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Abstract

Coarse-grained force-fields (CG FF) such as the Martini model entail a predefined,

fixed set of Lennard-Jones parameters (building blocks) to model virtually all possi-

ble non-bonded interactions between chemically relevant molecules. Owing to its uni-

versality and transferability, the building block coarse-grained approach has gained a

tremendous popularity over the last decade. The parameterization of molecules can be

highly complex and often involves the selection and fine tuning of a large number of

parameters (e.g., bead types and bond lengths) to optimally match multiple relevant

targets simultaneously. The parameterization of a molecule within the building block

CG approach is a mixed-variable optimization problem: The non-bonded interactions
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are discrete variables whereas the bonded interactions are continuous variables. Here,

we pioneer the utility of mixed-variable particle swarm optimization in automatically

parameterizing molecules within the Martini 3 coarse-grained force-field by matching

both structural (e.g., RDFs) as well as thermodynamic data (phase-transition tempera-

tures). For sake of demonstration, we parameterize the linker of the lipid sphingomyelin.

The important advantage of our approach is that both bonded- and non-bonded inter-

actions are simultaneously optimized while conserving the search efficiency of vector

guided particle swarm optimization (PSO) methods over other metaheuristic search

methods such as genetic algorithms. In addition, we explore noise-mitigation strategies

in matching the phase transition temperatures of lipid membranes, where nucleation

and concomitant hysteresis introduces a dominant noise term within the objective func-

tion. We propose that noise-resistant mixed-variable PSO methods can both improve

as well as automate parameterization of molecules within building block CG FFs, such

as Martini.
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1 Introduction

Atomically detailed molecular dynamics (MD) simulations provide great insights into the

structure and dynamics of biomolecular and other soft matter systems, but larger time- and

length scales often require a coarse-grained (CG) description. In coarse-graining a group of

atoms is mapped into one bead or supra-atom. Coarse-grained descriptions achieve compu-

tational efficiency by reducing degrees of freedom while preserving relevant aspects. This not

only allows for bridging larger time and length scales but also enhances our understanding of

the fundamental physics underlying molecular processes within biological cells. For example,

it can enable fundamental insights into phenomena like the self-organization of lipid mem-

branes and the formation of characteristic thermodynamic phases, including liquid-ordered,

liquid-disordered, and gel phases.1–3 Systematic coarse-graining approaches such as inverse

Boltzmann and inverse Monte-Carlo approaches4,5 as well as force-matching approaches6,7

parameterize coarse-grained force-fields by reproducing the structural part of the partition

function of the fine-grained system by either matching relevant radial distribution func-

tions or (combined) forces within the fine-grained system. However, because the partition

function only describes a single thermodynamic state point at equilibrium, i.e., a unique

combination of pressure & temperature values, systematically parameterized ’bottom-up’

coarse-grained force-fields are not suited to describe phase transitions over a wider temper-

ature range. Phase-transitions or phase-diagrams can, however, be optimally modeled us-

ing coarse-grained force-fields based on the alternative Statistical Associating Fluid Theory

(SAFT) parameterization approach, which uses a scaled Lennard-Jones interaction poten-

tial whose functional form (the exponent) is uniquely adapted for each interaction type.8,9

However, the main practical problem of all of these coarse-grained force-fields is their lack of

chemical transferability, i.e. inclusion of a new molecule (interaction type) within the system

would require reparameterization of all the existing interaction parameters.

The Martini coarse-grained force-field10,11 is a building block force-field, i.e., common

chemical groups are parameterized as basic building blocks, which can be combined to build
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up any existing molecule. These basic building blocks of Martini, the beads, are parame-

terized top-down and reproduce the thermodynamic properties of the chemical groups they

model, such as partitioning free energies in liquid-liquid systems, while complete molecules

are parameterized with a combination of top-down (experimental data) and bottom-up

(atomistic simulation). Such a parameterization enables the qualitative simulation of phase

transitions as well as phase segregation in lipid membranes while simultaneously conserv-

ing molecular compatibility (transferability) by describing all non-bonded interactions with

the same 12-6 Lennard-Jones potential form. However, a major drawback compared to

other systematic coarse-grained approaches is that parameterization of molecules in Martini

can be highly complex and often involves the selection and fine tuning of a large number

of parameters (e.g., bead types and bond lengths) to optimally match multiple relevant

targets simultaneously. A task that is time consuming when done by human labor. Addi-

tionally, it is not always obvious which parameters have to be changed in what manner to

enhance a certain behavior, particularly when cooperative processes are involved. While the

choice of individual bead types can be made using chemical intuition, still a sizable subset

of combined possibilities exists. Importantly, parameterization of bonded and non-bonded

parameters should be optimally performed simultaneously since bonded and non-bonded

interactions are not independent – they are directly influencing each other via the density

of interactions.12,13 Recent versions of the Martini force-fields such as Martini 3 rebalanced

the density of interactions by introducing an even larger number of possible interaction

types, thereby rendering the parameterization of molecules often a non-tractable problem

to common users. Automation of coarse-graining is thus critical, especially when construct-

ing large databases of molecules.Automation offers a solution to address the challenge of

force-field development, which typically involves collaboration among multiple researchers

working on interdependent parameters. By automating the process, a clear and structured

flowchart-based hierarchy is established, providing an overview of how the parameterization

is conducted and which objectives are targeted.
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This automation approach facilitates collaborations by allowing researchers to focus on

selecting a set of relevant objectives and assigning importance or weights to each objective.

These objectives, along with their individual weights, define the force-field’s philosophy. Fur-

thermore, automation empowers collaborations to prioritize two key aspects: the generation

and provision of reference data for the objectives at hand, and the design of analysis tools

to quantitatively assess how each objective is addressed within the automation pipeline. By

automating the parameterization process, collaborators can allocate their efforts towards ob-

taining high-quality reference data that accurately represents the desired objectives. Simul-

taneously, they can focus on developing comprehensive analysis tools that enable thorough

quantitative evaluation, ensuring the effectiveness of the automation pipeline in achieving

the defined objectives. This collaborative approach maximizes the efficiency and reliability

of the parameterization process while facilitating a deeper understanding of the force-field’s

performance.

Particle swarm optimization (PSO) is a powerful computational method used to optimize

problems by iteratively improving candidate solutions based on a defined objective function.

Compared to evolutionary optimization methods like genetic algorithms, PSO offers advan-

tages in efficiently finding global optima within high-dimensional continuous spaces due to

its vectorial search direction. PSO has been successfully employed in various coarse-grained

(CG) parameterization tasks, as demonstrated in previous studies.14–18

PSO is primarily designed for continuous variables, making it well-suited for optimizing

structure-based coarse-grained (CG) models where bonded and non-bonded parameters can

be chosen from a continuum of values. However, in building block models like Martini, the

non-bonded parameters are predefined and discrete, representing different interaction levels.

Consequently, the parameterization of molecules in a building block CG force field becomes

a mixed-variable optimization problem.

When using PSO for parameterization in building block models, a transformation from

the continuous space to the discrete space of force field parameters is necessary. This trans-
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formation introduces cumulative rounding errors, which can potentially affect the quality of

the parameterization, especially in larger molecules. Therefore, additional evaluation and

reparameterization steps are often required to ensure the optimal performance of the force

field.

It is crucial to parameterize both bonded and non-bonded interactions simultaneously

since they are not independent and their optimization should be performed in a coordinated

manner.13 By considering their interplay during the parameterization process, the resulting

force field can better capture the complex behavior of molecules in the system.

To address the limitations of existing PSO approaches, we employ a mixed-variable PSO

scheme (mv-PSO) for parameterization. This approach allows for the simultaneous opti-

mization of both discrete parameters (representing non-bonded interactions) and continuous

parameters (representing bonded interactions), enhancing the accuracy and reliability of the

parameterization process.

