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We consider an elliptic operator in which the second-order term is very small in one direction. In this regime, we study the behaviour of the principal eigenfunction and of the principal eigenvalue. Our first result deals with the limit of the principal eigenfunction and is shown with a representation of the principal eigenfunction as a quasi-stationary distribution. Subsequent results deal with the limit of the principal eigenvalue and are shown using Hamilton-Jacobi equations.

Introduction

Presentation of the problem

Let n ⩾ 1 and let Y be either the n-dimensional torus T n = R n /Z n , or an open bounded domain in R n with C 0,α boundary, for some fixed α ∈ (0, 1). Likewise, let p ⩾ 1 and let Z be either the p-dimensional torus T p = R p /Z p , or an open bounded domain in R p with C 0,α boundary. We assume that at least Y or Z is a torus. Let W = Y × Z. If Y or Z is not a torus, the boundary of W is nonempty, has regularity C 0,α , and we let ν be the outward unit normal on ∂W.

Let us focus on the principal eigenvalue problem

       L y φ + L z φ + c(y, z)φ = kφ in W, ν • ∇φ = 0 on ∂W, φ > 0 in W, (1) 
where L y : ϕ → A∆ y ϕ + B • ∇ y ϕ differentiates only in the variable y ∈ Y, and

L z : ϕ → a∆ z ϕ + b • ∇ z ϕ
differentiates only in the variable z ∈ Z. Here and below, the boundary condition ν • ∇φ = 0 is required only when ∂W is nonempty. The coefficients A, a ∈ R, B ∈ R n and b ∈ R p , for now, are assumed to be constant, while c ∈ C 0,1 (W) is Lipschitz. More general hypothesis on the coefficients will be stated below. We are interested in the behaviour of the principal eigenvalue k ∈ R and the principal eigenfunction φ ∈ C 2 (W) when the variable y is very slow, in which case the elliptic operator L y + L z + c becomes "strongly anisotropic". Namely, for ε > 0, we define

L ε y ϕ = ε 2 A∆ y ϕ + εB • ∇ y ϕ,
and we consider a solution (φ ε , k ε ) ∈ C 2 (W) × R of the principal eigenvalue problem:

       L ε y φ ε + L z φ ε + c(y, z)φ ε = k ε φ ε in W, ν • ∇φ ε = 0 on ∂W, φ ε > 0 in W. ( 2 
)
Our question is the following: How do φ ε and k ε behave as ε → 0? For small ε > 0, the eigenvalue problem ( 2) is a two-scale system where the slow variable is y and the fast variable is z. A way to get more insight into what this means is to state the following equivalent problem. With the change of variables φ(y, z) = φ y ε , z , we obtain:

       L y φ ε + L z φ ε + c φ ε = k ε φ ε in W ε , ν • ∇ φ ε = 0 on ∂W ε , φ ε > 0 in W ε , ( 3 
)
where W ε is defined by W ε := y ε , z ∈ R n × R p / (y, z) ∈ W . See Figure 1 for the meaning of the two scales: in (2), when we see the second-order terms as diffusive movements, the movements along y are very small; in (3), the environment along y is very wide. A first motivation for the study of the principal eigenvalue of an elliptic operator L is its connection to the maximum principle for elliptic equations. If L acts on functions defined on a bounded and smooth domain W, then the Krein-Rutman theory guarantees the existence and the uniqueness of the principal eigenvalue k(L), and the maximum principle holds for the operator L if and only if k(L) < 0. Notions of principal eigenvalue, and their connections to the maximum principle, also exist when the domain is non-smooth [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] or when the domain is unbounded [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]. A second motivation arises in quantum mechanics. When B ≡ 0 and b ≡ 0 we get the Schrödinger operator; then -c is a potential energy and the eigenvalues are energy levels for particles, and it is physically relevant to look for potentials optimising the eigenvalues, see e.g. [START_REF] Harrell | Hamiltonian operators with maximal eigenvalues[END_REF]. Last, principal eigenvalues are often used to describe the long-time behaviour of a particular class of biological models. This is the main motivation for this work Biological motivations. Consider the Fisher-KPP equation:

∂ t u(t, y) = ∆u + cu -u 2 , t ⩾ 0, y ∈ R,
where u(0, •) ⩾ 0 is nonzero and has a compact support. Then u(t, y) typically represents a density of individuals at time t and position y, so that u(t, •) is the distribution of a population at time t. In this population dynamics setting, the constant c > 0 is the intrinsic growth rate (i.e. the growth rate of the population if the environment has infinite resources); and the -u 2 term stands for the competition between individuals. In their articles, Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskounov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] showed that the population eventually invades the environment at a constant velocity v F KP P = 2 √ c, in the following sense. If v ′ > v KP P , then u(t, v ′ t) → 0, and if v ′′ ∈ (0, v KP P ), then u(t, v ′′ t) → c > 0.

If the intrinsic growth rate c depends on y (say, if some places are more favourable than others), then we get the equation

∂ t u(t, y) = ∆u + c(y)u -u 2 , t ⩾ 0, y ∈ R. (4) 
If the environment is too deleterious, e.g. if c(y) ≪ 0 for some y ∈ R, then the population may get extinct. Assume that c is 1-periodic. Then, a classical criterion to know whether the population persists or not depends on the sign of the principal eigenvalue of the symmetric operator L pers : ϕ → ∆ϕ + c(y)ϕ acting on 1-periodic functions on R [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF]. Furthermore, Gärtner and Freidlin [START_REF] Gärtner | The propagation of concentration waves in periodic and random media[END_REF] showed the so-called Gärtner-Freidlin formula. Let k(λ) be the principal eigenvalue associated to the nonsymmetric operator

L GF : ϕ → ∆ϕ -2λ∂ y ϕ + (c(y) + λ 2 )ϕ
acting on 1-periodic functions on R. If k(0) > 0, then the population spreads at a velocity v GF given by

v GF = inf λ>0 k(λ) λ .
This means that for all v ′ > v GF , u(t, v ′ t) → 0 and for all v ′′ < v GF , the profile x → u(t, v ′′ t+x) converges locally uniformly, up to a shift, to the unique ϕ > 0 satisfying ∆ϕ + cϕ -ϕ 2 = 0. The limiting profile ϕ is called the stationary state of the equation and, by uniqueness, is 1-periodic. In the study of the large-time behaviour of populations described by (4), we thus need to study operators such as L pers or L GF , which are similar to [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF].

If we want to study two distinct phenomena, or a two-dimensional space, we may add a new variable z to the Fisher-KPP equation and get

∂ t u(t, y, z) = ∆ y u + ∆ z u + c(y, z)u -u 2 t ⩾ 0, y, z ∈ R. (5) 
Then the persistence criterion and the Gärtner-Freidlin formula also hold in various cases [START_REF] Berestycki | The speed of propagation for KPP type problems. I. Periodic framework[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF].

A typical setting is to consider y as a phenotype and z as a spatial position. Then c(y, z) is the fitness of an individual of phenotype y at position z, and (5) becomes

∂ t u(t, y, z) = ∆ y u + ∆ z u + c(y, z)u -u Y u(t, y ′ , z) dy ′ . ( 6 
)
The integral term comes from the fact that the competition occurs between all the individuals located at the same place, regardless of their phenotype. See [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF][START_REF] Prevost | Applications des équations aux dérivés partielles aux problèmes de dynamique des populations et traitement numérique[END_REF] for the first references about this model. Again, recent works [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF][START_REF] Alfaro | Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF][START_REF] Berestycki | Propagation in a non local reaction diffusion equation with spatial and genetic trait structure[END_REF] showed in various cases that the long-time behaviour of the solutions is governed by the principal eigenvalue of an elliptic operator.

Let us now explain the relevance of studying eigenvalue problems with a slow variable. In [START_REF] Berestycki | The speed of propagation for KPP type problems. I. Periodic framework[END_REF], the diffusion in y corresponds to mutations arising at each birth and death of an individual, and the diffusion in z corresponds to spatial movements of the individuals. With this model in view, we understand that the diffusion in y occurs on a much slower timescale than the diffusion in z. See [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF] for a study of this slow-fast dynamics from a Hamilton-Jacobi equation point of view.

Even when the variables y and z represent phenomena of the same nature, one may have to consider different scales. A first example occurs when y and z are spatial positions but on different scales of spatial heterogeneity: the variable y represents, say, the heterogeneity within a large region, while the variable z represents, say, the heterogeneity within a field. A second example occurs when both variables y and z are the coordinates of a phenotype in a phenotypic landscape, but when mutations according to the y-direction are much rarer or much smaller than mutations according to the z-direction. See [START_REF] Hamel | Dynamics of adaptation in an anisotropic phenotype-fitness landscape[END_REF] for the study of such an anisotropic phenotypic landscape.

In all these cases, our results can be helpful to understand the interplay between the slow and the fast phenomenon, which are encoded in (2) by the small parameter ε > 0.

We point out that different scaling limits (small diffusion and/or large advection) have been studied in [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Chen | Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications[END_REF][START_REF] Chen | Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model[END_REF][START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF]. Although they do not consider anisotropy, the setting in these works is similar, and some results in [START_REF] Chen | Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications[END_REF][START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF] are reminiscent of ours. Finally, gradient estimates were given in [START_REF] Berestycki | Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations[END_REF] for the solutions of strongly anisotropic elliptic equations such as (2).

