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Abstract: This paper presents the complete design, fabrication, and characterization of a shallow-
mesa photodiode for short-wave infra-red (SWIR) sensing. We characterized and demonstrated
photodiodes collecting 1.55 µm photons with a pixel pitch as small as 3 µm. For a 5 µm pixel
pitch photodiode, we measured the external quantum efficiency reaching as high as 54%. With
substrate removal and an ideal anti-reflective coating, we estimated the internal quantum effi-
ciency as achieving 77% at 1.55 µm. The best measured dark current density reached 5 nA/cm2 at
−0.1 V and at 23 ◦C. The main contributors responsible for this dark current were investigated
through the study of its evolution with temperature. We also highlight the importance of passivation
with a perimetric contribution analysis and the correlation between MIS capacitance characterization
and dark current performance.

Keywords: InGaAs; photodiode; SWIR; shallow-mesa; small pitch

1. Introduction

The development of short-wave infra-red (SWIR) sensors is being led by the growing
demand in various fields such as security, automotive, industry, and agriculture [1]. In the
SWIR range between 1 and 2.5 µm, silicon is quasi transparent (λcut,Si = 1.1 µm) hence, to
absorb an SWIR photon, the absorption material needs to be changed. The main candidates
to do so and to be integrated in a SWIR sensor are PbS quantum dots in quantum films [2],
In0.53Ga0.47As [3–6], Ge on Si [7,8], or graphene [9,10].

In0.53Ga0.47As is latticed-matched to InP and has a band gap of 0.74 eV at room
temperature [11]. This band gap is suitable for SWIR collection, leading to a cut-off
wavelength of 1.7 µm. The state-of-the-art for an InGaAs image sensor integrated on a
Si-based read-out integrated circuit (ROIC) is a 5 µm pixel pitch with quantum efficiency
(QE) greater than 75% at 1.2 µm. The dark current is reported to be as low as 2 nA/cm2 at
−0.1 V and at 23 ◦C [3]. The standard structure for an InGaAs-based SWIR sensor is shown
in Figure 1a. It is composed of a thick low doped n-InGaAs absorption layer epitaxied on
an InP substrate. III-V materials, such as InGaAs, lack high quality native dielectric and are
sensitive to electrical surface defect density [12,13]. To minimize surface leakage current
at the InGaAs/dielectric interface, the InGaAs layer is covered by an InP layer which has
a larger band gap of 1.34 eV at 25 ◦C [14]. This layer is used as passivation to move the
poor electronic interface away from the active region. In such structures where the InGaAs
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layer is the active region, it is a priority to have the lowest defect density possible at the
interfaces and in the bulk.
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Figure 1. Schematic cross section of the photodiode after different processes. (a) Photodiode fabricated
by Zn diffusion or Be implantation; (b) photodiode fabrication using shallow mesa technique.

For the InGaAs photodiode fabrication, the crucial process step is the definition of
each pixel by the creation of a P region in the N-type stack. Literature reports different
alternatives for this purpose such as Zn diffusion [3,4,15], Be implantation [16,17], or
shallow mesa-type architecture [18,19].

Today, the standard industrial process to create the P-type area relies on the Zn
diffusion process. First, a SiN dielectric mask is deposited on the N-type stack. The
dielectric is then opened, and Zn is diffused through this aperture. Zn atoms diffuse in
the InP layer and reach the InGaAs absorption layer, creating the P-type region. Figure 1a
shows the schematic cross section of the photodiode after the diffusion process. To scale
down the pixel pitch to a few µm dimensions, the isotropic behaviour of the diffusion
presents a challenge. In addition to this isotropic diffusion, it has been shown that Zn
diffuses laterally faster in InGaAs than in InP [20]. Greater doping near the interface in the
InGaAs layer seems to successfully limit the lateral spread for a 15 µm pixel pitch [20]. With
the reduction of the pixel pitch, this diffusion process is harder to control as the distance
between the two nearest P-type wells reduces. This phenomenon might then limit the final
resolution of the image sensor.

