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Symmetries and tunability are of fundamental importance in wave scattering control, but

symmetries are often obvious upon visual inspection which constitutes a significant vulnera-

bility of metamaterial wave devices to reverse-engineering risks. Here, it is theoretically and

experimentally shown that a symmetry in the reduced basis of the “primary meta-atoms”

that are directly connected to the outside world is sufficient; meanwhile, a suitable topology

of non-local interactions between them, mediated by the internal “secondary” meta-atoms,

can hide the symmetry from sight in the canonical basis. Covert symmetry-based scat-

tering control in a cable-network metamaterial featuring a hidden parity (P) symmetry in

combination with hidden-P-symmetry-preserving and hidden-P-symmetry-breaking tuning

mechanisms is experimentally demonstrated. Physical-layer security in wired communica-

tions is achieved, using the domain-wise hidden P-symmetry as shared secret between the

sender and the legitimate receiver. Within the approximation of negligible absorption, the

first tuning of a complex scattering metamaterial without mirror symmetry to feature ex-

ceptional points (EPs) of PT -symmetric reflectionless states, as well as quasi-bound states

in the continuum, is reported. These results are reproduced in metamaterials involving non-

reciprocal interactions between meta-atoms, including the first observation of reflectionless

EPs in a non-reciprocal system.

Keywords: Hidden Symmetry, Programmable Metamaterial, Physical Layer Secu-

rity, Reverse-Engineering Resilience, Reflectionless Exceptional Point, Non-Locality, Non-

Reciprocity

1

mailto:philipp.del-hougne@univ-rennes1.fr


I. INTRODUCTION

The scattering characteristics of a metamaterial are defined by the properties of its con-

stituent meta-atoms as well as how the latter are coupled with each other and how they

are coupled to the asymptotic scattering channels. Often, only a subset of all meta-atoms

is directly coupled to the asymptotic scattering channels. These “primary” meta-atoms can

be conceptually distinguished from the remaining “secondary” meta-atoms, since the latter

can be equivalently treated as additional non-local interactions between the primary meta-

atoms. An important design consideration for a metamaterial, in addition to its ultimate

scattering properties and hence functionalities, may be the extent to which the latter can

be deduced upon visual inspection of its meta-atoms in the canonical (standard) representa-

tion, for instance, if reverse engineering is a concern. Of particular vulnerability are devices

based on parity (P) and related symmetries. A solution may lie in the degrees of freedom

offered by the secondary meta-atoms: whereas a representation of the metamaterial reduced

to the primary meta-atoms would reveal the P symmetry, the P symmetry can be (although

usually it is not) absent in the canonical representation. In this Article, we experimentally

demonstrate covert scattering control in cable-network metamaterials featuring (i) a hidden

P symmetry covertly encoded into the topology of the secondary meta-atoms, as well as (ii)

hidden-P-symmetry-preserving (and hidden-P-symmetry-breaking) tunability. Specifically,

we leverage the absence of mirror symmetries to present a scheme for physically secure wired

communications and we observe reflectionless exceptional points (EPs) despite the absence

of simple mirror symmetries. Moreover, we show that such covert scattering control is also

feasible in the case of non-reciprocal interactions between the meta-atoms.

Non-locality refers to the fact that the response of a meta-atom is not exclusively deter-

mined by its local properties but also by its interactions with distant (“non-local”) meta-

atoms. Non-locality is the norm rather than an exception in electromagnetism, and more

generally wave engineering, but it was often neglected or treated as a nuisance. More re-

cently, however, non-local interactions between meta-atoms have been embraced to tailor

the dispersion relations of diverse metamaterial platforms [1–4] and to achieve new func-

tionalities for applications including analog signal processing [5–8], space compression [9–11]

and the multi-functionality of metasurfaces [12–14]. Usually, non-locality is discussed in

the canonical basis, e.g., in terms of direct interactions of far-apart meta-atoms. For in-
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stance, Ref. [4] considered a 1D chain of meta-atoms and referred to direct interactions

between spatially-nearest neighbors as “local” and direct interactions between beyond-

spatially-nearest neighbors as “non-local”. However, as stated above and as we will develop

in the present paper, the role of the secondary meta-atoms (the ones not directly connected

to any asymptotic scattering channel) and their direct interactions among each other and

with the primary meta-atoms can be understood as direct non-local interactions between

the primary meta-atoms. This representation of the metamaterial in a basis reduced to the

primary meta-atoms is fully equivalent to the conventional representation in the canonical

basis.

Typically, a P symmetry of the metamaterial is apparent in the canonical basis and hence

also in the reduced basis of primary meta-atoms. However, it is also possible that there is

no P symmetry in the canonical basis but that there is one in the reduced basis of primary

meta-atoms. Examples of “hidden” symmetries have been discovered in various electronic

(or tight-binding) structures where they can give rise to “non-accidental” degeneracies [15–

19]. However, symmetries (often in combination with tuning) also play a pivotal role in wave

scattering control, and being able to hide them from sight by covertly encoding them into

complex coupling mechanisms between the meta-atoms may protect wave devices against

reverse engineering and offer a route toward physical-layer secure communications.

As an example of the role of symmetries in wave scattering control, let us consider the

long-standing problem of reflectionless excitation of a scattering system. Wave devices with

signal routing functionalities such as mode sorters and demultiplexers are deployed in larger

nanophotonic or radio-frequency networks used to transfer information or energy. Being

able to couple waves into such wave devices without any reflection not only prevents a loss

of signal power, but more importantly avoids that reflected-power echoes within the network

imperil non-linear components like lasers or power amplifiers. The reflectionless excitation of

a generic arbitrarily complex scattering system through a subset of the connected asymptotic

scattering channels is possible whenever the corresponding filtered version of its scattering

matrix has a zero eigenvalue [20]. In general, the continuous tunability of a system parameter

is necessary to meet this condition [20], and if additional constraints on the specific frequency

or routing functionalities exist, more tunable degrees of freedom are needed [7, 8, 21]. If,

however, the system has a parity-time (PT ) symmetry, then the system’s scattering matrix

is guaranteed to have zero eigenvalues at some frequencies without any tuning [20, 22–25].
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Moreover, a single symmetry-preserving continuous tuning parameter is sufficient in that

case to achieve the coalescence of two zero eigenvalues and their eigenvectors, giving rise to

a reflectionless EP with broader lineshape. The easy access to reflectionless EPs [20, 26–

30], which are distinct from resonant and scattering EPs, is important for broadening the

bandwidth of (almost perfect) reflection suppression as well as for analog higher-order signal

differentiation [7, 30]. Furthermore, the extreme sensitivity of EPs to detuning may also be

the basis of new sensor concepts. Given a metamaterial with hidden P symmetry where

absorption (and hence the ensuing T symmetry breaking) is sufficiently small, one can

covertly implement the described PT -symmetry-based scattering control.

