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Efficient Computation of Physics-Compliant
Channel Realizations for (Rich-Scattering)

RIS-Parametrized Radio Environments
Hugo Prod’homme and Philipp del Hougne, Member, IEEE

Abstract—Physics-compliant channel models for radio
environments parametrized by reconfigurable intelligent
surfaces (RISs) require the inversion of an “interaction matrix”
to capture the mutual coupling between wireless entities
(transmitters, receivers, RIS, environmental scattering objects)
due to proximity and reverberation. The computational cost of
this matrix inversion is typically dictated by the environmental
scattering objects in non-trivial radio environments, and
scales unfavorably with the latter’s complexity. In addition,
many problems of interest in wireless communications (RIS
optimization, fast fading, object or user-equipment localization,
etc.) require the computation of multiple channel realizations. To
overcome the potentially prohibitive computational cost of using
physics-compliant channel models, we i) introduce an isospectral
reduction of the interaction matrix from the canonical basis
to an equivalent reduced basis of primary wireless entities
(antennas and RIS), and ii) leverage the fact that interaction
matrices for different channel realizations only differ regarding
RIS configurations and/or some wireless entities’ locations.

Index Terms—RIS, physics-compliant channel model, PhysFad,
mutual coupling, discrete dipole approximation, scattering,
isospectral reduction, inverse matrix update.

I. INTRODUCTION

Smart radio environments in which reconfigurable
intelligent surfaces (RISs) endow wireless system engineers
with the ability to control the wireless channel (in addition
to the usual ability to control the transmitted signals)
are considered a paradigm shift that may impact future
wireless network generations. However, the modeling of
RIS-parametrized wireless channels is still in its infancy.
Wide-spread cascaded channel models tacitly assume that
multi-bounce paths can be neglected [1]. At the same time,
the computational cost of existing physics-compliant models
(based on polarizabilities [2] or impedances [3]–[6]) can
rapidly become excessive under rich-scattering conditions [2],
[6], especially if multiple channel realizations are required.
The computation of multiple channel realizations is required
in common problems involving RIS optimization, wireless
localization and sensing, and/or fast fading, because a generic
physics-compliant wireless channel depends non-linearly on
the RIS configuration and/or on the location of the wireless
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entities [1], [7]. Here, we reduce the potentially prohibitive
computational cost of evaluating multiple physics-compliant
realizations of generic RIS-parametrized wireless channels
by several orders of magnitude through the introduction of
a reduced-basis representation of the wireless system and
through efficient use of the knowledge about relations between
different realizations that usually only differ regarding the
RIS configuration or the locations of some wireless entities.

A RIS-parametrized wireless channel is a linear input-
output relation that, in general, depends non-linearly on the
RIS configuration due to i) proximity-induced mutual coupling
between neighboring RIS elements, and ii) reverberation-
induced long-range coupling between all RIS elements [1].
Physically, this “structural non-linearity” originates from paths
involving multiple bounces between RIS elements [for i)]
and between the RIS and other wireless entities (antennas
and scattering environment) [for ii)] [1]. Mathematically, this
“structural non-linearity” manifests itself in physics-compliant
models via the inversion of an “interaction matrix” that can be
cast in terms of infinite matrix power series [1]. Wide-spread
cascaded models tacitly assume that these infinite series can
be truncated early on such that all paths involving more than
one encounter with a RIS element are neglected [1].

Recently, a polarizability-based physics-compliant end-to-
end channel model for arbitrarily complex RIS-parametrized
radio environments was derived from first physical principles:
PhysFad [2]. Since the RIS-parametrized radio environment
is a linear time-invariant1 electrodynamical system, there
must be a linear operator describing the link between
the incident electromagnetic fields and the polarization
fields they induce in the system. Assuming a sufficiently-
high-resolution discretization of the system into polarizable
elements, this operator is proportional to the inverse of
an “interaction matrix”; the latter’s ith diagonal entry is
the inverse polarizability of the ith polarizable element
and its (i, j)th off-diagonal entry is the free-space Green’s
function between the ith and jth polarizable elements.
The polarization fields depend hence non-locally on the
incident electromagnetic field because of the coupling between
different polarizable elements via the non-zero off-diagonal
entries of the interaction matrix. For simplicity of notation
and exposition, PhysFad [2] describes each wireless entity
(antenna, RIS element, scattering object) as a dipole or

1The RIS configuration is fixed (not time-varying) while the channel matrix
is measured.
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collection of dipoles.2 The scattering response of any arbitrary
anisotropic object can be equivalently described by a finite
collection of fictitious dipoles [8].