Ionic implantation (I/I) could be an interesting solution to overcome the issue of
lateral diffusion. I/I is commonly used in Si processes to precisely locate the dopants in
the structure. The main drawback of this technique is due to the introduction of many
defects. It is mandatory to cure as many defects as possible during the anneal following
the implantation to avoid the generation of dark current. Few studies have reported the
damage in InP/InGaAs photodiodes caused by I/I [21] but curing defects in the III-V
structure have been studied mostly in GaAs [22–25]. After I/I, the amorphous III-V layer
shows poor recrystallization because of the binary or ternary nature of the material. The
differences in solubility contribute to the formation of disorder in the lattice [22]. We
previously reported the use of Be implantation to define the InGaAs/InP photodiode. The
published dark current is at best in the range of the µA/cm2 [17].

Finally, combining in situ Zn-doped with photolithography and etching tools to define
the p region could allow control of the lateral size of the diode. Only a few groups have
reported studies of such architecture [18,19,26]. Unlike other studies, our process for
mesa-type device fabrication only removes the p-doped region from the top stack. The
final schematic structure is presented on Figure 1b and is referred to as shallow-mesa
architecture. The stack must be carefully designed to allow the collection of photo-carriers
generated in the InGaAs absorption layer (colour: light blue in Figure 1).



Sensors 2023, 23, 9219 3 of 16

For the fabrication of the InGaAs image sensor with pixel pitch below 5 µm, the Cu–Cu
hybridization technique from Si image sensors can be adapted to InGaAs image sensors [3]
as this method is already in mass production for pixel pitch down to 1 µm [27].

The InGaAs image sensor fabrication targets a Si-CMOS compatible process in large
format for high volume. First, epitaxial dies would be bonded on a large format carrier Si
wafer. Then, the III-V photodiode process would be performed with up-to-date Si tools.
Lastly, the photodiodes would be bonded on the Si ROIC. In this perspective, the in situ
doping alternative is a low thermal budget process which is an asset for this integration in a
Si-CMOS compatible fab. This kind of Si-CMOS compatible process flow is also presented
in [3] with Zn diffused photodiodes.

2. Design of the Shallow-Mesa Architecture

The goal of the designed structure is to collect the photogenerated carriers from the
InGaAs absorption layer at low reverse bias, to match the ROIC needs. The minority carriers
must go through the heterojunction visible on the simulated band diagram presented in
Figure 2. The N-InP layer passivates the small gap InGaAs layer as mentioned previously,
but the heterojunction introduces an unfavourable barrier for the hole collection. To
overcome this barrier, the structure is designed to intrinsically introduce an electric field
that attracts carriers at equilibrium.
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Figure 2. Band diagram of simulated structure at equilibrium with the photogenerated pair schemati-
cally represented with their path of collection.

The device simulation is performed with Synopsys Sentaurus software [28] and aims
at finding a set of parameters which suppresses the electrostatic barrier for the collection
path. The simulation is conducted considering Auger and radiative recombination as well as
Shockley–Read-Hall (SRH) recombination. Intrinsic and quality related material parameters
are based on the literature [29,30] and are used as simulation inputs for model calibration.

For the carrier collection, the electric field can be modulated by three key parameters
which are the doping and thickness of the barrier N-InP layer and the doping concentration
of the P-type contact layer. Figure 3 shows the evolution of the band diagram at equilibrium
for a fixed P-type layer doping. The impact of the N-InP thickness ranging from 80 nm
to 300 nm is presented Figure 3a where the thicker the N-InP, the greater the electrostatic
barrier. This is also visible in Figure 3b as the larger the doping of the N-InP layer, the
greater the barrier (doping values between 1015 and 1018 cm−3).

The simulation helps us to separate the contribution of dark current from InP and
from the InGaAs layer. The origin of each dark current was verified by changing the
carrier lifetime in each material and analysing the evolution on the total dark current. For a
non-optimized structure as presented in Figure 4, the simulated dark current shows that
carriers collected at low reverse bias (<1 V) are generated in InP (Figure 4a). At higher
reverse bias (>1 V), the current of interest is collected in the InGaAs layer (Figure 4b). Our
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goal was to find a configuration that allows the collection of the InGaAs carriers at low
reverse bias.
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Figure 3. Top zoom of the structure—Impact of the N-InP (a) thickness and (b) doping on the band
diagram at equilibrium.
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Figure 4. Simulated dark current with TCAD Synopsys tools [28]. (a) Shows evolution of the dark
current when the InP SRH lifetime is modulated; (b) evolution of the dark current when the InGaAs
SRH lifetime is modulated.

