Intertwining NLP and CP-AI-OR Reasoning for Constrained Text Generation - Archive ouverte HAL
Poster De Conférence Année : 2023

Intertwining NLP and CP-AI-OR Reasoning for Constrained Text Generation

Résumé

This poster describes a new approach to constrained text generation using NLP and CP-AI-OR reasoning. The poster argues that beam search fails to generate constrained text when the solution space is highly constrained, and that a Constraint Programming-based approach can overcome this limitation. The poster presents a case study based on the MNREAD test, a psychophysical test based on standardized sentences. It shows that a Multi-valued Decision Diagram model can generate sentences that satisfy the MNREAD rules. The poster also discusses the advantages of their approach, including its modularity, flexibility, and ability to consider constraints at the generation stage. Finally, the authors discuss the perspectives of their work, including the possibility of bridging CP and ML.
Fichier principal
Vignette du fichier
GDR-TAL-RADIA.pdf (1.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04296814 , version 1 (21-11-2023)

Identifiants

  • HAL Id : hal-04296814 , version 1

Citer

Alexandre Bonlarron, Aurelie Calabrese, Pierre Kornprobst, Jean-Charles Régin. Intertwining NLP and CP-AI-OR Reasoning for Constrained Text Generation. Journée Natural Language Argumentation – GDR TAL – GDR RADIA, Nov 2023, Sophia Antipolis (06), France. . ⟨hal-04296814⟩
147 Consultations
64 Téléchargements

Partager

More