∕2) =

√
𝜋, and by using the

Euler beta function[60–62]

B(𝛼, 𝛽) = ∫
1

0
t𝛼−1(1 − t)𝛽−1dt =

Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽)

(41)

The result, after straightforward calculation, reads as

∫
1

0

dy√
1 − yn

=
√
𝜋

n

Γ
(
1
n

)
Γ
(
1
n
+ 1

2

) (42)

Summing up, the deterministic frequency is obtained in the form

𝜈d(E) =
n
2

√
E

2𝜋m

(
k0
E

)1∕n Γ
(
1
n
+ 1

2

)
Γ
(
1
n

) (43)

It is interesting to observe that 𝜈s is proportional to (kBT)
1∕2−1∕n

while 𝜈d is proportional to E
1∕2−1∕n. It means that both frequen-

cies are independent of the energy contribution (thermal or elas-
tic) for n = 2, ithat is, for the harmonic oscillator, as expected (see
Figures 4 and 5). Moreover, the frequency increases with increas-
ing energy when n > 2 and decreases if n < 2, as one can deduce
from Figures 4 and 5. As before, the Laplace–Carson transform
between 1∕𝜈d and 1∕𝜈s is confirmed as one can directly verify by
applying Equation (31), and by using the definition of gamma
function given in Equation (37).

4. Oscillation Frequency of a Relativistic
Anharmonic Oscillator

Given the theoretical importance and the wide range of applica-
tions of the relativistic oscillator,[63–68] we investigate here the re-
lationship between the statistical and deterministic frequencies

Figure 4. Statistical frequency 𝜈s(T) of the anharmonic oscillator as func-
tion of n and the thermal energy kBT = 1,… , 15. We adopted the param-
eters k0 = 1∕2 and m = 1 in arbitrary units.

Figure 5. Deterministic frequency 𝜈d(E) of the anharmonic oscillator as
function of n and the initial energy E = 1,… , 15. We adopted the parame-
ters k0 = 1∕2 and m = 1 in arbitrary units.

for this system. The results are also useful in the context of rel-
ativistic quantum mechanics.[69,70] We are able to show that this
relationship is exactly as in the classical case, thus proving its
thermodynamic ground, independent of the physical theory con-
sidered.

4.1. Statistical Oscillation Frequency

This section deals with the relativistic analysis of a particle em-
bedded in a potential energy Φ(x) and in contact with a thermal
bath at temperature T . The 1D relativistic equation of motion can
be written as dp

dt
= − dΦ

dx
where p = mv√

1−v2∕c2
is the momentum of

the particle and c is the speed of light. The particle velocity v can
bewritten in terms of themomentumas v = pc√

p2+m2c2
. This allows

us to introduce the relativistic Hamilton motion equations in the

Ann. Phys. (Berlin) 2023, 2300294 2300294 (7 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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form

dp
dt

= −dΦ
dx

= −𝜕H
𝜕x

(44)

dx
dt

=
pc√

p2 +m2c2
= 𝜕H

𝜕p
(45)

where the Hamiltonian of the system is given by

H(x, p) = c
√
p2 +m2c2 −mc2 + Φ(x) (46)

In order to consider the thermal fluctuations in this sys-
tem, we can introduce the so-called Maxwell–Jüttner density
probability,[71–74] which is the starting point of the relativistic ther-
modynamics and, in particular, of the relativistic gas theory.[75–77]

For instance, it is useful to describe several high-energy and as-
trophysical effects. For a 1D system, it can be written as

