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Abstract— We consider two discrete-time processes X and Y, the pair (X,Y) being Gaussian, homogeneous and Markovian. Such 
models, called "Gaussian homogeneous pairwise Markov models" (GH-PMMs), extend the classical Gaussian homogeneous hidden 

Markov models (GH-HMMs), also called Gaussian homogeneous state space models. In GH-PMMs, neither X nor Y is necessarily 
Markovian, and the problem addressed is to find conditions on the GH-PMM parameters for X (or Y) to be Markovian. We give 

necessary and sufficient conditions for real-valued X and Y, and necessary conditions for the general multivariate case. The advantage 

of GH-PMMs over GH-HMMs is that they are more general and still allow various treatments such as smoothing, filtering or 
forecasting. A practical application of the proposed contributions is that when, for a given smoothing, filtering or forecasting problem, 

the specified conditions cannot be justified, GH-PMMs should be used rather than GH-HMMs.    

Keywords—Kalman filter, Pairwise Markov models, hidden Markov models, forecasting, pairwise Kalman filter, marginal Markovianity 

I. INTRODUCTION 

Let us consider random processes 𝑋1
𝑁 = (𝑋1 , … , 𝑋𝑁 ), 𝑌1

𝑁 = (𝑌1 ,… , 𝑌𝑁), and 𝑍1
𝑁 = (𝑍1,… , 𝑍𝑁), with 𝑍𝑛 = (𝑋𝑛 , 𝑌𝑛). We will use 

capital letters for designating random variables, and lowercase letters for designating their realisations. Differe nt distributions will 

be written 𝑝(𝑥1
𝑁), 𝑝(𝑥1

𝑁 , 𝑦1
𝑁), … and  𝑝(𝑦1

𝑁|𝑥1
𝑁), 𝑝(𝑥1

𝑁|𝑦1
𝑁) for conditional distributions.  

When considering the general problem of estimating 𝑋1
𝑁  - or part of it - from 𝑌1

𝑁- or part of it - Hidden Markov Models (HMMs) 

are very popular tools. Hundreds of papers are published every year. These include the pioneering papers [3], [45], and some recent 

books [5], [6], [11], [7], [8], [28], [47], [50]. In HMMs, the hidden sequence 𝑋1
𝑁  is Markovian, and 𝑝(𝑦1

𝑁|𝑥1
𝑁) are sufficiently simple 

to make 𝑝(𝑥1
𝑁|𝑦1

𝑁) Markovian. The important points are that the Markovianity of 𝑝(𝑥1
𝑁|𝑦1

𝑁) is sufficient to consider different  

Bayesian estimates of 𝑋1
𝑁  from 𝑌1

𝑁, and the markovianity of 𝑋1
𝑁  is not necessary for that. This leads to pairwise Markov models 

(PMMs), in which only the Markovianity of the pair (𝑋1
𝑁 , 𝑌1

𝑁) is assumed [42], [43]. In PMMs, 𝑝(𝑥1
𝑁|𝑦1

𝑁) is Markovian and all 

Bayesian methods can be used in the same way as in HMMs. 

PMMs are strictly more general than HMMs: an HMM is a PMM, while a PMM is not necessarily an HMM, because in a PMM 

𝑋1
𝑁  may or may not be Markov. This higher generality has proved more effective in many applications. In the case of discrete finite 

valued 𝑋1
𝑁 , PMMs have mainly been applied to two problems : (i) image segmentation [1], [2], [9], [13], [14], [21], and (ii) multi-

target tracking [30], [31], [32], [33], [34], [41], [48], [49]. Let us also mention promising introduction of variational inference in 

PMMs [35], [36]. Some theoretical results in the case of both 𝑋1
𝑁 , 𝑌1

𝑁 finite valued can be seen in [24], [25], [26], [27]. In the case 

of 𝑋1
𝑁  valued in ℝ𝑟  and of 𝑌1

𝑁 valued in ℝ𝑠, it has been showed that Kalman filter remains possible and is as easy to construct in 

PMMs as in HMMs [16], [17], [18], [25], [26], [38], [39], [40], [43], [49], and to forecasting [12], [15]. It should be noted that if 
exact calculations are not feasible, particle filtering, similar to that used in HMMs, can be considered [29]. In all the applications 

studied, using PMMs instead of HMMs can be of significant interest. For example, in the case studied in [9], where the data clearly 

follows neither a PMM nor an HMM, using a PMM instead of an HMM halves the segmentation error ratio.  