In this paper, building on recent theoretical work [31, 32], we develop a scattering theory

of hidden P symmetries in generic arbitrarily complex wave systems. Then, for our exper-

iments, we focus on cable-network metamaterials [4] which are transmission-line networks

also known as “quantum graphs” [33–35]. Therein, the junctions (vertices) are non-resonant

meta-atoms and the cables (bonds) are the direct interactions between the meta-atoms. Vari-

ous kinds of waveguide networks were recently also explored in contexts such as nanophotonic

lasing [36], non-Abelian topological charges, edge states and braiding [37, 38] or topology-

protected wave devices [39]. The reconfigurable “plug-and-play” nature of cable-network

metamaterials makes them an ideal platform to prototype covert scattering control, and,

moreover, they are of direct relevance to wireline communications networks. Besides the

hidden P symmetry, our covert scattering control requires tuning mechanisms, one that

breaks and one that preserves the hidden P symmetry. Based on these tools, first, we

demonstrate a scheme for physical-layer secure wireline communications in which the hid-

den P symmetry constitutes an advantage for the legitimate receiver over the eavesdropper.

Then, second, within the approximation of negligible absorption, we access the regime of PT

symmetry and demonstrate the tuning to reflectionless EPs in metamaterials without mir-

ror symmetry. We also observe quasi-bound states in the continuum (qBICs) [40]. Finally,

we extend this covert scattering control to metamaterials with non-reciprocal interactions

between meta-atoms, and we observe reflectionless EPs in a non-reciprocal system for the

first time.
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II. GENERALITIES

To start, we establish the theoretical foundation of the intuitive understanding of hid-

den P symmetry in non-local metamaterials outlined in the introduction. Earlier work

studied hidden P symmetry in quantum graphs [31, 32], and has some overlap with this

section, although we present a more general formulation that clarifies the importance of

the coupling between the primary meta-atoms and the asymptotic scattering channels; our

formulation also reveals the generality of the theory, with obvious extensions to other wave

systems described by representations such as the discrete-dipole approximation [41], tem-

poral coupled-mode theory [42] and, most generally, Weidenmüller’s generalization of Breit-

Wigner theory [43].

A. Wave-Operator Representation of the Scattering Matrix

Throughout this paper, we work in the time-harmonic regime. For any finite arbitrary

linear scattering system connected to m (mutually orthogonal) asymptotic scattering chan-

nels, the scattering matrix S ∈ Cm×m can be approximately formulated in a microscopic

sense as [20, 44–46] (see also Remark 1 in Supplementary Note I)

S = I− 2iW† 1

H+ iWW†W, (1)

where H = A0−∆. A0 ∈ Cn×n is the wave operator in the closed system, where we assume

a sufficiently high-resolution discretization of Maxwell’s equations into n voxels. W ∈ Cn×m

is the matrix describing the coupling between each voxel and each asymptotic scattering

channel. ∆ is the principal value of
∫
dω′WW†

ω′−ω
. All involved matrices except I depend

in general on the angular frequency ω but we do not explicitly print this dependence for

conciseness. The terms ∆ and −iWW† are the Hermitian and anti-Hermitian parts of the

self-energy that originates from the boundary between the finite closed system and the exte-

rior asymptotic region, and they describe, respectively, frequency shifts and damping terms

that arise due to coupling the closed system to the outside world’s continuum. The formu-

lation in Eq. (1) originates from nuclear scattering theory [43, 47] and does not constitute

an exact computational method for scattering calculations [48].

While the theory presented in Sec. II B and Sec. II C applies to any generic wave system
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described by Eq. (1), the subsequent experiments presented in the current paper are based

specifically on cable-network metamaterials. Although, of course, the general formulation in

the microscopic sense from Eq. (1) applies, it is more convenient to consider an analogous

macroscopic formulation. Therein, each junction is a (non-resonant) meta-atom that plays

the role of a voxel in the microscopic formulation, and it is similarly directly coupled to each

of its closest neighbors, in the macroscopic case via cables. Our cable-network metamaterials

are also known as Neumann quantum graphs, and Refs. [34, 49, 50] derived a macroscopic

formulation that takes exactly the form of Eq. (1). In this specific case, the formulation

from Eq. (1) constitutes an exact expression without any truncations that can be used

for computational scattering calculations [34]. Therein, under the assumption that each

asymptotic scattering channel is non-dispersively coupled to exactly one meta-atom,

Hi,j =

−
∑

l ̸=iCi,l cot(kLi,l) if i = j.

Ci,j exp(−iAi,jLi,j) csc(kLi,j) otherwise.
(2)

Here, Ci,j is unity if the ith and jth meta-atoms are directly connected, and zero otherwise.

Li,j is the length of the cable connecting the ith and jth meta-atoms, and Ai,j is a magnetic

vector potential acting on that bond (if there is no magnetic vector potential, Ai,j = 0).

k is the wavenumber. The diagonal and off-diagonal entries of H are also referred to as

self-interaction or on-site potential and hopping, respectively. The (i, j)th entry of W is

unity if the ith meta-atom is connected to the jth asymptotic scattering channel, and zero

otherwise.

