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Abstract

Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to dogs. Few studies have
mathematical modeled such tick-borne disease in dogs, and none have developed models that
incorporate different ticks’ developmental stages (discrete variable) as well as the duration of
infection (continuous variable). In this study, we develop and analyze a model that considers
these two structural variables using integrated semigroups theory. We address the well-
posedness of the model and investigate the existence of steady states. The model exhibits a
disease-free equilibrium and an endemic equilibrium. We calculate the reproduction number
(T0). We establish a necessary and sufficient condition for the bifurcation of an endemic
equilibrium. Specifically, we demonstrate that a bifurcation, either backward or forward, can
occur at T0 = 1, leading to the existence, or not, of an endemic equilibrium even when T0 < 1.
Finally, numerical simulations are employed to illustrate these theoretical findings..

Key words: amblyomma americanum, ehrlichia chaffeensis, age-structured model,
bifurcation analysis

1 Introduction

Ehrlichiosis are tick-borne diseases caused by obligate intracellular rickettsias bacteria in the
genera Ehrlichia [11, 10, 21, 44, 48]. These bacteria are classified within the group of the
α-proteobacteria, order Rickettsiales, family Anaplasmataceae, genus Ehrlichia [21, 23]. This
genus consists of obligate intracellular Gram-negative bacteria [10, 23, 44] that mainly infect
leukocytes (such as monocytes, macrophages, granulocytes and neutrophils), and endothelial
cells in mammals, and salivary glands, intestinal epithelium, and hemolymph cells of ticks
[1, 4, 10, 14, 19, 26, 35]. The genus Ehrlichia comprises of six recognized tick-transmitted
species: E. canis, E. muris, E. chaffeensis, E. ewingii, E. minasensis, and E. ruminantium
[21, 26], and in recent times, other Ehrlichia species have been reported [1, 4, 26]. Going by
our current knowledge, a large number of Ehrlichia species might not have been described
[26].

The reservoir hosts for Ehrlichia species include numerous wild animals, as well as some do-
mesticated species and livestock [23]. Some of these Ehrlichia species affect animals including
pets such as cats and dogs [23, 52], and a limited number have been know to infect humans
[11, 23, 41, 44, 52, 57, 58]. Specifically, Ehrlichia canis, E. chaffeensis, E. ewingii, E. muris,
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and E. ruminantium are members of the genus Ehrlichia known to naturally infect various
mammalian hosts such as cats, dogs, ruminants, and mice, and are responsible for emerging
zoonoses in humans [1, 4, 19, 47].

Ehrlichia are tick-borne diseases transmitted by ticks in the family Ixodidae. Rhipicephalus
sanguineus (brown dog tick) and Ixodes ricinus are vectors for Ehrlichia canis [23, 48]. E.
canis can also be transmitted by Amblyomma cajennense, and experimentally by Dermacen-
tor variabilis (American dog tick) [23]. In North America A. americanum (Lone Star tick)
is the primary vector for both E. chaffeensis and E. ewingii [5, 7, 23, 44]. “Outside North
America, E. chaffeensis has been found in ticks in the genera Amblyomma, Haemaphysalis,
Dermacentor, and Ixodes in Asia, in R. sanguineus in Cameroon, and in A. parvum in Ar-
gentina” [23]. Haemaphysalis flava and Ixodes persulcatus complex ticks transmits E. muris
[23]. E. ruminantium is the only known Ehrlichia species that infects cattle and it is found
on the continent of Africa and a couple of Caribbean islands [4].

Ticks life-cycle span between 2-to-3 years depending on the species [18, 37]. They go through
four life stages namely egg, six-legged larva, eight-legged nymph, and adult. To survive each
life stage after hatching from eggs, the ticks must take a blood meal from a host; but, most
ticks will die if they are unable to find a host [18]. Ticks feed once on a host, then falls off
and develops into the next stage. This feeding pattern create pathways for diseases to be
transmitted from hosts to hosts [56]. Ixodes scapularis (black-legged tick) life cycle generally
lasts two years, while the life cycle of Amblyomma americanum (the lone star tick) is around
three years long [37]. Some species like Rhipicephalus sanguineus (the brown dog tick) whose
primary host is the domestic dog, prefer to feed on the same host during all its life stages
[18, 56]. Since R. sanguineus are endophilic, they are found inside houses and dog kennels
[56].

Dogs are susceptible to infection with multiple Ehrlichia spp., including E. chaffeensis, E.
ewingii, and E. canis [7, 11, 25, 35, 39]. In 2019, over 200,000 dogs tested positive for
antibodies against Ehrlichia spp. within the United States out of 7,056,709 dogs tested,
while over 1000 dogs tested positive out of 168,216 dogs tested in Canada [34]. According to
Gettings et al. [34] the distribution of infected dogs follows the distribution of the related
tick vectors. For instance, Amblyomma americanum is commonly found on dogs and people
in the southeastern and southcentral United States [11]. In Beall et al. [11] the overall
seroprevalence of E. canis, E. chaffeensis, and E. ewingii across the United States in 2012
was 0.8%, 2.8%, and 5.1%, respectively. The highest E. canis seroprevalence of 2.3% was
found in Arkansas, Louisiana, Oklahoma, Tennessee, and Texas. E. chaffeensis seroreactivity
was 6.6% in Arkansas, Kansas, Missouri, and Oklahoma (the central region), and 4.6% in
Georgia, Maryland, North Carolina, South Carolina, Tennessee and Virginia (the southeast
region). Seroreactivity of E. ewingii was highest in the central region with 14.6% value while
the southeast region had a seroractivity value of 5.9%.

Ehrlichia in dogs was discovered in the 1970s when military dogs were returning from the
Vietnam war. They found this disease to be extremely severe in German Shepards, Doberman
Pinschers, Belgium Malinois, and Siberian Huskies. Several studies including experimental
researches and serological surveys have been carried out to understand Ehrlichiosis trans-
mission in canine including Ehrlichia Chaffeensis [9, 10, 49, 50, 57]. We only found two
quantitative studies modeling Ehrlichiosis in human [30, 31]. Thus, in this study, we de-
veloped a mathematical model for Amblyomma americanum in the Great Plains and dogs
infected with Ehrlichia Chaffeensis with the aim of understanding the quantitative properties
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of the model including the asymptotic dynamics of the disease in dogs across the Plains.

The rest of the paper is organized as follows: Section 2 gives the description of the model
including the interactions between the ticks and dogs; Section 3 describes the results of the
study. These results include the existence and uniqueness of solutions, the disease invasion
process, and the bifurcation analysis. More precisely, we show that, depending on the sign of a
constant Cbif –referred to as the bifurcation parameter– which depends on model’s parameters,
a bifurcation occurs at T0 = 1 that is either a forward or backward bifurcation. In a forward
bifurcation, which occurs when Cbif < 0, there exists a unique endemic equilibrium if and
only if T0 > 1. However, in a backward bifurcation, which occurs when Cbif > 0, no endemic
equilibrium exists for T0 ≪ 1 small enough; a unique endemic equilibrium exists if T0 > 1
while multiple equilibria exist when 0 ≪ T0 < 1 close enough to 1. Finally in Section 4 we
numerically illustrate such bifurcation results.

2 Model formulation

The transmission model of Ehrlichia Chaffeensis incorporates two subgroups: dogs and ticks.
At any time t, the dog population is divided into susceptible SD(t), infected iD(t, a), and
chronically infected cD(t, a), recovered RD(t). Here, the variable a represents the time since
infection. Thus, the total number of dogs at time t is quantified by

ND(t) = SD(t) +

∫ ∞

0
iD(t, a)da +

∫ ∞

0
cD(t, a)da + RD(t).

The ticks population is structured into several stages: eggs (E), larva (L), nymph (N), and
adult (A). We denote by S = {E,L,N,A} the set of ticks stages. Let STk(t) be the number
of susceptible ticks of stage K ∈ S at time t. We also denote by iTk(t, a) the number of
infected ticks of stage K ∈ S \ {E} at time t and which are infected since time a. The model
proposed assumes that there are no infected eggs. Therefore the total number of ticks of
stage k ∈ S \ {E} at time t is given by

NTk(t) = STk(t) +

∫ ∞

0
iTk(t, a)da. (2.1)

The dogs-ticks infection life cycle is shown in Figure 1.

Dogs’ population dynamic. At any time t, infected ticks (which are infected since time
a) induce an infection within the dogs’ population through the force of infection λT (t, a), such
that

λT (t, a) = βT (a)
∑

K∈S\{E}

iTk(t, a), (2.2)

where βT denotes the infectivity of infected ticks. Therefore, newly infected dogs are given by
SD(t)
ND(t)

∫∞
0 λT (t, a)da and ϵRD(t)

ND(t)

∫∞
0 λT (t, a)da, where ϵ is constant parameter accounting for

the relative disease transmission to previously recovered dogs. Note that ϵ can be considered
age-dependent (ϵ = ϵ(a)) with no more difficulties in the analysis proposed here. Thus, the
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dogs population dynamic is then described by the below system

dSD(t)

dt
= θD −

SD(t)

ND(t)

∫ ∞

0
λT (t, a)da− µDSD(t),

iD(t, 0) =
SD(t) + ϵRD(t)

ND(t)

∫ ∞

0
λT (t, a)da,

∂iD(t, a)

∂t
+

∂iD(t, a)

∂a
= −(µD + γ(a) + δD(a) + νD(a))iD(t, a),

∂cD(t, a)

∂t
+

∂cD(t, a)

∂a
= −(µD + δC(a))cD(t, a)

cD(t, 0) =

∫ ∞

0
νD(a)iD(t, a)da,

dRD(t)

dt
=

∫ ∞

0
γ(a)iD(t, a)da− ϵ

RD(t)

ND(t)

∫ ∞

0
λT (t, a)da− µDRD(t).

(2.3)

In the above model, susceptible dogs are recruited at rate θD and all dogs die naturally at rate
µD. Infected and chronically infected dogs have a disease-induced mortality rate δD and δC .
Infected dogs progress to a chronic infection at rate νD. Finally, only non-chronic infections
are assumed to recover from the infection at rate γ.