Furthermore, due to the chaotic nature of MD simulations, observables measured in MD

simulations are subject to noise. Since standard PSO was designed for deterministic objective

functions, straightforward application to noisy optimization problems is error prone, because

the algorithm can no longer correctly identify global and personal best solutions when noise

levels are similar to differences between objective function values.19 Noise-mitigation strate-

gies are particularly important when utilizing thermodynamic data as targets, as these are

notoriously expensive to estimate accurately in MD simulations, even when employing CG

models. Particularly problematic is the targeting of phase transition temperatures, which

involve a first order phase transition and are thus subject to nucleation and concomitant

hysteresis.

In this paper, we pioneer the application of mixed-variable particle swarm optimization

in automated parameterization of molecules within the Martini 3 coarse-grained force-field

by matching both structural (e.g., RDFs) as well as thermodynamic data (phase-transition

temperatures). The important advantage of this approach is that both bonded- and non-
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bonded interactions are simultaneously optimized while conserving the search efficiency of

vector guided particle swarm methods over other metaheuristic search methods such as ge-

netic algorithms. In addition, we explore noise-mitigation strategies in matching the phase

transition temperatures, where nucleation and concomitant hysteresis introduces a dominant

noise term within the objective function. To the best of our knowledge, the impact of noisy

objective function values has not been previously addressed in the context of applying PSO

for CG parameterization. The manuscript is structured in the following way: Section 2 de-

scribes the mixed-variable PSO algorithm and parameterization procedure. As an example,

we parameterized the linker region of sphingolipids, a biological highly relevant class of lipid

molecules, that constitutes approximately 30 mol% of the plasma membrane lipids,20 but

has not been updated for Martini 3, yet. Details of the simulated molecules, systems and

observables are given in Section 3. Results are presented in Section 4, followed by conclusions

in Section 5.
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2 CG molecule parameterization via mixed-variable par-

ticle swarm optimization

With CGCompiler we present a Python package that streamlines CG molecule parameter-

ization. It employs mixed-variable particle swarm optimization to simultaneously optimize

categorical (beadtype) and continuous (bonds, angles, dihedrals, ...) variables. Therefore,

CGCompiler is particularly well suited for, but not limited to, parameterization tasks in

CG FFs that follow a building block approach. To enable the application of the building

block approach also to larger molecular fragments, consisting of more than one CG bead,

the method allows for optimization of shared building blocks in different molecules, e.g. the

headgroup, linker, or tails of lipids.

Molecule parameterization in Martini 3 follows three steps: i) Choice of mapping and bead

sizes ii) Assignment of chemical bead types iii) Choice of bonded terms and assignment of

bonded parameters.11 While a mapping from atomistic to CG model and the set of of bonded

terms have to be predefined, the here-presented algorithm optimizes bead size, chemical bead

type and bonded parameters simultaneously.

The parameterization workflow is shown in Figure 1. For a given parameterization task,

the user provides or generates the target data, and creates a set of CG training systems,

that allows measurement of the target observables. In the initial iteration, the optimization

algorithm generates a numberNp, i.e., the swarm size, of candidate solutions with random FF

parameters, and runs MD simulations for each candidate solution and each training system.

Candidate solutions are then scored by how well the parameterization targets are reproduced.

By utilizing the swarm’s knowledge of the fitness landscape, candidate solutions are updated,

and a new cycle of MD simulations, analyses, and fitness evaluations, starts. This is repeated

until a termination criterion is fulfilled. Due to noise in the objective function evaluation, the

selection of the true best parameters can only be done with a certain probability. Therefore,

the set of the best, statistically equal candidate solutions undergoes a screen-to-the-best
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procedure, which either provides one solution that is significantly better than the rest, or

reduces the field of viable candidate solutions further, on which more expensive evaluation

simulations would be performed.

Figure 1: Parameterization workflow. i) A set of training systems from which the target
properties can be extracted. ii) Target data is acquired from atomistic simulations and
experiments. iii) An initial swarm is generated with FF parameters randomly selected from
a predefined range of feasible parameters. iv) All candidate solutions are simulated in all
training systems, the target observables are measured and compared to the target data, i.e.,
the fitness of the candidate solutions is estimated. New candidate solutions are generate
by utilizing the swarm’s knowledge of the fitness landscape. v) Step iv is repeated until a
termination criterion is fulfilled. vi) A screen-to-the best procedure yields the optimized set
of FF parameters.

2.1 Mixed-variable particle swarm optimization

In the original PSO algorithm for continuous optimization problems in a D-dimensional

parameter space, particle i has a position vector Xi = (x1i , ..., x
D
i ) and a velocity Vi =
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(v1i , ..., v
D
i ).21 At each iteration t the velocity and position are updated by

Vi(t+ 1) = w ∗ Vi(t)

+ c1r1(pbesti(t)−Xi(t))

+ c2r2(gbest(t)−Xi(t))

(1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

Where pbesti(t) is the personal best position of particle i and gbest(t) is the best position

found by the whole swarm. w is an inertia weight, which balances global vs. local search.

The coefficients c1 and c2 are balancing personal vs. social experience. r1 and r2 are vectors

of random numbers. In the mv-PSO algorithm, that is utilized in our work, the position

vector of a particle takes a hybrid form, where Z dimensions encode continuous variables

and V dimensions encode categorical variables.22

Xi = (x1i , x
2
i , ..., x

Z
i︸ ︷︷ ︸

continuous

, xZ+1
i , xZ+2

i , ..., xZ+Vi︸ ︷︷ ︸
categorical

) (3)

The continuous and categorical parts of the position vector are updated separately.

2.1.1 Continuous reproduction method

In classical PSO the swarm can get trapped in local optima and therefore prematurely

converge.22 To promote diversity while maintaining good convergence efficiency Wang et al.

proposed an altered continuous reproduction scheme, where particle i learns from the best

position of a randomly selected particle.22 In order to guide the swarm towards improved

solutions, the pool of pbest to choose from, only consists of solutions whose fitness is superior

to pbesti(t).

Vi(t+ 1) = w · Vi(t) + c · r · (pbestr(t)−Xi(t)) (4)
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Algorithm 1 Continuous reproduction method
1: Input: sorted swarm, particle i, parameter wi
2: for j = 1..Z do
3: Randomly choose r, i ≤ r ≤ N
4: vji (t+ 1) = wi · vji (t) + c · r · (pbestjr − x

j
i )

5: xji (t+ 1) = xji (t) + vji (t+ 1)
6: end for
7: return (x1i , x

2
i , ..., x

Z
i )

2.1.2 Categorical reproduction method

Values of categorical variables are assigned according to a probability. Initial probabilities

are given by

Probj,n(0) =
1

nj
(5)

where nj is the number of available values for the jth variable. To leverage the swarm’s

knowledge of good solutions, only the superior half of the sorted swarm is utilized in updating

the probabilities of available categorical values. To avoid premature extinction of available

values, a lower limit is assigned for Probj,n. If Probj,n falls below that lower limit, Probj,n is

set to that threshold value, and all probabilities are renormalized such that
∑

n Probj,n = 1.

The categorical update method is shown in Algorithm 2.