Because polarizability is a local concept, the approach
taken by PhysFad to describe the local changes of scattering
properties as a function of the RIS configuration appears to
offer the most compact formulation of a physics-compliant
model. Nonetheless, equivalent formulations in terms of
non-local impedances can be derived, although they tend
to yield more cumbersome mathematical expressions. Prior
to PhysFad, Refs. [3]–[5] already presented impedance
formulations for the strongly limiting restriction of the radio
environment being free space, building on an earlier proposal
of a multi-port circuit theory of communications systems [9].
Very recently, Ref. [6] reproduced the PhysFad formalism in
terms of impedance matrices for radio environments involving
scattering objects, yielding more cumbersome mathematical
expressions than PhysFad [2].

Important potential deployment scenarios of RISs at
microwave and millimeter-wave frequencies, which are a
significant component of sixth-generation’s (6G’s) all-spectra-
integrated networks [10], are confronted with rich scattering
within the radio environment [11]. A prototypical example is
RIS-assisted machine-type communication in factories [12].
The required size of the interaction matrix to accurately
describe such rich-scattering radio environments can be very
large, implying a potentially prohibitively large computational
cost if multiple channel realizations must be computed.

In this Letter, we alleviate this computational cost by several
orders of magnitude. To this end, on the one hand, we
leverage an isospectral reduction of the interaction matrix to an
equivalent reduced basis of primary wireless entities (antennas
and RIS). Thereby, we interpret the scattering between
primary and secondary wireless entities (scattering objects) as
additional coupling mechanisms between the primary wireless
entities. A similar reduced-basis representation was recently
used to achieve covert scattering control in metamaterials with
non-locally encoded hidden symmetries [13]. On the other
hand, we leverage the insight that different channel realizations
typically only differ regarding some of the diagonal entries
and/or some rows and columns of the interaction matrix
such that updating a previously evaluated wireless channel is
computationally much cheaper than evaluating it from scratch.
The techniques presented in this Letter in the context of RIS-
parameterized radio environments can be straightforwardly
transposed to the physics-compliant modeling of dynamic
metasurface antennas [14], [15].

This Letter is organized as follows. In Sec. II, we briefly
review the PhysFad formalism. In Sec. III, we introduce
the reduced-basis representation of PhysFad. In Sec. IV, we
explain how previous channel realizations can be updated
to account for a new RIS configuration (Sec. IV-A), the
displacement of a wireless entity such as the user equipment
or scattering objects (Sec. IV-B), or a change of the scattering

2Extensions to multi-pole expansions of each polarizable element are
conceptually straight-forward.

objects’ properties to sweep the importance of multi-path
propagation (Sec. IV-C). We close with a conclusion in Sec. V.

Notation. The vector a containing the diagonal entries of the
matrix A is denoted by a = diag(A). Ia denotes the a × a
identity matrix.

[
A−1

]
BC denotes the block of A−1 selected

by the sets of indices B and C. δi,j is the Kronecker delta.

II. GENERALITIES

Within the PhysFad framework outlined above and detailed
in Ref. [2], the ith dipole, located at position ri, has a
frequency-dependent polarizability αi that relates the induced
dipole moment pi to the incident electromagnetic field Ei.3

The induced dipole moment will re-radiate an electromagnetic
field whose strength at the location rj of the jth dipole
is Gjipi, where Gji is the free-space Green’s function
between positions ri and rj . The simplest model of a RIS
element is a dipole with Lorentzian polarizability whose
resonance frequency is reconfigured upon changing the RIS
element’s configuration [2]. Thereby, the intertwinement of
phase and amplitude response and their frequency selectivity
are automatically captured.