So far, we describe the wave operator in the canonical representation. This representation

has an obvious interpretation as a graph. For the case of our cable-network metamaterial,

this interpretation is already cemented into the frequently used alternative term “quantum

graph”, but this graph interpretation applies to wave systems in general. For instance,

recently, it has been discussed more explicitly in the case of coupled-dipole systems [51,

52]. In the following Sec. II B, we discuss P symmetry in this canonical representation.

Meanwhile, it is important to note that other equivalent representations exist. For instance,

one could change to the modal basis (we refer the interested reader to Ref. [48] where

a rigorous ab initio quasinormal coupled mode theory is derived). A representation of

importance for the present paper is one that is reduced to the primary meta-atoms. In

Sec. II C, we derive such a representation in order to discuss how P symmetry can be
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covertly encoded into the topology of the secondary meta-atoms.

B. P-Symmetry in the Canonical Representation

P symmetry of the wave operator in the canonical basis, e.g., a mirror-symmetry, is

not a sufficient condition to guarantee P symmetry of the scattering matrix. It is further

required that the way in which the wave operator is coupled to the asymptotic scattering

channels preserves the wave operator’s P symmetry. This implies the need for a bisected

partition of the channels, the most natural one being a division into “left” and “right” [20].

More rigorously, we can formulate these two conditions as follows: if P̂nA0 = A0P̂n and

WP̂m = P̂nW, then P̂mS = SP̂m (see Supplementary Note II). Note that these conditions

are compatible with P-symmetry-preserving absorption mechanisms such as homogeneous

absorption.

Given that A0 commutes with P̂n, the eigenstates of the closed system must also be

eigenstates of P̂n and as such have definite parity. In the case of a spatial mirror symmetry,

this means that the value of an eigenstate ϕ at a position r is ±1 times the value of the same

eigenstate at the mirror-symmetric positionR(r): ϕ(R(r)) = ±ϕ(r). For a mirror-symmetric

system with m = 2 (one “left” and one “right” channel), it follows that S11(ω0) = S22(ω0)

(which we refer to as “equi-reflection” property) and S21(ω0) = S12(ω0) (which is known as

reciprocity).

C. P-Symmetry in the Reduced Basis of Primary Meta-Atoms

Now, let us consider the scenario in which a subset S̄ of v < n voxels or meta-atoms

are not directly coupled to any asymptotic scattering channel. In our terminology, the

metamaterial then contains n− v primary and v secondary meta-atoms. We can then write

A0 and W in block form:

A0 =

A0,SS A0,SS̄

A0,S̄S A0,S̄S̄

 (3a)

W =

WS

0

 (3b)
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where A0,SS ∈ C(n−v)×(n−v), A0,SS̄ ∈ C(n−v)×v, A0,S̄S ∈ Cv×(n−v), A0,S̄S̄ ∈ Cv×v, WS ∈

C(n−v)×m, and 0 is of dimensions v ×m. Then,

H+ iWW† = G =

GSS GSS̄

GS̄S GS̄S̄

 =

A0,SS A0,SS̄

A0,S̄S A0,S̄S̄

−

∆SS 0

0 0

− i

WSWS
† 0

0 0

 ,

(4)

where ∆SS is the principal value of
∫
dω′WSWS

†

ω′−ω
. Now, to obtain S we must invert the 2×2

block matrix G. Given Eq. (3b), only the top left block of G−1 matters and we obtain

S = I− 2iWS
† 1

GSS −GSS̄GS̄S̄
−1GS̄S

WS = I− 2iWS
† 1

Ã0 − (∆SS − iWSWS
†)
WS , (5)

where we have defined an effective wave operator

Ã0 = A0,SS −A0,SS̄A0,S̄S̄
−1A0,S̄S . (6)

Physically, as illustrated in Figure 1, an equivalent description of our system consists hence

in interpreting only the subset S of voxels as our system’s internal scattering entities, and

the remaining subset S̄ of voxels as complicated additional coupling mechanisms between

the scattering entities included in S. In other words, for our macroscopic description of

the cable-network metamaterial, an equivalent description of the system is possible in the

reduced representation of the primary meta-atoms wherein the secondary meta-atoms are

treated as additional coupling mechanisms between the primary meta-atoms. Similar calcu-

lations of effective wave operators like Eq. (6) were also presented within the more limited

scopes of tight-binding network engineering [53] and isospectral graph reduction [54], how-

ever, without the complete scattering calculation from Eq. (5). In parallel with the present

work, the reduced-basis representation is now also emerging to efficiently model massively

parametrized complex scattering systems such as “smart” radio environments [55, 56].

Analogous to Sec. II B, we conclude that if P̂n−vÃ0 = Ã0P̂n−v and WSP̂m = P̂n−vWS ,

then P̂mS = SP̂m. These conditions are compatible with absorption mechanisms that

preserve the effective wave operator’s parity, for instance, homogeneous absorption. Unlike

Sec. II B, in which the parity of the wave operator was domain-wise (excluding the trivial

case of a mirror-symmetric point), here the parity is restricted to the subset S which may
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FIG. 1. General Principle of Reduced-Basis Representations and Hidden P Symme-

try. (a) Conceptual sketch of a generic example scattering problem involving three asymptotic

scattering channels and 12 meta-atoms. The ith meta-atom has a self-interaction αi and a recip-

rocal interaction hi,j with its direct neighbors. The ith asymptotic scattering channel is coupled

to the jth meta-atom with a complex-valued weight wi,j (only non-zero weights are shown). Pri-

mary meta-atoms have direct contact with one or more asymptotic scattering channel(s) and are

highlighted in red. Lines in this figure symbolically represent direct coupling. In the case of a

cable-network metamaterial, direct coupling is implemented via cables that look “line-like” and

the asymptotic scattering channels are monomodal waveguides. In general, however, the coupling

mechanisms can be more complex. For instance, if a shaped wavefront illuminates a nanopho-

tonic structure, the free-space asymptotic scattering channel couples with different complex-valued

weights to multiple internal scattering entities depending on how the wavefront pattern overlaps

with them. (b) Equivalent representation of the metamaterial from (a) in the reduced basis of

primary meta-atoms. Here, the ith primary meta-atom has a self-interaction α̃i and has an in-

teraction h̃i,j with the jth primary meta-atom. (c,d) Example of a metamaterial with a hidden

P symmetry that is absent in the canonical basis (c) but evident in the reduced basis of primary

meta-atoms (d).
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be point-wise, for instance, in the most extreme case of n−v = m = 2. Given a system with

hidden P symmetry, it is always possible to extend the domain defined by S by symmetrically

coupling additional clusters of meta-atoms to the primary meta-atoms. It also follows that

the eigenstates of Ã0 must have definite parity. In other words, the eigenstates of A0 have

definite parity, but only within the subset S of the system’s internal scattering entities.