The dark blue curve in Figure 5 shows a well-designed structure where the current
from InGaAs is collected at quasi null voltage. If the N-InP barrier layer is doped too much
(in Figure 5 in pink), it increases the electrostatic barrier and blocks the carrier at low bias.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 5. Impact of the doping concentration of the InP barrier on the carrier collection. 

This theoretical study allows us to find a set of doping concentration and thickness 

parameters that suppresses the barrier for hole collection. This set of parameters has been 

used to define the epitaxial stack for photodiode fabrication. 

3. Fabrication 

The schematic and simplified process of the shallow-mesa type photodiode is repre-

sented in Figure 6. All layers are grown on a 3 inches InP substrate (see Figure 6a). 

 

Figure  . Simplified and schematic process flow of the shallow mesa-type process. (a) The full stack; 

(b) the definition of the pixel by etching the P layer and (c) the encapsulation and fabrication of 

contacts. 

The pixel definition is performed by etching the P-type layer (see Figure 6b and SEM 

cross-section view Figure 7a). Then, the device is passivated by a dielectric deposition. 

The final step is the fabrication of both diode and N metal contacts (see Figure 6c). 

A specific test structure is designed to emulate a matrix-like environment. Multiple 

diodes in-array are connected, while two additional rows of diodes at the periphery of 

this array are independently connected and can be polarized independently. The tested 

structures shown in Figure 7b could be single isolated or in-array diodes and bundles of 

three-by-three or ten-by-ten diode bundles in a matrix-like environment. 

 igher n-InP doping

 ower n-InP doping

InGaAs dar  current 
collection

P layer

N -InP buffer

N-InP

N-InGaAs absorber

InP substrate

P layer

N -InP buffer 

N-InP

N-InGaAs absorber

InP substrate

P layer

N -InP buffer 

N-InP

N-InGaAs absorber

InP substrate

Metal contact Metal 
contact

SiN

 a  b  c 

Figure 5. Impact of the doping concentration of the InP barrier on the carrier collection.
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On the other hand, if the N-InP cap is too thin to minimize the electrostatic barrier,
process constraints appear during the P-layer etching process that make it difficult to
control uniformity on the wafer.

This theoretical study allows us to find a set of doping concentration and thickness
parameters that suppresses the barrier for hole collection. This set of parameters has been
used to define the epitaxial stack for photodiode fabrication.

3. Fabrication

The schematic and simplified process of the shallow-mesa type photodiode is rep-
resented in Figure 6. All layers are grown on a 3 inches InP substrate (see Figure 6a).
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Figure 6. Simplified and schematic process flow of the shallow mesa-type process. (a) The full stack;
(b) the definition of the pixel by etching the P layer and (c) the encapsulation and fabrication of contacts.

The pixel definition is performed by etching the P-type layer (see Figure 6b and SEM
cross-section view Figure 7a). Then, the device is passivated by a dielectric deposition. The
final step is the fabrication of both diode and N metal contacts (see Figure 6c).
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Figure 7. SEM views after the whole process. (a) A cross-section of the top stack where the P layer is
etched and (b) a top view of the different configuration of the test structures (single in-array diode is
not shown on this SEM view).

A specific test structure is designed to emulate a matrix-like environment. Multiple
diodes in-array are connected, while two additional rows of diodes at the periphery of
this array are independently connected and can be polarized independently. The tested
structures shown in Figure 7b could be single isolated or in-array diodes and bundles of
three-by-three or ten-by-ten diode bundles in a matrix-like environment.
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4. Results

The main figure of merit of a sensor is its signal to noise ratio (SNR). It is defined as
the ratio of the useful signal divided by its noise. It must be maximized to reach the best
performances. It implies high QE for a high signal and low noise. The noise is ultimately
limited by the Schottky noise

√
2qI, with I the total current, i.e., the sum of the photonic and

the dark current and q the elementary electric charge. For photodiode fabrication, the dark
current is a parasitic current and must be negligeable compared to the photonic current.