As the Markovianity of 𝑋1
𝑁  is not necessary for its search from 𝑌1

𝑁, the following question arises. How does the modelling power 

of PMMs decrease when 𝑋1
𝑁  is assumed to be Markovian? How can the Markovianity of 𝑋1

𝑁  be expressed in terms of constraints on 

the parameters of the PMM? Are these constraints justified in a given real application? These unnecessary implicit constraints  have 

been little studied to date. To our knowledge, the only solutions to the problem in terms of necessary and sufficient conditions for 

the Markovianity of 𝑋1
𝑁 exist in stationary invertible PMMs [42], [19], [20]. We study it here in the more general homogeneous 

Gaussian PMMs (HG-PMMs) defined below, which are not stationary in general. To our knowledge, no study relating to this case 

has been published. 

More precisely, consider the following HG-PMM. The variables 𝑋𝑛 , 𝑌𝑛 ,𝑍𝑛 take their values in in ℝ𝑟 , ℝ𝑠, and ℝ𝑟+𝑠, respectively. 

𝑍1
𝑁 is Markovian, Gaussian and homogeneous. For simplicity, we take all the variables 𝑋1 , … , 𝑋𝑁 , 𝑌1,… , 𝑌𝑁 to have zero mean. We 

call this model an homogeneous Gaussian pairwise Markov model (HG-PMM). It verifies 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝐴 𝐵
𝐶 𝐷

] [
𝑋𝑛
𝑌𝑛
] + [

𝑈𝑛+1
𝑉𝑛 +1

],   (1.1) 
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with 𝐴, 𝐵, 𝐶 , and 𝐷 , matrices of related sizes, and  [
𝑈2
𝑉2
], …, [

𝑈𝑁
𝑉𝑁
] Gussian, independent, zero mean, and equi-distributed. 

Let us note  

[
𝑋1
𝑌1
] ∼ 𝑁([

0
0
] , [
Σ1 Λ

Λ𝑇 Σ2
]),     (1.2) 

 [
𝑈𝑛
𝑉𝑛
] ∼ 𝑁([

0
0
] , [
Σ𝑈 Δ

Δ𝑇 Σ𝑉
])    (1.3) 

Our aim is to give conditions on [
𝐴 𝐵
𝐶 𝐷

] and [
Σ𝑈 Δ

Δ𝑇 Σ𝑉
]  implied by the assumption that 𝑋1

𝑁  is Markov for each [
Σ1 Λ

Λ𝑇 Σ2
]. Due to the 

symmetry of the model, they will give conditions for 𝑌1
𝑁 to be Markov, and thus they will also give conditions for both 𝑋1

𝑁  and 𝑌1
𝑁 

to be Markov.  

We present two original contributions: 

(i) in the case 𝑠 = 𝑟 = 1, where 𝐴, 𝐵, 𝐶, 𝐷, Σ𝑈 , Σ𝑉 , Σ1, Σ2, Λ, and Δ are real numbers, we show that 𝑋1
𝑁  is Markov for each Σ1, Σ2, 

and Λ, if and only if (iff) either 𝐵 = 0, or 𝐴𝐷 − 𝐵𝐶 = 𝐴Δ − 𝐶Σ𝑈 = 𝐵Δ −𝐷Σ𝑈 = 0 ; 

(ii)  in the case of arbitrary 𝑠, 𝑟 we show, under the additional hypothesis of existence of  𝐴−1, that if 𝑋1
𝑁  is Markov for each Σ1, Σ2, 

and Λ, then  

𝐵(𝐶𝐴−1𝐵 − 𝐷) = 𝐵(𝐶𝐴−1Σ𝑈 − Δ
𝑇) = 0. (1.4) 