In Supplementary Note VI, we report experimental measurements to confirm this definite

parity of the eigenmodes.

The conditions P̂n−vÃ0 = Ã0P̂n−v and WSP̂m = P̂n−vWS can be satisfied by scattering

systems that do not satisfy P̂nA0 = A0P̂n and WP̂m = P̂nW. For instance, Refs. [31, 32]

theoretically identified concrete examples thereof for the case of m = n − v = 2 and all

bonds being reciprocal. In these examples, of which one is provided in Figure 1(c,d), all

meta-atoms are non-resonant and all pairs of directly connected meta-atoms have the same

interaction h. Then, the reduced representation turns out to satisfy the first condition

P̂n−vÃ0 = Ã0P̂n−v. Moreover, the second condition WP̂m = P̂nW is trivially satisfied

because any given primary meta-atom is (non-dispersively) directly coupled to exactly one

asymptotic scattering channel.

Although the metamaterial with hidden symmetry shown in Figure 1(c,d) happens to

be described by a planar graph, this detail plays no role in the described general theory of

hidden P symmetry in non-local metamaterials, and examples of non-planar metamaterials

with hidden P symmetry exist. Similarly, the use of non-resonant meta-atoms is not a

prerequisite for the existence of a hidden P symmetry. The use of resonant meta-atoms

would alter the diagonal entries of the wave operator. For instance, if the primary meta-

atoms in the specific example from Figure 1(c,d) were replaced by identical resonant meta-

atoms, the hidden symmetry would remain intact. However, other modifications regarding

resonant meta-atoms could break the hidden symmetry in this specific example.

In this section, we have established the conditions under which a non-local metamaterial

can feature a hidden P symmetry, i.e., a P symmetry that is only apparent in the reduced

basis of primary meta-atoms but not in the canonical basis because the symmetry is covertly

encoded in the non-local coupling between the primary meta-atoms that is mediated by the

secondary meta-atoms. Both the internal composition of the metamaterial and the latter’s

coupling to the asymptotic scattering channels must satisfy specific conditions.
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III. APPLICATION TO PHYSICAL-LAYER SECURE COMMUNICATIONS

As a first example of the technological relevance of the intriguing concept of hidden P

symmetry, we demonstrate in this section that covert scattering control, built off a hidden

P symmetry, is ideally suited to establish physical-layer secure wireline communications.

For concreteness, let us consider the metamaterial with hidden P symmetry from Fig-

ure 1(c) that is connected to m = 2 asymptotic scattering channels. In a simple commu-

nication protocol leveraging the hidden P symmetry, the sender (Alice) could encode the

confidential data stream in an on-off-keying (OOK) manner by using a hidden-P-symmetry-

breaking tuning mechanism (e.g., a switch that alters the topology of the secondary meta-

atoms – see Figure 2(b) and Supplementary Note IV), and the legitimate receiver (Bob)

would decode the information by checking if he observes the same reflection coefficient on

ports 1 and 2. This is a so-called backscatter-communication scheme because Alice modu-

lates a wave generated by Bob; backscatter-communication schemes are increasingly pop-

ular in wireless communications [57–59] but in the present work we are concerned with a

backscatter-communication scheme for wireline networks. We will further assume that the

eavesdropper Eve cannot access the subdomain S of the metamaterial, such that she can

never check the parity therein. Moreover, Eve cannot make any invasive measurements by

strongly coupling additional asymptotic scattering channels to the subdomain S̄ because

the resulting perturbation of the metamaterial would destroy the hidden P symmetry in the

subdomain S, such that Bob would immediately detect the presence of Eve. Hence, Eve can

only non-invasively monitor the magnitudes of the fields transmitted from ports 1 and 2 to

her port 3 that she can couple very weakly (non-invasively) to some part of the subdomain

S̄. Whereas Bob can measure the complex-valued reflection coefficients S11 and S22, Eve

can only measure the magnitudes of the fields transmitted from Bob’s ports to hers, because

she does not know what signal Bob uses to probe his reflection coefficients and she lacks

synchronization with Bob’s source. Assuming Bob always uses the same probe signal, Eve’s

measurements will be proportional to |S31| and |S32|. Given the weak coupling of Eve’s port

3 to the metamaterial, besides being the only one who can check whether the metamaterial

has a hidden P symmetry, Bob will have a strong signal-to-noise ratio (SNR) advantage

over Eve. However, we will focus on the former in the following by assuming very low noise

levels for both Bob and Eve.
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FIG. 2. Physical-Layer Secure Communication Built Off Hidden P Symmetry. (a) Wire-

line network with hidden P symmetry of its primary (red) meta-atoms. (b) Addition of hidden-P-

symmetry-preserving tuning mechanism (Bob’s phase shifter ϕi) and hidden-P-symmetry-breaking

tuning mechanism (Alice’s switch bi) to the network from (a). In addition, Eve non-invasively wire-
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FIG. 2. [CONTINUED] taps the network. (c) Photographic image of the setup described in (b).

(d) Physical-layer secure communications protocol. (e) Measured reflection (Bob) and transmission

(Eve) magnitude spectra for different settings of the tuning mechanisms ϕi and bi. (f) Example

of Alice’s bit stream bi, Bob’s choices of ϕi and fi, Bob’s measurements of Si
11(fi) and Si

22(fi)

(only magnitude is shown), the difference ∆BOB
i between Bob’s measurements to decide if there

is a hidden P symmetry, and Eve’s measurements (proportional to) |Si
31(fi)| and |Si

32(fi)|. (g)

Secure transfer of a photographic image of a Dahlia ‘Bantling’ flower taken in Rennes, France. Eve

cannot decode the image using Bob’s decoder (A), a K-means algorithm (B), or an autoencoder

algorithm (C).