W(x, p) =
exp

[
−H(x,p)

kBT

]
 = W𝖷(x)W𝖯(p) (47)

where

W𝖷(x) =
e
− Φ(x)

kBT

𝖷

, with 𝖷 = ∫
+∞

−∞
e
− Φ(x)

kBT dx (48)

and

W𝖯(p) =
e
− c

√
p2+m2c2

kBT

𝖯

, with 𝖯 = ∫
+∞

−∞
e
− c

√
p2+m2c2

kBT dp (49)

represent the marginal probability densities of position and mo-
mentum, respectively, together with the corresponding partition
functions. In particular, the momentum partition function 𝖯

can be evaluated as follows. We adopt the change of variable
y = c

kBT

√
p2 +m2c2 in Equation (49) and we easily get

𝖯 = 2∫
+∞

0
e
− c

√
p2+m2c2

kBT dp

=
2kBT
c ∫

+∞

mc2

kBT

ye−y√
y2 −

(
mc2

kBT

)2
dy (50)

The last integral can be evaluated bymeans of the following result
(see Equation (3.365.2) in ref. [60])

∫
+∞

u

ye−𝛼y√
y2 − u2

dy = uK1(𝛼u) (𝛼 > 0) (51)

where Kn(z) represents the modified Bessel function of the sec-
ond kind and order n. The simplified expression for 𝖯 assumes
the form

𝖯 = 2mcK1

(
mc2

kBT

)
(52)

Figure 6. Relativistic velocity probability densityW𝖵(v) versus the velocity
v (we used the dimensionless quantities cW𝖵(v) and v∕c) as a function of
the inverse relativistic coldness kBT

mc2
= 0.01, 0.1, 0.3, 1, and 2.

where the argument mc2

kBT
is the so-called relativistic coldness.[71–75]

When it is much larger than 1, we have a non-relativistic system,
and when it is much smaller than 1, we have an ultra-relativistic
system.[71–75]

In order to define the statistical oscillation frequency of the
system, we need to know the probability density W𝖵(v) of the
particle velocity. As usual, it can be obtained by differentiating
the probability distribution F𝖵(v), which is simply calculated by
properly integrating the probability densityW𝖯(p) of the particle
momentum. Summing up, after straightforward calculations, we
getW𝖵(v) as follows

W𝖵(v) =
d
dv
F𝖵(v) =

d
dv
Pr{𝖵 ≤ v}

= d
dv
Pr

{
𝖯 ≤ mv√

1 − v2∕c2

}

= d
dv ∫

mv√
1−v2∕c2

−∞
W𝖯(p)dp

= 1

2cK1

(
mc2

kBT

)(
1 − v2

c2

)3∕2 e
− mc2

kBT
1√

1−v2∕c2 (53)

which is defined for |v| < c. The shape of this velocity probabil-
ity density can be found in Figure 6 as a function of kBT

mc2
, that is,

the inverse of the relativistic coldness. We can see that for small
values of kBT

mc2
, we have densities similar to the classical Maxwell

distribution (non-relativistic system), while for larger values we
observe the emergence of two peaks near v = ±c (ultra-relativistic
system). Now, through the velocity probability density, the statis-
tical oscillation frequency can be defined as

𝜈s(T) = ∫
c

0
vW𝖷(0)W𝖵(v)dv (54)

Ann. Phys. (Berlin) 2023, 2300294 2300294 (8 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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similarly to Equation (21), holding for the classical case. Here, of
course, we integrate over the positive particle velocities up to the
speed of light c. This integral over v can be calculated by means
of the change of variable y = mc2

kBT
(1 − v2∕c2)−1∕2, eventually obtain-

ing the final expression

𝜈s(T) =
kBT
2mc

1

e
mc2

kBT K1

(
mc2

kBT

) 1

∫ +∞
−∞ exp

[
−Φ(x)

kBT

]
dx

(55)

giving the statistical oscillation frequency of a relativistic particle
subjected to an energy potential Φ(x) and in contact with a ther-
mal bath at temperature T . This result represents the relativistic
counterpart of Equation (22).