In the following part, we first compare two processes on 15 µm large pixels to analyse
the impact of the passivation on dark current performances. Then, we fabricate 5 µm pixel
pitch photodiodes with the most suitable process and characterize it. Lastly, we present
3 µm pixel pitch photodiodes as a demonstration of pixel pitch reduction.

4.1. Dark Current Contributor Investigation

The structure is recalled in Figure 8 with the potential sources of dark current. The
main sources considered are the diffusion current Jdi f f ∝ exp

(
− Eg

kT

)
and generation–

recombination (GR) current Jdepl ∝ exp
(
− Eg

2kT

)
in the depletion region as well as interface

current between dielectric/InP and InP/InGaAs. The diffusion current and Shockey–Read–
Hall (SRH) generation–recombination (GR) current from the InP layer is neglected as the
volume is very small and the band gap is approximately twice the band gap of InGaAs
(EG, InP = 1.34 eV and EG, InGaAs = 0.74 eV) [31–34].
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Figure 8. Schematic cross section of the structure with its potential sources of the dark current.
Inspired from [32].

Two processes are compared here to identify the impact of the dielectric for the
realization of small pitch photodiode with the lowest dark current possible. The active
stack is identical, but the passivation steps are different in terms of dielectric nature. Dark
current measurements on 15 µm pixel pitch photodiodes are presented in Figure 9. The
evolution is different with the reverse bias. At −0.5 V and at room temperature, the dark
current for process A reaches 5 · 10−13 A and for process B, it reaches 2.8 · 10−13 A.

The main contributors to the dark current can be studied by analysing its evolution with
temperature. We briefly review the theory of the dark current’s dependence with temperature.
The generation–recombination current due to SRH processes in the depleted region follows
a specific temperature dependence Jdepl ∝ T3/2 exp (EG,InGaAs/2kT). If the dark current is
limited by the diffusion, the current is proportional to Jdi f f ∝ T3 exp (EG,InGaAs/kT) [35]. We
measured the dark current for temperatures ranging from 5 ◦C to 75 ◦C every 5 ◦C and an
example of our results is presented in Figure 10.
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Figure 9. Dark current measurement on 15 µm pitch in a matrix like environment. The curve is the
median of more than 100 single in-array diodes measured.
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Figure 10. Dark current measurement of the ten-by-ten diode bundle. This measurement is from
process B.

The evolution of the dark current at −0.1 V with temperature is shown in Figure 11.
The solid lines show the temperature dependence of the current for diffusion-limited
current (light blue) or SRH generation in the depletion current (purple) in the InGaAs
absorption layer.
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Figure 11. Evolution of the dark current with temperature at−0.1 V. The solid lines show the theoretical
evolution of the current limited by diffusion (light blue line) and by generation recombination (purple
line). The temperature measurement is performed on a bundle of ten-by-ten 5 µm pixel pitch diodes.
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At room temperature and below, the main dark current contributor is the generation–
recombination from the depletion region. For temperatures greater than 50 ◦C, the dark
current is mainly limited by the diffusion phenomenon.

For the two processes studied here, the diffusion contribution is the same, but the
current from the depletion region is higher for process A than for process B. As the structures
and processes are identical except for the dielectric, this difference in Jdepl indicates that the
dielectric has an impact on the dark current.

To further investigate the impact of the dielectric on the dark current, the comparison
is conducted on diodes of different sizes ranging from 10 µm to 120 µm to characterize
contributions from the bulk (Jb) and from the periphery (Jp) based on the following equation:

Itotal = A× Jb + P× JP (1)

A is the area of the diode defined by its P-layer diameter and P is the perimeter of the
diode defined by the perimeter of the P-layer. The measured photodiodes have different
P/A ratios, which were used to plot I/A as a function of P/A. By performing a simple linear
regression, we were able to distinguish between the bulk and perimeter current densities,
Jb and Jp, respectively. In our case, Figure 12 shows the significant different value in Jp
for the two cases at −0.5 V. As the diode diameter is reduced, the contribution from the
perimeter becomes increasingly important relative to the bulk one.
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Figure 12. Perimetric and bulk contribution to the global dark current from measurements performed
on diodes with diameter ranging from 10 to 120 µm.