The motivation in this particular situation is as follows. There are many problems, like filtering, smoothing, or forecasting, in which 

unobserved parts of 𝑋1
𝑁  (or unobserved parts of 𝑌1

𝑁) are estimated from observed parts of 𝑌1
𝑁. The commonly used model is the 

Hidden State Space Markov Model, which we will refer to as GH-HMM in the following. It is defined by 

𝑋𝑛+1 = 𝐹𝑋𝑛 +𝑊𝑛+1;    (1.5) 

𝑌𝑛+1 = 𝐺𝑋𝑛+1 + 𝑅𝑛+1,    (1.6) 

with [
𝑊𝑛
𝑅𝑛
] ∼ 𝑁([

0
0
] , [
Σ𝑊 0
0 Σ𝑅

]) 

Reporting (1.5) into (1.6), we see that GH-HMM is a particular GH-PMM: 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝐹 0
𝐺𝐹 0

] [
𝑋𝑛
𝑌𝑛
] + [

𝑊𝑛+1
𝐺𝑊𝑛+1 + 𝑅𝑛+1

],  (1.7) 

and thus 

 [
𝐴 𝐵
𝐶 𝐷

] = [
𝐹 0
𝐺𝐹 0

],    (1.8) 

[
Σ𝑈 Δ

Δ𝑇 Σ𝑉
] = [

Σ𝑊 𝐺Σ𝑊𝐺
𝑇

𝐺Σ𝑊 𝐺(Σ𝑊)𝐺
𝑇 + Σ𝑅

]   (1.9) 

We see that PMM (1.1) is defined by eight matrices, while GH-HMM (1.5)-(1.6) is defined by four matrices, so that, a priori, the 

simplification is quite crude. 

Note that we have four families of HG-PMMs of increasing generality: 

(F1) the classical HG-HMMs (1.4)-(1.5), included in the family of HG-PMMs obtained by setting 𝐵 = 𝐷 = 0; 

(F2) an extension of the classical HG-HMMs (1.4)-(1.5), obtained by setting 𝐵 = 0 . In these models 𝑋1
𝑁  is Markov, but the 

components of 𝑌1
𝑁 can be correlated conditionally on 𝑋1

𝑁 . In signal processing terminology, we say that “the measurement noise is 

correlated”; 

(F3) the extension of (F2) to all HG-PMMs with 𝑋1
𝑁  Markov (with 𝐵 = 0 or not); 

(F4) HG-PMMs. 

Our goal is to characterize (F3) in terms of constraints on 𝐴, 𝐵, 𝐶, 𝐷, Σ𝑈 , Σ𝑉 , and Δ. That is, we answer the question "what conditions 

on 𝐴, 𝐵, 𝐶, 𝐷, Σ𝑈 , Σ𝑉 , and Δ are equivalent to (or, at least, implied by) the Markovianity of 𝑋1
𝑁  for each , Σ1, , Σ2, and Λ?”  

Note the wide variety of possible applications of PMMs (1.1) in general. We have the classic filtering, smoothing, and forecasting of 

unobserved components of 𝑋1
𝑁  from observed components of 𝑌1

𝑁. We can also mention the smoothing and forecasting of unobserved 

components of 𝑌1
𝑁 from its observed ones. In this case, 𝑋1

𝑁  is an additional latent process and can be taken among any process 

correlated with the 𝑌1
𝑁 under consideration. 
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Remark that in classical GH-HMMs, there is an asymmetry between 𝑋1
𝑁  and 𝑌1

𝑁. In many potential applications, there is a symmetry  

and therefore no reason to consider 𝑋1
𝑁  as Markovian and 𝑌1

𝑁as non-Markovian, as is usually the case. There are countless examples 

in all fields: any pair of two time series correlated with each other is one of them. For example, in economics, suppose 𝑋1
𝑁  is 

unemployment and 𝑌1
𝑁 is inflation. We may want to estimate 𝑋1

𝑁  from 𝑌1
𝑁, but we may also want to estimate 𝑌1

𝑁 from 𝑋1
𝑁 . In signal 

processing terminology, 𝑌1
𝑁 can be thought of as a noisy version of 𝑋1

𝑁 , but 𝑋1
𝑁 can also be thought of as a noisy version of 𝑌1

𝑁. PMMs 

are preferable to HMMs in such situations because they provide a single model, simultaneously extending the two different par ticular 

HMMs. 