Ticks’ population dynamic. At time t, infected dogs (chronic or not) induce an infec-
tion within the ticks population through the force of infection λD(t), such that

λD(t) =

∫ ∞

0
[β1

D(a)iD(t, a) + β2
D(a)cD(t, a)]da,

where βj
D(a) denotes the infectivity of infected and chronically infected dogs a-time post

infection. Therefore, newly infected ticks of stage k ∈ S \ {E} are given by STk(t)
ND(t) λD(t). The

ticks population dynamic is then described by the system below

dSTE(t)

dt
= rE

(
1− STE(t)

K

)
NTA(t)− (αE + µE)STE(t),

dSTL(t)

dt
= αESTE(t)− STL(t)

ND(t)
λD(t)− (αL + µL)STL(t),

dSTN (t)

dt
= αLSTL(t)− STN (t)

ND(t)
λD(t)− (αN + µN )STN (t),

dSTA(t)

dt
= αNSTN (t)− STA(t)

ND(t)
λD(t)− µASTA(t),

and for k ∈ S \ {E},

iTk(t, 0) =
STk(t)

ND(t)
λD(t),

∂iTk(t, a)

∂t
+

∂iTk(t, a)

∂a
= −(µk + αk)iTk(t, a)

(2.4)

with αA = 0. In the above system of the ticks dynamic, the eggs’ production rate at time t
is rE(1 − STE(t)

K )NTA(t), where rE is the number of eggs produced by adult ticks NTA, and
the parameter K is the eggs’ carrying capacity. Parameters αk,s are ticks progression rates
from the eggs’ to adult’ stage. The death rate of ticks at each k-stage is µk. The notations
of all variables and parameters are summarized in Table 1.
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Figure 1: Flow chart of the model.
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Table 1: State variables and parameters used for simulations.

Category Description Value (Unit) [Ref]

Variables

t Time day

a Time since infection day

State Variables

SD(t) Susceptible Dogs

iD(t, a) Infected Dogs

cD(t, a) Chronically infected Dogs

RD(t) Recovered Dogs

STE(t) Number of Eggs

STk(t) Susceptible ticks at stage k
k ∈ {L,N,A} L for Larva, N for Nymph, and A for Adult

iTk(t, a) Infected ticks at stage k
k ∈ {L,N,A} L for Larva, N for Nymph, and A for Adult

Parameters

θD Birth rate of dogs 70, 000 (day−1) [45]

µD Death rate of dogs 0.00027397 (day−1) [15]

ϵ Rate of reinfection in dogs 0.00444444 (day−1) [42]

γ(a) Rate of infected to recovered dogs 0.04761905 (day−1) [38]

νD(a) Rate of acute to chronic infection in dogs 0.04761905 (day−1) [38]

δD(a) Acute infection death rate in dogs Variable (day−1)

δC(a) Chronic infection death rate in dogs Variable (day−1)

β1
D(a) Disease transmission probability from Variable (No Unit)

infected dogs to ticks

β2
D(a) Disease transmission probability from Variable (No Unit)

chronically infected dogs to ticks

βT (a) Disease transmission probability from ticks to dogs Variable (No Unit)

rE Ticks egg laying rate Variable (day−1)

K Ticks carrying capacity 1000000 (day−1) [Assumed]

αE Maturation rate from tick eggs to larvae 0.0243902 (day−1) [16]

αL Maturation rate from tick larvae to nymphs 0.00273973 (day−1) [16]

αN Maturation rate from tick nymphs to adult 0.0037037 (day−1) [16]

µE Death rate of eggs 0.008 (day−1) [6]

µk Death rate of ticks at stage k 0.003 (day−1) [Assumed]
k ∈ {L,N,A} L for Larva, N for Nymph, and A for Adult
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3 Main results

This section is devoted to the main results of this paper. Overall, our results are based on
the following assumption on the parameters of system (2.3)-(2.4). More precisely, we assume
that

Assumption 3.1.

1. The recruitment rate θD of susceptible dogs and the natural death rate µD are posi-
tive constants. The ticks’ stage transition rates αk,s and death rates µk,s are positive
constants. The parameter ϵ, rE and the carrying capacity K are positive constants;

2. Parameters γ, δD, νD, δC and the transmission rates βT , β
k
D, k = 1, 2, belong in

L∞
+ ((0,+∞),R) \ {0L∞};

3. The initial condition is such that SD(0) = SD0 > 0, RD(0) = RD0 ≥ 0, iD(0, ·) =
iD0 ∈ L1

+((0,+∞),R), cD(0, ·) = cD0 ∈ L1
+((0,+∞),R), STk0(0) = STk0 ≥ 0, and

iTk(0, ·) = iTk0 ∈ L1
+((0,+∞),R) for k ∈ S.

3.1 Existence and uniqueness of nonnegative solution

In this section, we state the results concerning the existence of a globally defined nonnegative
solution to system (2.3)-(2.4).

In order to state our main results, we will rewrite the system in a more appropriate equivalent
form. To do this, denote by ek, k ∈ {1, 2, 3} and vk, k ∈ {1, 2} the canonical basis of R3 and
R2, respectively. Thus, we can consider the states variables in a vector form by setting for
every t ≥ 0 and a ≥ 0

ST (t) = STL(t)e1 + STN (t)e2 + STA(t)e3,

iT (t, a) = iTL(t, a)e1 + iTN (t, a)e2 + iTA(t, a)e3,

iD(t, a) = iD(t, a)v1 + cD(t, a)v2.

Moreover, we define the vector βD(a) of transmission rates with components β1
D(a) and

β2
D(a), i.e.,

βD(a) = β1
D(a)v1 + β2

D(a)v2,

and define the vector 1 = e1 + e2 + e3. Let M be ticks stage progression matrix from the
larval stage to the adult stage, i.e.,

M :=

µL + αL 0 0
−αL µN + αN 0

0 −αN µA

 . (3.1)

Therefore, using the notation ⟨·, ·⟩ to denotes the inner product in R2 and R3 and setting for
all a ≥ 0

θ(a) :=

(
γ(a) + δD(a) + νD(a) 0

0 δC(a)

)
, (3.2)

7



Model (2.3)-(2.4) takes the following form

dSD(t)

dt
= θD −

SD(t)

ND(t)

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩da− µDSD(t),

∂iD(t, a)

∂t
+

∂iD(t, a)

∂a
= −(µD + θ(a))iD(t, a),

iD(t, 0) =
SD(t) + ϵRD(t)

ND(t)

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩ da v1

+

∫ ∞

0
νD(a) ⟨v1, iD(t, a)⟩da v2,

dRD(t)

dt
=

∫ ∞

0
γ(a) ⟨v1, iD(t, a)⟩ da− ϵ

RD(t)

ND(t)

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩da− µDRD(t),

(3.3)
and

dSTE(t)

dt
= rE

(
1− STE(t)

K

)(
⟨ST (t), e3⟩+

∫ ∞

0
⟨iT (t, a), e3⟩da

)
− (αE + µE)STE(t),

dST (t)

dt
= αESTE(t)e1 −MST (t)− ST (t)

ND(t)

∫ ∞

0
⟨βD(a), iD(t, a)⟩da,

∂iT (t, a)

∂t
+

∂iT (t, a)

∂a
= −MiT (t, a),

iT (t, 0) =
ST (t)

ND(t)

∫ ∞

0
⟨βD(a), iD(t, a)⟩da,

(3.4)
subject to the initial condition SD(0) = SD0 > 0, iD(0, ·) = iD0 ∈ L1

+((0,+∞),R2), RD(0) =
RD0 ∈ R+, STE(0) = STE0 ∈ R+, iD(0, ·) = iD0 ∈ L1

+((0,+∞),R2), ST (0) = ST0 ∈ R3
+,

and iT (0, ·) = iT0 ∈ L1
+((0,+∞),R3). The following result then concerns the existence and

uniqueness of nonnegative solutions to (3.3)-(3.4).

Theorem 3.2. Let Assumption 3.1 be satisfied. Then there exists a unique continuous glob-
ally defined integrated solution to (3.3)-(3.4). Moreover, if we set

Π(a, τ) := e−
∫ a
τ (µD+θ(l))dl, ∀a ≥ τ ≥ 0. (3.5)

then the solution satisfies, for all t ≥ 0 and a ≥ 0,



dSD(t)

dt
= θD −

SD(t)

ND(t)

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩ da− µDSD(t),

dRD(t)

dt
=

∫ ∞

0
γ(a)iD(t, a)da− ϵ

RD(t)

ND(t)

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩ da− µDRD(t),

dSTE(t)

dt
= rE

(
1− STE(t)

K

)(
⟨ST (t), e3⟩+

∫ ∞

0
⟨iT (t, a), e3⟩da

)
− (αE + µE)STE(t),

dST (t)

dt
= αESTE(t)e1 −MST (t)− ST (t)

ND(t)

∫ ∞

0
⟨βD(a), iD(t, a)⟩da,

iD(t, a) =



Π(a, a− t)iD0(a− t), if a ≥ t

SD(t− a) + ϵRD(t− a)

ND(t− a)

∫ ∞

0
βT (a) ⟨1, iT (t− a, τ)⟩dτΠ(a, 0)v1

+

∫ ∞

0
νD(τ) ⟨v1, iD(t− a, τ)⟩ dτΠ(a, 0)v2, if a < t
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and

iT (t, a) =


e−MtiT0(a− t) if a ≥ t

e−Ma ST (t− a)

ND(t− a)

∫ ∞

0
⟨βD(τ), iD(t− a, τ)⟩dτ if a < t.

Moreover, the total population of Dogs, ND(t), at time t is the unique solution to


dND(t)

dt
= θD − µDND(t)−

∫ ∞

0
δD(a)iD(t, a)da−

∫ ∞

0
δC(a)cD(t, a)da, t > 0

ND(0) = STE0 + STL0 + STN0 + STA0 +

∫ ∞

0
[iTL0(a) + iTN0(a) + iTA0(a)]da.