Here, the bulk contribution is even for the two processes as Jb = 2 · 10−7A/cm2 in
both cases; for the perimetric one, in process A, JP = 8 · 10−11A/cm and for process B,
JP = 4 · 10−13A/cm. The perimetric contribution is drastically reduced in process B which
implies that this process is much more suitable for small pixel pitch fabrication.

The evolution of the dark current with temperature in Figure 11 indicates a different
level of Jdepl that limits the dark current at room temperature. However, the P/A study
presented Figure 12, identifies a clear difference between the two processes. Even though
the perimetric contribution is always lower than the bulk one, process A shows a larger
perimetric contribution compared to process B. This difference must be due to different
dielectric properties obtained with these two processes.

Specific capacitive characterizations of dielectrics are thus conducted on metal–insulator–
semiconductor (MIS) structures. The interface state could be determinant for the dark current
performances. Poor interface between dielectric and InP creates traps which generate parasitic
carriers. The fixed charges in the dielectric can also have significant impact on the dark
current by either creating a depletion region near the interface or accumulating charges and
passivating this region.
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A wide bias ramp of±40 V is applied to the MIS structure (Figure 13b) while capacitance
is measured. We use the Maserjian method to extract the flat band voltage (VFB) as explained
in [36]. For each branch of the curve, we extract a VFB, and we compare the two extreme
values. The delta is very different as we measured 18 V for process A and 4 V for process
B (see Figure 13a). The VFB hysteresis is directly proportional to the charge trapped in the
dielectric as Qtraps = −Cdielectric ∗ ∆VFB [37]. Relatively, the passivation of process B traps
less charges than process A.
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Figure 13. (a) Capacitance measurement on metal–insulator–semiconductor structure. The measure-
ment starts at 0 V then ramps to +40 V then goes to −40 V and ends at +40 V. (b) A cross section of
the MIS structure. The MIS is a 300 µm diameter circle.

This measurement protocol is conducted on various wafers. This hysteresis of the VFB
is plotted as a function of the dark current measured at −0.1 V and at room temperature
for ten-by-ten 5 µm pixel pitch bundle. A correlation between VFB hysteresis and Idark is
clearly visible in Figure 14.
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Figure 14. Dark current performances compared to the hysteresis measured on several different wafers.

As the dielectric properties could alter the device’s performances, it is thus very
important to minimize the trap density at the InP/dielectric interface in the final device.
Further investigations would allow quantification of the fixed charge and trap density for
both processes A and B.

4.2. Photodiode Performances for 5 µm Pixel Pitch

To reach a pixel pitch as low as 5 µm for the photodiode fabrication, we use the
passivation from process B which shows better dark current performances.
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4.2.1. Dark Current

The current noise limit of our set-up is estimated at 50 fA but the dark current from
a single small pitch diode is below this value. Thus, we probe bundles of ten-by-ten
diodes and the behaviour of one photodiode is extrapolated assuming all diodes behave
homogeneously along the bundle.

For dark current measurement, neighbouring photodiodes, as explained in the fabrica-
tion section, are biased with the same polarization as the measured diode to mimic an imager
environment. Figure 15 shows the measured dark current of more than 10 bundles of photodi-
odes (i.e., 1000 photodiodes). The median dark current is 121 fA at −0.1 V which corresponds
to a dark current density of 5 nA/cm2 at 23 ◦C. This dark current density is comparable to
the state-of-the-art to date [3]. Previous results of the 5 µm pixel pitch photodiode presented
in [38] were measured for a bundle of ten-by-ten bundle with unbiased neighbouring diodes.
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Figure 15. Dark current measurement of a ten-by-ten bundle of 5 µm pixel pitch photodiode. The
measurements are conducted at 23 ◦C.

For read-out integrated circuit concerns, we also measure the diode capacitance at
−0.1 V and the typical value is 3 fF.