Algorithm 2 Categorical reproduction method
1: Input: sorted swarm, particle i, parameter αi
2: for j = 1..V do
3: for each available value n, n = 1 to nj do Countj,n = 0
4: for each personal best pbesti, i = N/2 to N do
5: if pbesti,j == V aluesj,n then
6: Countj,n+ = 1
7: end if
8: end for
9: Probj,n(t+ 1) = αi · Probj,n(t) + (1− αi) · Countj,nN/2

10: end for
11: end for
12: for j = 1..V do
13: Assign an available value to xZ+ji according Probj
14: end for
15: return (xZ+1

i , xZ+2
i , ..., xZ+Vi )
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2.1.3 Cost function

Molecule parameterization is typically a multiobjective optimization problem (MOP). A

simple way to scalarize an MOP is by linear weighting. The scalarized optimization problem

is solved by minimizing the cost, which is given by

cost =
∑
o

wofo(x) (6)

Where wo is an objective weight, fo the objective cost function, and x the parameter vector.

The objective weights can be used to balance the importance of the utilized parameterization

targets. The weights are set by the user. Setting weights might require some intuition about

the parameterized molecule, quality of target data, etc.

Each objective can have a different objective cost function fo. New objective cost func-

tions can be added by the user easily. In its present form, the parameterization algorithm

uses two distinct objective cost functions. For single valued observables, such as area per

lipid, membrane thickness, melting temperature, solvent accessible surface area (SASA) the

objective cost function is defined as

fo(x) =
1∑Ns

s wo,s

(
Ns∑
s

wo,s
1

Ntypes,s

Ntypes,s∑
t

max(0, SAE(ys,t(x), ŷs,t)− Etol
o,s)

)
. (7)

ys(x) is the observed value, given the FF parameters x. ŷs is the target value. Ns is the

number of training systems that is used for the current parameterization objective. Ntypes

is the number of bond or angle types being parameterized. The deviation from the target

is calculated by the scaled absolute error SAE(y, ŷ) =
∣∣∣ ŷ−yŷ ∣∣∣. With the error tolerance Etol

o,s,

uncertainties in target data can be accounted for. Each training system has an additional

weight wo,s, which can be used in case of differences in target data quality or similar cases.

Generally these are set to 1.

For observables that are given in the form of distributions, such as bond lengths, angles,
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or radial distribution functions (RDF), the objective cost function is given by:

fo(x) =
1∑
swo,s

(∑
s

wo,s
1

Ntypes,s

Ntypes,s∑
t

EMD(φ(xs,t), φ̂s,t)

)
(8)

Where φ(x) is the observed distribution, given the FF parameters x. φ̂ is the target distri-

bution. The earth mover’s distance EMD(φ(xs,t), φ̂s,t) is a measure of the distance between

the two distributions.23

2.2 Noise mitigation strategies for PSO

PSO was designed for deterministic objective functions. Due to the chaotic nature of MD sim-

ulations hereby measured observables are subject to noise. With noise in objective functions,

selection of the true best solutions is not guaranteed. Since solutions, that are identified as

the best, attract the swarm toward regions of interest in parameter space, noise can misguide

the swarm and therefore deteriorate PSO performance.

2.2.1 Resampling

Resampling is a widely applied strategy for noise mitigation within the objective function.

Relatively simple resampling methods are equal resampling (PSO-ER), extended equal resam-

pling PSO-EER, and equal resampling with allocation to top-N solutions PSO-ERN.24 These

simpler methods are regularly outperformed by state-of-the-art resampling methods, such as

optimal computing budget allocation PSO-OCBA,25 but the quality of results depends on the

specific optimization problem and noise levels.19,24 OCBA aims to maximize the probability

of correctly selecting good solutions. This is done by first allocating a primary computa-

tional budget equally to all current solutions to estimate their cost means and variances. A

secondary budget is then sequentially allocated to solutions with lower means and higher

variances to improve the fitness estimations of potentially good solutions. For efficient sec-

ondary budget allocation at least 5 primary evaluations should be executed for mean and
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variance estimation.26 This might make application of OCBA prohibitively expensive for

regular CG molecule parameterization tasks. Based on the observation that most observ-

ables utilized in the multiobjective optimization of the sphingomyelin linker region have a

low variance and only a few suffer from a larger variance (cf. Figure S5), we hypothesize that

in the molecule parameterization task at hand, one primary objective function evaluation

is sufficient to differentiate potentially good solutions from bad solutions, but to maximize

the probability of correctly selecting the true best solution, the accuracy of the fitness es-

timates has to be increased. Therefore, we propose a somewhat pragmatic approach, that

salvages the core idea of OCBA, i.e., allocate additional computational budgets to where it

is the most useful (low mean and high variance). At each iteration, our resampling method

involves one full objective function evaluation of the current solutions. The current solutions

are then ranked by their fitness, and for the best N solutions only the observables that have

significant variance are reevaluated.

2.2.2 Set of statistically equivalent solutions

Even with noise mitigation, at the end of an optimization run, there will be a number of

solutions with very similar scores. While in a deterministic setting, the global best position

is determined by

gbest = arg min
x∈Pt

f(x), (9)

where Pt is the set of all positions that have been visited by the swarm up to iteration

t, with noise in the objective function no solution can be declared the best with 100%

certainty.19 With the screen-to-the-best procedure of Boesel et al.27 a set of positions Pgt ⊆ Pt

can be selected, such that the true global best solution gbest is contained in Pgt with

probability of at least 1− α (with 0 < α < 1).19

For solutions i, j ∈ Pt, f̄i and S2
i denote the sample mean and sample variance of objective

function values. The elementary steps of the screen-to-the-best procedure are:

1. Compute Wij,
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Wij =

(
tiS

2
i

ni
+
tjS

2
j

nj

)1/2

,∀ i 6= j ∈ Pt (10)

where ti = t(1−α)1/|Pt|−1,ni−1 and tβ,ν is the β quantile of the t distribution with ν degrees

of freedom

2. Set Pgt = {i : i ∈ Pt, f̄i ≤ f̄j +Wij,∀ i 6= j ∈ Pt}

3. Return Pgt

Wij is the half-width of pooled t-confidence intervals on the difference between the scores

of solutions i and j.19 Therefore, the procedure entails a pair-wise comparison of solutions

and determines if differences of the sample averaged scores are statistically significant.19
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3 Example application: Sphingolipid linker parameteri-

zation

Figure 2: CG description of sphingomyelin and ceramide.

3.1 Simulation details

The Python package is based on evo-MD.28 All simulations were performed with GROMACS

2020.4 and 2021.429 and analyzed with in-house Python scripts that are utilizing MDAnaly-

sis,30,31 LiPyphilic,32 SciPy,33 and pyemd, which is a Python wrapper for Pele and Werman’s

EMD implementation.34,35 Visualization was done with NGLview.36

3.1.1 Atomistic models

All atomistic models were simulated using the CHARMM3637–39 force field. Table 1 pro-

vides details about the atomistic target systems. Initial configurations of the membrane

systems were generated with the CHARMM-GUI membrane builder.40–42 Following energy

minimization and equilibration, all systems were simulated with a 2 fs time step. Bonds of

hydrogen atoms were constrained employing the LINCS algorithm.43 Van der Waals forces

were gradually switched off between 1.0 nm and 1.2 nm. The PME algorithm44 was used

for electrostatic interactions. Temperature coupling was done via the velocity rescale algo-

16

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


rithm45 with a coupling time τt = 1.0 ps. System pressures were held at 1 bar by using

the Parinello-Rahman barostat46 with a coupling time τp = 5.0 ps. Pressure coupling was

applied isotropically for aqueous solutions and semi-isotropically for membrane systems.