(3.6)

Proof. The existence and positiveness of solutions of system (2.3)-(2.4) can be addressed
using an integrated semigroup approach and Volterra integral formulation. More precisely, a
similar approach as in [51] can be applied for detailed proof of Theorem 3.2. However, here
we give a brief sketch of such approach. For all t ∈ R, let us set

u(t) = (SD(t), RD(t), 0R2 , iD(t, ·), STE(t),ST (t), 0R3 , iT (t, ·)) ∈ Y,

where Y is the space

Y = R× R× R2 × L1((0,∞),R2)× R3 × R3 × R3 × L1((0,∞),R3).

Such a Banach space Y is endow with the usual product norm ∥ · ∥Y .

Let M : D(M) ⊂ Y −→ Y the linear operator defined by

D(M) = R× R× {0R2} ×W 1,1((0,∞),R2)× R3 × R3 × {0R3} ×W 1,1((0,∞),R3),

and

M



SD

RD

0R2

iD(·)
STE

ST

0R3

iT (·)


=



−µDSD

−µDRD

−iD(0)
−i′D − (µD + θ)iD
−(αE + µE)STE

−MST

−iT (0)
−i′T −MiT


,

as well as the map F : Y → Y such that

F



SD

RD

0R2

iD(·)
STE

ST

0R3

iT (·)


=



θD −
SD

ND

∫∞
0 βT (a) ⟨1, iT (a)⟩da∫∞

0 γ(a) ⟨v1, iD(a)⟩da− ϵRD
ND

∫∞
0 βT (a) ⟨1, iT (a)⟩da

SD + ϵRD

ND

∫ ∞

0
βT (a) ⟨1, iT (a)⟩ da v1 +

∫ ∞

0
νD(a) ⟨v1, iD(a)⟩ da v2

0

rE

(
1− STE

K

)(
⟨ST , e3⟩+

∫ ∞

0
⟨iT (a), e3⟩da

)
αESTEe1 − ST

ND

∫∞
0 ⟨βD(a), iD(a)⟩ da

ST

ND

∫ ∞

0
⟨βD(a), iD(a)⟩ da

0



.
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Observe that the nonlinear map F is not well defined on D(M) due to the term ND and is
then not locally Lipschitz continuous. Furthermore, for any ζ > 0, let us introduce the space

Yζ = {u ∈ D(M) : κ(u) ≥ ζ} ⊂ D(M),

where κ : Y → Y is the operator defined by

κ(u) = SD +

∫ ∞

0
iD(a)da +

∫ ∞

0
cD(a)da + RD.

We can now define the nonlinear operator Fζ : Yζ → Y by Fζ ≡ F . Therefore, system
(3.3)-(3.4) can be rewritten as the following non-densely defined abstract Cauchy problem:

d

dt
u(t) =Mu(t) + Fζ(u(t)), t > 0, u(0) ∈ Yζ ∩ Y+. (3.7)

We then address the existence and uniqueness of bounded solutions to (3.7) in a manner
similar to the approach in [51].

3.2 Disease invasion process

System (3.3)-(3.4) exhibits two disease-free equilibria. More precisely, in an infection-free
environment, we have a disease-free equilibrium either in the presence of dogs and ticks or
only in the presence of dogs. But, only the former is interesting within this context because the
disease is transmitted from dogs to ticks and vice versa. Such an equilibrium is named after
the disease-free equilibrium of system (2.3)-(2.4). Let us introduce the following threshold
parameter

R0
ST =

rE
µA

∏
k∈S

αk

αk + µk
= rE

αE

αE + µE

αL

αL + µL

αN

αN + µN

1

µA
. (3.8)

The parameter R0
ST accounts for the ticks’ reproduction number and is such that,

αE

αE + µE

represents the fraction of eggs that progress to the larval stage,
αL

αL + µL
is the fraction of

larval that progress to the nymphal stage,
αN

αN + µN
is the fraction of nymph that progress

to the adult stage,
1

µA
is the life expectancy of adult ticks and rE is the ticks egg laying rate.

Furthermore, when R0
ST > 1, the disease-free equilibrium of system (2.3)-(2.4) is given by

E0 :=
(
S̄D, 0L1((0,+∞),R2), 0, S̄TE , S̄T , 0L1((0,+∞),R3)

)
, (3.9)

where 

S̄D =
θD
µD

,

S̄TE = K

(
1− 1

R0
ST

)
,

S̄T = αES̄TE

3∑
k=1

ek

k∏
j=1

αj−1

µj + αj
, with α0 = 1, α3 = 0.

(3.10)

In the last equality, the correspondence L ← 1, N ← 2, and A ← 3 is used to facilitate the
notations. See Section 6 for a detailed computation of E0.

Next, we introduce the following threshold

T0 = T D→T
0 × T T→D

0 , (3.11)

10



where T D→T
0 quantifies the transmission capability from dogs to ticks and T T→D

0 the trans-
mission capability from ticks to dogs. More precisely, we have

T D→T
0 =

∫ ∞

0
β1
D(a)πD(a)da︸ ︷︷ ︸

Transmission from infected dogs to ticks

+

∫ ∞

0
β2
D(a)πC(a)da

∫ ∞

0
νD(a)πD(a)da︸ ︷︷ ︸

Transmission from chronically infected dogs to ticks

,

and

T T→D
0 =

∑
k∈S\{E}

S̄k∑
j∈S\{E} S̄j︸ ︷︷ ︸

Proportion ticks of stage k

× T T→D
0k , (3.12)

where T T→D
0k denotes the vectorial capacity of ticks population of stage k and is explicitly

given by

T T→D
0k =

∑
j∈S\{E} S̄j

S̄D︸ ︷︷ ︸
Ticks/Dogs ratio

×
∫ ∞

0
βT (a)

〈
1, e−Maek

〉
da,︸ ︷︷ ︸

Transmission from ticks at stage k to Dogs

(3.13)

with {
πD(a) = e−

∫ a
0 (µD+δD(l)+νD(l))dl = Π(a, 0)v1,

πC(a) = e−
∫ a
0 (µD+δC(l))dl = Π(a, 0)v2.

(3.14)

The map a → πD(a) (resp. a → πC(a)) describes the probability to still be infected (resp.
chronically infected) a-time post-infection. Based on the above notations, we now state the
invasion dynamics in terms of the threshold T0 defined in (3.11).

Theorem 3.3. Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfies R0

ST > 1. Then the following properties hold true:

i) If T0 < 1 then the disease-free equilibrium E0 is locally asymptotically stable.

ii) If T0 > 1 then the disease-free equilibrium E0 is unstable.

The proof of Theorem 3.3 is given in Section 7.

3.3 Existence of an endemic equilibrium and bifurcation

In this section, we state our main result concerning necessary and sufficient conditions for
the existence of an endemic equilibrium to system (3.3)-(3.4) and forward (resp. backward)
bifurcation at T0 = 1. Denote by E∗ an endemic equilibrium to system (3.3)-(3.4) that is a
time-independent solution to system (3.3)-(3.4).

E∗ = (S∗
TE ,S

∗
T , i

∗
T , S

∗
D, i

∗
D, R

∗
D) (3.15)

with 
N∗

D = S∗
TE +

∫ ∞

0
⟨1, i∗T (a)⟩ da + ⟨1,S∗

T ⟩+ S∗
D

+

∫ ∞

0
⟨v1, i

∗
D(a)⟩ da +

∫ ∞

0
⟨v2, i

∗
D(a)⟩ da + R∗

D

0 = θD − µDN
∗
D −

∫ ∞

0
δD(a) ⟨v1, i

∗
D(a)⟩da−

∫ ∞

0
δC(a) ⟨v2, i

∗
D(a)⟩ da

(3.16)

such that S∗
TE > 0, S∗

T ∈ int(R3
+), i∗T ̸= 0L1((0,+∞),R3), S∗

D > 0, i∗D ̸= 0L1((0,+∞),R2), and
R∗

D > 0. By means of scaling and a suitable change of variables, we prove in Section 8 that

11



the existence of an endemic equilibrium E∗ can be reduced to the existence of a positive
solution of one equation with one unknown. More precisely, we prove that there exists an
endemic equilibrium E∗ if and only if there exists K > 0 satisfying

∆(T0,K) = 1

with

∆(T0,K) :=
1− I⋄D(T0,K)− (1− ϵ)R⋄

D(T0,K)

N∗
D(K)

f(KT0)
1

T T→D
0

T0.

The maps K → N∗
D(K), K → R⋄

D(T0,K), and K → I⋄D(T0,K) are given by



N∗
D(K) :=

θD

µD + T T→D
0 K(

∫∞
0 δD(a)πD(a)da +

∫∞
0 δC(a)πC(a)da)

R⋄
D(T0,K) := T T→D

0

KN∗
D(K)

ϵKT0f(KT0) + µDN∗
D(K)

∫ ∞

0
γ(a)πD(a)da

I⋄D(T0,K) = KT T→D
0

∫ ∞

0
πD(a)da + KT T→D

0

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
πC(a)da

and the function x→ f(x) is defined by

f(x) :=
θD
µD

3∑
k=1

 k∏
j=1

µj + αj

(µj + αj) + x

 S̄k∑
j∈S\{E} S̄j

T T→D
0k

with T T→D
0 (resp. T T→D

0k ) is the vectorial (k’s ticks stage vectorial) capacity given in (3.12)
(resp. in (3.13)). Recall that in the above sum, we have used the notations L ← 1, N ← 2,
and A← 3 with α3 = 0. Furthermore, if we consider the bifurcation parameter

C−1
bif :=

1

µD
T T→D
0

(∫ ∞

0
δD(a)πD(a)da +

∫ ∞

0
δC(a)πC(a)da

)
−

3∑
k=1

 k∑
j=1

1

µj + αj

 S̄k∑
j∈S\{E} S̄j

T T→D
0k

T T→D
0

−(1− ϵ)
1

µD
T T→D
0

∫ ∞

0
γ(a)πD(a)da

−T T→D
0

∫ ∞

0
πD(a)da− T T→D

0

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
πC(a)da

then we have the following results whose proof is given in Section 8.