The paper is organised as follows. The next section is devoted to the real case: the variables 𝑋𝑛 , 𝑌𝑛 take their values in ℝ. Section III 

deals with the general multivariate case, and the last section IV contains conclusions and prospects.  

II. MARGINAL  MARKOVIANITY IN REAL VALUED PROCESSES 

Let 𝑋1
𝑁 = (𝑋1, … , 𝑋𝑁), 𝑌1

𝑁 = (𝑌1,… , 𝑌𝑁), and 𝑍1
𝑁 = (𝑍1,… , 𝑍𝑁), with 𝑍𝑛 = (𝑋𝑛 , 𝑌𝑛). Variables 𝑋𝑛 , 𝑌𝑛 take their values in ℝ, 𝑍1

𝑁 is  

Markov, Gaussian, homogeneous, and zero mean: 𝐸[𝑋𝑛] = 𝐸[𝑌𝑛] = 0 for 𝑛 = 1, …, 𝑁. To distinguish this particular case from the 

multivariate case considered in the next section, let us consider the following notations: 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝛼 𝛽

𝛾 𝛿
] [
𝑋𝑛
𝑌𝑛
] + [

𝑈𝑛+1
𝑉𝑛 +1

] for 𝑛 = 1, …, 𝑁 − 1 ;     (2.1) 

[
𝑋1
𝑌1
] ∼ 𝑁([

0
0
] , [
𝜎1
2 𝜏

𝜏 𝜎2
2
]);         (2.2) 

[
𝑈𝑛+1
𝑉𝑛+1

] ∼ 𝑁([
0
0
] , [
𝜎𝑈
2 𝜌

𝜌 𝜎𝑉
2
]) for 𝑛 = 1, …, 𝑁 − 1,       (2.3) 

where 𝛼, 𝛽, 𝛾, 𝛿 , 𝜎𝑈
2, 𝜎𝑉

2, 𝜌, 𝜎1
2, 𝜎2

2, 𝜏 are real numbers. The problem we consider is therefore to give necessary and sufficient 

conditions (NSCs) on 𝛼, 𝛽, 𝛾, 𝛿 , 𝜎𝑈
2, 𝜎𝑉

2, 𝜌 so that 𝑋1
𝑁  is Markov for each 𝜎1

2, 𝜎2
2, 𝜏.  

We will use the following  

Lemma 1 

Let 𝑍1
3 verify (2.1)-(2.3) for 𝑛 = 1, and  

𝑋3 = 𝛼1𝑋2 + 𝛽1𝑌2+ 𝑈3
∗,      (2.4) 

with 𝑈3
∗  independent from (𝑋1, 𝑌1,𝑋2 , 𝑌2), and  

𝐸[𝑈3
∗ ] = 0        (2.5) 

Then 𝑋1
3 is Markov for each 𝜎1

2, 𝜎2
2, 𝜏, iff either  

 𝛽1 = 0,       (2.6) 

or 

  det [
𝛼 𝛽

𝛾 𝛿
] = det [

𝛼 𝜎𝑈
2

𝛾 𝜌
] = det [

𝛽 𝜎𝑈
2

𝛿 𝜌
] = 0.   (2.7) 

Before developing the proof, let us note the following point. In the GH-PMMs considered in the paper, we have 𝛽1 = 𝛽 ; however, 

in the proof of the theorem below we will use this Lemma twice: once for 𝛽1 = 𝛽 , and once for 𝛽1 ≠ 𝛽 . 

Proof  

According to (2.1), (2.4), we have 

𝑋3 = 𝛼1𝑋2 + 𝛽1𝑌2+ 𝑈3
∗ = 𝛼1(𝛼𝑋1 + 𝛽𝑌1+ 𝑈2) + 𝛽1(𝛾𝑋1 + 𝛿𝑌1+ 𝑉2 ) + 𝑈3

∗. 