Table 1: Atomistic target system details. In the naming scheme of the CHARMM FF, SSM
and CHL1 denote sphingomyelin (18:0) and cholesterol, respectively.

system lipids # TIP3P # NA # CL T / K sim. time / ns
DPSM128 328K 128 SSM 5120 - - 328.15 150
POPC SSM CHOL 100 POPC 100 SSM 100 CHL1 9000 18 18 321.15 300

3.1.2 Coarse-grained models

All coarse-grained models were simulated using the Martini 311 force field. Beta version

14 of the Martini 3 cholesterol parameters was used.47,48 Initial configurations of membrane

systems were generated with the Python script insane.49 Details of the employed training

systems are listed in Table 2. All systems were energy minimized and equilibrated with the

current version of DPSM, that made the Martini 2 model of sphingomyelin compatible with

Martini 3. During the particle swarm optimization each system was equilibrated with the

candidate FF parameters in two stages, with time steps of 2 fs and 20 fs, respectively. For all

coarse-grained production simulations a time step of 20 fs was used. Non-bonded interactions

were cut off at 1.1 nm. For electrostatic interactions the reaction-field method was used with

a dielectric constant of 15 and the reaction-field dielectric constant was set to infinity.

Temperature coupling was obtained via the velocity rescale algorithm45 with a coupling

time τt = 1.0 ps. System pressures were held at 1 bar by using the Parinello-Rahman

barostat46 with a coupling time τp = 12.0 ps. Pressure coupling was applied isotropically for

aqueous solutions and semi-isotropically for membrane systems. In simulations for melting

temperature estimation anisotropic pressure coupling was employed, using the Berendsen

barostat50 with a coupling time τp = 4.0 ps.
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Table 2: Coarse-grained training system details.

system lipids # W # NA # CL T / K
DPSM128 328K 128 DPSM 1177 - - 328.15
DPSM256 biphasic 256 DPSM half gel/half liquid 2300 26 26 286, 291, 296, 301, 303,

305, 307, 308, 309, 310,
311, 316, 321, 326

POPC SSM CHOL 96 POPC 96 DPSM 96 CHOL 2124 23 23 321.15
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4 Results

Our aim was the development of an automatization framework for molecule parameterization

in building-block force fields. As an example we parameterized the sphingolipid linker region.

Section 4.1 shows the results of the parameterization with CGCompiler using a simple noise-

mitigation strategy. Since noise-mitigation strategies can only reduce the effects of noise

when selecting the true best solution, the best statistically equivalent solutions generated

during the mv-PSO run are subsequently screened-to-the-best, as described in Section 2.2.2.

4.1 Parameterization of the sphingolipid linker region

Table 3 shows the observables and their weights used in the parameterization. The swarm

size was 64. Noise-mitigation was done by reevaluating the melting temperature of the 16

best candidate solutions of the current iteration 12 times, i.e., results were obtained with

noise-mitigation setting mv-PSO-R16 (cf. Section 4.2). As Tm is the major contribution to

cost variance, but the employed Tm estimation method is good for differentiating good from

bad solutions, i.e., it has an accuracy of a few K. Other observables were only evaluated

once, area per lipid (APL) fluctuations were the second largest cause of cost variance. For

more details on noise-mitigation efficacy see Section 4.2.

All results shown include the complete set of the best statistically equivalent candidate

solutions Pg that remained after two rounds of the screen-to-the-best procedure (cf. Sec-

tion 2.2.2). This set contains 18 candidate solutions.

Table 3: Weights of observables wo and system specific observable weights wo,s for optimiza-
tion run 1.

observable wo wo, DPSM128 wo, DPSM256 wo, POPC SSM CHOL

bond length dist. 1 1 0 1
angle dist. 100 1 0 1

dHH 500 1 0 0.25
APL 1000 1 0 0.25
Tm 250 0 1 0

RDF COM DPSM-CHOL 1 0 0 1
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4.1.1 Improved reproduction of membrane properties

Figure 3 shows thickness, average area per lipid and melting temperature of pure DPSM

membranes for the set of statistically equal candidate solutions that remained after the sec-

ond screen-to-the-best procedure performed after reevaluating the initial set 20 times. All

new candidate solutions outperform the current DPSM model regarding thickness. The

average area per lipid of the current model is closer to the target value, but most of the

candidate solutions are within the tolerance of 1.5% deviation. In general, thickness and

APL are inversely correlated, increasing one will always result in decreasing the other, there-

fore, with both values inside the tolerance, the new models represent a better balance of

thickness and APL. It is important to note that in the comparison, SM(18:0) was used as

the atomistic target. The current tail model of the Martini FF represents both SM(16:0) and

SM(18:0). The CHARMM model for SM(16:0) exhibits a reduced thickness when compared

to SM(18:0).38 It is therefore not unexpected that the Martini DPSM models show a reduced

thickness compared to SM(18:0).

While the melting temperatures estimated with the biphasic approach, that is used during

optimization for performance reasons, are not within the specified tolerance regime of 2K

but ≈ 5 − 6K below the target value and ≈ 3 − 4K below the lower target threshold, the

new models are greatly improved compared to the current model, which was 20K off target.

Notably, the estimation of Tm is approach dependent. Estimations using the alternative,

reversible melting approach with slow melting rates, based on Kowalik et al.51 and Sun and

Böckmann52 (see SI for further details), which requires a very large computational budget

(as done here, total simulation time for one Tm estimation > 90µs) show an even better

agreement with the experimental melting temperature.

The here-performed biphasic approach utilizes a bilayer that is half gel and half liq-

uid. The gel phase is fabricated by quenching to a temperature well below the melting

temperature, and the gel phase system is combined with a preequilibrated liquid system.

The combined system is then equilibrated with thermostats set to different temperatures for
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the two phases. As quenching and equilibration can take up to several hundreds of ns, re-

constructing the starting structure for every candidate solution would significantly increase

computational cost of a PSO run. Therefore, starting structures for this procedure were

generated with the current DPSM parameters beforehand and equilibrated using the param-

eters of each candidate solution. While equilibration of the fluid phase is generally fast, this

certainly is not the case for the gel phase. Considering that an unequilibrated phase is inher-

ently less stable, the presence of an equilibrated liquid phase alongside an unequilibrated gel

phase may lead to a slight systematic underestimation of the melting temperature (Tm).53

However, this potential underestimation can be anticipated and taken into account during

the analysis.

The equilibrium melting rate approach does not suffer from this potential problem of

unequally equilibrated phases. To minimize bias caused by the quenched starting struc-

tures used in this approach, for each validated candidate solution eight different starting

conformations were generated.
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Figure 3: Thickness, average area per lipid and melting temperature for the set of statisti-
cally equal candidate solutions that remained after the second screen-to-the-best procedure
performed after reevaluating the initial set 20 times.

4.1.2 Structural properties of the parameterized sphingomyelin models

Figure 4 shows the distributions of the newly parameterized bonds and angles for the can-

didate solutions in Pg. The atomistic target distributions are matched reasonably well in
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all cases. Some finer details of the atomistic model, like double peaks or extensive shoulders

cannot be matched in the CG model. The parameterization philosophy of Martini 3 adopts

a size-shape concept, where bond lengths are determined based on the molecular volume of

the atomistic fragment mapped by the beads, rather than simply center of masses. This

complication further underscores the necessity of employing multi-objective optimization

algorithms to achieve effective molecule parameterization.

The solvent accessible surface area (SASA) is commonly used to further compare the

molecular volumes and shapes between CG and AA models.11,54 Figure 5 shows the SASA

values of Pg in comparison to the AA and current CG DPSM models. The SASAs are

computed for the linker beads AM1 and AM2, as well as all supra-atoms that are directly

connected to the linker, i.e., beads PO4, T1A, and C1B, as these connections are also

parameterized. With SASA values of ≈ 6.24 nm2 all newly parameterized CG models show

a better reproduction of the AA value (5.24 nm2) compared to the current model (6.45 nm2),

but with discrepancy of ≈ 19 % all SASA values remain grossly too high. It appears that

solely reparameterizing the linker region is not enough to fix this issue. Furthermore, using

SASA directly as a target in the high-throughput optimization scheme is not necessarily

beneficial, since a specific SASA value is not a unique representation of a certain shape.