4.2. Deterministic Oscillation Frequency

Following the same reasoning previously applied to the classical
case, the problem can be now approached by neglecting the ef-
fect of thermal fluctuations. In this case, the relativistic energy
conservation can be stated as

mc2√
1 − v2

c2

+ Φ(x) = mc2 + E (56)

where E represents the energy of the system (it is the total energy
without the rest energy mc2). In Equation (56), we can replace v
with dx

dt
, and therefore, we obtain a first-order differential equa-

tion describing the relativistic motion of the particle

dx
dt

= ±c

√
1 −

[
mc2

E +mc2 − Φ(x)

]2
(57)

By integrating the latter over one period of oscillation, we get the
result

𝜈d(E) =
c

2∫
xM

xm

dx√
1 −

[
mc2

E +mc2 − Φ(x)

]2
(58)

representing the deterministic frequency of oscillation for an ar-
bitrary relativistic anharmonic oscillator. As before, an arbitrary
shape of Φ(x) together with the definition of xm, xM, and E can
be found in Figure 2.

4.3. Relativistic Relation between 𝝂s and 𝝂d

At this time, we are interested in understanding the relation-
ship between Equations (55) and (58), yielding the statistical 𝜈s(T)
and the deterministic 𝜈d(E) oscillation frequencies of a relativis-
tic oscillator, respectively. To approach the problem, we follow the
same procedure applied for the classical case, and we integrate

the period 1∕𝜈d(E),multiplied by the Boltzmann factor e
− E

kBT , over

the whole range of energy. We obtain

∫
+∞

0

1
𝜈d(E)

e
− E

kBT dE

= 2
c ∫

+∞

0 ∫
xM

xm

e
− E

kBT dxdE√
1 −

[
mc2

E +mc2 − Φ(x)

]2

= 2
c ∫

+∞

−∞ ∫
+∞

Φ(x)

e
− E

kBT dEdx√
1 −

[
mc2

E +mc2 − Φ(x)

]2 (59)

where we used the property of inversion of integrals
∫ +∞
0 ∫ xM

xm
f (x, E)dxdE = ∫ +∞

−∞ ∫ +∞
Φ(x) f (x, E)dEdx, holding for an

arbitrary function f (x, E). Now, the integral over the energy E
can be directly calculated by means of the result

∫
+∞

u

e−𝛼y√
1 −

(
𝛽

y + 𝛽 − u

)2
dy = 𝛽e𝛼𝛽e−𝛼uK1(𝛼𝛽) (60)

that is valid for 𝛼 > 0, and which can be proved through the sub-
stitution z = y + 𝛽 − u, and with the help of Equation (51). So, we
get from Equation (59)

∫
+∞

0

1
𝜈d(E)

e
− E

kBT dE

= 2mce
mc2

kBT K1

(
mc2

kBT

)
∫

+∞

−∞
exp

[
−
Φ(x)
kBT

]
dx (61)

Hence, by using Equation (55), we can confirm that the following
relationship

1
kBT ∫

+∞

0

1
𝜈d(E)

e
− E

kBT dE = 1
𝜈s(T)

(62)

is valid also for the relativistic case. The independence of this re-
sult from the nature of the physical laws used gives it a special
importance that derives directly from the thermodynamic foun-
dations.
As before, we remember that Equation (62) does not repre-

sent a canonical average value in phase space since the density
of states is absent (see Equation (32)). Therefore, Equation (62)
must be simply interpreted as the average of the relativistic de-
terministic period (at energy E) through the density probability

𝜌(E) = 1
kBT

e
− E

kBT 1(E).