Main results

General assumptions and notations. Let us describe our general assumptions. We define diffusion coefficients

A ∈ C 2,α (Y, M n (R)) and a ∈ C 2,α (Z, M p (R)) (here M q (R) is the set of q × q-matrices), transport coefficients B ∈ C 1,α (Y, R n ) and b ∈ C 1,α (Z, R p ),
and a Lipschitz-continuous potential c ∈ C 0,1 (Y × Z). We assume that A and a are uniformly elliptic on W: there exist constants A > A > 0 and a > a > 0 such that for all (y, z) ∈ W, for all ξ ∈ R n and ξ ′ ∈ R p ,

A |ξ| 2 ⩽ ξ • (A(y, z)ξ) ⩽ A |ξ| 2 , a ξ ′ 2 ⩽ ξ ′ • (a(y, z)ξ ′ ) ⩽ a ξ ′ 2 .
We let L ε y be the operator defined by

L ε y : ϕ → ε 2 ∇ y • (A∇ y ϕ) + ε∇ y • (ϕB) ,
and L z be the operator defined by

L z : ϕ → ∇ z • (a∇ z ϕ) + ∇ z • (ϕb) .
If ∂W ̸ = ∅, we assume that the overall transport term is parallel to ∂W:

B b • ν = 0 on ∂W. ( 7 
)
For clarity, we write out here the variables of the coefficients:

A(y), a(z), B(y), b(z), c(y, z). ( 8 
)
For ε > 0, we let (φ ε , k ε ) ∈ C 2,α (W) × R be the solution of the global eigenvalue problem:

                 (L ε y + L z + c)φ ε = k ε φ ε in W, φ ε > 0 in W, ν • ∇φ ε = 0 on ∂W, W φ ε = 1. ( 9 
)
If ∂Z is nonempty, we let ν 2 be the outward unit normal on ∂Z. For y 0 ∈ Y, we let (ψ y 0 , k y 0 ) ∈ C 2,α (Z) × R be the solution of the local eigenvalue problem:

               (L z + c(y 0 , •))ψ y 0 = k y 0 ψ y 0 in Z, ψ y 0 > 0 in Z, ν 2 • ∇ψ y 0 = 0 on ∂Z, Z ψ y 0 = 1. ( 10 
)
By the classical Krein-Rutman theory [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF], (φ ε , k ε ) and (ψ y 0 , k y 0 ) are well defined. If ∂Y is nonempty, we extend the function φ ε from Y to Y, i.e. we consider φ ε ∈ C 2,α (Y × Z). This is possible by virtue of the regularity assumptions on the coefficients.

Behaviour of the principal eigenfunction. The first theorem means that the "slices" of the global principal eigenfunction converge, as ε → 0, to the local principal eigenfunctions. We use the notation Z ′ ⊂⊂ Z to say that Z ′ ⊂ Z, and we set

φ ε (y 0 , Z) := Z φ ε (y 0 , z) dz.
Theorem 1.1. Let β ∈ (0, α) and let Z ′ ⊂⊂ Z. For all y 0 ∈ Y, as ε → 0, we have

φ ε (y 0 , •) φ ε (y 0 , Z) → ψ y 0 in C 2,β (Z ′ ).
Moreover, the following convergence holds uniformly in y 0 ∈ Y:

φ ε (y 0 , •) φ ε (y 0 , Z) → ψ y 0 in total variation on Z.
Note that if Z = T p , then we may take Z ′ = Z and the convergence holds in C 2,β (Z). The result is straightforward when the coefficients A, B and c are independent of y ∈ Y: in this case, indeed, φ ε = ψ y 0 is independent of y 0 and of ε. For the proof in the general case, we will use a probabilistic method. We will see φ ε as the quasi-stationary distribution of a killed stochastic process (Y ε t , Z ε t ) t⩾0 . Namely, if τ is the death time of (Y ε t , Z ε t ) t⩾0 , we will have for all E ⊂ Y and F ⊂ Z:

lim t→+∞ P ((Y ε t , Z ε t ) ∈ E × F | t > τ ) = E×F φ ε (y, z) dy dz.
As ε → 0, the process Y ε t will be slower and slower. This will allow us to forget the dependence in Y ε t and to get back to the simple case where the coefficients are independent of y. See Subsection 1.3 for the definition of the process (Y ε t , Z ε t ) t⩾0 .

Behaviour of the principal eigenvalue. In two particular cases, we are able to find an exact relation between the limit of k ε as ε → 0 and the local eigenvalues k y , y ∈ Y. First, let us assume that B ≡ 0.

Theorem 1.2. Assume B ≡ 0. Then k ε converges as ε → 0 and

lim ε→0 k ε = max y∈Y k y .
If additionally to B ≡ 0, we assume that b ≡ 0, the operator L ε y + L z + c becomes symmetric. The Rayleigh formula can then be applied directly, and the proof is simpler than in the general case.

Second, we relax the assumption that B ≡ 0, and assume instead that Y is the 1dimensional torus. In particular, B(y) ∈ R and A(y) ∈ R. We let

M := max y∈Y k y - B(y) 2 4A(y) .
We let j : [M, +∞) → [j(M ), +∞) be the bijection defined by

j : k → 1 0 k -k y + B(y) 2

4A(y)

A(y) dy.

Finally, we define

γ := 1 0 B(y) 2A(y) dy.
Theorem 1.3. Assume that Y is the 1-dimensional torus. Then k ε converges as ε → 0 and:

1. If |γ| ⩽ j(M ), then lim ε→0 k ε = M ; 2. If |γ| ⩾ j(M ), then lim ε→0 k ε = j -1 (|γ|) .
In the very specific case where all the coefficients are independent of the variable z, Theorem 1.3 is similar to Proposition 3.2 of [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF]. If moreover A = 1 and B can be written in the form B(y) = m ′ (y), then |γ| = 0 ⩽ j(M ) and we get lim

ε→0 k ε = max y∈Y c(y) - (m ′ (y)) 2 4 .
This is analogous to Theorem 1.3 of [START_REF] Chen | Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications[END_REF], where Y is assumed to be a smooth bounded domain in any dimension (contrarily to the setting of our Theorem 1.3).

Layout. In Subsection 1.3, we define a stochastic process which will be used in the proof of Theorem 1.1 in Section 3. Properties of this stochastic process are given in Section 2. Finally, in Section 4, we show Theorem 1.2 and Theorem 1.3.

Connection with a killed stochastic process

Let us define a stochastic process which will be at the core of the proof of Theorem 1.1. We set

c m = ∥c∥ ∞ + ∥∇ • b∥ ∞ + ∥∇ • B∥ ∞ + 1 and d(y, z) = c m -c(y, z) > 0. Introduce a process ( Y ε t , Z ε t ) t⩾0 . Let m ∈ L 1 (W) satisfy m ⩾ 0, W m = 1.
Let u ε be the solution of the following Cauchy problem:

       ∂ t u ε (t, y, z) = ε 2 ∇ y • (A∇ y u ε ) + ε∇ y • ( u ε B) + L z u ε , t > 0, (y, z) ∈ W, ν • ∇ u ε (t, y, z) = 0, (y, z) ∈ ∂W, u ε (0, y, z) = m(y, z), (y, z) ∈ W. (11) 
In particular, thanks to the assumption (7), we have for all t ⩾ 0,

W u ε (t, •) = 1. Using Theorem 7.1 of [27], we construct a Markov process ( Y ε t , Z ε t ) t⩾0 , with Y ε t ∈ Y and Z ε
t ∈ Z, with continuous paths, and which has a density at time t given by u ε (t, •, •). Typically, if a and A are constant, we should think of the process ( Y ε t , Z ε t ) t⩾0 as a solution of the SDE:

       d Y ε t = -εB( Y ε ) dt + √ 2εA dW Y t , d Z ε t = -b( Z ε ) dt + √ 2a dW Z t , reflection on ∂W, ( 12 
)
where W Y and W Z are independent n-dimensional and p-dimensional Brownian motions respectively.

Kill the process (

Y ε t , Z ε t ) t⩾0 . Now, we construct a killed process (Y ε t , Z ε t ) based on ( Y ε t , Z ε t )
. We first need a definition, which will be used several times throughout this work. The definition is illustrated by Figure 2.

Definition 1.4. Let (D t ) t⩾0 be a stochastic process with nonnegative values. Let Π be a Poisson point process on

R + × R + with intensity 1. Define τ ((D t ) t⩾0 ) := inf {t ⩾ 0 / Π has a point in {(s, y) / 0 ⩽ s ⩽ t, 0 ⩽ y ⩽ D t }} .
We say that τ ((D t ) t⩾0 ) is a clock with rate (D t ) t⩾0 . Using this definition, we let τ ε be a clock with rate (d( Y ε t , Z ε t )) t⩾0 . We let ∂ / ∈ W be a "cemetery state". We now define the killed process (Y ε t , Z ε t ) t⩾0 by:

(Y ε t , Z ε t ) = ( Y ε t , Z ε t ), t < τ, ∂, t ⩾ τ.
We will see τ ε as a "death time" for the particle, and work conditionally on {τ ε > t}. See Figure 3, left for a typical trajectory before a death occurs; and see Figure 3, right for the effect of the conditioning on {τ ε > t}.

We denote by P m the law of the process (Y ε t , Z ε t ) when the initial condition in ( 11) is m. The following theorem implies that φ ε is the unique quasi-stationary distribution for the killed process (Y ε t , Z ε t ) t⩾0 . We will use it to find properties of φ ε by studying the process

(Y ε t , Z ε t ) t⩾0 . Let ∥•∥ T V denote the total variation norm on W = Y × Z.
Theorem 1.5. For all ε > 0, there exist C, χ > 0 such that for all initial distribution m on W, and for all t > 0, 2 Results about quasi-stationary distributions

∥φ ε (•) -P m ((Y ε t , Z ε t ) ∈ • | τ > t)∥ T V < Ce -χt .

General setting

As we will need an equivalent of Theorem 1.5 in another setting, we prove a more general version. We proceed to a construction similar to that of (Y ε , Z ε ), but with simpler notations. Let Y and Z be defined as in the introduction and let W = Y × Z or W = Z. Let q be the dimension of W (thus either q = n + p or q = p). Throughout Section 2, we do not treat the variables y and z as separated variables, and we let w ∈ W be the generic element of W.