Theorem 3.4. Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfies R0

ST > 1. Then the following properties hold true

i) If Cbif > 0 then we have a backward bifurcation at T0 = 1, that is there exists an endemic
equilibrium for T0 < 1 close to 1;

ii) If Cbif < 0 then we have a forward bifurcation at T0 = 1, that is there exists an endemic
equilibrium for T0 > 1 close to 1 and no endemic equilibrium for T0 < 1 close to 1.
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4 Numerical simulations

In this section, we present numerical simulations to illustrate the forward and backward
bifurcation results of Model (2.3)-(2.4). These simulations were conducted using finite volume
numerical schemes implemented with the R software (http://www.r-project.org/). The
values of the parameters used are given in Table 1. In all the figures, we have used the initial
conditions SD(0) = 10, iD(0, a) = 0.03amax(0, 100 − a), cD(0, a) = 0.01amax(0, 100 − a),
RD(0) = 0, STE(0) = 1, STL(0) = 10, STN (0) = 0, STA(0) = 2, iTL(0, a) = 0.01, iTN (0, a) =
0.3, iTA(0, a) = 1. Given the parameter values in Table 1, the ticks’ reproduction number
R0

ST ≈ 66.193.

A forward bifurcation occurs at T0 = 1 (Theorem 3.4), which means that whenever T0 < 1,
then the disease-free equilibrium E0 is locally asymptotically stable (Theorem 3.3) and no
endemic equilibrium exists. Asymptotically, the disease go extinct (Figure 2 (b), where T0 ≈
0.992). However, if T0 > 1, then E0 is unstable (Theorem 3.3) and an endemic equilibrium
exists if Cbif < 0 (Theorem 3.4). The disease is asymptotically persistent and the solution
converges to the endemic equilibrium (Figure 2 (a), where T0 ≈ 1.103 and Cbif ≈ −9.4×10−4).
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Figure 2: Forward bifurcation diagram with convergence either to (a) the endemic
equilibrium when T0 ≈ 1.103 > 1; (b) the disease-free equilibrium when T0 ≈
0.992 < 1. Here rE = 1, δD(a) = 1.735×10−4, δC(a) = 3.47×10−4, β2

D(a) = 0.038,
βT (a) = 0.15504, and Cbif = −9.4 × 10−4 are fixed. The probability of infection
β1
D(a) is considered constant with: (a) β1

D(a) = 0.076 and (b) β1
D(a) = 0.0506.

The other parameters are given by Table 1.

A backward bifurcation occurs at T0 = 1. This means that whenever T0 > 1, the disease-free
equilibrium is unstable and there exists a unique endemic equilibrium. In such situation,
the solutions converge asymptotically to this endemic equilibrium (Figures 3 (a)), where
T0 ≈ 1.318). By contrast to the forward bifurcation (Figures 2 and 4 (a)), when T0 < 1 and
Cbif ≈ 5.21×10−4 > 0 there exists an endemic equilibrium (Theorem 3.4). Furthermore, there
exists a threshold T ∗

0 ≈ 0.422 < 1 such that (i) for T0 < T ∗
0 , there is no endemic equilibrium

and the solutions converge to the disease-free equilibrium (Figures 3 (b) and 4 (b), where
T0 ≈ 0.415 < T ∗

0 ) and (ii) for T ∗
0 < T0 < 1, there exist an endemic equilibrium such that,

depending on the initial condition, the solution can converge to this endemic equilibrium
(Figures 3 (c) and 4 (b), where T ∗

0 < T0 ≈ 0.843).
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Figure 3: Backward bifurcation diagram with convergence either to (a) the en-
demic equilibrium when T0 ≈ 1.318 > 1; (b) the disease-free equilibrium when
T0 ≈ 0.415 < T ∗

0 < 1; (c) the endemic equilibrium when T ∗
0 < T0 ≈ 0.843 < 1.

Here rE = 1, δD(a) = 0.1735, δC(a) = 0.347, β2
D(a) = 0.608, βT (a) = 0.15504,

and Cbif = 5.21× 10−4 are fixed. The probability of infection β1
D(a) is considered

constant with: (a) β1
D(a) = 0.76, (b) β1

D(a) = 0.304, and (c) β1
D(a) = 0.456. The

other parameters are given by Table 1.
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Figure 4: Forward and backward bifurcation diagram. (a) Forward bifurcation
diagram with Cbif = −9.4 × 10−4 where all the parameters are the same as in
Figure 2. (b) Backward bifurcation diagram with Cbif = 5.21 × 10−4 and the
parameters are the same as in Figure 3. Note that Cbif does not depend on the
parameter β1

D.

5 Discussion and Conclusions

Discussion

In this work, we have developed a novel partial differential equation (PDE) model that ex-
tends classical epidemiological models proposed for tick-borne diseases (see [30, 31]). The
model proposed here incorporates the ability to accurately account for the different ticks
developmental stages (discrete variable) as well as the variations in infectiousness over the
course of infection (continuous variable). In our study, we established the mathematical well-
posedness of the model using the integrated semigroups theory. However, the presence of
singularity in the force of infection whenever the total dogs’ population is zero introduces a
complication to the analysis. Note that this is a mathematical construct, since without dogs
the model would not hold nor make sense.

We derived an explicit formula for the reproduction number T0, extending the classical for-
mula. We identified two possible behaviors around T0 = 1. The first scenario involves a
forward bifurcation, indicating that an epidemic can only occur if T0 > 1. In the second
scenario, a backward bifurcation is observed, where an epidemic can arise if T0 < 1, provided
that T0 is sufficiently close to 1. These findings have significant epidemiological implica-
tions, especially in an endemic region where controlling the epidemic is of importance. In the
forward bifurcation case, simply reducing the reproduction number T0 below 1 is sufficient
to halt the epidemic. However, in the backward bifurcation scenario, the number must be
reduced below a second threshold, denoted as T ∗

0 .

The epidemiological implication of the backward bifurcation phenomenon is that the classical
requirement of having the basic reproduction number (R0) less than one is no longer sufficient
to ensure effective disease eradication or elimination [36]. This implies that disease can
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invade to a relatively high endemic level once the reproduction number R0 is more than
one; decreasing R0 below one do not necessarily make the disease disappear, see Figure 3
(b) and Figure 2 in [36]. Backward bifurcation have been shown to occur in several vector-
borne disease models [2, 12, 22, 28, 29, 32, 43, 51]. For instance Garba et al. [32] showed
for a dengue model the possibility of backward bifurcation where a locally stable disease-free
equilibrium coexists with a locally stable endemic equilibrium. Also the age-structure malaria
and Chikungunya models in [2, 28, 29, 51] were shown to exhibit backward bifurcation when
R0 is less than one. This phenomenon is equally possible in the absence of any age-structure
[2, 28, 29]. Backward bifurcation in these vector-borne disease models are induced by disease
induced mortality. Furthermore, backward bifurcation can equally be induced by several
other factors like vaccination [3, 13, 24, 53], exogenous re-infection which are known to occur
in tuberculosis models [17, 27, 54], and cross-immunity for instance in a two strain influenza
transmission model [33]. Other epidemiological mechanism like differential susceptibility in
risk-structured models could also cause backward bifurcation in disease transmission models
[36]. We should note that the age-structured Ehrlichia chaffeensis model (2.3)-(2.4) include
disease induce death (δD and δC) in the dog population and hence the source of the backward
bifurcation.

Conclusion

In conclusion, we have developed a novel partial differential equation model of Ehrlichia chaf-
feensis transmission dynamics in dogs. The model incorporates the different developmental
life stages of ticks (discrete variable) as well as the duration of infection (continuous variable).
The following results were obtained from our theoretical analysis and numerical simulations:

(i) The developed model is well-posed;

(ii) The model always exhibits a disease-free equilibrium along with an endemic equilibrium;

(iii) The model has a reproduction number, denoted as T0;
(iii) A necessary and sufficient condition for the bifurcation of an endemic equilibrium was

established using semigroup approach;

(iv) A bifurcation (forward or backward), can occur at T0 = 1.

6 The disease-free equilibrium of (2.3)-(2.4)

The dynamic of ticks in the absence of infection is governed by the following system of
equations 

dSTE(t)

dt
= rE

(
1− STE(t)

K

)
STA(t)− (µE + αE)STE(t)

dSTL(t)

dt
= αESTE(t)− (µL + αL)STL(t)

dSTN (t)

dt
= αLSTL(t)− (µN + αN )STN (t)

dSTA(t)

dt
= αNSTN (t)− µASTA(t)

(6.1)

with initial condition STE(0) = STE0 ≥ 0, STL(0) = STL0 ≥ 0, STN (0) = STN0 ≥ 0,
and STA(0) = STA0 ≥ 0. It is easy to see that {0} × R3

+ is invariant with respect to the
ordinary differential equation so that if STE0 = 0 then the larval, nymphal, and adult stages
exponentially goes to 0. From this, we have that a necessary condition for the ticks to persist
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is STE0 > 0. Moreover, by straightforward computations, we find that (6.1) has a unique
positive stationary solution if and only if the ticks reproduction number R0

ST defined by (3.8)
satisfies R0

ST > 1. By straightforward computations, we have that the equilibrium of system
(6.1) is given by 

S̄TE = K
R0

ST − 1

R0
ST

,

S̄TL =
αE

µL + αL
S̄TE ,

S̄TN =
αL

µN + αN

αE

µL + αL
S̄TE ,

S̄TA =
αN

µA

αL

µN + αN

αE

µL + αL
S̄TE .

(6.2)

Note that in accordance with the compact formulation (3.3)-(3.4), the above expressions of
R0

ST and S̄Tk, with k ∈ S, can be rewritten as

R0
ST :=

rEαE

αE + µE

〈
M−1e1, e3

〉
, (6.3)

and 
S̄TE = K

(
1− 1

R0
ST

)
,

S̄T = αES̄TE

3∑
k=1

ek

k∏
j=1

αj−1

µj + αj
, with α0 = 1, α3 = 0,

(6.4)

and using the correspondence L← 1, N ← 2, and A← 3.