Nonetheless, the scheme outlined so far is not yet secure. Eve is not given a chance

to check if there is a hidden P symmetry in the subdomain S, but she can notice that

her measurements only alternate between two possible pairs of spectra: {|SP
31(f)|, |SP

32(f)|}

and {|SP̄
31(f)|, |SP̄

32(f)|} (up to a proportionality constant depending on Bob’s probe signal).

With sufficient dynamic range, Eve could easily distinguish these two cases and decode the

OOK of Alice’s confidential message. To close this loophole, Bob can deploy a hidden-P-

symmetry-preserving tuning mechanism. While the setting of the latter will not affect the

presence or absence of the hidden P symmetry in the subdomain S, it will confuse Eve.

Specifically, Eve will be confronted with a new pair of transmission spectra for every symbol

and can no longer decode the OOK because she cannot distinguish whether a change in

her pair of measured transmission spectra originates from Alice’s hidden-P-breaking tuning

that encodes the confidential information or Bob’s hidden-P-preserving tuning that merely

serves to confuse Eve. To implement a hidden-P-preserving tuning mechanism, Bob can

simply connect a programmable phase shifter symmetrically to ports 1 and 2, as shown in

Figure 2(b).

The final secure communication protocol is summarized in Figure 2(d). Example mea-

surements of Bob’s reflection spectra and Eve’s transmission spectra for different settings of

Alice’s hidden-P-breaking tuning mechanism (denoted by bi because it encodes the confi-

dential data steam) and Bob’s hidden-P-preserving tuning mechanism (denoted by ϕi) are

shown in Figure 2(e). The presence or absence of hidden P symmetry is directly obvious

on Bob’s data, irrespective of ϕi. In contrast, Eve’s data slightly varies with both bi and
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ϕi. We further illustrate this in Figure 2(f) for an example bit stream. For each symbol,

Bob randomly picks a value for ϕi as well as the frequency fi at which he probes his two

reflection coefficients. By comparing ∆BOB
i = |Si

11(fi)−Si
22(fi)| to a decision threshold, Bob

easily decodes Alice’s message. In contrast, Eve’s measured data has no apparent relation

to Alice’s message. Even if Eve knows the principle of this physical-layer secure communi-

cation scheme and tries to transpose Bob’s decoding scheme to her own data, she cannot

decode Alice’s message because the magnitudes of the fields transmitted from ports 1 and

2 to port 3 are in general not equal even if there is a hidden P symmetry in S. Eve could

also attempt to use other decoders like a K-means or autoencoder clustering algorithm to

somehow group her received data into “0” and “1” symbols (see Supplemenary Note VI

for details). However, as we illustrate for the transfer of an image in Figure 2(d), none of

these techniques is successful. Meanwhile, Bob receives an almost flawless copy of the Al-

ice’s original image. The few imperfections arise when Bob chooses a frequency fi for which

the difference between two reflection coefficients is accidentally small (below the decision

threshold) in the case of no hidden P symmetry. The bit error rate (BER) is 0.0284.

The presented scheme can be altered to accommodate different prioritizations of relevant

metrics like security, modulation rate, and BER. For instance, by increasing the number of

utilized frequencies per symbol, the BER can be reduced at the cost of a lower modulation

rate. A theoretical upper bound on the modulation rate is imposed by the decay constant

of Bob’s reflection coefficient because inter-symbol interference can severely deteriorate the

BER if the modulation rate is too high. Based on the time-domain reflection coefficients

of Bob’s ports, we estimated the decay constant of the channel in our metamaterial to be

τ = 28.6 ns (corresponding to a composite quality factor of Q = 89.9 for our metamaterial).

Therefore, on-off-keying with modulation rates up to 35 MHz should be possible without

significant inter-symbol interference in our experiment. In practice, the modulation rate in

backscatter schemes is often limited by the rates at which the switch can be operated [59].

The complexity and size of the metamaterial with hidden P symmetry, as well as the

number of legitimate receivers, can be scaled up by suitably combining metamaterials with

hidden P symmetry [60]. Ultimately, the physical-layer security originates from an advantage

(built upon the hidden P symmetry) for the legitimate receiver over the eavesdropper [61–

64]. Unlike Ref. [21], in which Alice required a multitude of programmable meta-atoms to

achieve wireless physical-layer secure communication based on imposing (or not) a perfect-
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absorption condition on Bob’s port, in the present work Alice only requires a single hidden-P-

symmetry breaking tuning knob thanks to the broadband nature of the hidden P symmetry.

IV. REFLECTIONLESS EXCEPTIONAL POINTS WITHOUT MIRROR SYM-

METRY

Let us now consider the approximation of negligible absorption in the tunable scatter-

ing system with hidden P symmetry from the previous section. Then, the system also has

a hidden PT symmetry, enabling the covert implementation of the PT -symmetry-based

wave control discussed in the introduction. In this section, we demonstrate such use of a

hidden PT symmetry in combination with a hidden-PT -symmetry-preserving tuning mech-

anism to implement reverse-engineering-resilient access to reflectionless EPs, as well as

quasi bound states in the continuum. As we explain below, the measurable absorption in

our experimental system breaks exact PT symmetry such that we can only observe these

features approximately, but future implementations of our work with standard complemen-

tary metal–oxide–semiconductor (CMOS) technology can readily compensate the attenua-

tion with suitable gain mechanisms [65]. Alternatively, complex-frequency excitations can

provide “virtual” gain in a passive system like ours [66].