Let A ∈ C 2,α (W, M q (R)) (here M q (R) is the set of q × q-matrices) and B ∈ C 1,α (W, R q ). Let Λ be the operator defined by Λu = ∇ • (A∇u) + ∇ • (uB).
We may think of Λ as the operator unifying the Y-and the Z-variables, that is:

W = Y × Z, A = A 0 0 a , B = B b .
We assume that the transport term is parallel to ∂W:

B • ν = 0 on ∂W. ( 13 
)
This assumption is a translation of [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] in this new framework. We finally assume that A is uniformly elliptic on W: there exist A > A > 0 such that for all w ∈ W and

ξ ∈ R q , A |ξ| 2 ⩽ ξ • A(w)ξ ⩽ A |ξ| 2 . Let m ∈ L 1 (W), satisfy m ⩾ 0, W m = 1.
Let u be the solution of the following Cauchy problem:

       ∂ t u(t, w) = Λ u, t > 0, w ∈ W, ν • ∇ u(t, w) = 0, w ∈ ∂W, u(0, w) = m(w), w ∈ W. (14) 
In particular, thanks to the assumption (13), we have for all t ⩾ 0,

W u(t, •) = 1.
Using Theorem 7.1 of [START_REF] Sato | Multi-dimensional diffusion and the Markov process on the boundary[END_REF], we construct a Markov process ( W t ) t⩾0 , with continuous paths, and which has a density at time t given by u ε . Let

E := f ∈ C 2 (W) / ν • ∇f = 0 on ∂W .
Let Λ * be the adjoint of Λ, defined on E by Λ * : f ∈ E → ∇ • (A∇f ) -B • ∇f . The process ( W t ) t⩾0 has a strongly continuous semigroup on C(W), with generator Λ * . Now, we construct a killed process (W t ) t⩾0 based on ( W t ) t⩾0 . We let d ∈ C 0,1 (W) be a Lipschitz-continuous function such that inf W d ⩾ 1 + ∥∇ • B∥ ∞ . We let τ be a clock with rate (d( W t )) t⩾0 (in the sense of Definition 1.4). We let ∂ / ∈ W be a "cemetery state". We define the killed process (W t ) t⩾0 by:

W t := W t t < τ, ∂ t ⩾ τ.
We denote by P m the law of the process (W t ) t⩾0 when the initial condition is m, and by E m the corresponding expectation. Now, we let (Φ, k) ∈ C 2,α (W) × R satisfy the following principal eigenvalue problem:

       (Λ -d(w))Φ(w) = kΦ(w), w ∈ W, Φ(w) > 0, w ∈ W, ν • ∇Φ(w) = 0, w ∈ ∂W.
We normalise Φ so that

W Φ = 1.
The following theorem shows that the principal eigenfunction Φ is a quasi-stationary distribution for the killed process (W t ) t⩾0 .

Theorem 2.1. There exist C, χ > 0 such that for all initial distribution m on W, and for all t > 0,

∥Φ(•) -P m (W t ∈ • | τ > t)∥ T V < Ce -χt .
Let B M ⩾ ∥B∥ ∞ . We may choose the constants C and χ so that they only depend on A, A, B M , ∥d∥ ∞ and W.

Theorem 1.5 is a consequence of Theorem 2.1. In Subsections 2.2 and 2.3, we will prove Theorem 2.1.

Properties of the killed stochastic process

Let us now study the law of (W t ) t⩾0 . We denote by E ∂ the set of functions f :

W ∪ {∂} → R such that f |W ∈ E.
Lemma 2.2. The process (W t ) t⩾0 is a Markov process with infinitesimal generator G defined on the domain E ∂ by:

Gf (w) = (Λ * -d(w))f (w) + d(w)f (∂), w ∈ W, Gf (∂) = 0.
Moreover, for all f ∈ E ∂ , the convergence of

1 h (E w [f (W h )] -f (w))
to Gf (w) as h → 0 is uniform on W.

Proof. Since ∂ is a cemetery state, we have Gf (∂) = 0. Now, let us compute Gf (w) for w ∈ W. For h > 0,

E w [f (W h )] = E w [f (W h )1 τ >h ] + E w [f (∂)1 τ ⩽h ] = E w [f (W h )1 τ >h ] + f (∂)P w (τ ⩽ h) . ( 15 
)
First, since d is continuous on W, d is also uniformly continuous on W; thus

P w (τ ⩽ h) = hd(w) + o h→0 (h),
and the o h→0 (h) is uniform in w. Second,

E w [f (W h )1 τ >h ] = E w f ( W h )1 τ >h = E w f ( W h ) -E w (f ( W h ) -f (w))1 τ ⩽h -E w [f (w)1 τ ⩽h ] = f (w) + hΛ * f (w) -hd(w)f (w) + o h→0 (h).
We get

E w [f (W h )] = f (w) + h(Λ * -d)f (w) + hd(w)f (∂) + o h→0 (h).
Moreover, the o h→0 (h) term remains uniform in w ∈ W. Therefore,

Gf = (Λ * -d(w))f (w) -d(w)f (∂),
and the convergence to Gf is uniform on W.

We are now ready to give the density of (W t ) t⩾0 . Consider the evolution problem

       ∂ t u(t, w) = (Λ -d(w))u(t, w), t > 0, w ∈ W, u(0, •) = m, w ∈ W, ν • ∇u(w) = 0, w ∈ ∂W. ( 16 
)
Lemma 2.3. The solution u(t, •) of ( 16) is the density of the law of W t . Namely, for all t ⩾ 0, for all measurable bounded function f :

W ∪ {∂} → R: E m [f (W t )] = P m (τ < t) f (∂) + W f (w)u(t, w) dw. ( 17 
)
Proof. The law of W t restricted to W is absolutely continuous with respect to the law of W t , which has a density with respect to the Lebesgue measure. For t > 0, we let ζ(t, •) be the density of the law of W t (restricted to W) with respect to the Lebesgue measure. We first show that ζ satisfies ( 16) in a weak sense. We then conclude by proving a uniqueness result.

Step 1. Weak formulation of [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Let u be the solution of the Cauchy Problem ( 16).

Let T > 0 and F ∈ E. We have

W (u(T, w) -u(0, w))F (w) dw = T 0 W F (w)∂ t u(t, w) dw dt = T 0 W F (w) [(Λ -d)u(t, w)] dw dt.
Using the divergence theorem, we obtain:

∀T > 0, ∀F ∈ E, W (u(T, w) -u(0, w))F (w) dw = T 0 W u(t, w)[(Λ * -d)F (w)] dw dt. (18) 
We call [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] the weak form of the Cauchy problem [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Now, let F ∈ E and set F (∂) = 0, so that we can also see F as an element of E ∂ . Let F t = σ((W s ), 0 ⩽ s ⩽ t) be the σ-field generated by (W s ) s⩾0 . Then [START_REF] Ethier | Markov processes[END_REF]Proposition 4.1.7]. Thus for all T > 0,

F (W t ) -F (W 0 ) - t 0 (Λ * -d)F (W s ) ds is a F t -martingale, see e.g.
E [F (W T ) -F (W 0 )] = T 0 W ζ(t, w)[(Λ * -d)F (w)] dw dt.
We obtain:

∀T > 0, ∀F ∈ E, W (ζ(T, w) -ζ(0, w)) F (w) dw = T 0 W ζ(t, w)[(Λ * -d)F (w)] dw dt.
This means precisely that ζ satisfies [START_REF] Fisher | The wave of advance of advantageous genes[END_REF]. We now show that (18) has a unique solution and conclude.

Step 2. Study of (Λ * -d) -1 . Let H 0 be the closure of E in L 2 (W) and H 1 be the closure of E in H 1 (W). Equipped with their respective norms ∥•∥ L 2 (W) and ∥•∥ H 1 (W) , the spaces H 0 and H 1 are Banach spaces. Take f ∈ H 0 . Define the continuous bilinear form

a : (u, v) ∈ H 1 × H 1 → W A∇u • ∇v + W v∇ • (uB) + W duv
and the continuous linear form

l : v ∈ H 1 → W f v.
For all u ∈ H 1 , using the assumption (13) and the Neumann boundary condition, we have

W u∇ • (uB) = - 1 2 W B • ∇(u 2 ) = 1 2 W (∇ • B)u 2 .
Thus, since inf

d ⩾ 1 + ∥∇ • B∥ ∞ , a(u, u) = W A |∇u| 2 + W u∇ • (uB) + W du 2 ⩾ inf A W |∇u| 2 + W d + 1 2 ∇ • B u 2 ⩾ c ∥u∥ 2 H 1 , for c small enough. Thus a is coercive on H 1 × H 1 . By the Lax-Milgram theorem, there exists a unique u ∈ H 1 such that for all v ∈ H 1 , a(u, v) = l(v).
That is, for all f ∈ H 0 , there exists a unique u ∈ H 1 such that (Λ * -d)u = f . This defined an operator

(Λ * -d) -1 : H 0 → H 1 .
By the Rellich-Kondrachov theorem, H 1 (W) is compactly embedded in L 2 (W), so the operator (Λ * -d) -1 is compact as an operator from H 0 to H 0 .