4.4. Example: The Relativistic Hookean Oscillator

We consider here a relativistic 1D system with a potential energy
Φ(x) = 1

2
hx2. The trajectories of the oscillating point in the phase

Ann. Phys. (Berlin) 2023, 2300294 2300294 (9 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 7. Relativistic trajectories in the phase space of the Hooke oscilla-
tor with Φ(x) = 1

2
hx2, represented through the dimensionless quantities√

h∕(2E)x and v∕c, and parametrized by E∕(mc2).

space can be obtained through the implicit equation

h
2E

x2 = mc2

E

⎡⎢⎢⎢⎣1 +
E
mc2

− 1√
1 − v2

c2

⎤⎥⎥⎥⎦ (63)

and can be represented through the dimensionless quantities√
h∕(2E)x and v∕c, as shown in Figure 7. We observe that the

system dynamics exhibits a classical behavior when the energy
value E is small with respect to mc2 (elliptic trajectories in the
phase space). However, the system becomes heavily nonlinear for
larger values of E∕(mc2) (nearly rectangular trajectories). We also
remark that, E being the total energy of the system, we can write
the end-points of the explored interval as xM = −xm =

√
2E∕h.

Hence, if we apply Equation (58), the deterministic period of os-
cillation can be written as

1
𝜈d(E)

= 4
c ∫

√
2E
h

0

(
E +mc2 − 1

2
hx2

)
dx√(

E +mc2 − 1
2
hx2

)2
− (mc2)2

(64)

Then, we use the change of variable y = E +mc2 − 1
2
hx2 and we

get

1
𝜈d(E)

= 1
c

√
8
h ∫

E+mc2

mc2

ydy√
y2 − (mc2)2

√
E +mc2 − y

(65)

This integral can be calculated through the result (see Equa-
tion (3.132.5) in ref. [60])

∫
b

a

ydy√
y2 − a2

√
b − y

= 2
√
a + b𝖤(r) − 2a√

a + b
𝖪(r) (66)

where r =
√

b−a
b+a

(b > a) and the functions 𝖤(r) and 𝖪(r) are
the complete elliptic integrals of the first and second kinds,
respectively.[60–62] They are defined as follows

𝖤(r) = ∫
1

0

√
1 − r2x2

1 − x2
dx (67)

𝖪(r) = ∫
1

0

√
1

(1 − r2x2)(1 − x2)
dx (68)

with 0 < r < 1. Finally, by considering a = mc2 and b = E +mc2,
we obtain the deterministic period as

1
𝜈d(E)

= 4
√

m
h

[
2√
1 − r2

𝖤(r) −
√
1 − r2𝖪(r)

]
(69)

where r =
√

E
E+2mc2

. This result shows that, contrarily to the clas-

sical case, the frequency of oscillation of a relativistic Hooke os-
cillator depends on the initial conditions, that is, on the energy
E of the system. By further considering the first order expan-
sions 𝖤(r) = 𝜋∕2(1 − r2∕4 +⋯), and 𝖪(r) = 𝜋∕2(1 + r2∕4 +⋯),
holding for r → 0,[62] we also obtain the relativistic perturbation
of the classical period in the form

1
𝜈d(E)

= 2𝜋
√

m
h

(
1 + 3

8
E
mc2

+⋯
)

(70)

which is valid when mc2 ≫ E.
Concerning the statistical oscillation frequency, from Equa-

tion (55), we immediately obtain

1
𝜈s(T)

= 2𝜋
√

m
h

√
2
𝜋

√
mc2

kBT
e

mc2

kBT K1

(
mc2

kBT

)
(71)

In Figure 8, one can find the ratio 1
2𝜋𝜈s

√
h
m
between the statis-

tical relativistic period 1
𝜈s
and the classical period 2𝜋

√
m
h
versus

kBT

mc2
(red curve), and the ratio 1

2𝜋𝜈d

√
h
m
between the deterministic

relativistic period 1
𝜈d
and the classical period 2𝜋

√
m
h
versus E

mc2

(blue curve). We see that both curves converge to 1 when E
mc2

→ 0

or kBT

mc2
→ 0 (i.e., in the non-relativistic limit). When E ≫ mc2 or

kBT ≫ mc2, we observe that the two periods are sensibly dif-
ferent from the classical case and they are also different from
each other. Again, we can elaborate on the first order approxi-
mation of Equation (71), valid for mc2 ≫ kBT (classical limit). To
this aim, we take advantage of the asymptotic expression K1(z) =√