Our starting point is the setup with hidden symmetry from Figure 2(c) and its symmetry-

preserving tuning (we do not need the symmetry-breaking tuning nor the non-invasive third

port in this section). Since the computer-controlled phase shifter in Figure 2(c) strongly

attenuates the waves, we replace it with a manual mechanical phase shifter in this section

whose attenuation is comparable to that of the coaxial cables. We now continuously tune

the perturbation strength and measure the corresponding S11 spectrum for each perturba-

tion strength, yielding the perturbation-frequency map displayed in Figure 3(a). Despite

the limited range of experimentally accessible perturbation strengths, it is apparent that,

as expected, the observed patterns in Figure 3(a) repeat as the frequency increases. For

instance, the pattern from the frequency interval around 980 MHz highlighted by red bars

that we will focus on in the following is seen again in the vicinity of 1320 MHz. The selected

interval displays two instances in which two troughs of the |S11| map cross at specific values

of perturbation strength, hinting at the (approximate) existence of reflectionless EPs.

To confirm the existence of reflectionless EPs, we extract the location of poles and zeros
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FIG. 3. Reflectionless Exceptional Points without Mirror Symmetry. (a) Experimentally

measured perturbation-frequency map of |S11|. The setup is that from Figure 2(c) except that a

manual rather than a computer-programmable phase shifter is used because of its lower attenuation,

and there is no non-invasive third port. (b) For three selected perturbation strengths and the

frequency interval highlighted by red bars in (a), the location of poles (+, blue) and zeros (x, red)
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FIG. 3. [CONTINUED] of S11 are shown in the complex frequency plane. The two zeros of interest

are highlighted in yellow. The poles’ and zeros’ trajectories upon continuous tuning are dotted

and the color coding indicates the perturbation strength (light=low, dark=high). PT symmetry

would constrain the zeros to move along the real frequency axis upon tuning until they meet

(giving rise to a reflectionless EP) and subsequently become a complex-conjugate pair of zeros.

In our displayed experimental observation of these three cases, everything is shifted down in the

complex frequency plane due to the finite amount of absorption. (c) Analytical calculations of

the perturbation-frequency map of |S11| over a wider range of perturbation strengths for the same

setup without (c1) and with realistic (c2) absorption. The corresponding motion of poles and zeros

is shown in (c3) and (c4) using the same color codes as in (b). For three selected perturbation

strengths of particular interest, the corresponding |S11| spectra for the case without absorption are

shown in (c5,c6,c7), featuring various reflectionless (RL) states and RL EP states. Moreover, in

(c7) the system features a bound state in the continuum (BIC) which does not have any scattering

signature; hence, the spectrum is also plotted for a slightly different perturbation strength, clearly

showing the corresponding quasi-BIC (qBIC).

of S11 in the complex frequency plane. Poles and zeros correspond, respectively, to solutions

of the wave equation with purely outgoing and incoming boundary conditions for the chan-

nel of interest (and purely outgoing boundary conditions for the remaining other channel).

Following standard practice in electronics and system control, we factorize our continuous-

time transfer function S11 in order to cast it as the ratio of two polynomials of the complex

frequency variable [67]. While this pole-zero factorization yields accurate results for our

continuous-time analysis, it remains an approximation and for other wave engineering prob-

lems, in particular optical scattering problems, oftentimes more general formulations are

needed to accurately describe the considered systems [48, 68–70].

In passive systems without gain, poles are constrained to the lower half plane; the lo-

cations of zeros have no such constraint, and when a zero lies on the real frequency axis,

reflectionless steady-state excitation of the system is possible at the corresponding real fre-

quency. Under exact PT symmetry, the zeros of S11 would be constrained to always lie on

the real frequency axis, unless upon PT -symmetry-preserving tuning a pair of zeros met on

the real frequency axis (forming a reflectionless EP) and upon further tuning left the real
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frequency axis as complex-conjugate pair [20, 30]. Although absorption breaks exact PT

symmetry in our experiment, the level of absorption is sufficiently small such that the results

from the case with exact PT symmetry can still be approximately observed. In Figure 3(b1),

we observe that the zeros of interest (highlighted in yellow) occur at complex frequencies

with a negative imaginary part, i.e., they are firmly (but not strictly) constrained to moving

along a horizontal line below the real frequency axis. Upon symmetry-preserving tuning,

the two zeros almost meet on this horizontal line in Figure 3(b2). However, since they are

not strictly confined to this line, they avoid crossing (see also Remark 3 in Supplementary

Note I), and subsequently move (almost) vertically away from the line in opposite directions,

eventually becoming an almost conjugate pair in Figure 3(b3). In the limit of zero absorp-

tion, the avoided crossing becomes the reflectionless EP described above and happens on the

real frequency axis, making it accessible under steady-state excitation. Using the hidden PT

symmetry, it is hence possible to conceive wave devices with functionalities such as broad-

ened near-reflectionless excitation and higher-order signal differentiation without apparent

mirror symmetry, endowing such wave devices with resilience against reverse-engineering

threats.

Since we study a complex scattering system, as opposed to a simple Fabry-Perot-like sys-

tem, other scattering singularities (zeros and poles) are present in the vicinity of our zeros of

interest, as clearly seen in Figure 3(b). Since our zeros of interest are not strictly constrained

to the horizontal line below the real frequency axis, interactions with other scattering sin-

gularities can slightly displace them from said horizontal line. Moreover, the lineshape of

|S11| cannot be clearly analyzed due to the influence of other scattering singularities in close

proximity, as seen in the insets in Figure 3(b). Given the finite amount of absorption, the

lowest reflection is observed in the so-called PT -broken phase when the upper zero crosses

the real frequency axis. Incidentally, this presence of a zero in the upper plane, resulting in

a so-called discontinuity branch bridging the zero and a pole across the real frequency axis,

has recently been shown to shed new light on the design of Huygens metasurfaces [71].