Step 3. Conclusion. We now prove that there exists a unique t → u(t, •) satisfying [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and u(0, •) = m. The operator (Λ * -d) -1 : H 0 → H 0 is compact. Therefore there exists a complete orthonormal system (ϕ k ) k⩾0 and (λ k ) k⩾0 such that for all k ⩾ 0, (Λ * -d)ϕ k = λ k ϕ k . Let u 1 and u 2 solve (18) with u 1 (0, •) = u 2 (0, •) and let v = u 1 -u 2 . We then have:

∀T > 0, ∀F ∈ E, W v(T, w)F (w) dw = T 0 W v(t, w)[(Λ * -d)F (w)] dw dt.
Taking F = ϕ k , we have:

∀T > 0, ∀k ⩾ 0, W v(T, w)ϕ k (w) dw = λ k T 0 W v(t, w)ϕ k (w) dw dt.
By Grönwall's lemma, we have, for all k ⩾ 0, for all T > 0,

W v(T, w)ϕ k (w) dw = 0.
Since (ϕ k ) k⩾0 is a complete orthonormal system of E, we have v(T, •) = 0 for all T > 0. Hence there exists a unique solution [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] when the initial condition is given. By Steps 1 and 2, we conclude that u = ζ.

Proof of Theorem 2.1

Proposition 2.4. For all measurable set B ⊂ W, and for all t > 0,

Φ(B) = P Φ (W t ∈ B | τ > t) .
Proof. Starting from m = Φ, the solution of the system ( 16) is:

u(t, w) = e kt Φ(w).
We then apply Lemma 2.3 with this initial condition and with approximations f n ∈ E, f n → f , of the test function f = 1 B . We find

P Φ (W t ∈ B) = e kt P Φ (W 0 ∈ B) .
Now, we note that P Φ (τ > t) = P Φ (W t ∈ W). Applying again Lemma 2.3 with the test function f = 1 W , we conclude that

P Φ (τ > t) = e kt .
Therefore,

P Φ (W t ∈ B | τ > t) = P Φ (W t ∈ B, τ > t) P (τ > t) = P Φ (W t ∈ B) P (τ > t) = P Φ (W 0 ∈ B) .
This is the statement of the proposition.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We apply Theorem 1.1 of [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]. It is enough to check that there exists a probability measure µ on W such that the following two assumptions hold:

1. Assumption A1. There exist t 0 > 0 and c 1 > 0 such that for all w ∈ W, for all measurable U ⊂ W,

P w (W t 0 ∈ U | τ > t 0 ) ⩾ c 1 µ(U ); (19) 
2. Assumption A2. There exists c 2 > 0 such that for all t > 0, for all w ∈ W,

P w (τ > t) ⩽ c 2 P µ (τ > t) . ( 20 
)
Here P w denotes the law corresponding to the the fundamental solution u (w) (t, w ′ ) associated to [START_REF] Chen | Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications[END_REF], that is:

           ∂ t u (w) (t, w ′ ) = Λ u (w) , t > 0, w ′ ∈ W, ν • ∇ u (w) (t, w ′ ) = 0, w ′ ∈ ∂W, lim t→0 u (w) (t, •) = δ w .
By Proposition 2.4, Φ is a quasi-stationary distribution of (W t ) t⩾0 . If Assumptions A1 and A2 hold, then Φ must be the unique quasi-stationary distribution of (W t ) t⩾0 and the exponential convergence to Φ stated in Theorem 2.1 must hold. We let µ = dw |W| be the uniform law on W. We first check that (19) holds with t 0 = 2 and for c 1 > 0 small enough. Take B M ⩾ ∥B∥ ∞ . Using the regularity of W, we extend the solution u (w) by orthogonal reflection with respect to ∂W. We get a function defined on a set W containing W. The operator Λ is extended to a uniformly elliptic operator Λ on W. This allows one to apply the parabolic Harnack inequality on the whole W: there exists C > 0 depending only on A, A, B M and W such that for all t > 0, inf

w ′ ∈W u (w) (t + 1, w ′ ) ⩾ C sup w ′ ∈W u (w) (t, w ′ ).
Since we have also, for all t > 0, W u (w) (t, w ′ ) dw ′ = 1, we obtain: for all t > 0, inf

w ′ ∈W u (w) (t + 1, w ′ ) ⩾ η 1 := C |W| .
We let τ be a clock independent of (W t ) t⩾0 , with rate D := ∥d∥ ∞ , and coupled with τ so that τ ⩽ τ almost surely (this is possible by defining τ and τ with the same Poisson point process taken independent of (W t ) t⩾0 ). We obtain:

P w (W 2 ∈ U | τ > 2) ⩾ P w (W 2 ∈ U, τ > 2) = P w (W 2 ∈ U ) e -2D = e -2D U u (w) (2, w ′ ) dw ′ ⩾ η 1 e -2D |U | = η 1 e -2D |W| µ(U ).
Assumption A1 is satisfied with c 1 = η 1 e -2D |W|. Now, we check that Assumption A2 is satisfied. We let u (w) (t, w ′ ) be the fundamental solution associated to [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], that is:

           ∂ t u (w) (t, w ′ ) = (Λ -d(w))u (w) , t > 0, w ′ ∈ W, ν • ∇u (w) (t, w ′ ) = 0, w ′ ∈ ∂W, lim t→0 u (w) (t, •) = δ w .
Again, we can apply the parabolic Harnack inequality on the whole W: there exists C ′ > 0 depending only on A, A, B M , D := ∥d∥ ∞ and W such that for all t > 0, inf

w ′ ∈W u (w) (t + 1, w ′ ) ⩾ C ′ sup w ′ ∈W u (w) (t, w ′ ).
Since we have also, for all t > 0,

W u (w) (t, w ′ ) dw ′ ⩾ e -Dt ,
we obtain in particular: inf

w ′ ∈W u (w) (2, w ′ ) ⩾ η 2 with η 2 := C ′ |W| e -2D
. We now let v be the solution of

           ∂ t v(t, w ′ ) = (Λ -d(w))v, t > 2, w ′ ∈ W, ν • ∇v(t, w ′ ) = 0, w ′ ∈ ∂W, v(2, w ′ ) ≡ η 2 |W| w ′ ∈ W.
For all w ∈ W and for all t ⩾ 2,

P w (τ > t) = W u (w) (t, •) ⩾ W v(t, •) = η 2 P µ (τ > t).
Finally, for all w ∈ W and for all t ∈ [0, 2], we have P w (τ > t) ⩾ e -2D ⩾ e -2D P µ (τ > t). Thus Assumption A2 holds with c 2 = min η 2 , e -2D > 0.

Hence, Assumptions A1 and A2 are satisfied with µ = dw |W| . By Theorem 1.1 of [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF], the first part of the theorem is shown. By Theorem 2.1 of [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF], the constants C and χ only depend on t 0 , c 1 and c 2 . We took t 0 = 2. Moreover, we note that c 1 and c 2 only depend on A, A, B M , ∥d∥ ∞ and W. Thus the constants C and χ only depend on A, A, B M , ∥d∥ ∞ and W.

Behaviour of the principal eigenfunction (Theorem 1.1)

Throughout Section 3, we will abuse notation and denote, for a measurable function f : W → R and for measurable sets E ⊂ Y and F ⊂ Z,

f (E, F ) = E×F f (y, z) dy dz, f (•, F ) = F f (•, z) dz.
Throughout this section, we fix y 0 ∈ Y.

Description of the framework

Recall that in Subsection 1.3, we defined a killed process (Y ε t , Z ε t ) t⩾0 on W ∪ {∂}. By Proposition 2.4, we have, for all measurable sets E ⊂ Y and F ⊂ Z, for all t > 0,

φ ε (E, F ) = P φε ((Y ε t , Z ε t ) ∈ E × F | τ ε > t) .
With this in view, we understand why Theorem 1.1 will be a consequence of the following proposition, the proof of which is the main part of Section 3. For η > 0, we set V η = B(y 0 , η) ∩ Y.

Proposition 3.1. Let y 0 ∈ Y. For ε > 0, set t ε := 1 ε 1/4 and η ε := ε 1/2 . For each ε > 0, let E ε ⊂ V ηε be a nonempty open set such that d(E ε , ∂V ηε ) > η ε /2. Then, as ε → 0,

P φε Z ε tε ∈ • | τ ε > t ε , Y ε tε ∈ E ε -ψ y 0 (•) T V → 0.
The convergence holds uniformly in y 0 ∈ Y.

Our goal is to focus on the behaviour of the process when Y ε t is close to y 0 . Therefore, for t > 0, η > 0, ε > 0, we set

T (η, ε; t) :=    inf s ∈ [0, t) | Y ε t-s / ∈ V η if {s ∈ [0, t) | Y t-s / ∈ V η } ̸ = ∅,
t otherwise be the time elapsed since Y ε t last entered the neighbourhood V η of y 0 without leaving it. See Figure 4. The following lemma is the first step towards the proof of Proposition 3.1.

Lemma 3.2.

There exist K > 0, χ > 0 and χ ′ > 0, independent of y 0 , such that for all E ⊂ V η and for all t > 0, η > 0, ε > 0, The proof of Lemma 3.2 is based on the observation that if we keep Y ε near y 0 , the quasistationary distribution for Z ε is approximately ψ y 0 (see Proposition 2.4). The first term of the right-hand side of ( 21) corresponds to how well the distribution of Z ε t conditional on survival at time t approximates the quasi-stationary distribution ψ y 0 . We will see in Subsection 3.2 how this term arises. The second term of the right-hand side of ( 21) corresponds the approximation made when forgetting the role of (Y ε t ) t⩾0 . We will see in Subsection 3.3 how this term arises. Finally, in Subsection 3.4, we will conclude the proof of Proposition 3.1 and the proof of Theorem 1.1.

∥P φε (Z ε t ∈ • | τ ε > t, Y ε t ∈ E) -ψ y 0 ∥ T V < KE φε e -χT (η,ε;t) | τ ε > t, Y ε t ∈ E + K e ηχ ′ t -1 . ( 21 
)

Work with a locally frozen death rate

In Subsections 3.2 and 3.3, we will work with a fixed ε > 0. In order to lighten the notations, we will therefore omit the superindex ε in these subsections. The notations become:

Y = Y ε , Z = Z ε , τ = τ ε , T (η; t) = T (η, ε; t), φ = φ ε .
We should not forget, however, that all these objects do indeed depend on ε.