Thus 

𝑋2 = 𝛼𝑋1 + 𝛽𝑌1+ 𝑈2 ;     (2.8) 

𝑋3 = (𝛼1𝛼 + 𝛽1𝛾)𝑋1 + (𝛼1𝛽 + 𝛽1𝛿)𝑌1+ 𝛼1𝑈2 + 𝛽1𝑉2 + 𝑈3
∗ (2.9) 

which implies 

𝐸(𝑋1𝑋2 ) = 𝛼𝜎1
2 + 𝛽𝜏 ;                      (2.10) 

𝐸(𝑋2𝑋3 ) = 𝛼(𝛼1𝛼 + 𝛽1𝛾)𝜎1
2+ 𝛽(𝛼1𝛽 + 𝛽1𝛿)𝜎2

2 + (𝛼𝛼1𝛽 + 𝛼𝛽1𝛿 + 𝛽𝛼1𝛼 + 𝛽𝛽1𝛾)𝜏 + 𝛼1𝜎𝑈
2+ 𝛽1𝜌        (2.11)  

𝐸(𝑋2𝑋2 ) = 𝛼
2𝜎1

2+ 𝛽2𝜎2
2+ 2𝛼𝛽𝜏 + 𝜎𝑈

2 ;                    (2.12) 
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𝐸(𝑋1𝑋3 ) = (𝛼1𝛼 + 𝛽1𝛾)𝜎1
2 + (𝛼1𝛽 + 𝛽1𝛿)𝜏 .                     (2.13) 

𝑋1
3  is Markov for each 𝜎1

2, 𝜎2
2, and 𝜏, if and only if 𝐶𝑜𝑣(𝑋1, 𝑋2 )𝐶𝑜𝑣(𝑋2 , 𝑋3 ) = 𝐶𝑜𝑣(𝑋1 , 𝑋3 )𝑉𝑎𝑟 (𝑋2 ), which  is equivalent to 

𝐸(𝑋1𝑋2 )𝐸(𝑋2𝑋3 ) = 𝐸(𝑋1𝑋3 )𝐸(𝑋2𝑋2 ).                      (2.14) 

According to (2.10)-(2.13), (2.14) is written 

[𝛼𝜎1
2 +𝛽𝜏][𝛼(𝛼1𝛼 + 𝛽1𝛾)𝜎1

2+ 𝛽(𝛼1𝛽 + 𝛽1𝛿)𝜎2
2+ (𝛼𝛼1𝛽 + 𝛼𝛽1𝛿 + 𝛽𝛼1𝛼 + 𝛽𝛽1𝛾)𝜏 + 𝛼1𝜎𝑈

2+ 𝛽1𝜌 ] =   (2.15) 
[(𝛼1𝛼 + 𝛽1𝛾)𝜎1

2+ (𝛼1𝛽 + 𝛽1𝛿)𝜏][𝛼
2𝜎1

2+ 𝛽2𝜎2
2+ 2𝛼𝛽𝜏 + 𝜎𝑈

2]. 

Before developing (2.15), let us show that 𝛼1 plays no role. Let us see what are terms products by 𝛼1. On the l.h.s. we have 

𝛼1[𝛼𝜎1
2+ 𝛽𝜏][𝛼𝛼𝜎1

2 + 𝛽𝛽𝜎2
2 + 𝛼𝛽𝜏 + 𝛽𝛼𝜏 +𝜎𝑈

2 ]; 

and on the right-hand side we have  

𝛼1[𝛼𝜎1
2+ 𝛽𝜏][𝛼2𝜎1

2+ 𝛽2𝜎2
2+ 2𝛼𝛽𝜏 + 𝜎𝑈

2]. 

As they are equal, we can remove them from (2.15), and (2.15) becomes 

𝛽1[𝛼𝜎1
2+ 𝛽𝜏][𝛾𝛼𝜎1

2+ 𝛿𝛽𝜎2
2+ 𝛼𝛿𝜏 + 𝛽𝛾𝜏 + 𝜌 ] = 𝛽1[𝛾𝜎1

2+ 𝛿𝜏][𝛼2𝜎1
2+ 𝛽2𝜎2

2+ 2𝛼𝛽𝜏 +𝜎𝑈
2].    (2.16) 