𝜋

2z
e−z(1 + 3

8z
+⋯), for z → ∞, of themodified Bessel functions

(see Equation (9.7.2) in ref. [61]). Then, Equation (71) becomes

1
𝜈s(T)

= 2𝜋
√

m
h

(
1 + 3

8
kBT
mc2

+⋯
)

(72)
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Figure 8. Ratio 1
2𝜋𝜈s

√
h
m
between the statistical relativistic period 1

𝜈s
and

the classical period 2𝜋
√

m
h
versus kBT

mc2
(red curve), and ratio 1

2𝜋𝜈d

√
h
m

between the deterministic relativistic period 1
𝜈d

and the classical period

2𝜋
√

m
h
versus E

mc2
(blue curve). Both curves converge to 1 when E

mc2
→ 0

or kBT
mc2

→ 0 (non-relativistic limit).

for mc2 ≫ kBT . The slope of the two curves in Figure 8, when
E
mc2

→ 0 or kBT

mc2
→ 0, is 3∕8, as one can deduce from Equations

(70) and (72). A rather complicated calculation, omitted here for
the sake of brevity, proves that Equations (69) and (71) are re-
lated through the Laplace–Carson transform, as stated in Equa-
tion (62). It is easier to verify that this relation is true for the ap-
proximated expressions stated in Equations (70) and (72). To do
this, we can write

1
kBT ∫

+∞

0

1
𝜈d(E)

e
− E

kBT dE

= 2𝜋
kBT

√
m
h ∫

+∞

0

(
1 + 3

8
E
mc2

+⋯
)
e
− E

kBT dE (73)

= 2𝜋
√

m
h

(
1 + 3

8
kBT
mc2

+⋯
)

= 1
𝜈s(T)

where we used the property ∫ +∞
0 Ene

− E
kBT dE = n!(kBT)n+1 for n =

0 and n = 1. This approach can be generalized in order to con-
sider an arbitrary number of terms in the series of Equations (70)
and (72). More precisely, one can obtain

1
𝜈d(E)

= 2𝜋
√

m
h

(
1 + 3

8
𝜉 − 15

256
𝜉2 + 35

2048
𝜉3 − 1575

262144
𝜉4 …

)
(74)

1
𝜈s(T)

= 2𝜋
√

m
h

(
1 + 3

8
𝜂 − 15

128
𝜂2 + 105

1024
𝜂3 − 4725

32768
𝜂4…

)
(75)

Figure 9. Relativistic trajectories in the phase space of the anharmonic os-
cillator with Φ(x) = k0|x|, represented through the dimensionless quanti-
ties (k0∕E)x and v∕c, and parametrized by E∕(mc2).

where 𝜉 = E
mc2

and 𝜂 = kBT

mc2
. Then, the Laplace–Carson transform

is proved by using again the relation ∫ +∞
0 Ene

− E
kBT dE = n!(kBT)n+1

for increasing values of n.

4.5. Example: A Relativistic Non-Hookean Oscillator

Let us consider now one last example concerning a relativis-
tic anharmonic oscillator characterized by a potential energy
Φ(x) = k0|x| (corresponding to the classical case with n = 1 stud-
ied in Section 3.4). The phase space trajectories can be found in
Figure 9. First of all, we can determine the statistical period of
oscillation by means of Equation (55). We easily get

1
𝜈s(T)

= 4mc
k0

e
mc2

kBT K1

(
mc2

kBT

)
(76)

Concerning the deterministic period of oscillation, we use Equa-
tion (58), and we can write

1
𝜈d(E)

= 4
c ∫

E∕k0

0

√
(E +mc2 − k0x)2

(E +mc2 − k0x)2 − (mc2)2
dx (77)

Then, by using the change of variable y = E +mc2 − k0x, we ob-
tain

1
𝜈d(E)

= 4
k0c ∫

E+mc2

mc2

y√
y2 − (mc2)2

dy (78)

where the integral can be solved by elementary functions, yield-
ing the result

1
𝜈d(E)

= 4
k0c

√
E(E + 2mc2) (79)

It is interesting to develop the classical limit of Equations (76)
and (79), by obtaining
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Figure 10. Effect of the energy on the relativistic anharmonic oscillator.