We call ( Y t , Z t ) t⩾0 the carrying process; in the sequel, we will construct several processes based on ( Y t , Z t ) t⩾0 but dying at different stopping times.

Approximate the stopping time τ by another stopping time τ η . Let η > 0 and let V η := B(y 0 , η) ∩ Y. We consider a function d η which approximates d and which, on the neighbouring band V η × Z, only depends on z:

d η (y, z) = d(y, z), y / ∈ V η , d η (y, z) = d(y 0 , z), y ∈ V η .
See Figure 5.

We define a stochastic process (Y η t , Z η t ) t⩾0 exactly as (Y t , Z t ) t⩾0 , but which dies at rate d η instead of dying at rate d. Namely, we let τ η be a clock with rate (d η ( Y t , Z t )) t⩾0 and we set

(Y η t , Z η t ) = ( Y t , Z t ), t < τ η , ∂, t ⩾ τ η .
Introduce processes ( Y s , Z s ) s⩾0 and ( Y η s , Z η s ) s⩾0 living in V η ⊂ W, and their stopping times τ and τ η . We can bear in mind that between t -T (η; t) and t, the coefficients of the SDE analogous to [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF] 

τ Y = inf u > 0 / Y u / ∈ V η
( Y s , Z s ) = ( Y s , Z s ), t < τ , ∂, t ⩾ τ ; ( Y η s , Z η s ) = ( Y η s , Z η s ), t < τ η , ∂, t ⩾ τ η .
Hence τ and τ η are the respective death times of the processes ( Y u , Z u ) and ( Y η u , Z η u ). Let us keep the process ( Y η s , Z η s ) s⩾0 in memory and set it aside for now, while we focus on the study of ( Y s , Z s ) s⩾0 .

For integer k with 0 ⩽ k < t, we set

I k := [k, k + 1). We let m k (t) be the law of (Y t-k , Z t-k ) conditional on the event {T (η; t) ∈ I k , τ > t}. That is, for E ⊂ Y and F ⊂ Z, m k (t) (E × F ) := P φ ((Y t-k , Z t-k ) ∈ E × F | T (η; t) ∈ I k , τ > t) .
The following lemma compares the two processes ( Y s , Z s ) s and (Y t , Z t ) t . Lemma 3.3. For all measurable subsets E ⊂ V η and F ⊂ Z, for all t > 0 and integer k with 0 ⩽ k < t,

P φ ((Y t , Z t ) ∈ E × F | τ > t, T (η; t) ∈ I k ) = P m k (t) ( Y k , Z k ) ∈ E × F | τ > k .
Proof. Let t 0 = t -k. We have:

P φ ((Y t , Z t ) ∈ E × F | τ > t, T (η; t) ∈ I k ) = P φ ( Y t 0 +k , Z t 0 +k ) ∈ E × F | τ > t 0 + k, T (η; t) ∈ I k .
On the event {T (η; t) ∈ I k }, we have Y u ∈ V η for all u ∈ [t 0 , t 0 + k]. Using the Markov property at time t 0 and the fact that τ is memoryless, we conclude:

P φ ( Y t 0 +k , Z t 0 +k ) ∈ E × F | τ > t 0 + k, T (η; t) ∈ I k = P m k (t) ( Y ′ k , Z ′ k ) ∈ E × F | τ d > k, τ Y > k ,
where ( Y ′ s , Z ′ s ) s⩾0 is a copy of ( Y s , Z s ) s⩾0 starting from m k (t). Thus

P φ ((Y t , Z t ) ∈ E × F | τ > t, T (η; t) ∈ I k ) = P m k (t) ( Y k , Z k ) ∈ E × F | τ d > k, τ Y > k = P m k (t) ( Y k , Z k ) ∈ E × F | τ > k .
Introduce a process (Z s ) s⩾0 living in Z. We consider another auxiliary process (Z s ) s living in Z, which behaves in a similar way as (Z t ) t⩾0 and ( Z s ) s⩾0 , but independently of any process in Y. We let τ be a clock with rate (d(y 0 , Z s )) s⩾0 . We define

Z t := Z t t < τ , ∂ t ⩾ τ .
Let us try to understand the behaviour of (Z s ) s⩾0 . In [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF], if we take the initial condition m independent of y, then the solution u ε remains independent of y. In this case, therefore, the density of ( Z) t is described by the solution v of the equation

       ∂ t v(t, z) = L z v, t ⩾ 0, z ∈ Z, ν • ∇ v = 0, z ∈ ∂Z, v(0, z) = m(z), z ∈ Z.
Taking W = Z and Λ = L z , we retrieve the setting of Section 2. By Proposition 2.4, then, we find that the quasi-stationary distribution of the process (Z s ) s⩾0 is ψ y 0 . Also, note that (Z s ) s and ( Z η s ) s have much the same behaviour. Therefore, in view of Theorem 2.1, the following lemma is natural.

Lemma 3.4.

There exist C > 0 and χ > 0 such that for all initial distribution m on W and for all

E ⊂ V η , P m Z η s ∈ • | τ η > s, Y η s ∈ E -ψ y 0 (•) T V ⩽ Ce -χs .
The constants C > 0 and χ > 0 can be chosen independently of y 0 .

Proof. We have, for any initial distribution m on W,

P m Y η s ∈ E, Z η s ∈ • | τ η > s = P m Y η s ∈ E, Z η s ∈ •, τ η > s P m ( τ η > s) = 1 P m ( τ η > s) W P (y,z) Y η s ∈ E, Z η s ∈ •, τ η > s m( dy, dz).
Let (y, z) ∈ V η . The properties of the Cauchy problem [START_REF] Chen | Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications[END_REF] imply that the processes ( Y s ) s⩾0 starting from y and ( Z s ) s⩾0 starting from z are independent (this is where we need the restrictions (8) on the dependencies of the coefficients). Moreover, the stopping time τ η Y is a function of the process ( Y s ) s⩾0 only, and the stopping time τ η d is a function of the process ( Z η s ) s⩾0 only. Therefore, for all (y, z) ∈ W, for all s > 0,

P (y,z) Y η s ∈ E, Z η s ∈ •, τ η > s = P (y,z) Z η s ∈ •, τ η d > s P (y,z) Y η s ∈ E, τ η Y > s .
We obtain:

P m Y η s ∈ E, Z η s ∈ • | τ η > s = 1 P m ( τ η > s) W P (y,z) Z η s ∈ •, τ η d > s P (y,z) Y η s ∈ E, τ η Y > s m( dy, dz) = 1 P m ( τ η > s) W P (y,z) Z η s ∈ • | τ η d > s P (y,z) τ η d > s P (y,z) Y η s ∈ E, τ η Y > s m( dy, dz) = 1 P m ( τ η > s) W P (y,z) Z η s ∈ • | τ η d > s P (y,z) Y η s ∈ E, τ η > s m( dy, dz).
Therefore,

P m Y η s ∈ E, Z η s ∈ • | τ η > s -P m Y η s ∈ E | τ η > s ψ y 0 (•) T V ⩽ 1 P m ( τ η > s) W P (y,z) Z η s ∈ • | τ η d > s -ψ y 0 (•) T V P (y,z) Y η s ∈ E, τ η > s m( dy, dz).
But, by Theorem 2.1 applied to the killed process (Z s ) s⩾0 (see also the discussion before the statement of Lemma 3.4),

P (y,z) Z η s ∈ • | τ η d > s -ψ y 0 (•) T V = P z Z s ∈ • | τ > s -ψ y 0 (•) T V ⩽ Ce -χs .
Note that the constants C and χ can be chosen independently of y 0 , by the second statement in Theorem 2.1. Hence

P m Y η s ∈ E, Z η s ∈ • | τ η > s -P m Y η s ∈ E | τ η > s ψ y 0 T V ⩽ Ce -χs × 1 P m ( τ η > s) W P (y,z) Y η s ∈ E, τ η > s m( dy, dz) = Ce -χs P m Y η s ∈ E | τ η > s .
Dividing both sides by P m Y η s ∈ E | τ η > s , we obtain:

P m Z η s ∈ • | τ η > s, Y η s ∈ E -ψ y 0 T V ⩽ Ce -χs .
Finally, we mentioned that the constants C and χ can be chosen independently of y 0 .

Comparison between τ and τ η

The processes ( Y t , Z t ) t⩾0 and ( Y η t , Z η t ) t⩾0 , and their respective death times τ and τ η , are almost the same. The only difference is that the dependence in y of the death rate is removed in the definition of ( Y η s , Z η s ). With this respect, ( Y η s , Z η s ) dies at a rate "frozen" at y 0 while ( Y s , Z s ) dies at a rate depending on the y-coordinate. For small η, the coefficient d does not depend much on y ∈ V η , in the sense that for all y ∈ V η ,

d(y, •) ≃ d(y 0 , •).
Therefore, we expect that τ ≃ τ η . This intuition is made precise in the following lemma. Lemma 3.5. There exists χ ′ > 0 such that for all s > 0, for all E ⊂ V η , for all probability distribution m on V η ,

P m Z s ∈ • | τ > s, Y s ∈ E -P m Z η s ∈ • | τ η > s, Y η s ∈ E T V ⩽ e ηχ ′ t -1.
The constant χ ′ can be chosen independently of y 0 .