Therefore, comparisons of solvent accessible surface areas between AA and CG models are

most helpful when done by simultaneous visual inspection. For automated parameterization,

however, more detailed shape descriptors should be used.

4.1.3 Force field parameters

Non-bonded interactions: Due to the polar nature of the linker region of sphingolipids,

only the chemical types of the P-block of the Martini 3 FF were eligible. As groups of 3 or

4 heavy atoms were combined into supra-atoms in the specified mapping, bead sizes small

(S) and regular (default) could be chosen by the algorithm. Both bead sizes were permitted

for both interaction sites, to allow for some wiggle room, even though 4 heavy atoms are
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Figure 4: Validation of targets from rerun simulations for the set Pg. A) Bond length
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Figure 5: Solvent accessible surface area of the linker and beads connected directly to it.
Beads involved in SASA calculation are highlighted.
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grouped together into supra-atom AM1 and 3 into AM2. A slight miscount of mapped atoms

is not uncommon in Martini, e.g., the mapping of the NC3 bead is actually 6-to-1.10

One feature of the mixed-variable approach is that the optimization procedure directly

yields a probability distribution of bead types, cf. Figure 6A. While for the interaction site

AM2 there is clear consensus on the bead type, for AM1 only the size (small) is clearly de-

termined, but there is some ambiguity regarding the interaction strength. The reduced size

of one of the beads seems to be warranted, given the still too high SASA values shown above,

and is also inline with the new Martini 3 models of glycerolipids.11 It is also worth mention-

ing that the chemical bead types chosen by our algorithm match the expected assignment

suggested by Martini 3.

A converged "degenerate" probability distribution of bead types is the result of two

or more bead types having indistinguishable effects on fitness. This can be caused by noise

levels being larger than the fitness differences or the employed set of observables and training

systems is lacking the necessary discriminatory power. Both issues can be remedied in

post-optimization screening, but should optimally be addressed during optimization. As the

former option would merely improve selection from the pool of generated candidate solutions,

the later would potentially allow the generation of truly better solutions.

Additionally, for both, non-bonded and bonded FF parameters, diversity can be caused

by the fact that the objective cost function for single valued observables (Eq. 7) has an error

tolerance to accommodate for uncertainties in target data. With respect to these observables,

different parameterizations with different "phenotypes" can have the same objective cost, as

long as they are within the specified tolerances.

Bonded interactions: Table 4 lists the range of permitted bond parameters used in the

optimization. The resulting bonded parameters of Pg are shown in Figure 6. For equilibrium

bond lengths b0 there is little variation between different candidate solutions. This strong

consensus suggests that the optimization has converged and that small changes in equilibrium

bond length are linked to significant cost changes. The situation for the force constants is
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quite different. The values fluctuate over a relatively large range, compared to the predefined

domain of permitted values. The measured bond length distributions (Figure 4A) show that

these seemingly substantial differences in force constant values have only minor effects on

the molecule’s behavior.

The situation for the angle FF parameters is similar. The equilibrium values show smaller

variances than the force constants, compared to their respective domain sizes of applicable

values. Again, the differences in FF parameters have little effect on the observed distributions

(cf. Figure 4B). Notably, the optimal force constants for the angles PO4-AM1-T1A and AM2-

C1B-C2B were close to or at the maximum of their permitted ranges. Further optimization

was therefore likely hindered, and a wider range should have been chosen.

In a similar vein to the discussion surrounding non-bonded parameters, the relatively

wide range of force constants in Pg indicates that additional metrics or training systems

could be employed to further optimize the overall performance of candidate solutions while

maintaining the quality of the employed observables. For instance, exploring lipids in envi-

ronments other than a bilayer, which induce different lipid conformations, could benefit from

a candidate solution with a lower angle force constant to allow for increased conformational

variation.

Table 4: Bonded interactions. GROMACS function type; permitted parameter ranges for
equilibrium bond length / angle, and corresponding force constants.

GROMACS
bond bond func. type b0 / nm fc / kJ/mol/nm2

PO4-AM1 1 0.25− 0.40 1000− 9000
AM1-AM2 1 0.20− 0.35 1000− 9000
AM1-T1A 1 0.40− 0.55 1000− 9000
AM2-C1B 1 0.25− 0.50 1000− 9000

GROMACS
angle angle func. type a0 / deg fc / kJ/mol
PO4-AM1-AM2 2 90− 180 5− 100
PO4-AM1-T1A 2 90− 180 5− 100
AM1-T1A-C2A 2 180 5− 100
AM2-C1B-C2B 2 180 5− 100
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A

C

B

Figure 6: Force field parameters of the set of statistically equivalent solutions Pg for the
sphingolipid linker region. A) Bead probability distributions. B) Bond parameters. Dashed
lines are upper and lower parameter limits. C) Angle parameters. Dashed lines are upper
and lower parameter limits. The equilibrium angles of AM1-T1A-C2A and AM2-C1B-C2B
are not varied during optimization. They are fixed at 180◦.
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4.2 Noise-mitigation improves quality of parameterized models

We investigated whether the simple noise-mitigation strategy described in Section 2.2.1 can

improve the quality of solutions found by the algorithm. The swarm size, training systems,

observables and weights are the same as in Section 4.1. We tested three different resampling

allocation settings and compared these to the mv-PSO without noise-mitigation. Each op-

timization run was given a fixed computational budget of 16128 MD simulation slots. With

a swarm size of 64 particles, and 3 training systems required for one full objective func-

tion evaluation, this amounts to 84 iterations for the mv-PSO without resampling (named

mv-PSO-R0). In the optimization runs with resampling an initial computational budget of

64 · 3 = 192 MD simulation slots was used for one full objective function evaluation of each

particle, and a second equally sized computational budget was allocated to reevaluate the

melting temperature (the target observable with the largest variance) of the best 16, best

32, or all 64 candidate solutions of the current iteration. For brevity we will refer to these

as mv-PSO-R16, mv-PSO-R32, and mv-PSO-R64. Due to the fixed computational budget,

for each particle involved in resampling, Tm was reevaluated 12, 6, or 3 times. As half of the

total computational budget was used for resampling, the number of iterations was set to 42

in these runs.

From the literature on PSO noise-mitigation24,55 we draw the expectation that which of

the resampling, or no resampling, strategies is the best, depends on the level of noise. If noise

levels are very low, the additional number of possible iterations, when forgoing resampling,

could lead to better solutions. For intermediate noise levels, initial fitness evaluation results

in a sufficient differentiation of good and bad solutions, i.e., overall sorting is roughly correct,

and the focus on improving sorting of the very best solutions is most helpful. In case of even

higher noise levels initial sorting would be vastly incorrect and a larger fraction of the swarm

needs to be resampled to achieve satisfactory overall sorting. As a consequence, the sorting

quality of the very top would be degraded, as there is less computational budget allocated

here.
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The true quality of a candidate solution is not necessarily reflected by the cost estimated

during an optimization run, as there is some uncertainty in estimates of target observables

other than Tm, and the confidence level of the Tm estimation with different resampling settings

differs vastly. Therefore, validation is required. As we are mostly interested in the quality

verification of the best solutions, the first step of the screen-to-the-best procedure from Boesel

et al.27 can be used to select the statistically equivalent set of candidate solutions. For mv-

PSO-R16 the set Pgt contains 69 candidate solutions. Due to the increased uncertainty

in mv-PSO-R32 and mv-PSO-R64, their respective sets Pgt contain hundreds of candidate

solutions. To keep the computational cost for validation manageable, we selected only the 72

best solutions of these optimization runs for validation. As there are no variance estimates in

the optimization run without resampling, the selection procedure is not applicable. Again,

the 72 best solutions from the optimization run were selected for validation. All candidate

solutions chosen for validation were fully (all training systems, all observables) reevaluated

20 times. The resulting rerun cost vs. the originally estimated cost is shown in Figure 7.