Thus it is equivalent to either 𝛽1 = 0, or 𝛽1 ≠ 0 and 

[𝛼𝜎1
2 +𝛽𝜏][𝛾𝛼𝜎1

2+ 𝛿𝛽𝜎2
2+ 𝛼𝛿𝜏 + 𝛽𝛾𝜏 + 𝜌 ] = [𝛾𝜎1

2+ 𝛿𝜏][𝛼2𝜎1
2+ 𝛽2𝜎2

2+ 2𝛼𝛽𝜏 + 𝜎𝑈
2]  

Developing gives 

𝛿𝛽𝜎2
2𝛼𝜎1

2+ 𝜌𝛼𝜎1
2+ 𝛽𝛾𝜏𝛽𝜏 + 𝜌 𝛽𝜏 = 𝛽2𝜎2

2𝛾𝜎1
2+ 𝜎𝑈

2𝛾𝜎1
2 +𝛼𝛽𝜏𝛿𝜏 + 𝜎𝑈

2𝛿𝜏,                                (2.17) 

equivalent to 

𝛽(𝛿𝛼 −𝛽𝛾)𝜎1
2𝜎2

2+ (𝜌𝛼 − 𝜎𝑈
2𝛾)𝜎1

2 + 𝛽(𝛽𝛾 − 𝛼𝛿)𝜏𝜏 + (𝜌𝛽 − 𝜎𝑈
2𝛿)𝜏 = 0    (2.18) 

Since (2.18) is true for every 𝜎1
2, 𝜎2

2, 𝜏, it is equivalent to 

𝛽(𝛿𝛼 −𝛽𝛾) = 𝜌𝛼 − 𝜎𝑈
2𝛾 = 𝛽(𝛽𝛾 − 𝛼𝛿) = 𝜌𝛽 − 𝜎𝑈

2𝛿 = 0,  

which is (2.7) since 𝛽1 ≠ 0, and ends the proof.  ■ 

Theorem 

Let (𝑋1
𝑁 , 𝑌1

𝑁) be a HG-PMM (2.1)-(2.2). Then 

(1) For 𝑁 ≥ 3,  𝑋1
𝑁  is Markov for each 𝜎1

2, 𝜎2
2, 𝜏, iff either 

𝛽 = 0, or                        (2.19) 

det [
𝛼 𝛽

𝛾 𝛿
] = det [

𝛼 𝜎𝑈
2

𝛾 𝜌
] = det [

𝛽 𝜎𝑈
2

𝛿 𝜌
] = 0;                  (2.20) 

(2) Under (2.19), Markovian 𝑋1
𝑁  is homogeneous and verifies : 

 𝑋1 ∼ 𝑁(0, 𝜎1
2) ;                         (2.21) 

𝑋𝑛+1 = 𝛼𝑋𝑛 + 𝑈𝑛+1,                         (2.22) 

and under (2.20) with 𝛽 ≠ 0, Markovian 𝑋1
𝑁  is homogeneous and verifies: 

𝑋𝑛+1 = (𝛼 + 𝛿)𝑋𝑛 + 𝑊𝑛+1
𝑋  ;                         (2.23) 

𝐸[𝑊𝑛+1
𝑋 𝑊𝑛+1

𝑋 ] = (1 − 𝛿2)𝜎𝑈
2+ 𝛽2𝜎𝑉

2,                       (2.24) 

with 𝑊2
𝑋 , …, 𝑊𝑁

𝑋  zero mean and independent. 

Proof  

(1) If 𝑋1
𝑁  is Markov then 𝑋1

3  is Markov, and we have (2.19) or (2.20)  by virtue of Lemma1 applied to 𝛽1 = 𝛽 .  