Each wireless entity (antenna, RIS element, scattering
object) is described as a dipole or collection of dipoles [2].
N denotes the set of all dipoles indices and its subsets
T , R, S and E contain the dipole indices corresponding
to the NT transmitters, NR receivers, NS RIS elements,
and NE scattering objects, respectively. In total, we have
N = NT + NR + NS + NE dipoles. The diagonal entries
of the “interaction matrix” W ∈ CN×N are the dipoles’
inverse polarizabilities, and the off-diagonal entries of W are
the negatives of the corresponding Green’s functions4:

Wi,j =

{
α−1
i , i = j

−Gij , i ̸= j
. (1)

We partition W as follows:

W = WNN =


WT T WT R WT S WT E
WRT WRR WRS WRE
WST WSR WSS WSE
WET WER WES WEE

 . (2)

The RIS configuration c = [α−1
NT+NR+1, . . . , α

−1
NT+NR+NS

] ∈
CNS is encoded in the WSS block: diag(WSS) = c. The
physics-compliant end-to-end channel matrix H ∈ CNR×NT

(assuming identical transmitting and receiving antennas for
simplicity) is proportional to the RT block of the inverse of
W [2]:

H ∝ [W−1]RT . (3)

The non-linear dependence of H on c is hence apparent.

III. REDUCED-BASIS REPRESENTATION

The wireless system engineer only has direct access to a
subset of the wireless system’s N internal scattering entities,
namely to the NT +NR antennas (for injecting and capturing
waves) and the NS RIS elements (for configuring the RIS).

3The PhysFad framework was introduced for a 2D in Ref. [2] setting and
recently experimentally validated in 3D Ref. [16].

4If tunable lumped circuits link specific RIS elements [17], the
corresponding Green’s functions are altered and to some extent controllable.



3

→ 𝐇 ∝ 𝐑−1
ℛ𝒯

𝐑 = −

−𝟏

𝒯 ℛ 𝒮 ℰ

𝒯
ℛ

𝒮

ℰ

𝐖 =

(a)   Canonical Basis

(b)   Reduced Basis

→ 𝐇 ∝ 𝐖−1
ℛ𝒯

𝐖 Interaction Matrix

𝐇 Channel Matrix

Wireless Entities:

𝒯  Transmitters

ℛ Receivers

𝒮 RIS

ℰ Environmental Scattering Objects

Updates:

 RIS configuration

 UE location

 𝐾-factor and 𝑄-factor

𝒯 ℛ 𝒮

𝒯
ℛ

𝒮

Fig. 1. Schematic illustration of a physics-compliant model’s interaction
matrix in the canonical (a) and reduced (b) basis. In addition, the parts of
the interaction matrix affected by three types of updates are highlighted.

The set of indices of these p = NT + NR + NS “primary”
dipoles is P = T ∪ R ∪ S and P̄ = N \ P contains the
s = N − p = NE remaining dipole indices. Hence, we seek
an equivalent representation of the wireless system reduced to
P . We straight-forwardly rewrite W as a 2× 2 block matrix:

W =

[
WPP WPP̄
WP̄P WP̄P̄

]
. (4)

Under rich-scattering conditions, usually p ≪ s because
many more dipoles are necessary to describe the scattering
environment than to describe the antennas and the RIS. As
illustrated in Fig. 1, standard formulas for the inversion of a
block matrix yield

[W−1]PP =
(
WPP −WPP̄W

−1
P̄P̄WP̄P

)−1
= R−1 (5)

and Eq. (3) is hence equivalent to H ∝ [R−1]RT .
The dimensionality of the interaction matrix underpinning

physics-compliant channel models of non-trivial RIS-
parameterized radio environments involving scattering objects
can hence be significantly reduced by operating in an
equivalent reduced basis of primary wireless entities as
opposed to the usual canonical basis. In this reduced
representation, the (i, j)th off-diagonal entry of R accounts for
coupling between the ith and jth primary dipole (antenna or
RIS element) due to proximity and reverberation, whereas the
(i, j)th off-diagonal entry of W only accounts for proximity-
induced coupling. In addition, reverberation adds a self-
coupling term such that the diagonals of [W]PP and R
differ, too. The reduced-basis representation lumps together
all coupling effects between primary entities, which facilitates
the calibration of the reduced-basis model (i.e., channel
estimation) in an unknown rich-scattering experimental setting,
as very recently achieved in Ref. [16].