7 Threshold and Proof of Theorem 3.3

In order to obtain the threshold of (3.3)-(3.4) that determine disease invasion dynamics in
a completely susceptible population of ticks and dogs, we consider the linearized equation
to (3.3)-(3.4) at the disease-free equilibrium E0. More precisely, we linearize the infective
compartments of (3.3)-(3.4) around E0 to obtain the following system

∂iD(t, a)

∂t
+

∂iD(t, a)

∂a
= −(µD + θ(a))iD(t, a)

iD(t, 0) =

∫ ∞

0
βT (a) ⟨1, iT (t, a)⟩ da v1

+

∫ ∞

0
νD(a) ⟨v1, iD(t, a)⟩ da v2

(7.1)

and 
∂iT (t, a)

∂t
+

∂iT (t, a)

∂a
= −MiT (t, a)

iT (t, 0) =
S̄T

S̄D

∫ ∞

0
⟨βD(a), iD(t, a)⟩ da

(7.2)

whose initial conditions satisfy iD(0, ·) ∈ L1((0,+∞),R2) and iD(0, ·) ∈ L1((0,+∞),R3).
In order to define the threshold and study the local asymptotic stability of the disease-
free equilibrium, we will make use of the semigroup approach by reformulating (7.1) and
(7.2) as an abstract Cauchy problem. For this purpose, we consider the Banach spaces
X := R2 × L1((0,+∞),R2), Y = R3 × L1((0,+∞),R3), X0 := {0R2} × L1((0,+∞),R2) and
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Y0 := {0R3} × L1((0,+∞),R3). Let AD : D(AD) ⊂ X0 → X and AT : D(AT ) ⊂ Y0 → Y be
the linear operators defined by

AD

(
0R2

φ

)
=

(
−φ(0)

−φ′ − (µD + θD(·)φ)

)
and AT

(
0R3

ϕ

)
=

(
−ϕ(0)
−ϕ′ −Mϕ

)
with

D(AD) = {0R2} ×W 1,1((0,+∞),R2) and D(AT ) = {0R3} ×W 1,1((0,+∞),R3).

Let A : D(A) ⊂ Y0 ×X0 → Y ×X with

D(A) = D(AD)×D(AT ) and A
(
φ
ϕ

)
=

(
AD[φ]
AT [ϕ]

)
.

Let B : X0 × Y0 → X × Y be the bounded linear operator defined by

B
(
φ
ϕ

)
=


(
v1PT [ϕ] + v2QD[φ]

0L1((0,+∞),R2)

)
S̄T

S̄D

(
WD[φ]

0L1((0,+∞),R3)

)
 (7.3)

where we have set for each φ =

(
0R2

φ

)
∈ X0

WD[φ] :=

∫ ∞

0
⟨βD(a), φ(a)⟩da

PD[φ] :=

∫ ∞

0
γ(a) ⟨v1, φ(a)⟩da

QD[φ] :=

∫ ∞

0
νD(a) ⟨v1, φ(a)⟩ da

and each ϕ =

(
0R3

ϕ

)
∈ Y0 

WT [ϕ] :=

∫ ∞

0
⟨e3, ϕ(a)⟩ da

PT [ϕ] :=

∫ ∞

0
βT (a) ⟨1, ϕ(a)⟩ da.

Hence, setting for all t > 0

φD(t) :=

(
0R2

iD(t, ·)

)
and ϕT (t) :=

(
0R3

iT (t, ·)

)
and

φD0 :=

(
0R2

iD(0, ·)

)
and ϕT0 :=

(
0R3

iT (0, ·)

)
the system (7.1)-(7.2) can be rewritten as the following abstract Cauchy problem

d

dt

(
φD(t)

ϕT (t)

)
= A

(
φD(t)

ϕT (t)

)
+ B

(
φD(t)

ϕT (t)

)
, t > 0(

φD(0)

ϕT (0)

)
=

(
φD0

ϕT0

)
∈ X0 × Y0.

(7.4)
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In order to define the threshold that determines the local asymptotic stability of the disease-
free equilibrium, we need first to prove the following lemma. Before proceeding, let us set
X+ := R2

+ × L1((0,+∞),R2), Y+ := R2
+ × L1((0,+∞),R2), X0+ := X+ ∩ X0, and Y0+ :=

Y+ ∩ Y0.

Lemma 7.1. Let Assumption 3.1 be satisfied. Then the following properties hold true

i) A is resolvent positive i.e., (λ − A)−1 maps X+ × Y+ into itself for all large λ in the
resolvent set ρ(A) of A;

ii) The spectral bound s(A) i.e.

s(A) = sup {ℜ(λ) : λ ∈ σ(A)} (7.5)

satisfies s(A) < 0 and (s(A),+∞) ⊂ ρ(AD) ∩ ρ(AT ).

Proof. In order to obtain the conclusion of the lemma, we first prove that A is resolvent
positive. To do this, let us note that if λ ∈ ρ(AD) ∩ ρ(AT ) then λ ∈ ρ(A) and

(λ−A)−1

(
φ̃

ϕ̃

)
=

(
(λ−AD)−1[φ̃]

(λ−AT )−1[ϕ̃]

)
so that the resolvent of A is obtained by determining the resolvent of AD and AT . By

standard computations, we have for each λ ∈ ρ(AD) and φ̃ =

(
x
φ̃

)
∈ Y

(λ−AD)−1

(
x
φ̃

)
=

(
0R2

φ

)
⇐⇒ φ(a) = e−λaΠ(a, 0)x +

∫ a

0
e−λ(a−τ)Π(a, τ)φ̃(τ)dτ, a ≥ 0

(7.6)

(where Π(a, 0) is defined in (3.5)) while for each λ ∈ ρ(AT ) and ϕ̃ =

(
y

ϕ̃

)
∈ X we have

(λ−AT )−1

(
y
ϕ

)
=

(
0R3

ϕ

)
⇐⇒ ϕ(a) = e−λae−May +

∫ a

0
e−λ(a−τ)e−M(a−τ)ϕ̃(τ)dτ, a ≥ 0.

(7.7)

Next, recalling the definition of M and θ(a) respectively in (3.1) and (3.2) it follows that if{
λ > −min(µL + αL, µN + αN , µA) =: −µ1,− < 0

and λ > −µD −min(essinfR+θ11(a), essinfR+θ22(a)) =: −µ2,− < 0
(7.8)

then λ ∈ ρ(AD) ∩ ρ(AT ). Next, recalling from [8, 46] if A is resolvent positive then{
s(A) = inf

{
λ ∈ ρ(A) : (λ−A)−1(X+ × Y+) ⊆ (X+ × Y+)

}
(s(A),+∞) ⊆ ρ(A)

(7.9)

and we infer from (7.6)-(7.9) that s(A) < 0. The proof is completed.

Thanks to Lemma 7.1 and the positiveness of the bounded linear operator B (i.e. it maps
X0+ × Y0+ into X+ × Y+), one can use the theory developed in [55] to define a threshold
which determines the sign of s(A+ B) i.e. the spectral bound of A+ B given by
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s(A+ B) = sup {ℜ(λ) : λ ∈ σ(A+ B)} .

More precisely, we set
T̂0 := r(B(−A)−1) (7.10)

where r(B(−A)−1) is the spectral radius of the bounded linear operator B(−A)−1. The
following lemma will allow us to obtain the relationship between the sign of T̂0 − 1 and the
growth bound of the C0-semigroup generated by (A+B)0 i.e., the part of A+B in X0× Y0.
Note that latter threshold T̂0 does not exhibit explicitly the parameters of the model but this
will be resolved after proving the local stability properties.

Lemma 7.2. Let Assumption 3.1 be satisfied. Then s(A+B) and T̂0− 1 have the same sign.
Moreover, we have the following properties

i) s((A + B)0) = s(A + B) = ω0((A + B)0) with ω0((A + B)0) the growth bound of the
C0-semigroup generated by (A+ B)0

ii) ω0,ess((A + B)0) ≤ ω0(A0) = s(A0) = s(A) with ω0,ess((A + B)0) the essential growth
bound of the C0-semigroup generated by (A+ B)0 and A0 is the part of A in X0 × Y0.

Proof. We first note that X×Y is an AL-space [55, Theorem 3.14] with positive cone X+×Y+
that is normal and generating (see [55]) so that

s(A0) = ω0(A0) and s((A+ B)0) = ω0((A+ B)0) (7.11)

with ω0(A0) the growth bound of the C0-semigroup generated by A0. The first assertion of
the lemma is a direct application of [55, Theorem 3.5]. Next, we prove properties i) and ii).
Since ρ(A) = ρ(A0) and ρ(A+ B) = ρ((A+ B)0) (see [40]) it follows that s(A0) = s(A) and
s((A+ B)0) = s(A+ B). This proves i) and the equality ω0(A0) = s(A0) = s(A). Next, note
that B is compact since B(X0 × Y0) is a finite-dimensional space. Therefore, we infer from
[20, Theorem 1.2] that ω0,ess((A+ B)0) ≤ ω0(A0) and the proof is completed.

Lemma 7.3. Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduction
number satisfies R0

ST > 1. Then the disease-free equilibrium is locally asymptotically stable

if T̂0 < 1 and unstable if T̂0 > 1.

Proof. If T̂0 < 1 then by Lemma 7.3 we have ω0((A+B)0) < 0 resulting to the local asymptotic
stability of the disease-free. If T̂0 > 1 then ω0((A+B)0) > 0 and since ω0,ess((A+B)0) < 0 it
follows that ω0,ess((A+B)0) < ω0((A+B)0). Therefore, using [20, Theorem 3.2.] one knows
that (A + B)0 has an isolated positive eigenvalue. Thus we refer to [40, Proposition 5.7.4])
that the disease-free equilibrium is unstable.

The threshold T̂0 defined in (7.10) is somehow abstract and does not allow the interpretation
of the stability of the disease-free to be made in terms of the parameters of the model.
Therefore, we will give in the following and equivalent threshold which incorporate explicitly
the parameters of the model. To this end, we first make a remark that allows us to simplify the
determination of T0. Let us set Y1 = R2 × L1((0,+∞),R2), and X1 = R3 × L1((0,+∞),R3).
Next, we observe that Y1 × X1 is finite-dimensional and B(Y0 × X0) ⊆ Y1 × X1 so that
the spectral bound of B(−A)−1 coincides with the spectral bound of B(−A)−1

|Y1×X1
. The

advantage of considering B(−A)−1
|Y1×X1

is that we can obtain the spectral radius by solving
an eigenvalue problem of a matrix.
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Proposition 7.4. Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ repro-
duction number satisfies R0

ST > 1 and set

T0 =
1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

[∫ ∞

0
β1
D(a)πD(a)da

+

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
β2
D(a)πC(a)

]
.