4.2.2. Quantum Efficiency

The QE is an important figure of merit and quantifies the capacity of a photodiode to
convert photons into collected charges (see Equation (2)):

QE =
number o f collected charges

number o f photons sent
(2)

Finite-difference time-domain (FDTD) simulations are conducted with Lumerical
software to estimate the theorical QE of the photodiodes. The structure has a 1.5 µm
thick InGaAs layer. Based on the literature, the absorption coefficient considered here is
0.65 · 104 cm−1 [39]. Considering the layout and material configuration, the simulation
predicts an absorption as high as 77.2% for a 1.5 µm InGaAs layer (see Figure 16b). This
result estimates the internal QE as the reflection between air while InP is not considered in
the simulation.

To measure the QE, we focus all the photons from a 10 µm diameter fibre in a 5 µm
pitch ten-by-ten bundle (50 × 50 µm2 square). Photodiodes are illuminated from the back
side, i.e., from the substrate, to avoid metallic layers in the optical path. The output power
in Table 1 is measured with a power meter directly before entering the test structure. QE is
measured for different laser powers to check the stability of the measurements.
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Figure 16. (a) Schematic test structure for QE measurement; (b) the results of the 3D FDTD simulations
conducted with Lumerical to estimate the internal QE of the photodiode.

Table 1. Measured QE and extrapolated QE with an anti-reflective coating.

Output Power (µW) Photocurrent at
−0.1 V (µA) Raw QE (%)

QE with Ideal
Anti-Reflective

Coating (%)

86 55.9 53.5 75.7
97 61.3 53.2 75.3

107 69.6 55.2 78.1
117 78.1 54.6 77.2

The photocurrent is measured at−0.1 V for all output powers and the data are gathered
in Table 1. The mean raw QE is about 54.1% and is constant with the rising optical power.

However, raw QE is lower than expected (see Figure 16) because photodiodes are
measured with the InP substrate which impacts the photon transmission. The reflection
between air and InP is 27% at 1.55 µm [40]. It is thus possible to extrapolate the QE
considering the substrate removal and an ideal anti-reflective coating. In this case, the QE
is estimated to reach 76.6%.

The mean expected QE is very similar to the one estimated by FDTD simulations. The
value is consistent considering the experimental uncertainties such as alignment of the fibre
in the optical system.

The spectral response of these photodiodes is then measured by Fourier transform
infrared (FTIR) spectroscopy. The raw measurement is presented in Figure 17a. The spectral
response is null for wavelengths lower than 0.93 µm because of the absorption in the InP
substrate (EG = 1.34 eV, i.e., λc = 0.93 µm).

To obtain the QE in the SWIR range, the spectral response is adjusted based on photon
energy and a calibrated photodiode. The resulting QE curve in the SWIR range is shown in
Figure 17b. It should be noted that the decrease in QE for wavelengths below 1.2 µm may
be caused by free carrier absorption due to high N-type doping in the substrate. Further
simulations are being conducted to determine the cause of this decrease.

Typical values of the quantum efficiency are gathered in Table 2 for material comparison.

Table 2. Typical values of quantum efficiency for the main absorption materials in SWIR range.

Absorption Material Reference External QE Conditions

InGaAs This work 77% 1.55 µm
InGaAs [3] >75% 1.2 µm
InGaAs [41] >80% 1.55 µm

Quantum dots [42] 60% 1.4 µm
Ge on Si [8] 52% 1.31 µm
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Figure 17. Measurements on the ten-by-ten bundle of photodiodes. (a) is the raw spectral response
measured at −0.1 V and at room temperature; (b), QE in the SWIR range with the InP substrate (dark
blue) and without the substrate and considering an ideal anti-reflective coating (dashed pink).

4.2.3. Sensor Spectral Noise under Illumination

Current noise measurements were performed on several bundles under illumination.
The test bench performs a time measurement of the current and the result is displayed in
Figure 18 as a spectral current noise after applying a Fourier transform function.
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Figure 18. Current noise for a ten-by-ten 5 µm pixel pitch photodiode bundle measured at −0.1 V.

The measured photodiode bundles on Figure 18 are limited by Schottky noise and do not
show any 1/f trend noise at low frequency. This result confirms that the electrostatic barrier
introduced by the InP cap layer along the collection path does not impact the carrier transport.