Proof. Recall that τ = τ d ∧ τ Y where τ d depends on the death rate d( Y t , Z t ), and τ Y is the time at which Y reaches the boundary ∂V η . Likewise, τ η = τ η d ∧ τ Y . We therefore decompose:

{ τ > s} = { τ d > s, τ Y > s} , { τ η > s} = τ η d > s, τ Y > s .
Let κ > 0 be the Lipschitz constant of d in the y-direction: 

P m ( τ d > s | D) = E m exp - s 0 d( Y u , Z u ) du | D ⩾ E m exp -κηs - s 0 d(y 0 , Z u ) du | D .
e -κηs P m Z η s ∈ F, τ η d > s | D ⩽ P m Z s ∈ F, τ d > s | D ⩽ e κηs P m Z η s ∈ F, τ η d > s | D . Therefore, for all F ⊂ Z, e -2κηs P m Z η s ∈ F | τ η d > s, D ⩽ P m Z s ∈ F | τ d > s, D ⩽ e 2κηs P m Z η s ∈ F | τ η d > s, D .
Since this holds for all F ⊂ Z, we get:

P m Z s ∈ • | τ d > s, D -P m Z η s ∈ • | τ η d > s, D T V
⩽ max(e 2κηs -1, 1 -e -2κηs ) = e 2κηs -1.

Finally, note that before their death, the processes ( Y s , Z s ) s⩾0 and (

Y η s , Z η s ) s⩾0 coincide with ( Y s , Z s ) s⩾0 . In particular, τ η d > s, D = τ η d > s, τ Y > s, Y s ∈ E . These elements yield P m Z η s ∈ • | τ η d > s, D = P m Z η s ∈ • | τ η d > s, τ Y > s, Y s ∈ E = P m Z η s ∈ • | τ η d > s, τ Y > s, Y η s ∈ E = P m Z η s ∈ • | τ η > s, Y η s ∈ E .
We obtain: for all s > 0,

P m Z s ∈ • | τ > s, Y s ∈ E -P m Z η s ∈ • | τ η > s, Y η s ∈ E T V = P m Z s ∈ • | τ d > s, D -P m Z s ∈ • | τ η d > s, D T V ⩽ e 2κηs -1.
Thus the lemma holds with χ ′ = 2κ, which is independent of y 0 .

We are ready for end of the proof of Lemma 3.2.

Proof of Lemma 3.2. Let us decompose the following probability according to the value of T (η; t): for all t > 0,

P φ (Y t ∈ E, Z t ∈ • | τ > t) = ⌊t⌋ k=0 P φ (Y t ∈ E, T (η; t) ∈ I k | τ > t) P φ (Z t ∈ • | τ > t, Y t ∈ E, T (η; t) ∈ I k ) = ⌊t⌋ k=0 P φ (Y t ∈ E, T (η; t) ∈ I k | τ > t) P m k Z k ∈ • | τ > k, Y k ∈ E ,
by Lemma 3.3 (using the shortcut m k = m k (t)). Thus, by the triangle inequality,

∥P φ (Y t ∈ E, Z t ∈ • | τ > t) -P φ (Y t ∈ E | τ > t)ψ y 0 (•)∥ T V ⩽ ⌊t⌋ k=0 P φ (Y t ∈ E, T (η; t) ∈ I k | τ > t) P m k Z k ∈ • | τ > k, Y k ∈ E -ψ y 0 T V
.

By the triangle inequality again, and then Lemmas 3.5 and 3.4, we have for all k ⩾ 0:

P m k Z k ∈ • | τ > k, Y k ∈ E -ψ y 0 T V ⩽ P m k Z k ∈ • | τ > k, Y k ∈ E -P m Z η k ∈ • | τ η > k, Y η k ∈ E T V + P m Z η k ∈ • | τ η > k, Y η k ∈ E -ψ y 0 T V ⩽ K e χ ′ ηk -1 + Ke -χk ,
for K > 0 large enough. Hence,

∥P φ (Y t ∈ E, Z t ∈ • | τ > t) -P φ (Y t ∈ E | τ > t)ψ y 0 (•)∥ T V ⩽ K ⌊t⌋ k=0 P φ (Y t ∈ E, T (η; t) ∈ I k | τ > t) e -χk + e χ ′ ηk -1 ⩽ KP φ (Y t ∈ E | τ > t) ⌊t⌋ k=0 P φ (T (η; t) ∈ I k | τ > t, Y t ∈ E) × e -χk + KP φ (Y t ∈ E | τ > t) × e χ ′ ηt -1 ⩽ KP φ (Y t ∈ E | τ > t) E φ e -χ(T (η;t)-1) | τ > t, Y t ∈ E + KP φ (Y t ∈ E | τ > t) × e χ ′ ηt -1 .
Dividing both sides by P φ (Y t ∈ E | τ > t), we conclude:

∥P φ (Z t ∈ • | τ > t, Y t ∈ E) -ψ y 0 (•)∥ T V ⩽ (Ke χ )E φ e -χT (η;t) | τ > t, Y t ∈ E + K e χ ′ ηt -1 .
Finally, the statements of Lemmas 3.4 and 3.5 show that the constants K, χ and χ ′ can be chosen independently of y 0 .

Conclusion of the proof

In Subsections 3.2 and 3.3, we worked with a fixed ε > 0 and omitted the superindex ε in these subsections. Here, we will make ε go to zero. Therefore, we need to go back to our former notations: Y ε , Z ε , τ ε , T (η, ε; t) and φ ε . First, we prove Proposition 3.1. Then, we will be able to prove Theorem 1.1.

Proof of Proposition 3.1. Let η > 0. Recall that V η = B(y 0 , η) ∩ Y. By Lemma 3.2, there exist K > 0, χ > 0 and χ ′ > 0 such that for all E ⊂ V η , for all t > 0, η > 0, ε > 0,

∥P φε (Z ε t ∈ • | τ ε > t, Y ε t ∈ E) -ψ y 0 ∥ T V < KE φε e -χT (η,ε;t) | τ ε > t, Y ε t ∈ E + K e ηχ ′ t -1 . ( 22 
)
For ε > 0, we set t ε := 1 ε 1/4 and η ε := ε 1/2 . Let also E ε ⊂ V ηε be a nonempty open set such that d(E ε , ∂V ηε ) > η ε /2. Our goal is to show that as ε → 0,

E φε e -χT (ηε,ε;tε) | τ ε > t ε , Y ε tε ∈ E ε → 0, ( 23 
)
e ηεχ ′ tε -1 → 0. (24) 
With ( 22), we will then be able to conclude. First, we have t ε η ε → 0 as ε → 0, so (24) holds. Second, let us show that (23) holds. Fix t ′ > 0 and consider ε > 0 small enough that t ε > t ′ .

We have

E φε e -χT (ηε,ε;tε) | τ ε > t ε , Y ε tε ∈ E ε ⩽ e -χt ′ + P φε T (η ε , ε; t ε ) ⩽ t ′ | τ ε > t ε , Y ε tε ∈ E ε .
We have:

P φε T (η ε , ε; t ε ) ⩽ t ′ | τ ε > t ε , Y ε tε ∈ E ε ⩽ P φε ∃u ∈ 0, t ′ , Y ε tε-u / ∈ V ηε | τ ε > t ε , Y ε tε ∈ E ε ⩽ t ′ 0 P φε Y ε tε -Y ε tε-u ⩾ η ε 2 | τ ε > t ε , Y ε tε ∈ E ε du ⩽ t ′ P φε Y ε tε -Y ε tε-t ′ ⩾ η ε 2 | τ ε > t ε , Y ε tε ∈ E ε .
Let ν ε be the measure on Y defined by

ν ε ( dy) := P φε Y ε tε-t ′ ∈ dy | τ ε > t ε , Y ε tε ∈ E ε .
Then, by the Markov property,

P φε Y ε tε -Y ε tε-t ′ ⩾ η ε 2 | τ ε > t ε , Y ε tε ∈ E ε = Y P y ∥Y ε t ′ -y∥ ⩾ η ε 2 | τ ε > t ′ , Y ε t ′ ∈ E ε ν ε ( dy) ⩽ Y P y Y ε t ′ -y ⩾ ηε 2 | Y ε t ′ ∈ E ε P y τ ε > t ′ | Y ε t ′ ∈ E ε ν ε ( dy).
On the one hand, for all ε > 0,

P y τ ε > t ′ | Y ε t ′ ∈ E ε ⩾ e -∥d∥ ∞ t ′ > 0.
On the other hand, as ε → 0, uniformly in y ∈ Y,

P y ∥Y ε t ′ -y∥ ⩾ η ε 2 | Y ε t ′ ∈ E ε → 0. Therefore, as ε → 0, Y P y Y ε tε -Y ε tε-t ′ ⩾ ηε 2 | Y ε t ′ ∈ E ε P y τ ε > t ′ | Y ε t ′ ∈ E ε ν ε ( dy) → 0.
As a consequence, [START_REF] Harrell | Hamiltonian operators with maximal eigenvalues[END_REF] holds. The convergence stated in the proposition follows from [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF]. Since the bound of Lemma 3.2 is uniform in y 0 ∈ Y, we conclude that the convergence is also uniform in y 0 ∈ Y.

P φε T (η ε , ε; t ε ) ⩽ t ′ | τ ε > t ε , Y ε tε ∈ E ε → 0. Therefore,
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For ε ∈ (0, 1), we set η ε = √ ε and we let

E ε = B y 0 , ε 2 ∩ Y ⊂ V ηε . For ε > 0 small enough, we have d(E ε , ∂V ηε ) > η ε /2. We normalise φ ε so that φ ε (y 0 , Z) = 1.
Now, let us change coordinates. For ε ∈ (0, 1), we define

Y ε := {y ∈ R p / y 0 + εy ∈ Y} .
For all y ∈ Y ε , we set φ ε (y, z) := φ ε (y 0 + ε(y -y 0 ), z) φ ε (y 0 , Z) .