(7.12)

Then T̂0 − 1 and T0 − 1 have the same sign.

Proof. We first give the explicit form of the linear operator B(−A)−1
|X1×Y1

. Let

(
φ1

ϕ1

)
∈

X1 × Y1 be given with φ1 :=

(
x

0L1((0,+∞),R2)

)
and ϕ1 :=

(
y

0L1((0,+∞),R3)

)
. Then using the

resolvent formula of AD and AT respectively in (7.6) and (7.7) we obtain

(−AD)−1[φ1] =

(
0R2

Π(·, 0)x

)
=: φ0 (7.13)

and

(−AT )−1[ϕ1] =

(
0R3

e−M·y

)
=: ϕ0. (7.14)

Hence using the explicit form of B in (7.3) it comes

B(−A)−1

(
φ1

ϕ1

)
= B

(
φ0

ϕ0

)
=


(
v1PT [ϕ0] + v2QD[φ0]

0L1((0,+∞),R2)

)
S̄T

S̄D

(
WD[φ0]

0L1((0,+∞),R3)

)
 (7.15)

with

{
v1PT [ϕ0] + v2QD[φ0] = v1

∫∞
0 βT (a)

〈
1, e−May

〉
da + v2

∫∞
0 νD(a) ⟨v1,Π(a, 0)x⟩ da

WD[φ0] =
∫∞
0 ⟨βD(a),Π(a, 0)x⟩ da

so that the spectral radius of B(−A)−1 is given by the spectral radius of the linear operator
C : R2 × R3 → R2 × R3 given by

C
(
x
y

)
=

(
v1

∫∞
0 βT (a)

〈
1, e−May

〉
da + v2

∫∞
0 νD(a) ⟨v1,Π(a, 0)x⟩da

S̄T

S̄D

∫∞
0 ⟨βD(a),Π(a, 0)x⟩da

)
Since C is a positive linear operator of finite-dimensional spaces, its spectral radius T̂0 is an

eigenvalue. Moreover, let

(
x
y

)
∈ R2 × R3 be a non zero vector such that C

(
x
y

)
= T̂0

(
x
y

)
.

Then we have the following system of equations
v1

∫ ∞

0
βT (a)

〈
1, e−May

〉
da + v2

∫ ∞

0
νD(a) ⟨v1,Π(a, 0)x⟩da = T̂0x

S̄T

S̄D

∫ ∞

0
⟨βD(a),Π(a, 0)x⟩da = T̂0y

(7.16)

from where we obtain the equality

y =
1

T̂0
S̄T

S̄D

∫ ∞

0
⟨βD(a),Π(a, 0)x⟩da. (7.17)
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Hence, plugging (7.17) into the first equation of (7.16) gives

v1
1

T̂0
1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

∫ ∞

0
⟨βD(a),Π(a, 0)x⟩ da

+v2

∫ ∞

0
νD(a) ⟨v1,Π(a, 0)x⟩ da = T̂0x.

Thus, setting x = x1v1+x2v2 and recalling that ⟨βD(a),Π(a, 0)v1⟩ = β1
D(a)πD(a), ⟨βD(a),Π(a, 0)v2⟩ =

β2
D(a)πC(a), and ⟨v1,Π(a, 0)v1⟩ = πD(a) we obtain by identification


1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

∫ ∞

0
[x1β

1
D(a)πD(a) + x2β

2
D(a)πC(a)]da = T̂ 2

0 x1

x1

∫ ∞

0
νD(a)πD(a)da = T̂0x2

so that
1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

[
x1

∫ ∞

0
β1
D(a)πD(a)da

+
1

T̂0
x1

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
β2
D(a)πC(a)da

]
= T̂ 2

0 x1.
(7.18)

From the above computations, we see that

(
x
y

)
is the null vector if and only if x1 = 0.

Therefore, the spectral radius of C satisfies

T̂ 2
0 =

1

T̂0
T0,2 + T0,3 (7.19)

with


T0,2 :=

1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

∫ ∞

0
β1
D(a)πD(a)da

T0,3 :=
1

S̄D

∫ ∞

0
βT (a)

〈
1, e−MaS̄T

〉
da

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
β2
D(a)πC(a)da.

Next, observe that T0 defined in (3.11) is also given by T0 = T0,2 + T0,3. Moreover, by similar
computations, one obtains that the non-zero eigenvalues of C satisfy

λ3 = T0,2 + λT0,3. (7.20)

To prove that T̂0 − 1 and T0 − 1 have the same sign, we will make use of (7.19) and (7.20).
Indeed if T̂0 = 1 then (7.19) implies that T0 = 1. If T0 = 1 then (7.20) becomes λ3 =
(1− T0,3) + λT0,3 with 1− T0,3 ≥ 0 so that the non-zero solution of (7.20) have modulus less

than one. This proves that T̂0 = 1 whenever T0 = 1. To complete the proof, we observe that
if T0 > 1 then (7.19) implies that 1 < T 2

0 = 1
T0T0,2 + T0,3 < T0,2 + T0,3 = R0. Similarly if

T0 < 1 then R0 < 1.

8 Proof of Theorem 3.4

In order to determine the endemic equilibrium of the model (3.3)-(3.4), we proceed in several
steps. In the first step, we give an equivalent system to (8.1), the second step is concerned with
the solvability of (8.2), and the last step concerns the bifurcation properties. In this section,
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we will always suppose that Assumption 3.1 is satisfied and R0
ST > 1. Let us note that using

the notation (3.14) together with Theorem 3.2, one knows that an endemic equilibrium E∗
defined in (3.15) satisfies

0 = rE

(
1−

S∗
TE

K

)(
⟨S∗

T , e3⟩+

∫ ∞

0
⟨i∗T (a), e3⟩da

)
− (αE + µE)S∗

TE

i∗T (a) =
1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩ da e−MaS∗

T

0R3 = αES
∗
TE e1 −

1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩da S∗

T −MS,
T

(8.1)

and 

0 = θD −
S∗
D

N∗
D

∫ ∞

0
βT (a) ⟨1, i∗T (a)⟩ da− µDS

∗
D

i∗D(a) =
S∗
D + ϵR∗

D

N∗
D

∫ ∞

0
βT (a) ⟨1, i∗T (a)⟩ da πD(a) v1

+

∫ ∞

0
νD(τ) ⟨v1, i

∗
D(a)⟩da πC(a) v2

0 =

∫ ∞

0
γ(a) ⟨v1, i

∗
D(a)⟩ da− ϵ

R∗
D

N∗
D

∫ ∞

0
βT (a) ⟨1, i∗T (a)⟩da− µDR

∗
D

0 = θD − µDN
∗
D −

∫ ∞

0
δD(a) ⟨v1, i

∗
D(a)⟩da−

∫ ∞

0
δC(a) ⟨v2, i

∗
D(a)⟩ da.

(8.2)

On the stationary states of ticks: Let us first prove the following lemma which describes
the stationary states of the eggs.

Lemma 8.1. The total number of eggs remains unchanged at the endemic and the disease-free
equilibrium i.e S̄∗

TE = S̄TE. Moreover, we always have

S∗
T +

∫ ∞

0
i∗T (a)da = S̄T . (8.3)

Proof. Note that, using the third equation of (8.1) we have

0R3 = αESTE M−1e1 −
1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩da M−1S∗

T − S∗
T (8.4)

Next, integrating the second equation of (8.1) it follows that∫ ∞

0
i∗T (a)da =

1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩da

∫ ∞

0
e−MaS∗

Tda

=
1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩da M−1S∗

T

(8.5)

Thus, by combining (8.4) and (8.5) we obtain∫ ∞

0
i∗T (a)da + S∗

T = αES
∗
TE M−1e1 =

S∗
TE

S̄TE
S̄T . (8.6)

Therefore, plugging (8.6) in the first equation of (8.9) we obtain the following equality

0 = rE

(
1−

S∗
TE

K

)
S∗
TE

S̄TE

〈
S̄T , e3

〉
− (αE + µE)S∗

TE (8.7)
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or equivalently

0 = rE

(
1−

S∗
TE

K

)〈
S̄T , e3

〉
− (αE + µE)S̄TE . (8.8)

The right-hand side of (8.8) is a decreasing function of S∗
TE so that the unique solution to

(8.7) is S∗
TE = S̄TE . The equality (8.3) now follows from (8.6).

Thanks to Lemma 8.1 the system of equations (8.1) is equivalent to
i∗T (a) =

1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩da e−MaS∗

T

0R3 = αESTE e1 −
1

N∗
D

∫ ∞

0
⟨βD(a), i∗D(a)⟩ da S∗

T −MS∗
T .

(8.9)

Note that for each nonnegative constant η0 ≥ 0 the matrix M+η0I3 (where I3 is the identity
operator on R3) is invertible with inverse (M + η0I3)

−1 satisfying

(M + η0I3)
−1e1 =

3∑
k=1

 k∏
j=1

αj−1

µj + αj + η0

 ek, with α0 = 1, α3 = 0, (8.10)

and where the correspondence L ← 1, N ← 2, and A ← 3 is used. Therefore, using (8.9)
together with (8.10), for η0 = 1

N∗
D

∫∞
0 ⟨βD(a), i∗D(a)⟩ da, it follows that

S∗
T = αESTE

3∑
k=1

ek

k∏
j=1

N∗
Dαj−1

N∗
D(µj + αj) +

∫∞
0 ⟨βD(a), i∗D(a)⟩ da

, (8.11)

with α0 = 1 and α3 = 0. Thus, recalling the expression of S̄T in (6.4) we obtain

S∗
T =

3∑
k=1

〈
S̄T , ek

〉
ek

k∏
j=1

N∗
D(µj + αj)

N∗
D(µj + αj) +

∫∞
0 ⟨βD(a), i∗D(a)⟩ da

(8.12)

and the system of equations (8.9) becomes equivalent to

S∗
T =

3∑
k=1

 k∏
j=1

µj + αj

(µj + αj) + W ∗
D

〈S̄T , ek
〉
ek

i∗T (a) = W ⋄
D e−MaS∗

T

W ⋄
D =

∫ ∞

0

〈
βD(a),

i∗D(a)

N∗
D

〉
da.