To further explore the implemented covert hidden-PT -symmetry-based scattering con-

trol, we now analytically calculate based on Eqs. (1,2) the spectra of S11 for a wider

range of perturbation strengths, once for the case with exact PT symmetry (no absorp-

tion, Figure 3(c1)) and once with the frequency-dependent absorption extracted from our

experiments (Figure 3(c2)). The analytically obtained perturbation-frequency map with
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absorption nicely matches the experimental one, as does the behavior of the two zeros of

interest in Figure 3(b). Some other singularities, especially those further away from the

real frequency axis that have little impact on the scattering response, differ because their

extraction is sensitive to noise and experimental uncertainties. We observe, as expected,

that the perturbation-frequency maps repeat not only along the frequency axis but are also

periodic along the perturbation strength axis. Multiple reflectionless EPs are apparent in

Figure 3(c1) and the corresponding singularity plot in Figure 3(c3): one is seen to occur

within the experimentally explored regime highlighted by the red box, as observed in Fig-

ure 3(a,b), and three additional ones are highlighted by red circles. Of these, the one indexed

2○ is another “regular” reflectionless EP and displays the expected quadratic U-shaped |S11|

dip on the real frequency axis in Figure 3(c6). This is exactly the transfer function that

is needed to implement second-order differentiation of a time-domain signal whereas the

V-shaped dips also seen in Figure 3(c) (corresponding to a single real-valued zero) enable

first-order temporal differentiation [7, 30]. In contrast, the reflectionless EP indexed 1○

occurs in close proximity to another reflectionless state, giving rise to an unusually wide

reflection dip in Figure 3(c5).

The most interesting case, however, is that indexed 3○. Here, two zeros and a pole

meet at the same location on the real frequency axis. Recall that poles are not allowed

on or above the real frequency axis in passive system – unless they are part of a bound

state in the continuum (BIC) [40]. BICs, also known as trapped modes, contain neither

incoming nor outgoing radiation and exist when a zero and a pole coincide on the real

frequency axis, implying that their topological charges annihilate [20, 72]. Indeed, the

|S11| spectrum in Figure 3(c7) displays a V-shaped dip typical for a single real-valued zero

because BICs cannot be seen in scattering spectra as they do not couple to the asymptotic

scattering channels. However, upon a slight perturbation, the scattering spectrum will

feature an ultrathin peak, as seen on the purple |S11| spectrum in Figure 3(c7). The sharp

peak of a qBIC, mainly studied in the context of flat-optics metasurfaces to date [73],

has enticing potential applications ranging from sensing to signal filtering. The presence

of a BIC in our system with hidden mirror symmetry comes as no surprise since mirror-

symmetric systems are known to feature BICs [25, 74]. Our covert hidden-PT -symmetry-

based scattering control enables the conception of devices featuring qBICs without apparent

symmetry, yielding resilience to reverse engineering threats.
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V. META-ATOMS WITH NON-RECIPROCAL INTERACTIONS

Before closing, we ask in this section whether the covert scattering control demonstrated

in the previous sections is limited to metamaterials in which the direct interactions between

meta-atoms are reciprocal. The inclusion of nonreciprocal interactions between meta-atoms,

e.g., due to isolators or circulators, is common in radiofrequency and nanophotonic networks,

for instance, to prevent reflected-power echoes. Quantum graphs involving circulators have

also been explored to conceive topology-protected wave devices [39] and as experimental

platforms to study the statistical properties of certain classes of quantum chaos [75–80];

moreover, Ref. [81] showed that a quantum graph including a circulator can be tuned to

have a real-valued zero. However, existing theoretical works on wave scattering control

regarding hidden symmetries or regarding reflectionless EPs do not cover the case of non-

reciprocal interactions between meta-atoms. In this section, by providing an example of a

cable-network metamaterial with hidden P symmetry despite the inclusion of circulators,

we demonstrate that our previous results are not limited to purely reciprocal constituents

in the metamaterial. We furthermore analyze an example of a non-reciprocal cable-network

metamaterial (without hidden P symmetry) that is both equi-reflectional and PT symmet-

ric.

If the magnetic vector potential Ai,j = −Aj,i acting on the bond (interaction) between

two meta-atoms indexed i and j is non-zero, the phase of the transmission across this

bond will be direction-dependent and hence non-reciprocal – see Eq. (2). Conventional

microwave circulators like the ones we use below isolate certain ports from others by creating

destructive interferences based on this principle. In the analytical framework, a circulator

is consequently treated as three auxiliary meta-atoms with non-reciprocal interactions, as

detailed in Supplementary Note VIII. Such circulators cannot display an “ideal behavior”

over an extended frequency range, as we discuss in more detail in Supplementary Note VIII.

Specifically, they will feature an imperfect isolation and a non-zero delay.

The metamaterials explored in previous sections were all naturally reciprocal (regarding

their transmission spectra) since they contained nothing that could break reciprocity. If,

however, the metamaterial contains circulators, its scattering matrix is neither guaranteed

to be reciprocal nor is it guaranteed to be non-reciprocal. Both options are in principle

conceivable for two-port cable-network metamaterials including circulators that feature the
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FIG. 4. Equi-Reflectionality and Reflectionless Exceptional Points in Metamaterials

with Non-Reciprocal Components. (a,b) Topology of equi-reflectional reciprocal (a) and non-

reciprocal cable-network metamaterials involving circulators. (c) Photographic image of the ex-

perimental implementation of the metamaterial from (a). (d) Scattering measurements of the

two metamaterials from (a,b). The overlayed scattering coefficients visualize equi-reflectionality

and (non-)reciprocity. (e) Experimental observation of reflectionless EPs in the reciprocal and

non-reciprocal metamaterials involving circulators. (f) Analytical scattering calculations (zero ab-

sorption) for the two metamaterials involving circulator-like devices (not expected to match the

experimental circulators’ unknown parameters). Multiple reflectionless EPs are seen in each case.
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equi-reflection property:

1) Reciprocal (S21 = S12). If the metamaterial is reciprocal despite the inclusion of circu-

lators, there is no way to determine from outside the system that the system includes non-

reciprocal components. Specifically, the system’s scattering properties can be fully captured

by a reduced-basis representation without any non-reciprocal components. Consequently,

the system must behave exactly like the metamaterials without circulators studied in the

previous sections, enabling in particular covert access to reflectionless EPs via continuous

tuning of a single symmetry-preserving parameter (in the case of zero absorption).

2) Non-Reciprocal (S21 ̸= S12). If the metamaterial is non-reciprocal, it cannot have

P symmetry in the reduced basis. However, P symmetry is not a necessary condition for

equi-reflectionality, as we will discuss below, so that non-reciprocity of the transmission does

not exclude the possibility of equi-reflectionality. Moreover, assuming zero absorption and

the absence of gain mechanisms, the lack of P symmetry does not exclude the possibility of

a PT symmetry that would enable the covert access to reflectionless EPs. Note that under

the assumption of zero absorption, the non-reciprocity of a two-channel scattering matrix

can only be phase-wise [82].