We define A, B, L z and c with the same change of variables (we omit the dependence in ε for the sake of clarity). We let E ε := B (0, ε) ∩ Y ε be the projection of E ε in this new system of coordinates. First, φ ε satisfies

∇ y • ( A∇ y φ ε ) + ∇ y • φ ε B + ( L z + c) φ ε = k ε φ ε , y ∈ Y ε , z ∈ Z.
Thanks to this transformation, the diffusion coefficients become uniformly elliptic on the whole domain. Let U ⊂⊂ Y 1 , so that U ⊂⊂ Y ε for all ε ∈ (0, 1). Let Z ′ ⊂⊂ Z. For all ε > 0, we have φ ε (0, Z) = 1. Therefore, by the Harnack inequality, the family ( φ ε ) ε∈(0,1) is bounded in L ∞ (U × Z ′ ). Thus, by an interior gradient estimate ([20, Theorem 8.32]), the family

(∇ z φ ε ) ε∈(0,1) is bounded in L ∞ (U × Z ′ ). Thus ( φ ε ) ε∈(0,1) is bounded in C 0,α (U × Z ′ ).
By the interior Schauder inequality ([20, Theorem 6.2]), therefore, the family ( φ ε ) ε∈(0,1) is bounded in C 2,α (U × Z ′ ). Hence, taking β ∈ (0, α), up to extraction of a subsequence, there exists a limit φ 0 ∈ C 2,β (U × Z ′ ):

φ ε → φ 0 in C 2,β (U × Z ′ ).
Since |E ε | → 0, this implies in particular:

1

E ε φ ε ( E ε , •) = 1 E ε E ε φ ε (y, •) dy → φ 0 (0, •) in C 0 (Z ′ ). (25) 
Finally, we note that 1

E ε φ ε ( E ε , •) = φ ε ( E ε , Z) E ε × φ ε (E ε , •) φ ε (E ε , Z) .
On the one hand,

φ ε ( E ε , Z) E ε → φ 0 (0, Z) = 1.
On the other hand,

φ ε (E ε , •) φ ε (E ε , Z) = P φε (Z ε t ∈ • | τ ε > t ε , Y ε ∈ E ε ) → ψ y 0
in total variation norm on Z. Therefore, we have in total variation norm on Z (thus also on Z ′ ): 1

E ε φ ε ( E ε , •) → ψ y 0 (•) as ε → 0. (26) 
Note that convergence in C 2,β (Z ′ ) implies convergence in total variation on Z ′ . Combining [START_REF] Prevost | Applications des équations aux dérivés partielles aux problèmes de dynamique des populations et traitement numérique[END_REF] with [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF] yields: for all z ∈ Z ′ , φ 0 (0, z) = ψ y 0 (z).

Hence, as ε → 0,

φ ε (y 0 , •) φ ε (y 0 , Z) → ψ y 0 in C 2,β (Z ′ ).
This concludes the first point of the theorem. Finally, the convergence in total variation on Z is uniform in y 0 ∈ Y, see Proposition 3.1. Thus the second point holds.

4 Behaviour of the principal eigenvalue (Theorems 1.2 and 1.3)

Preliminary results

We record several lemmas which will be useful for the proof of Theorems 1.2 and 1.3. Proof. We set: v n (y, z) := ε n ln (φ εn (y, z)) .

We use the shortcuts φ n = φ εn and k n = k εn . Now we choose compact subsets Y ′ ⊂⊂ Y and Z ′ ⊂⊂ Z and we note W ′ = Y ′ × Z ′ . For convenience, we assume that 0 ∈ Z ′ . We renormalise φ ε so that φ ε (y 0 , 0) = 1.

Step 1. On W ′ , uniform convergence of the sequence (v n ) n to a function v. We show that up to extraction, the sequence of restricted functions (v n |W ′ ) n converges uniformly to a function v defined on W ′ ; see [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF]. Consider the change of variables h n (y, z) := (ε n y, z) and set φ n := φ n • h n . Then φ n is a solution of

∇ y • ((A • h n )∇ y φ n ) + ∇ y • ( φ n (B • h n )) + (L z • h n + c • h n )φ n .
Note that the φ n are positive, and that the coefficients are bounded uniformly in n. Moreover, the diffusion coefficients This estimation being true for each (y 0 , z 0 ) ∈ W ′ , we conclude that the sequence (∇v n ) n is bounded in L ∞ (W ′ ). In particular the sequence (v n ) n is also bounded in C 0 (W ′ ). Thanks to these facts, we infer that the sequence (v n ) is bounded in W 1,∞ (W ′ ). By Ascoli's theorem, the If y n ∈ Y, then ∇u n (y n ) = 0. If y n ∈ ∂Y, then the condition ν • ∇u n = 0 on ∂Y implies that ∇u n (y n ) = 0. In either case, (33) implies that for all n ⩾ 0,

-ε n ∇ • (A∇u n )(y n ) -ε n ∇ • B - (L z + c)φ n (y n , 0) φ n (y n , 0) + k n = 0.
Taking n → +∞ gives: -k y∞ + k 0 = 0. Hence k 0 = k y∞ so necessarily

k 0 = max y∈Y k y .
Finally, the limit is unique, so the whole family (k ε ) ε>0 converges to k 0 . Now, we prove Theorem 1.3: we drop the assumption that B ≡ 0, but we assume that Y is the 1-dimensional torus.

Proof of Theorem 1.3, case |γ| ⩾ j(M ). The proof is directly inspired from Section 3 of [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF]. We assume that Y is the 1-dimensional torus. Then Y ⊂⊂ Y, so we can take Y ′ = Y in Lemma 4.4. We first prove that there exists only one k 0 such that (30) has a solution on Y, i.e. a 1-periodic viscosity solution defined on R. Then, we make explicit such a solution and conclude.

Step 1. Uniqueness of k 0 such that (30) has a periodic solution. We assume that there exist k 0 ∈ R and k0 > k 0 such that there are periodic viscosity solutions u and û to:

-A(y)(u ′ (y)) 2 -B(y)u ′ (y) -k y + k 0 = 0, -A(y)(û ′ (y)) 2 -B(y)û ′ (y) -k y + k0 = 0.

Since k 0 ̸ = k0 , we must have u ̸ = û. Therefore, up to adding a constant to u, we may assume that there exists an interval U ⊂ R such that: u(y) > û(y) at some point y ∈ U , u = û on ∂U .

(34)

But, since k0 > k 0 , there is a small ε > 0 such that on U : εu + A(y)(u ′ (y)) 2 + B(y)u ′ (y)

⩽ εû + A(y)(û ′ (y)) 2 + B(y)û ′ (y) in the viscosity sense. Now, with the second line of (34), we can apply the maximum principle, which implies that u ⩽ û in U . We reach a contradiction with the first line of (34): this ensures the uniqueness of the limit of k ε as ε → 0. By Lemma 4.1, the family (k ε ) ε>0 is bounded. Hence the whole family (k ε ) ε converges to k 0 as ε → 0:

k 0 = lim ε→0 k ε .
Let us rewrite (30) in the following way:

-A u ′ + B 2A 2 -k y - B 2 4A + k 0 = 0. ( 35 
)
Finally, the case -j(M ) < γ ⩽ 0 can be proved in the same way, by taking q 1 ∈ Z ⩾1 and q 2 ∈ Z ⩾1 which satisfy: (q 1 + q 2 )γ = -(q 1 -q 2 )j(M ) and considering A(y ′ ) dy ′ instead of v.
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 1 Figure 1: The upper part corresponds to (2); the lower part corresponds to (3). The crosses describe the ability of movements in either direction.

Figure 2 :

 2 Figure 2: The crosses are the points of Π. We are interested in τ ((D t ) t⩾0 ), the first time a cross is under the curve.

Figure 3 :

 3 Figure 3: Grey zone: high death rate. White zone: low death rate. Left: The process (Y ε t , Z ε t ) t⩾0 dies at a high rate when it is in the grey zone; Right: Conditioned on {τ ε > t}, the process (Y ε t , Z ε t ) t⩾0 avoids the grey zone.

Figure 4 :

 4 Figure 4: Definition of T (η, ε; t).

Figure 5 :

 5 Figure 5: In the neighbourhood V η of y 0 , d η is independent of y, but may still depend on z.

  ′ ∈Y, y̸ =y ′ |d(y, z) -d(y ′ , z)| |y -y ′ | < +∞.On the event { τ Y > s}, we then have, for all u ∈ [0, s],d( Y u , Z u ) -d(y 0 , Z u ) ⩽ κη.For the conciseness of the notations, denote by D the event D = τ Y > s, Y s ∈ E . Recall the definition of τ d in Subsection 3.2, using Definition 1.4. We have:

  This gives:P m ( τ d > s | D) ⩾ e -κηs E m exps 0 d(y 0 , Z u ) du | D = e -κηs P m τ η d > s | D .Likewise, P m τ η d > s | D ⩾ e -κηs P m ( τ d > s | D). Thus: e -κηs P m τ η d > s | D ⩽ P m ( τ d > s | D) ⩽ e κηs P m τ η d > s | D . Similarly, for all F ⊂ Z,

Lemma 4 . 1 .Lemma 4 . 4 .

 4144 For all ε > 0,|k ε | ⩽ ∥c∥ ∞ . Let k 0 ∈ R and Y ′ ⊂⊂ Y. If there exists a sequence (ε n ) n⩾0 such that ε n > 0, ε n →0 and k 0 := lim n→+∞ k εn , then the equation -∇u(y) • (A(y)∇u(y)) -B(y) • ∇u(y) -k y + k 0 = 0 (30) has a viscosity solution u on Y ′ .

φ n y 0 εn , z 0 φ n y 0 εn , z 0 ⩽

 000 and (32), we conclude that for all (y 0 , z 0 ) ∈ W ′ ,|∇v n (y 0 , z 0 )| = ∇ C 1 C 2 .