Clearly, mv-PSO-R16 gave the best results, while the quality of the best solutions in the

three other cases does not differ much. Furthermore, the fact that for all selected candidate

solutions of mv-PSO-R0 the rerun cost estimate is substantially higher than the original cost

estimate indicates that these original estimate are particularly favorable. While there are also

candidate solutions with substantial differences in original and rerun cost for the resampling

systems – in this case mostly caused by APL fluctuations – these are much less frequent

and there is much better correlation between original and rerun cost (Pearson correlation

coefficient 0.21 vs. 0.64, for mv-PSO-R0 and mv-PSO-R16, respectively).

Our interpretation of these results is the following: The noise level is low enough, so

that even without noise-mitigation, the sorting of candidate solutions is correct in a coarser

sense and the swarm is guided towards the "correct" vicinity in parameter space. Yet, noise

levels are substantial enough, so that resolution of finer cost differences is impeded. Only

the concentrated allocation of the resampling budget on the top 16 solutions lowers the cost
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estimation errors sufficiently such that improved candidate solutions can be found.
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Figure 7: Comparison of cost estimated during the optimization run and average cost esti-
mated from repeated reruns of Pg

t in (A) and the 72 best candidate solutions in (B)-(D).
Error bars are standard errors. (A) Original cost: 16 particles resampled, 1+12 Tm samples.
(B) Original cost: 32 particles resampled, 1+6 Tm samples. (C) Original cost: 64 particles
resampled, 1+3 Tm samples. (D) No resampling during optimization, but twice as many
iterations
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5 Discussion & Conclusion

We have illustrated how to apply mixed-variable particle swarm optimization for automated

CG molecule parameterization. As an example application, we parameterized the sphin-

golipid linker region for the Martini 3 FF. The newly parameterized sphingomyelin model re-

produces important target observables accurately, including the melting temperature, which

was ≈ 20K off target before and is now within ≈ 2K of the experimental reference. No-

tably, reproduction of experimental melting temperatures had been historically problematic

in Martini lipid models.56

The mixed-variable approach offers a major advantage when parameterizing molecules for

building-block force fields. Due the explicit use of building blocks, every candidate model

is a valid parameterization in the given FF. Otherwise, changing non-bonded interaction

parameters of the FF’s building blocks breaks the validity of their parameterization. Can-

didate solutions generated by a continuous treatment of non-bonded interactions have to be

converted to a valid FF model, followed by additional validation of this model.

A drawback of the mixed-variable treatment is that some advanced improvements to PSO,

such as fuzzy parameter tuning of Nobile et al.,57 are not directly applicable to mv-PSO,

because in the categorical representation there is no similarity metric, which is utilized in

the PSO parameter tuning. This could be overcome by using discrete ordered representation

for non-bonded interactions instead of the categorical treatment.

One of the great benefits of automated parameterization algorithms is the simultaneous

optimization against multiple structural and thermodynamic target data. As thermody-

namic observables can be expensive to estimate accurately in MD simulations, the formal

consideration of noise in objective function values is an important conceptual improvement.

As demonstrated, optimization with applied noise-mitigation produced significantly better

solutions and the utilized screen-to-the-best procedure provides a systematic approach to

the post-optimization selection of the best model.

Although we have demonstrated the adverse effects of objective function value noise on
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the sorting and performance of PSO, it is important to note that the non-deterministic

nature of particle swarm optimization necessitates multiple repetitions of full optimization

runs to confidently determine the most effective noise-mitigation setting. Achieving a high

level of confidence in identifying the optimal approach would require a significant number

of iterations. Furthermore, the ‘ground truth’, i.e., the true score of a candidate parame-

terization, is unknown, hence a large amount of validation simulations would be required.

This is not feasible, due to a high computational cost. Rigorous development and testing

of noise-mitigation strategies should not be done with objective function evaluations that

require costly MD simulations, and are therefore beyond the scope of this paper. Moreover,

the additionally gained insight, would only be of moderate value. The PSO literature has

shown that under significant noise PSO performance is degraded and performance differ-

ences between resampling methods for noise-mitigation are problem and noise-level depen-

dent. Generally, noise-mitigation methods employing OCBA perform the best under various

circumstances,24,58 but its sequential secondary budget allocation puts constraints on the

parallelization of the parameterization algorithm. Still, its integration into the parameteri-

zation pipeline should be explored in the future.

Together with the general benefits of automation, the here-presented conceptual advan-

tages will further facilitate rigorous CG molecule parameterization. The CGCompiler Python

package that comes with our method is tailor-made for parameterization tasks in building-

block FFs, such as Martini. Also larger building blocks, i.e., a molecule class with shared

regions can be parameterized simultaneously. Our approach is not limited to lipid parame-

terization, but can be applied to any kind of molecule. CGCompiler can be easily adapted to

the needs of a specific parameterization task. Implementing new observables is not much dif-

ferent from writing Python functions for analyzing MD data. Importantly, our automation

platform eases collaborations between individual researchers since a clear overview of the

parameterization flow is provided. This also renders force-field reproducibility as well as ret-

rospective force-field corrections, such as corrections to the targets (e.g., improved atomistic
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force-fields or simulation settings) or inclusion of additional targets rather straightforward.

The here-presented study focuses on method development and the sphingolipid linker

parameterization was merely a test case. The parameters of the head group and lipid tails,

predefined in our study, are still actively improved/(re)parameterized by the core devel-

opers.11 Once these final parameters are released, reparameterization of the linker may be

necessary, ideally with an even broader set of training systems, including liquid ordered-

disordered phase behavior.

In order to achieve fully automated molecule parameterization in high-throughput appli-

cations, the development of an automated mapping and selection of bonded terms remains a

crucial component. Currently, mapping and parameter optimization are separate tasks, but

integrating an automated mapping scheme into the parameterization pipeline could be facili-

tated prior to employing mixed-variable particle swarm optimization, utilizing CGCompiler.

The choice of bonded parameters not only influences the accuracy of the model but also

impacts simulation stability. Various strategies, such as the use of virtual sites, restricted

bending potentials, hinge and "divide and conquer" constructions,59,60 have been previously

described to address instability. Additionally, careful consideration of constraints is neces-

sary to ensure simulation stability and prevent artificial temperature gradients.61,62 These

aspects should be incorporated as essential steps in a future fully automated parameteriza-

tion pipeline.

Another future prospect is the advancement of true non-scalarized multi-objective op-

timization, which eliminates the need for user-defined weights on the targets within the

objective function. However, it can also be argued that these user-defined weights, which

reflect the importance of targets based on intuition, experience, or additional knowledge,

along with the predefined set of relevant structural and thermodynamic targets for the CG

force-field, encompass what is commonly known as the "force-field’s philosophy". In this

sense, the user-defined weights embody the guiding principles that shape the force-field.
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Data availability

The CGCompiler Python package is available upon request from the authors and will be

made publicly available on github at a later stage.

A Gromacs topology file of the final sphingomyelin (and ceramide) can be download from

the Martini Database server63 (https://mad.ibcp.fr).

References

(1) Risselada, H. J.; Marrink, S. J. The molecular face of lipid rafts in model membranes.

Proceedings of the National Academy of Sciences 2008, 105, 17367–17372.

(2) Marrink, S. J.; Risselada, J.; Mark, A. E. Simulation of gel phase formation and melting

in lipid bilayers using a coarse grained model. Chem .Phys. Lipids 2005, 135, 223–244.