Ratio
𝜈cls
𝜈s

between the relativistic and the classical statistical periods ver-

sus kBT
mc2

(red curve), and ratio
𝜈cl
d
𝜈d

between the relativistic and the classical

deterministic periods versus E
mc2

(blue curve).

1
𝜈cls (T)

= lim
c→∞

1
𝜈s(T)

= 4
k0

√
𝜋mkBT

2
(80)

1
𝜈cld (E)

= lim
c→∞

1
𝜈d(E)

= 4
k0

√
2mE (81)

These relations exactly correspond to the classical results ob-
tained in Equations (38) and (43), for n = 1, in Section 3.4. In
Figure 10, one can find the effect of the thermal or initial energy

on the relativistic anharmonic oscillator. The ratio 𝜈cls

𝜈s
is plotted

versus kBT

mc2
(red curve), while the ratio

𝜈cl
d

𝜈d
is plotted versus E

mc2

(blue curve). These curves show that by increasing the energies
we progressively deviate from the classical behavior. We can fi-
nally verify Equation (62), linking statistical and deterministic pe-
riods, as follows. We consider the integral

1
kBT ∫

+∞

0

1
𝜈d(E)

e
− E

kBT dE

= 4
k0ckBT ∫

+∞

0

√
E(E + 2mc2)e

− E
kBT dE

= 4m2c3

k0kBT ∫
+∞

0

√
𝜉(𝜉 + 2)e

− mc2

kBT
𝜉
d𝜉 (82)

and we use the property given in Equation (3.372) of ref. [60],
stating that

∫
+∞

0

√
𝜉(𝜉 + 2)e−p𝜉d𝜉 = ep

p
K1(p) (83)

So doing, Equation (82) assumes exactly the form of Equa-
tion (76), by proving that the relationship given in Equation (62)
is verified, as expected.

5. Conclusions

In this paper, we studied the relation between the oscillation
frequency of an arbitrary 1D anharmonic oscillator, induced by
thermal fluctuations, and its deterministic counterpart, obtained
through a purely mechanical approach. At the beginning, we in-
troduced the concept of statistical oscillation frequency bymeans
of the 1D TST, where this frequency value intervenes in defin-
ing the characteristic rate constants (although in a rather approx-
imated form). These constants are used in the so-called rate equa-
tions and describe the non-equilibrium transitions between two
energy wells separated by a given energy barrier, with applica-
tion to chemical reactions and other physicochemical transfor-
mations, as detailed in Section 1. Interestingly, the statistical fre-
quency can be also be defined for a convex potential energy, and
it represents an exact result at thermodynamic equilibrium. We
obtained this statistical frequency for a classical and a relativis-
tic arbitrary anharmonic oscillator, and we compared these re-
sults with their deterministic counterparts, based on classical and
relativistic mechanics. We then obtained a simple relationship
between these two different, statistical and deterministic, kinds
of frequencies. Interestingly, this expression is exactly the same
for the classical and relativistic approaches. This means that the
proved relationship follows directly from the first principles of
thermodynamics and not from the class of physical laws used.
If we look at the original definition of statistical frequency, we

can say that it is related to the flux at thermodynamic equilibrium
in a given direction and at a given point (see Equation (21)). By
means of the demonstrated relationship, this definition can also
be reformulated by stating that the statistical frequency 𝜈s(T) can
be obtained from the deterministic frequency 𝜈d(E) by averaging