4.3. Towards Smaller Pixel Pitch: 3 µm Pixel Pitch Shallow-Mesa Photodiodes

To demonstrate that this innovative architecture is adapted for the fabrication of pixel
pitch below 5 µm, we fabricated 3 µm pitch photodiodes.

The measurements of the dark current and photocurrent on bundles of ten-by-ten
3 µm pixel pitch photodiodes are presented in Figure 19. The collection of the photons is
achieved at 0 V, indicating that there is no electrostatic barrier for the carriers generated in
the InGaAs layer. The median dark current value is 0.28 pA at −0.1 V, which corresponds
to a current density of 30 nA/cm2.

The successful 3 µm pixel pitch photodiode fabrication is demonstrated in Figure 19.
The dark current density is higher than for larger pitches but the critical dimensions are
close to our lithography tool limit. For such small pitch, actual process variations play an
important role in the dark current performances. This architecture is promising for pitch
reduction as we are now targeting adaptation of the process with up-to-date large format
Si tools. The dark current density is constant with pixel pitch reduction from 15 µm to
5 µm indicating the absence of surface leakage between pixels. The measured dark cur-
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rent increases for 3 µm pixel pitch, probably due to lithography issues leading to elec-
trical crosstalk between neighbouring pixels. In order to decrease the dark current, we
are currently adapting the process to a CMOS compatible fab to access a more resolved
scanner tool.
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5. Discussion

We benchmarked our architecture with state-of-the-art data of InGaAs photodiodes
with small pitch and low dark current (see Figure 20) from the literature.

Our innovative structure shows major improvement compared to the mesa-type
architecture published to date [18,26,43].

Zn diffused diodes in orange make up the standard industrial process for InGaAs
photodiode fabrication and ref. [3] reports a dark current of 2 nA/cm2 for a 5 µm pixel
pitch. From 10 to 5 µm pixel pitch, our diodes in blue show a flat dark current density
of about 6 nA/cm2. The impact of charges in the dielectric or traps at the dielectric/cap
interface could have a great impact on the dark current and is a clear way to improve the
dark current density of these small pitch photodiodes.

The measurement for 3 µm pixel pitch is the first published for such a small pitch, and
we obtain a dark current density as low as 30 nA/cm2. This slight increase in dark current
density when the pitch reduces from 5 to 3 µm is under investigation and might be due to
process imperfections as the critical dimensions are close to the tool limit.
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Figure 20. Comparison of our work in blue versus the state of the art for the fabrication of In-
GaAs photodiodes. Associated articles and measurement conditions if given: [a] 23 ◦C @−0.1 V
article: [3]—[b] 30 ◦C @−0.2 V article: [4]—[c] 22 ◦C @−0.1 V article: [6]—[d] 20 ◦C article: [5]—[e] 20 ◦C
article: [41]—[f] 30 ◦C article: [44]—[g] 25 ◦C article: [45]—[h] 25 ◦C @−0.3 V article: [15].



Sensors 2023, 23, 9219 14 of 16

As the pixel pitch reduces, crosstalk between pixels becomes a major concern. The
typical diffusion length in such devices could reach tens of µm [46]. MFT measurements were
performed on 15 and 10 µm pitches leading to suitable values [47]. Further investigations will
be required to assess the impact of the crosstalk in our photodiodes with such small pitches.

6. Conclusions

With our innovative shallow mesa-type architecture, we demonstrated InGaAs photo-
diodes with promising results. We reached dark current as low as 5 nA/cm2 at −0.1 V and
at room temperature for 5 µm pixel pitch. The measured external QE is 54% with the InP
substrate and no anti-reflective coating. This value is expected to reach 76% with optimized
anti-reflective coating and substrate removal. For lower pitch down to 3 µm, we successfully
demonstrated the operation of photodiodes, even if the dark current density increases to
30 nA/cm2. Many improvement paths have been identified to reduce it. Future investigations
with simulations and capacitive measurements will continue to quantify the impact of the
charge in the dielectric and along the interface with the top layer. This promising architecture
is now under study to be integrated as an imager with a Si-CMOS tools compatible process
and hybridized on a Si-ROIC.
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