M

  -k y ′ -B(y ′ ) 2 4A(y ′ )

  satisfied by Z η are independent of Y η . To formalise this idea, we consider auxiliary processes ( Y s , Z s ) s and ( Y η s , Z η s ) s which behave in a similar way as (Y t , Z t ) t and (Y η t , Z η t ) t , but which die upon reaching ∂V η × Z. Namely, we let τ d and τ η d be two clocks with respective rates d( Y s , Z s ) and d η ( Y s , Z s ). We let also:

  A • h n and a • h n are elliptic uniformly in n. By the Harnack inequality, there exists a constant C 1 > 0, independent of n, such that for each n, for each y 0 ∈ Y, sup (y,z)∈W ′ , ∥y-y 0 ∥⩽εn Moreover, by an interior estimate on the derivative ([20, Theorem 8.32]), there exists a constant C 2 (independent of n) such that for each n, for each (y 0 , z 0 ) ∈ W ′ ,

			φ n	y ε n	, z ⩽ C 1 φ n	y 0 ε n	, z .	(31)
	∇ φ n	y 0 ε n	, z 0 ⩽ C 2	sup (y,z)∈W, ∥y-y 0 ∥⩽εn	φ n	y ε n	, z .
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Proof. For g ∈ C 0,α (T × Θ), let κ ε (g) be the principal eigenvalue associated to the operator

with Neumann boundary conditions on ∂(Y × Z). By definition, we have k ε = κ ε (c). Moreover, if g 1 ⩽ g 2 then κ ε (g 1 ) ⩽ κ ε (g 2 ). Therefore,

Finally, when g is constant, φ ≡ 1 is a principal eigenfunction of L g . Thus:

The conclusion follows.

Lemma 4.2. Let (y ε ) ε∈(0,1) be a family of elements of Y. For all Z ′ ⊂⊂ Z, the family

is bounded in C 2,α (Z ′ ).

Proof. Let us change coordinates. For ε ∈ (0, 1), we define Y ε := {y ∈ R p / y ε + εy ∈ Y}.

For all y ∈ Y ε , we set

and we define A, B, L z and c with the same change of coordinates (we omit the dependence in ε for the sake of clarity). We have

Thanks to this transformation, the diffusion coefficients become uniformly elliptic on the whole domain. First, by the Harnack inequality (which, if needed, can be applied up to the boundary by virtue of the Neumann boundary condition), there exists a constant C such that for all ε > 0, we have

it is enough for our scope to show that the family ( φ ε (y ε , •)) ε∈(0,1) is bounded in C 2,α (Z ′ ). A slight difficulty arises when y ε is near the boundary of Y ε . We first deal with the particular case where there exists δ > 0 such that for all ε > 0,

Case 1. Condition [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF] holds. Let U := B(0, δ/2). Then for all ε ∈ (0, 1), we have d(U, ∂Y ε ) > δ/2, so that we can apply an interior gradient estimate ([20, Theorem 8.32]): the family (

To conclude, we apply the interior Schauder inequalities ([20, Theorem 6.2]): the family (

Case 2. Condition [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF] does not hold. Let U ε := B(0, δ) ∩ Y ε and let

By Step 1, there remains to prove that (∥ φ ε ∥ C 2,α (Uε×Z ′ ) ) ε∈I is bounded. We use the fact that φ ε satisfies [START_REF] Sato | Multi-dimensional diffusion and the Markov process on the boundary[END_REF] and the boundary condition ν • ∇ φ ε = 0. There exists a constant C > 0 such that for all ε ∈ (0, 1), the C 

) ε∈I is bounded. Then, by boundary Schauder estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], see the proof of Theorem 6.30 and the comments after the proof of Lemma 6.5), the family (∥

Proof. Take Z ′ ⊂⊂ Z and β ∈ (0, α). We use the shortcut

Hence up to extraction we must have in C 2,β (Z ′ ):

for some ψ ∈ C 2,β (Z ′ ). Moreover, by Theorem 1.1, (29) holds in total variation norm on Z ′ with ψ = ψ y∞ . Note that convergence in C 2,β (Z ′ ) implies convergence in total variation on Z ′ . Thus (29) holds in C 2,β (Z ′ ) with ψ = ψ y∞ . To conclude, note that:

By Lemma 4.1, the family (k ε ) ε>0 is bounded. Thus, there exists a sequence (ε n ) n such that ε n → 0 and (k εn ) n⩾0 converges to a limit k 0 . The following lemma, inspired by Proposition 3.1 in [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF], gives a property of k 0 . Then, u n converges uniformly to u on Y ′ .

sequence (v n |W

Step 2. Find an equation satisfied by u n . We have:

Now, by the definition of φ n ,

We conclude that

Recalling that u n (y) = v n (y, 0), we obtain:

Step 3. Conclusion. Since u is continuous, we have, with the notations of [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Chapter 6]:

Let y ∈ Y ′ and (p, X) ∈ J 2,+ u(y). By [16, Lemma 6.1], there exist sequences (y n ) n and (p n , X n ) ∈ J 2,+ u n (y n ) such that, up to extraction of a subsequence, (y n , p n , X n ) → (y, p, X).

Note also that the sequence (X n ) n is bounded and recall that ε n → 0. Moreover, Lemma 4.3 yields:

is the i th coordinate of the vector A d and A ij is the coefficient with coordinates i, j of the matrix A. We have,

Now, the first line of (33) and the fact that (p n , X n ) ∈ J 2,+ u(y n ) imply: for all n ⩾ 0,

We obtain, therefore:

Thus u is a viscosity subsolution of (30). Likewise,

Thus u is a viscosity supersolution of (30). Therefore, u is a viscosity solution of (30).

Main proofs

Proof of Theorem 1.2. Assume that B ≡ 0. Take ε n → 0 such that k εn converges to some k 0 ∈ R. Lemma 4.4 then implies that for all Y ′ ⊂⊂ Y, there exists a viscosity solution

This implies in particular that for all y ∈ Y, k 0 ⩾ k y . Now, let us show that k 0 = k y∞ for some y ∞ ∈ Y. Recall that the functions u n = ε n ln(φ εn (•, 0)) have been defined in the proof of Lemma 4.4. For n ⩾ 0, let y n ∈ Y satisfy

Since Y is compact, the sequence (y n ) n converges, up to extraction, to some y ∞ ∈ Y. By Lemma 4.3, maybe up to another extraction, we have

Step 2. Conclusion. Recall that

4A(y)

A(y) dy.

If γ ⩾ j(M ), then there exists k ⩾ M such that

Then, the function

is 1-periodic. Moreover, the function u solves (35) (with k instead of k 0 ) and, therefore, solves (30). By Lemma 4.4 and the uniqueness stated in Step 1, we conclude that k 0 and k must coincide, so that k 0 satisfies (36):

This concludes the proof for γ ⩾ j(M ). If γ ⩽ -j(M ), then there exists k ⩾ M such that

4A(y)

A(y) dy.

We conclude in the same way, with the function

Proof of Theorem 1.3, case |γ| ⩽ j(M ). The case |γ| = j(M ) is covered by the previous proof, so we assume that |γ| < j(M ). First, we consider 0 ⩽ γ < j(M ), i.e. 0 ⩽

4A(y)

A(y) dy.

We assume for convenience that M is reached at 0, i.e.

Since all these functions are 1-periodic, M is also reached at each y ∈ Z.

Step 1. If γ ∈ Q and j(M ) ∈ Q. Since 0 ⩽ γ < j(M ), there exist q 1 ∈ Z ⩾1 and q 2 ∈ Z ⩾1 which satisfy: (q 1 + q 2 )γ = (q 1 -q 2 )j(M ). We define a (q 1 + q 2 )-periodic function S by S(y) = 1, y ∈ [0, q 1 ) , -1, y ∈ [q 1 , q 1 + q 2 ) . Now, we define v by:

Note that v(q 1 + q 2 ) = -(q 1 + q 2 )γ + (q 1 -q 2 )j(M ) = 0 = v(0), so v is (q 1 + q 2 )-periodic. For y 0 ∈ [0, q 1 + q 2 ) \ {0, q 1 }, the function S is continuous at y 0 so v is differentiable at y 0 , and satisfies in the classical sense, at y = y 0 ,

For y 0 ∈ {0, q 1 }, we have

so v is also differentiable at y 0 and satisfies (37) at y = y 0 in the classical sense. Thus, v is a periodic viscosity solution of (37). Hence by Step 1 of the previous proof, we must have k 0 = M .

Step 2. If γ / ∈ Q or j(M ) / ∈ Q. Let u be given by Lemma 4.4. If u is constant, then we must have k y = k 0 for all y ∈ R. Thus j(M ) = γ, which contradicts our simplifying assumption that |γ| < j(M ). Therefore u is not constant: there exists y 0 ∈ (0, 1) such that u(y 0 ) ̸ = u(0). Assume u(y 0 ) < u(0) (the proof is almost the same if u(y 0 ) > u(0)). Consider δ ∈ (0, u(0) -u(y 0 )). Similarly as above, there exist q 1 ∈ Z ⩾1 and q 2 ∈ Z ⩾1 such that 0 < δ ′ := (q 1 + q 2 )γ -(q 1 -q 2 )j(M ) < δ. With the same construction, we find a function v ∈ C 0 (R) which is a viscosity solution of (37) and such that y → v(y) + δ ′ y is (q 1 + q 2 )-periodic. Since δ ′ < u(0) -u(y 0 ) and u is 1-periodic, we can find, up to adding a constant to v, two interval U ⊂ R and U ′ ⊂ R such that Therefore, the reasoning of Step 1 of the previous proof (starting from (34)) still works, which allows one to conclude as in Step 1 of the present proof.