IV. COMPUTING MULTIPLE CHANNEL REALIZATIONS

The interaction matrices underlying different channel
realizations often only differ in some details; in such cases,

it is more efficient to update a previously computed channel
realization than to evaluate the new channel realization from
scratch. Three types of such updates of particular interest are
highlighted in Fig. 1:

(i) A change in RIS configuration corresponds to a change
of the diagonal of WSS (highlighted in blue in Fig. 1a).

(ii) A change in the location of the ith dipole corresponds
to a change of the ith row and the ith column of W,
excluding the ith diagonal entry (highlighted in orange
in Fig. 1a). This case is relevant to problems in wireless
localization (of a moving user equipment and/or a moving
non-cooperative scattering object) as well as fast-fading
scenarios (the locations of some environmental scattering
objects differ across different realizations).

(iii) A change in the properties of the environmental scattering
objects corresponds to a change of the diagonal of WEE
(highlighted in light green in Fig. 1a). Such a change
is required in order to sweep the level of reverberation
(quantified, e.g., by the Q-factor [18]), and it is also
required in combination with (ii) to sweep through
different K-factors (see Sec. III-F in Ref. [2]).

The subsequent three subsections analyze each of these
three update types individually. The three update methods are
mutually compatible and can hence be arbitrarily combined.
In each subsection, quantities with (without) tilde denote the
new (previous) channel realization. Based on the number of
arithmetic operations, we consider in the following that the
computational complexity is O (n1n2n3) for the product of
an n1 × n2 matrix with an n2 × n3 matrix, and O

(
n3

)
for

the inversion of an n× n matrix [19].

A. Updating the RIS configuration

A modification of the configuration of m ≤ NS RIS
elements implies an update of m diagonal entries of WSS .5

Knowing W−1 from the previous channel realization, the
Woodbury matrix identity [20] allows us to obtain the
updated inverse interaction matrix W̃−1 upon expressing the
modification ∆W of the interaction matrix as a product of
three matrices, ∆W = UCV,

W̃−1 = (W +∆W)
−1

= (W +UCV)
−1

= W−1 −W−1U
(
C−1 +VW−1U

)−1
VW−1. (6)

Here, C ∈ Cm×m is a diagonal matrix containing
the (by definition non-zero) changes of the inverse
polarizabilities of the m modified RIS elements: diag(C) =
[∆α−1

n1
, . . . ,∆α−1

nm
], where nk is the index of the kth modified

RIS element (the modified RIS elements are not necessarily
contiguous). The set of indices of the m modified dipoles is
M = [n1, . . . , nm]. C, U and V are defined as

[C]k,k′ = δk,k′∆α−1
nk

, [U]i,k = [V]k,i = δi,nk
. (7)

The matrices U = VT ∈ BN×m act as selectors of the indices
from M, meaning that W−1U =

[
W−1

]
NM, VW−1 =[

W−1
]
MN , and VW−1U =

[
W−1

]
MM.

5The same method could also be applied if there was a change of the
transmitting and/or receiving antennas’ polarizabilities.
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Since the computation of the updated channel matrix H̃ only
requires the evaluation of the RT block of W̃−1, the complete
evaluation of (W +UCV)

−1 in Eq. (6) is not required.
Moreover, since R−1 ∈ Cp×p whereas W−1 ∈ CN×N ,
the cost of storing the inverse interaction matrix from the
previous channel realization is lower if the discussed approach
is applied not in the canonical but in the reduced basis, where
R̃ = R+ÛCV̂ with Û = V̂T = UPM = [VMP ]

T ∈ Bp×m.
To summarize, the computationally most efficient approach to
evaluate the updated channel matrix is

H̃ ∝
[
R̃−1

]
RT

=

[(
R+ ÛCV̂

)−1
]
RT

=
[
R−1

]
RT −[

R−1
]
RM

(
C−1+

[
R−1

]
MM

)−1 [
R−1

]
MT . (8)

Remark: To evaluate R̃−1 instead of evaluating only H̃,
Eq. (8) can be used if both R and T are replaced by P .

The computational complexity of Eq. (8) is O
(
m3

)
for

the inner matrix inversion, O
(
NRm

2
)

or O
(
NTm

2
)

for
the first matrix product (depending on whether the rightmost
or the leftmost is computed first), and O (NRmNT) for the
remaining one. The computational cost can be further reduced
by implementing the matrix inversion and the first matrix
product as solving a system of linear equations.