(8.13a)

(8.13b)

(8.13c)

From the above comments, it follows that S∗
T and i∗T are entirely determined by the variables

W ⋄
D and

i∗D
N∗

D
.

On the stationary states of dogs: In order to obtain an equivalent formulation to (8.2)
we introduce the new variables

i⋄D(a) :=
i∗D(a)

N∗
D

, S⋄
D :=

S∗
D

N∗
D

and R⋄
D :=

R∗
D

N∗
D

. (8.14)

Next, we set

P ∗
T :=

∫ ∞

0
βT (a) ⟨1, i∗T (a)⟩da, (8.15)
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and 

P ⋄
D :=

∫ ∞

0
γ(a) ⟨v1, i

⋄
D(a)⟩ da

Q⋄
D :=

∫ ∞

0
νD(a) ⟨v1, i

⋄
D(a)⟩ da,

U⋄
D :=

∫ ∞

0
δD(a) ⟨v1, i

∗
D(a)⟩da

U⋄
C :=

∫ ∞

0
δC(a) ⟨v2, i

∗
D(a)⟩da

(8.16)

With these new variables, system (8.2) becomes

0 = θD − S⋄
DP

∗
T − µDN

∗
DS

⋄
D

N∗
Di

⋄
D(a) = (S⋄

D + ϵR⋄
D)P ∗

T πD(a) v1 + N∗
DQ

⋄
D πC(a) v2

0 = N∗
DP

⋄
D − ϵR⋄

DP
∗
T − µDN

∗
DR

⋄
D

0 = θD − µDN
∗
D −N∗

DU
⋄
D −N∗

DU
⋄
C

(8.17)

which is equivalent to

N∗
D =

θD
µD + U⋄

D + U⋄
C

S⋄
D =

θD
µDN∗

D + P ∗
T

R⋄
D =

N∗
DP

⋄
D

ϵP ∗
T + µDN∗

D

i⋄D(a) =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T πD(a) v1 + Q⋄

D πC(a) v2.

(8.18)

Next, we show the relationship between P ∗
T and W ⋄

D defined respectively in (8.13c) and (8.15).
To do so, we integrate (8.13b) to obtain

P ∗
T = W ⋄

D

∫ ∞

0
βT (a)

〈
1, e−MaS∗

T

〉
da (8.19)

and by using the expression of S∗
T defined in (8.13a) we obtain the following more explicit

formula

P ∗
T = W ⋄

D

3∑
k=1

 k∏
j=1

µj + αj

(µj + αj) + W ⋄
D

 S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D, (8.20)

with T T→D
0k the k’s stage vectorial capacity defined in (3.13).

In the following, we determine the equations for the variables P ⋄
D, Q⋄

D, U⋄
D, U⋄

C and W ⋄
C

defined in (8.16). To this end, recalling that βD(a) = β1
D(a)v1 +β2

D(a)v1, we use successively
the equation of i⋄D(a) in (8.18) to obtain
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W ⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
β1
D(a)πD(a)da

+ Q⋄
D

∫ ∞

0
β2
D(a)πC(a)da

P ⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
γ(a)πD(a)da

Q⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
νD(a)πD(a)da

U⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
δD(a)πD(a)da

U⋄
C =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
δC(a)πC(a)da.

(8.21a)

(8.21b)

(8.21c)

(8.21d)

(8.21e)

(8.21f)

Note that, plugging (8.21d) into (8.21a) gives the following equality
W ⋄

D =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

[∫ ∞

0
β1
D(a)πD(a)da

+

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
β2
D(a)πC(a)da

]
.

(8.22)

Let us now define the function

f(W ⋄
D) :=

3∑
k=1

 k∏
j=1

µj + αj

(µj + αj) + W ⋄
D

 S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D (8.23)

and observe that the vectorial capacity T T→D
0 is given by

T T→D
0 =

f(0)

S̄D
(8.24)

so that
T0 =

f(0)

S̄D

[∫ ∞

0
β1
D(a)πD(a)da

+

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
β2
D(a)πC(a)da

]
.

(8.25)

In the following, we rewrite our system of equations by using the variable

K :=
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

T T→D
0

. (8.26)

To do so, we first observe that (8.22) and (8.20) take respectively the following form

W ⋄
D = KT0 and P ∗

T = W ⋄
Df(W ⋄

D) = KT0f(KT0) (8.27)

while (8.21) is now given by
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W ⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
β1
D(a)πD(a)da

+ Q⋄
D

∫ ∞

0
β2
D(a)πC(a)da

P ⋄
D = KT T→D

0

∫ ∞

0
γ(a)πD(a)da

Q⋄
D = KT T→D

0

∫ ∞

0
νD(a)πD(a)da

U⋄
D = KT T→D

0

∫ ∞

0
δD(a)πD(a)da

U⋄
C = KT T→D

0

∫ ∞

0
δC(a)πC(a)da.

(8.28a)

(8.28b)

(8.28c)

(8.28d)

(8.28e)

(8.28f)

Hence, using the first equation of (8.18) together with (8.28e), and (8.28f) we obtain the
following necessary conditions

N∗
D(K) :=

θD

µD + KT T→D
0 (

∫∞
0 δD(a)πD(a)da +

∫∞
0 δC(a)πC(a)da)

. (8.29)

Furthermore, the second, third and fourth equation of (8.18) together with (8.27), (8.28c)
and (8.28d) provide



R⋄
D(T0,K) := T T→D

0

KN∗
D(K)

ϵKT0f(KT0) + µDN∗
D(K)

∫ ∞

0
γ(a)πD(a)da

S⋄
D(T0,K) :=

θD
µDN∗

D(K) + KT0f(KT0)

i⋄D(a) := K T T→D
0 πD(a) v1 + KT T→D

0

∫ ∞

0
νD(a)πD(a)da πC(a) v2.

(8.30a)

(8.30b)

(8.30c)

Moreover, from the equality P ∗
T = KT0f(KT0) and (8.26) it comes that for K > 0 we must

have the following equality

1 =
S⋄
D(T0,K) + ϵR⋄

D(T0,K)

N∗
D(K)

f(KT0)
T T→D
0

T0. (8.31)

Recalling that we have the necessary condition S⋄
D +R⋄

D +
∫∞
0 ⟨1, i

⋄
D(a)⟩ da = 1, we consider

the following equation

∆(T0,K) = 1

with

∆(T0,K) :=
1− (1− ϵ)R⋄

D(T0,K)− I⋄D(T0,K)

N∗
D(K)

f(KT0)
T T→D
0

T0 (8.32)

and

I⋄D(T0,K) := KT T→D
0

∫ ∞

0
πD(a)da + KT T→D

0

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
πC(a)da. (8.33)

Lemma 8.2. There exists an endemic equilibrium to (3.3)-(3.4) if and only if there exists
K > 0 such that ∆(T0,K) = 1.
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Proof. The necessity of the lemma follows from the preceding arguments. Next, we prove
the sufficiency. To this end, assume that there exists K > 0 such that ∆(T0,K) = 1. Let
N∗

D be given by the right-hand side of (8.29). Let R⋄
D and i⋄D be given respectively by the

right-hand side of (8.30a) and (8.30c). Observe that with these definitions we have

I⋄D(T0,K) =

∫ ∞

0
⟨1, i⋄D⟩ da (8.34)

so that setting
S⋄
D := 1−R⋄

D − I⋄D(T0,K) (8.35)

it comes from (8.32)

1 =
S⋄
D + ϵR⋄

D

N∗
D

f(KT0)
T T→D
0

T0. (8.36)

Note that setting W ⋄
D = KT0, P ∗

T = W ⋄
Df(W ⋄

D), with f defined in (8.23), and multiplying
(8.36) by K it follows that

K =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

T T→D
0

and W ⋄
D =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

T T→D
0

T0. (8.37)

Therefore, our definition of R⋄
D and i⋄D respectively in (8.30a) and (8.30c) together with (8.37)

give us
R⋄

D =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

N∗
D

ϵP ∗
T + µDN∗

D

∫ ∞

0
γ(a)πD(a)da

i⋄D(a) =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T πD(a) v1 +

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
νD(a)πD(a)da πC(a) v2.

(8.38)

Moreover, using (8.37) one also note that our definition of N∗
D in (8.29) leads to

µDN
∗
D = θD − (S⋄

D + ϵR⋄
D) P ∗

T

∫ ∞

0
δD(a)πD(a)da

−(S⋄
D + ϵR⋄

D) P ∗
T

∫ ∞

0
δC(a)πC(a)da.

(8.39)

Next, we observe that the R⋄
D-equation in (8.38) is equivalent to

µDN
∗
DR

⋄
D = −ϵP ∗

TR
⋄
D + (S⋄

D + ϵR⋄
D)P ∗

T

∫ ∞

0
γ(a)πD(a)da. (8.40)

Note that from the above formulas of R⋄
D and i⋄D in (8.38) we have the following identities

∫ ∞

0
νD(a) ⟨v1, i

⋄
D(a)⟩da =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
νD(a)πD(a)da∫ ∞

0
γ(a) ⟨v1, i

⋄
D(a)⟩ da =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
γ(a)πD(a)da∫ ∞

0
δD(a) ⟨v1, i

⋄
D(a)⟩ da =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
δD(a)πD(a)da∫ ∞

0
δC(a) ⟨v2, i

⋄
D(a)⟩ da =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T

∫ ∞

0
νD(a)πD(a)da

×
∫ ∞

0
δC(a)πC(a)da

(8.41)
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from where we can rewrite (8.39), (8.40) and the i∗D-equation in (8.38) as follow
µDN

∗
D = θD −N∗

D

∫ ∞

0
δD(a) ⟨v1, i

⋄
D(a)⟩da−N∗

D

∫ ∞

0
δC(a) ⟨v2, i

⋄
D(a)⟩ da

µDN
∗
DR

⋄
D = −ϵP ∗

TR
⋄
D + N∗

D

∫ ∞

0
γ(a) ⟨v1, i

⋄
D(a)⟩da

i⋄D(a) =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T πD(a) v1 +

∫ ∞

0
νD(a) ⟨v1, i

⋄
D(a)⟩da πC(a) v2.