(3) Risselada, H. J.; Marrink, S. J. The freezing process of small lipid vesicles at molecular

resolution. Soft Matter 2009, 5, 4531–4541.

(4) Lyubartsev, A. P.; Laaksonen, A. Calculation of effective interaction potentials from

radial distribution functions: A reverse Monte Carlo approach. Phys Rev E 1995, 52,

3730.

(5) Lyubartsev, A. P. Multiscale modeling of lipids and lipid bilayers. Eur. Biophys. J.

2005, 35, 53–61.

(6) Izvekov, S.; Parrinello, M.; Burnham, C. J.; Voth, G. A. Effective force fields for con-

densed phase systems from ab initio molecular dynamics simulation: A new method

for force-matching. J. Chem. Phys. 2004, 120, 10896–10913.

(7) Izvekov, S.; Voth, G. A. A multiscale coarse-graining method for biomolecular systems.

J. Phys. Chem. B 2005, 109, 2469–2473.

35

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(8) Lafitte, T.; Apostolakou, A.; Avendaño, C.; Galindo, A.; Adjiman, C. S.; Müller, E. A.;

Jackson, G. Accurate statistical associating fluid theory for chain molecules formed

from Mie segments. J. Chem. Phys. 2013, 139, 154504.

(9) Papaioannou, V.; Lafitte, T.; Avendaño, C.; Adjiman, C. S.; Jackson, G.; Müller, E. A.;

Galindo, A. Group contribution methodology based on the statistical associating fluid

theory for heteronuclear molecules formed from Mie segments. J. Chem. Phys. 2014,

140, 054107.

(10) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The

MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. The

Journal of Physical Chemistry B 2007, 111, 7812–7824.

(11) Souza, P. C. T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.;

Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M. H.; Wassenaar, T. A.; Kroon, P. C.;

Melcr, J.; Nieto, V.; Corradi, V.; Khan, H. M.; Domański, J.; Javanainen, M.; Martinez-

Seara, H.; Reuter, N.; Best, R. B.; Vattulainen, I.; Monticelli, L.; Periole, X.; Tiele-

man, D. P.; de Vries, A. H.; Marrink, S. J. Martini 3: a general purpose force field for

coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388.

(12) Alessandri, R.; Souza, P. C. T.; Thallmair, S.; Melo, M. N.; de Vries, A. H.; Mar-

rink, S. J. Pitfalls of the Martini Model. J. Chem. Theory Comput. 2019, 15, 5448–

5460.

(13) Risselada, H. J. Martini 3: a coarse-grained force field with an eye for atomic detail.

Nat. Methods 2021, 18, 342–343.

(14) Bejagam, K. K.; Singh, S.; An, Y.; Deshmukh, S. A. Machine-Learned Coarse-Grained

Models. J. Phys. Chem. Lett. 2018, 9, 4667–4672.

(15) Bejagam, K. K.; Singh, S.; An, Y.; Berry, C.; Deshmukh, S. A. PSO-Assisted Devel-

36

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


opment of New Transferable Coarse-Grained Water Models. J. Phys. Chem. B 2018,

122, 1958–1971.

(16) Empereur-Mot, C.; Pesce, L.; Doni, G.; Bochicchio, D.; Capelli, R.; Perego, C.; Pa-

van, G. M. Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-

Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning

Particle Swarm Optimization. ACS Omega 2020, 5, 32823–32843.

(17) Empereur-mot, C.; Capelli, R.; Perrone, M.; Caruso, C.; Doni, G.; Pavan, G. M. Auto-

matic multi-objective optimization of coarse-grained lipid force fields using SwarmCG.

J. Chem. Phys. 2022, 156, 024801.

(18) Empereur-mot, C.; Pedersen, K. B.; Capelli, R.; Crippa, M.; Caruso, C.; Perrone, M.;

Souza, P. C. T.; Marrink, S. J.; Pavan, G. M. On the Automatic Optimization of Lipid

Models in the Martini Force Field using SwarmCG. ChemRxiv 2023,

(19) Taghiyeh, S.; Xu, J. A new particle swarm optimization algorithm for noisy optimization

problems. Swarm Intell 2016, 10, 161–192.

(20) van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: where they are and

how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124.

(21) Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. MHS’95. Pro-

ceedings of the Sixth International Symposium on Micro Machine and Human Science.

1995.

(22) Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-

variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808.

(23) Rubner, Y.; Tomasi, C.; Guibas, L. J. The Earth Mover’s Distance as a Metric for

Image Retrieval. Int J Comput Vision 2000, 40, 99–121.

37

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(24) Rada-Vilela, J.; Johnston, M.; Zhang, M. Population statistics for particle swarm opti-

mization: Resampling methods in noisy optimization problems. Swarm Evol. Comput.

2014, 17, 37–59.

(25) Pan, H.; Wang, L.; Liu, B. Particle swarm optimization for function optimization in

noisy environment. Appl Math Comput 2006, 181, 908–919.

(26) Chen, C.-H.; Lin, J.; Yücesan, E.; Chick, S. E. Simulation Budget Allocation for Further

Enhancing the Efficiency of Ordinal Optimization. Discrete Event Dyn Syst 2000, 10,

251–270.

(27) Boesel, J.; Nelson, B. L.; Kim, S.-H. Using Ranking and Selection to "Clean up" after

Simulation Optimization. Oper. Res. 2003, 51, 814–825.

(28) Methorst, J.; van Hilten, N.; Risselada, H. J. Inverse design of cholesterol attracting

transmembrane helices reveals a paradoxical role of hydrophobic length. bioRxiv 2021,

(29) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.

GROMACS: High performance molecular simulations through multi-level parallelism

from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25.

(30) Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O. MDAnalysis: A

toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011,

32, 2319–2327.

(31) Gowers, R.; Linke, M.; Barnoud, J.; Reddy, T.; Melo, M.; Seyler, S.; Domański, J.;

Dotson, D.; Buchoux, S.; Kenney, I.; Beckstein, O. MDAnalysis: A Python Package

for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th

Python in Science Conference. 2016.

(32) Smith, P.; Lorenz, C. D. LiPyphilic: A Python Toolkit for the Analysis of Lipid Mem-

brane Simulations. J. Chem. Theory Comput. 2021, 17, 5907–5919.

38

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(33) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Courna-

peau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.;

Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.;

Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; Vander-

Plas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Har-

ris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; Vijayku-

mar, A.; Bardelli, A. P.; Rothberg, A.; Hilboll, A.; Kloeckner, A.; Scopatz, A.; Lee, A.;

Rokem, A.; Woods, C. N.; Fulton, C.; Masson, C.; Häggström, C.; Fitzgerald, C.;

Nicholson, D. A.; Hagen, D. R.; Pasechnik, D. V.; Olivetti, E.; Martin, E.; Wieser, E.;

Silva, F.; Lenders, F.; Wilhelm, F.; Young, G.; Price, G. A.; Ingold, G.-L.; Allen, G. E.;

Lee, G. R.; Audren, H.; Probst, I.; Dietrich, J. P.; Silterra, J.; Webber, J. T.; Slavič, J.;

Nothman, J.; Buchner, J.; Kulick, J.; Schönberger, J. L.; de Miranda Cardoso, J. V.;

Reimer, J.; Harrington, J.; Rodríguez, J. L. C.; Nunez-Iglesias, J.; Kuczynski, J.;

Tritz, K.; Thoma, M.; Newville, M.; Kümmerer, M.; Bolingbroke, M.; Tartre, M.;

Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov, N.; Pavlyk, O.; Brodtkorb, P. A.;

Lee, P.; McGibbon, R. T.; Feldbauer, R.; Lewis, S.; Tygier, S.; Sievert, S.; Vigna, S.;

Peterson, S.; More, S.; Pudlik, T.; Oshima, T.; Pingel, T. J.; Robitaille, T. P.; Spura, T.;

Jones, T. R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y. O.;

and, Y. V.-B. SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat. Methods 2020, 17, 261–272.