A brute-force search of two-port cable-network metamaterials involving circulators that

are equi-reflectional irrespective of the amount of isolation and the propagation delay be-

tween circulator ports (but assuming isolation and delay do not differ between different pairs

of circulator ports, and that all circulators are identical) yielded the two structures shown

in Figure 4(a,b). Strikingly, they only differ in the orientation of two circulators, and one of

these two metamaterials is reciprocal whereas the other one is non-reciprocal. The existence

of these examples proves that both possible above-described classes of metamaterials involv-

ing circulators that feature hidden equi-reflectionality hence exist. Our experimental mea-

surements shown in Figure 4(d) validate this fact. The transmissions in the non-reciprocal

case are seen to differ in terms of phase and magnitude which is allowed in our system given

its finite amount of absorption. In fact, we have observed that the transmission time delay in

one direction is on average roughly twice the transmission time delay in the other direction,

so that the larger dwell time and hence exposure to inevitable absorption plausibly explains

why the transmission amplitude is much lower in the former case. We detail in Supplemen-

tary Note V.G the limited isolation and finite propagation delay of the circulators used in

our experiments.
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The non-reciprocal case evidences that for 2-port systems the broadband equi-reflection

property is in fact possible without any apparent or hidden P symmetry. The inverse of any

2× 2 matrix with equal diagonal entries will also have equal diagonal entries. Hence, if the

reduced-basis matrix H̃ = Ã0 −∆SS has equal diagonal entries (H̃1,1 = H̃2,2), and each of

the two asymptotic scattering channels is coupled to one of the primary meta-atoms, then

it follows that S1,1 = S2,2, irrespective of the off-diagonal entries of H̃. This is precisely

the case for the example from Figure 4(b). Note that the independence of the diagonal

entries of S from the off-diagonal entries of H̃ seen here is special to the case of m = 2

primary meta-atoms, and not in general valid for m > 2. Moreover, based on analytical

scattering calculations, we have confirmed that there is nonetheless a hidden PT symmetry

at all frequencies in H̃. Note that PT symmetry alone is in general not associated with

equi-reflectionality.

Since both the reciprocal and the non-reciprocal case feature a hidden PT symmetry

(under the assumption of no absorption), we expect to be able to observe reflectionless EPs

in both cases upon symmetry-preserving tuning. Reflectionless EPs have not been previ-

ously studied in either class of such scattering systems involving non-reciprocal interactions

between some of its constituent meta-atoms, irrespective of whether the PT symmetry is

apparent or hidden. Using the same symmetry-preserving tuning mechanism as in Figure 3,

we show in Figure 4(f) that indeed we observe reflectionless EPs in both cases in analyt-

ical scattering calculations assuming a plausible circulator-like device (see Supplementary

Note VIII) and no absorption. (Our analytical scattering calculations cannot directly match

our experiments here because of the unknown circulator parameters.) In our experiments

displayed in Figure 4(e), we also approximately observe the reflectionless EPs, within the

same limitations due to non-zero absorption as in the previous section. In the case of the

non-reciprocal metamaterial, the presence of two poles and the arrival of a third zero in the

vicinity of the meeting point of the two zeros of interest somewhat distorts their encounter

from the usual pattern (which is possible since they are not firmly constrained to a hori-

zontal line due to the non-zero absorption), but the approximate property of the two zeros

taking off from a horizontal line in opposite vertical directions after their encounter is still

apparent.

Finally, we mention a peculiarity that we observe in our analytical scattering calculations

for the non-reciprocal equi-reflectional metamaterial (see Supplementary Note IX for details).
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Under the assumption of ideal broadband circulators, which seems to describe an unrealistic

physical system (see Supplementary Note VIII), the specific symmetry-preserving tuning

mechanism used throughout this paper appears to never yield a reflectionless EP because

of an apparent repulsion between zeros. This qualitatively new behavior is intriguing but

presumably not relevant to the experimental reality.

VI. CONCLUSION

To summarize, we have shown that wave devices and systems whose functionality is

based on a combination of P or PT symmetry with tunability can be implemented without

apparent symmetry, making them resilient against reverse-engineering threats. The key con-

ceptual insight underlying this covert wave scattering control is that ultimately the (local and

non-local) coupling between the primary meta-atoms (those meta-atoms that are directly

coupled to asymptotic scattering channels) matters; a P symmetry in the reduced basis of

primary meta-atoms can be absent in the canonical basis (and hence hidden from sight)

through a suitably chosen topology of non-local interactions between the primary meta-

atoms mediated by the secondary meta-atoms. We have applied this covert scattering con-

trol in microwave experiments with cable-network metamaterials to demonstrate a scheme

for physical-layer secure communications as well as the conception of reverse-engineering-

resilient wave devices featuring reflectionless exceptional points and quasi bound states in

the continuum. Moreover, we discovered that metamaterials with hidden symmetries can

also include non-reciprocal components like circulators and, for the first time, we observed

reflectionless exceptional points in a non-reciprocal system.

Looking forward, given the generality of the underlying wave concepts, our work can be

transposed to different wave platforms spanning from acoustics and mechanics, via photonics

and electronics, all the way to quantum mechanics. Of particular interest are technologically

relevant fully integrated electronic systems whose ability to compensate the inevitable ab-

sorption has already been demonstrated. Moreover, wavefront shaping can yield new degrees

of control over the coupling of the asymptotic scattering channels (such as orbital angular

momentum waves in free space) to the primary meta-atoms in (nano)photonic systems.

24



ACKNOWLEDGMENTS

M.R. and P.d.H. acknowledge stimulating discussions with V. Pagneux. P.d.H. further-

more acknowledges stimulating discussions with P. Genevet and A. D. Stone.

P.d.H. acknowledges funding from the CNRS prématuration program (project “MetaFilt”),
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