(8.42)

Next, observe thati⋄D(a)′ = −(µD + θ(a))i⋄D(a)

i⋄D(0) =
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T v1 +

∫ ∞

0
νD(a) ⟨v1, i

⋄
D(a)⟩da v2

(8.43)

so that by integrating (8.43) from 0 to +∞ we obtain

−
S⋄
D + ϵR⋄

D

N∗
D

P ∗
T v1 −

∫ ∞

0
νD(a) ⟨v1, i

⋄
D(a)⟩ da v2 = −

∫ ∞

0
(µD + θ(a))i⋄D(a)da

and by using (8.41) it follows that

µD

∫ ∞

0
⟨1, i⋄D(a)⟩ da =

S⋄
D + ϵR⋄

D

N∗
D

P ∗
T −

∫ ∞

0
(γ(a) + δD(a)) ⟨v1, i

⋄
D(a)⟩ da

−
∫ ∞

0
δC(a) ⟨v2, i

⋄
D(a)⟩ da.

(8.44)

Next, multiply (8.45) by N∗
D and use the first equation of (8.42) to obtain

µDN
∗
D

∫ ∞

0
⟨1, i⋄D(a)⟩da = (S⋄

D +ϵR⋄
D) P ∗

T −θD +µDN
∗
D−N∗

D

∫ ∞

0
γ(a) ⟨v1, i

⋄
D(a)⟩da (8.45)

Hence, summing (8.45) and the second equation of (8.42) it follows that

S⋄
DP

∗
T − θD + µDN

∗
D = µDN

∗
D

∫ ∞

0
⟨1, i⋄D(a)⟩ da + µDN

∗
DR

⋄
D

= µDN
∗
D(1− S⋄

D)
(8.46)

that is

0 = θD − S⋄
DP

∗
T − µDN

∗
DS

⋄
D ⇐⇒ S⋄

D =
θD

µDN∗
D + P ∗

T

. (8.47)

Finally, we infer from the i⋄D-equation of (8.42), the equality (8.47) together with our defini-
tion of R⋄

D, and N∗
D that (8.18) is satisfied. The proof is completed by using the fact that we

have set P ∗
T = W ⋄

Df(W ⋄
D) with W ⋄

D = KT0 and f given by (8.23).

Thanks to Lemma 8.2, the existence of positive equilibrium to (3.3)-(3.4) is subjected to the
existence of K > 0 such that

∆(T0,K) = 1 (8.48)

where ∆(T0,K) is given by (8.32) and (8.33). Before studying the existence of solution to
(8.48), we first observe that from (8.29), (8.30) and (8.33) we have{

N∗
D(0) = θD

µD
= S̄D

R⋄
D(T0, 0) = I⋄D(T0, 0) = 0, ∀T0 ≥ 0.

(8.49)
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We also note that for each T0 > 0 we have

lim
K→+∞

R⋄
D(T0,K) = l > 0 and lim

K→+∞
I⋄D(T0,K) = +∞ (8.50)

with

l :=
1

ϵT T→D
0

θD
∫∞
0 γ(a)πD(a)da∫∞

0 δD(a)πD(a)da +
∫∞
0 δC(a)πC(a)da

.

Therefore, using the equality T T→D
0 = f(0)

S̄D
it follows from (8.49) and (8.32) that

∆(T0, 0) = T0 and lim
K→+∞

∆(T0,K) = −∞. (8.51)

It is now clear from (8.51) that for each T0 > 0 there exists K̄ := K̄(T0) > 0 such that
∆(T0, K̄) = 0. In particular, if T0 > 1 then there exists K0 ∈ (0, K̄) such that ∆(T0,K0) = 1
leading to the existence of an endemic equilibrium.

On the forward and backward bifurcations: In the following, we deal with the existence
of forward and backward bifurcation at T0 = 1. Roughly speaking, we have to prove that
there exists a positive map K0 defined in some right neighborhood (forward bifurcation) or left
neighborhood (backward bifurcation) of T0 = 1 such that ∆(T0,K0(T0)) = 1 and K0(1) = 0.
Since ∆(1, 0) = 1, one can prove the existence of forward and backward bifurcations using
implicit function theorem which is reduced here to the study of ∂K∆(1, 0). This motivates
the following lemma.

Lemma 8.3. The following property is satisfied

∂T0∆(T0, 0) = 1, ∀T0 > 0 (8.52)

and

∂K∆(1, 0) =
1

µD
T T→D
0

(∫ ∞

0
δD(a)πD(a)da +

∫ ∞

0
δC(a)πC(a)da

)
−

3∑
k=1

 k∑
j=1

1

µj + αj

 S̄k∑
j∈S\{E} S̄j

T T→D
0k

T T→D
0

−(1− ϵ)
1

µD
T T→D
0

∫ ∞

0
γ(a)πD(a)da

−T T→D
0

∫ ∞

0
πD(a)da− T T→D

0

∫ ∞

0
νD(a)πD(a)da

∫ ∞

0
πC(a)da.

Proof. Since ∆(T0, 0) = T0 for each T0 > 0 the first equality of the lemma follows. To compute
∂K∆(1, 0), it is enough to take the derivative of ∆(1,K) with respect to K at K = 0. To do
so let us first note that by using (8.32) we have

N∗
D(K)∆(1,K) =

f(K)

T T→D
0

− [(1− ϵ)R⋄
D(1,K) + I⋄D(1,K)]

f(K)

T T→D
0

.

Recalling that ∆(1, 0) = 1, N∗
D(0) = θD

µD
= S̄D, R⋄

D(1, 0) = I⋄D(1, 0) = 0 and taking the
derivative of N∗

D(K)∆(1,K) with respect to K at K = 0 it follows that

S̄D∂K∆(1, 0) = −
dN∗

D(0)

dK
+

f ′(0)

T T→D
0

− S̄D[(1− ϵ)∂KR⋄
D(1, 0) + ∂KI⋄D(1, 0)].
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By straightforward computations, we obtain from (8.29) and (8.33) that

dN∗
D(0)

dK
= − S̄D

µD
T T→D
0

(∫ ∞

0
δD(a)πD(a)da +

∫ ∞

0
δC(a)πC(a)da

)
and

∂KI⋄D(1, 0) = T T→D
0

∫ ∞

0
πD(a)da + T T→D

0

∫ ∞

0
νD(a)πC(a)da

∫ ∞

0
πC(a)da.

To complete the proof it remains to compute ∂KR⋄
D(1, 0) and f ′(0). We first compute

∂KR⋄
D(1, 0). To this end, we compute the derivative of R⋄

D(1,K) from (8.30a) with respect
to K and set K = 0 to obtain

∂KR⋄
D(1, 0) =

1

µD
T T→D
0

∫ ∞

0
γ(a)πD(a)da.

To compute f ′(0) recall that

f(W ⋄
D) :=

3∑
k=1

 k∏
j=1

µj + αj

(µj + αj) + W ⋄
D

 S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D

so that setting

f̂k(W ⋄
D) :=

k∏
j=1

gj(W
⋄
D), k = 1, 2, 3, gj(W

⋄
D) :=

µj + αj

(µj + αj) + W ⋄
D

we obtain

f(W ⋄
D) :=

3∑
k=1

f̂k(W ⋄
D)

S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D.

Therefore, computing the derivative of ln(f̂k(W ⋄
D)) one obtains

f̂ ′
k(W ⋄

D) = f̂k(W ⋄
D)

k∑
j=1

g′j(W
⋄
D)

gj(W ⋄
D)

and since f̂k(0) = gk(0) = 1 it follows that

f̂ ′
k(0) =

k∑
j=1

g′j(0) = −
k∑

j=1

1

µj + αj

that is

f ′(0) = −
3∑

k=1

 k∑
j=1

1

µj + αj

 S̄k∑
j∈S\{E} S̄j

T T→D
0k S̄D. (8.53)

The proof is completed.

Thanks to Lemma 8.3 one knows that if ∂K∆(1, 0) = C−1
bif ̸= 0 then by the implicit function

theorem there exists ξ ∈ (0, 1) and a smooth map K0 : (1− ξ, 1 + ξ)→ R such that

∆(T0,K0(T0)) = 1, ∀T0 ∈ (1− ξ, 1 + ξ) and K0(1) = 0. (8.54)
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Thus, up to reduce ξ, it follows that the sign of K0 on (1 − ξ, 1 + ξ) is given by the sign of
dK0(T0)

dT0 at T0 = 1. Differentiating (8.54) with respect to T0 and using Lemma 8.3 we obtain

dK0(1)

dT0
= −∂T0∆(1, 0)

∂K∆(1, 0)
= −Cbif

so that

• If Cbif > 0 then, up to reduce ξ, we have K0(T0) > 0 for T0 ∈ (1−ξ, 1) which corresponds
to a backward bifurcation ;

• If Cbif < 0 then, up to reduce ξ, K0(T0) > 0 for T0 ∈ (1, 1 + ξ) which corresponds to a
forward bifurcation.
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the clinical picture and current diagnostics & therapies. 2010.

[57] R. F. d. C. Vieira, T. S. W. J. Vieira, D. d. A. G. Nascimento, T. F. Martins, F. S.
Krawczak, M. B. Labruna, R. Chandrashekar, M. Marcondes, A. W. Biondo, and O. Vi-
dotto. Serological survey of ehrlichia species in dogs, horses and humans: zoonotic
scenery in a rural settlement from southern brazil. Revista do Instituto de Medicina
Tropical de São Paulo, 55:335–340, 2013.

[58] C. B. Yancey, B. C. Hegarty, B. A. Qurollo, M. G. Levy, A. J. Birkenheuer, D. J. Weber,
P. P. Diniz, and E. B. Breitschwerdt. Regional seroreactivity and vector-borne disease
co-exposures in dogs in the united states from 2004–2010: utility of canine surveillance.
Vector-Borne and Zoonotic Diseases, 14(10):724–732, 2014.

36