(34) Pele, O.; Werman, M. Fast and robust Earth Mover's Distances. 2009 IEEE 12th In-

ternational Conference on Computer Vision. 2009.

(35) Pele, O.; Werman, M. A Linear Time Histogram Metric for Improved SIFT Matching.

Computer Vision – ECCV 2008. Berlin, Heidelberg, 2008; pp 495–508.

(36) Nguyen, H.; Case, D. A.; Rose, A. S. NGLview–interactive molecular graphics for

Jupyter notebooks. Bioinformatics 2017, 34, 1241–1242.

39

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(37) Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.; Tobias, D. J.;

Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W. Update of the

CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types.

J. Phys. Chem. B 2010, 114, 7830–7843.

(38) Venable, R. M.; Sodt, A. J.; Rogaski, B.; Rui, H.; Hatcher, E.; MacKerell, A. D.; Pas-

tor, R. W.; Klauda, J. B. CHARMM All-Atom Additive Force Field for Sphingomyelin:

Elucidation of Hydrogen Bonding and of Positive Curvature. Biophys. J. 2014, 107,

134–145.

(39) Wang, E.; Klauda, J. B. Molecular Dynamics Simulations of Ceramide and Ceramide-

Phosphatidylcholine Bilayers. J. Phys. Chem. B 2017, 121, 10091–10104.

(40) Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. CHARMM-GUI Membrane Builder for Mixed

Bilayers and Its Application to Yeast Membranes. Biophys. J. 2009, 97, 50–58.

(41) Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Dávila-Contreras, E. M.; Qi, Y.;

Lee, J.; Monje-Galvan, V.; Venable, R. M.; Klauda, J. B.; Im, W. CHARMM-GUI

Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem.

2014, 35, 1997–2004.

(42) Lee, J.; Cheng, X.; Swails, J. M.; Yeom, M. S.; Eastman, P. K.; Lemkul, J. A.; Wei, S.;

Buckner, J.; Jeong, J. C.; Qi, Y.; Jo, S.; Pande, V. S.; Case, D. A.; Brooks, C. L.;

MacKerell, A. D.; Klauda, J. B.; Im, W. CHARMM-GUI Input Generator for NAMD,

GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the

CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2015, 12, 405–413.

(43) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A linear con-

straint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472.

(44) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N · log(N) method for

Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

40

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(45) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling.

J. Chem. Phys. 2007, 126, 014101.

(46) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular

dynamics method. J Appl Phys 1981, 52, 7182–7190.

(47) Borges-Araújo, L.; Borges-Araújo, A.; Ozturk, T.; Ramirez-Echemendia, D. P.;

Fábián, B.; Carpenter, T. S.; Thallmair, S.; Barnoud, J.; Ingólfsson, H. I.; Hummer, G.;

Tieleman, D. P.; Marrink, S. J.; Souza, P. C. T.; Melo, M. N. Martini 3 Coarse-Grained

Force Field for cholesterol. ChemRxiv 2023,

(48) Borges-Araújo, L.; Borges-Araújo, A.; Ozturk, T.; Ramirez-Echemendia, D. P.;

Fábián, B.; Carpenter, T. S.; Thallmair, S.; Barnoud, J.; Ingólfsson, H. I.; Hum-

mer, G.; Tieleman, D. P.; Marrink, S. J.; Souza, P. C. T.; Melo, M. N. Param-

eterization of cholesterol for the Martini 3 coarse grained force field. 2023; https:

//github.com/Martini-Force-Field-Initiative/M3-Sterol-Parameters.

(49) Wassenaar, T. A.; Ingólfsson, H. I.; Böckmann, R. A.; Tieleman, D. P.; Marrink, S. J.

Computational Lipidomics with insane: A Versatile Tool for Generating Custom Mem-

branes for Molecular Simulations. J. Chem. Theory Comput. 2015, 11, 2144–2155.

(50) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.

Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–

3690.

(51) Kowalik, B.; Schubert, T.; Wada, H.; Tanaka, M.; Netz, R. R.; Schneck, E. Combination

of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting

Transition of Phospholipid Bilayers for Different Hydration Levels. J. Phys. Chem. B

2015, 119, 14157–14167.

(52) Sun, L.; Böckmann, R. A. Membrane phase transition during heating and cooling:

molecular insight into reversible melting. Eur. Biophys. J. 2017, 47, 151–164.

41

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


(53) Coppock, P. S.; Kindt, J. T. Determination of Phase Transition Temperatures for Atom-

istic Models of Lipids from Temperature-Dependent Stripe Domain Growth Kinetics.

J. Phys. Chem. B 2010, 114, 11468–11473.

(54) Borges-Araújo, L.; Souza, P. C. T.; Fernandes, F.; Melo, M. N. Improved Parameteri-

zation of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force

Field. J. Chem. Theory Comput. 2021, 18, 357–373.

(55) Rada-Vilela, J.; Johnston, M.; Zhang, M. Deception, blindness and disorientation in

particle swarm optimization applied to noisy problems. Swarm Intell 2014, 8, 247–273.

(56) Marrink, S. J.; Risselada, J.; Mark, A. E. Simulation of gel phase formation and melting

in lipid bilayers using a coarse grained model. Chem. Phys. Lipids 2005, 135, 223–244.

(57) Nobile, M. S.; Cazzaniga, P.; Besozzi, D.; Colombo, R.; Mauri, G.; Pasi, G. Fuzzy Self-

Tuning PSO: A settings-free algorithm for global optimization. Swarm Evol. Comput.

2018, 39, 70–85.

(58) Rada-Vilela, J.; Johnston, M.; Zhang, M. Population statistics for particle swarm op-

timization: Hybrid methods in noisy optimization problems. Swarm Evol. Comput.

2015, 22, 15–29.

(59) Bulacu, M.; Goga, N.; Zhao, W.; Rossi, G.; Monticelli, L.; Periole, X.; Tieleman, D. P.;

Marrink, S. J. Improved Angle Potentials for Coarse-Grained Molecular Dynamics Sim-

ulations. J. Chem. Theory Comput. 2013, 9, 3282–3292.

(60) Alessandri, R.; Barnoud, J.; Gertsen, A. S.; Patmanidis, I.; de Vries, A. H.; Souza, P.

C. T.; Marrink, S. J. Martini 3 Coarse-Grained Force Field: Small Molecules. Adv.

Theory Simul. 2021, 5, 2100391.

(61) Fábián, B.; Thallmair, S.; Hummer, G. Optimal Bond Constraint Topology for Molec-

42

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


ular Dynamics Simulations of Cholesterol. J. Chem. Theory Comput. 2023, 19, 1592–

1601.

(62) Thallmair, S.; Javanainen, M.; Fábián, B.; Martinez-Seara, H.; Marrink, S. J. Non-

converged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simu-

lations. J. Phys. Chem. B 2021, 125, 9537–9546.

(63) Hilpert, C.; Beranger, L.; Souza, P. C. T.; Vainikka, P. A.; Nieto, V.; Marrink, S. J.;

Monticelli, L.; Launay, G. Facilitating CG Simulations with MAD: The MArtini

Database Server. J. Chem. Inf. Model. 2023, 63, 702–710.

43

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/


Graphical TOC Entry

44

https://doi.org/10.26434/chemrxiv-2023-r97bm ORCID: https://orcid.org/0000-0001-5239-7124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-r97bm
https://orcid.org/0000-0001-5239-7124
https://creativecommons.org/licenses/by-nc/4.0/