its values through probability density 𝜌(E) = 1
kBT

e
− E

kBT 1(E), which

represents the normalized Boltzmann exponential. We have also
emphasized the fact that this average does not correspond to the
canonical average in phase space, but simply represents the aver-
age of a random variable according to a given probability density.
The new point of view on the statistical frequencies can be use-
ful from a theoretical and pedagogical standpoint to give further
meaning to themathematical expressions of rate constants of the
TST. In order to clarify themeaning of the found relationship, we
showed various examples of calculation of statistical and deter-
ministic frequencies both in the classical and relativistic cases.
From a mathematical point of view, the mapping between the
statistical and the deterministic frequencies can be summarized
through a Laplace–Carson transform, as we explicitly showed in
the examples considered. Obviously, the relationship obtained is
exact and therefore true for every form of the potential energy
Φ(x). Nevertheless, the development of calculations for partic-
ular energy profiles helps to better understand its physical and
mathematical significance.
Although this work presents an interesting relationship con-

cerning the oscillation frequencies of an arbitrary energy well, it
has limitations that are briefly described below.
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First of all, our analysis has been performed for a 1D geome-
try, which represents a limitation from the application point of
view. It is important to remark that the rate constants, within
the TST, can be calculated for a multidimensional system. In
fact, the problem is somehow brought back to a 1D case by
defining a reaction coordinate, which is the function of all de-
grees of freedom. It is, for example, negative for products and
positive for reactants, thus rendering the problem mathemati-
cally solvable.[78–81] Several developments in this direction can
be found in ref. [6]. However, the time evolution of a Hamil-
tonian system is not, in general, periodic, and therefore, it
is difficult, if not impossible, to search for relationships be-
tween statistical and deterministic oscillation frequencies for
multidimensional systems. Of course, there are criteria for the
existence of periodic orbits in Hamiltonian systems,[82,83] but
their application to our context is beyond the scope of our
work and requires further research. The aim of our relation-
ship between statistical and deterministic frequencies is to give
a simple and pedagogical interpretation to the statistical fre-
quency (and therefore to the rate constants), even if limited to
the 1D case.
Second, in previous analyses, we never considered possible

quantum effects on the oscillation frequencies of the studied sys-
tems. The consideration of these possible effects is a very compli-
cated problem and we add here only some comments useful for
further investigations. We can say that all previous results con-
cerning statistical oscillation frequencies are influenced by quan-
tum perturbations, and in particular, the relationship between
statistical and deterministic oscillation frequencies no longer
holds in the quantum domain. From a historical point of view,
it is worth mentioning that the search for quantum perturbation
to the phase space canonical probability density of statistical me-
chanics largely interested the first half of the twentieth century. In
this context, we can cite the works of Wigner,[84] Uhlenbeck and
Gropper,[85] and Kirkwood.[86] The idea of these approaches is to
write the quantum partition function and the quantum canonical
distribution wQ (q, p) of a system (in the complete phase space) as
a perturbation of the same classical quantities (typically up to the
second order in the Planck constant ℏ). For instance,more details
can be found in Section 33 of Landau’s classic textbook.[87] Al-
though approximate, these results make it possible to determine
the statistical oscillation frequency given by Equation (21). A bet-
ter solution takes into account a quasiprobability distribution in
the phase space without the approximation induced by consid-
ering only the second order perturbation in ℏ. A quasiprobabil-
ity distribution in quantum mechanics is defined in the phase
space and allows the calculation of the average value of observ-
ables, but in general, it is not everywhere positive as the standard
probability densities.[84,88–90] The quasiprobability density can be
directly calculated at thermodynamic equilibrium,[91,92] facilitat-
ing the implementation of Equation (21). This approach have
been efficiently used to develop different quantum TSTs.[93,94]

More general techniques can be found in the literature (see,
for instance, refs. [95, 96]). To conclude, the quantum effects
are important in evaluating the statistical frequencies of os-
cillators and then are relevant for studying rate constants of
the TST.
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