This update method is referred to as method A. The
resulting speed-up6 and relative standard error (RSE) when
updating NS = p−NT−NR values of the diagonal of WPP
are plotted in Fig. 2 for NT = NR = 1. The larger s is and
the smaller p is, the more substantial speed-ups we observe,
exceeding 103 in some cases. The RSEs are negligibly small.

In many experimental prototypes, the RIS is only 1-bit
programmable (e.g., Refs. [1], [11], [16]) such that the values
of the RIS dipoles’ polarizabilities are limited to two values
{α+, α−}. Then, two reference matrices can be computed
for two complementary configurations (e.g., R−1

+ with αi =
α+ ∀ i ∈ S and R−1

− with αi = α− ∀ i ∈ S). At update time,
m ≦ ⌊NS/2⌋ can be ensured by picking the more suitable
reference matrix out of

{
R−1

+ ,R−1
−

}
. This update method,

labelled A′, yields a higher speedup than A, as seen in Fig. 2,
while the RSE is the same as for A.

We furthermore confirmed the accuracy of this technique by
reproducing the case study on RIS-based over-the-air channel
equalization for resource-constrained communications under
rich scattering from Ref. [2] (Algorithm 1 and Fig. 7 therein).
Using method A′, Algorithm 1 from Ref. [2] converges to the
same optimized configuration and yields the optimized channel
impulse response (CIR) with a negligible RSE of 3× 10−13.

B. Updating the location of a wireless entity

A change in the location of a dipole implies that
all off-diagonal entries of the corresponding row and the
corresponding column of W are altered symmetrically. Let
D = [ñ1, . . . , ñd] denote the set of indices of the d displaced
dipoles. We use again the Woodbury identity from Eq. (6),
respectively replacing U, V, C with

6Reported speed-ups are measured on a work station with a double Xeon E5
CPU (32 cores, 2.40 GHz) and DDR3 quad-channel memory (4×800 MHz).
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Fig. 2. (a) Speed-up (ratio of duration of full matrix inversion to duration
of channel updates) and (b) RSE of the updates (full matrix inversion defines
ground truth) as function of p and s for the different update methods of
section IV for NT = NR = 1. The updated values for each method are:
(A,A′) m= NS = p − 2 entries of diag (WSS). (B) [(B′)] d= p rows
and columns of W [WPP ]. (C) the s entries of diag (WP̄P̄ ).

Ů =
[
KT δT

]
, V̊ =

[
δ
K

]
, C̊ = I2d, (9)

where K ∈ Cd×N and δ ∈ Bd×N are defined as

[K]i,j =


0, j = ñi

∆Gñi,j , j /∈ D
∆Gñi,j/2, j ∈ D \ {ñi}

, [δ]i,j = δñi,j (10)

with ∆Gñi,j being the change of the Green’s function between
the dipoles indexed ñi and j. Thus, Ů ∈ CN×2d and
V̊ ∈ C2d×N , and the updated inverse interaction matrix in
the reduced basis reads

R̃−1 =

[(
W + ŮV̊

)−1
]
PP

= R−1−[
W−1

]
PN Ů

(
I2d + ŮW−1V̊

)−1

V̊
[
W−1

]
NP . (11)

A careful implementation of Eq. (11) first computes the
O
(
dN2

)
product F = KW−1 and implements the products

with δ as selection of the indices from D:

R̃−1 = R−1 −
[ [

FT
]
PD′

[
W−1

]
PD

]
×[ [

FT
]
DD′ + Id

[
W−1

]
DD

KFT FD′D + Id

]−1 [ [
W−1

]
DP

[F]D′P

]
, (12)

where D′ = [1, . . . , d]. Evaluating Eq. (12) involves an
O
(
8d3

)
matrix inversion, as well as two matrix products of

O
(
4pd2

)
and O

(
2p2d

)
.

Because the speedup of this update method, labelled B,
chiefly depends on d, we consider the displacement of d = p
dipoles to display a representative speedup on Fig. 2a. When s
is small (especially in comparison to p), the speedup is limited
by memory access latency rather than the number of arithmetic
operations, in which case the speedup can be below unity.
However, we are mainly interested in cases with large s. The
corresponding negligible RSEs are shown in Fig. 2b.

If all moving dipoles are primary ones (i.e., D ⊂ P), WP̄P̄
remains unchanged such that only WPP and WPP̄ = WT

P̄P
must be updated. Using Eq. (5), evaluating R̃−1 then only
requires two O

(
ps2

)
and O

(
sp2

)
matrix products and the

O
(
p3
)

matrix inversion. This method, labelled B′, has a
smaller memory footprint than B because it does not require
full knowledge of W−1. The speedup of B′ is plotted in Fig.
2(a), considering a displacement of all p primary dipoles. The
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error of method B′ only originates from using Eq. (5) and
hence its RSE cannot exceed the one of method A. B′ is
faster than B overall, but requires D ⊂ P .

The updated R̃−1 from methods B and B′ can be used
directly with method A.

C. Updating the K and/or Q factor

The amount of reverberation (multi-path propagation) inside
the radio environment is determined by the properties of the
dipoles in E . Changing the amount of reverberation directly
alters the radio environment’s Q-factor. In addition, if fast
fading is implemented by moving a fixed subset of the dipoles
in E , then changing their properties will also alter the K-factor
(see Sec. III-F in Ref. [2]). The ability to update the properties
of the dipoles in E is hence essential to sweep through different
types of radio environments, from free space to rich scattering.
Such changes require (within the PhysFad use case considered
in Sec. III-F of Ref. [2]) an identical update of the identical
s = NE diagonal entries of WP̄P̄ = WEE .

To efficiently update from W−1
P̄P̄ to W̃−1

P̄P̄ upon an identical
change λ of all diagonal entries of WP̄P̄ , we use the
eigendecomposition WP̄P̄ = QDQ−1, where D is a diagonal
matrix whose diagonal entries are the eigenvalues of WP̄P̄
and the columns of Q contain the corresponding eigenvectors.
Inserting W̃−1

P̄P̄ = (WP̄P̄ − λIs)
−1

= Q (D− λIs)
−1

Q−1

into Eq. (5) yields

R̃−1=
(
WPP−WPP̄Q (D−λIs)

−1
Q−1WP̄P

)−1

. (13)

The eigenvectors Q and Q−1 induce an important memory
footprint. Hence, the most efficient evaluation of Eq. (13)
consists in computing and storing the products WPP̄Q ∈
Cp×s and Q−1WP̄P ∈ Cs×p (each with O

(
ps2

)
complexity)

before runtime. The inversion of the diagonal matrix
(D− λIs) only has a complexity O(s)7. In addition, one
of the matrix products with this diagonal matrix in Eq. (13)
can be replaced with an element-wise multiplication of a row
with a matrix. The last matrix product has a computational
complexity of O

(
sp2

)
. The remaining outer matrix inversion

has a computational complexity of O
(
p3
)
. The speedup and

associated negligible RSEs of this method, labelled C, when
updating the s diagonal values of WP̄P̄ are plotted in Fig. 2.

The updated R̃−1 from method C can be used directly
with method A. The product Q (D− λIs)

−1
Q−1 provides

the updated W̃−1
P̄P̄ that can be directly used with method B′.8

V. CONCLUSION

In order to alleviate the prohibitively large computational
cost of evaluating multiple physics-compliant realizations
of RIS-parametrized (rich-scattering) channels, we have
introduced i) a reduced-basis representation of the underlying

7Eq. (13) makes it easy to identify values of λ for which (D− λIs) is ill-
conditioned. In this case, which never occurred in our tests, Eq. (13) cannot
be used but one could either compute the average of the channels obtained
with λ− δλ and λ+ δλ, where 0 < δλ ≪ λ, or use the original Eq. (3).

8If the primary dipoles are moving through positions known in advance,
the corresponding possible rows of WPP̄Q and columns in Q−1WP̄P of
Eq. (13) can be precomputed and reallocated at update time, allowing to skip
the two O

(
ps2

)
matrix products.

interaction matrix, and ii) identified efficient ways to
update a previous channel realization based on how it
differs from a new required realization in terms of
diagonal and/or off-diagonal modifications of the underlying
interaction matrix. Thereby, we enable orders-of-magnitude
improvements of the computational cost of using physics-
compliant models in problems involving RIS optimization,
wireless localization and/or fast fading. Moreover, the
proposed reduced-basis representation has recently enabled
experimentally realized physics-compliant end-to-end RIS-
parametrized channel estimation [16].
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