Conversely, assume (2.19) or (2.20). For 𝛽 = 0 we have 𝑋𝑛+1 = 𝛼𝑋𝑛 + 𝑈𝑛+1, and thus it appears directly that 𝑋1
𝑁  is Markov and 

verifies (2.22). Assume (2.20) with 𝛽 ≠ 0. Note that 𝑋1
𝑁  is Markovian iff for each 𝑛 = 2, …, 𝑁 − 1, the triplet (𝑋𝑛 −𝑘, 𝑋𝑛 , 𝑋𝑛+1) is 

Markovian for 𝑘 = 1, …, 𝑛− 1. Indeed, 𝑝(𝑥𝑛+1|𝑥1
𝑛) = 𝑝(𝑥𝑛+1|𝑥𝑛) iff 𝑋𝑛 +1 and 𝑋1

𝑛−1 are independent conditionally on 𝑋𝑛  and, in  
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Gaussian case we are, this is the case iff (𝑋𝑛−𝑘 , 𝑋𝑛 , 𝑋𝑛 +1) is Markov for 1 ≤ 𝑘 ≤ 𝑛 − 1. Let 𝑁 − 1 ≥ 𝑛 ≥ 2. We will show that 

Markovianity of (𝑋𝑛−𝑘, 𝑋𝑛 , 𝑋𝑛+1) (for 2 ≤ 𝑘 ≤ 𝑛 − 1) implies Markovianity of (𝑋𝑛−𝑘−1, 𝑋𝑛 , 𝑋𝑛 +1). As this is verified for 𝑘 = 1, 
this will be verified for each 1 ≤ 𝑘 ≤ 𝑛 − 1, implying Markovianity of 𝑋1

𝑁 . 

Let us set 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝛼∗ 𝛽∗

𝛾∗ 𝛿∗
][
𝑋𝑛 −𝑘
𝑌𝑛−𝑘

] + [
𝑈𝑛+1
∗

𝑉𝑛 +1
∗ ],                    (2.25) 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝛼∗∗ 𝛼∗∗

𝛾∗∗ 𝛾∗∗
] [
𝑋𝑛−𝑘−1
𝑌𝑛−𝑘−1

] + [
𝑈𝑛+1
∗∗

𝑉𝑛 +1
∗∗ ]                   (2.26) 

Let us assume that (𝑋𝑛 −𝑘, 𝑋𝑛 , 𝑋𝑛+1) is Markovian. Let’s apply Lemma 1 with 𝛼, 𝛽, 𝛾, 𝛿 , 𝜎𝑈
2, and  𝜌 replaced by 𝛼∗, 𝛽∗,𝛾∗, 𝛿∗, 𝜎𝑈

2∗, 

and  𝜌∗, and 𝛽1 replaced by 𝛽. As 𝛽 ≠ 0, Markovianity of (𝑋𝑛−𝑘 ,𝑋𝑛 , 𝑋𝑛+1) is equivalent to 

𝛼∗𝛿∗ = 𝛽∗𝛾∗ ;                     (2.27) 

𝛼∗𝜌∗ = 𝛾∗𝜎𝑈
∗2.                     (2.28) 

The aim is to show that (𝑋𝑛−𝑘−1 , 𝑋𝑛 , 𝑋𝑛 +1) is Markovian, which is equivalent to  

𝛼∗∗𝛿∗∗ = 𝛽∗∗𝛾∗∗ ;                     (2.29) 

𝛼∗∗𝜌∗∗ = 𝛾∗∗𝜎𝑈
∗∗2.                     (2.30) 

Since 

[
𝑋𝑛−𝑘
𝑌𝑛−𝑘

] = [
𝛼 𝛽

𝛾 𝛿
] [
𝑋𝑛−𝑘−1
𝑌𝑛−𝑘−1

]+ [
𝑈𝑛−𝑘
𝑉𝑛−𝑘

],                    (2.31) 

(2.5) gives 

[
𝑋𝑛+1
𝑌𝑛+1

] = [
𝛼∗ 𝛽∗

𝛾∗ 𝛿∗
] [[
𝛼 𝛽

𝛾 𝛿
] [
𝑋𝑛−𝑘−1
𝑌𝑛−𝑘−1

]+ [
𝑈𝑛−𝑘
𝑉𝑛−𝑘

]] + [
𝑈𝑛+1
∗

𝑉𝑛+1
∗ ] =  

[
𝛼∗ 𝛽∗

𝛾∗ 𝛿∗
] [
𝛼 𝛽

𝛾 𝛿
] [
𝑋𝑛−𝑘−1
𝑌𝑛−𝑘−1

] + [
𝛼∗𝑈𝑛−𝑘 + 𝛽

∗𝑉𝑛−𝑘 +𝑈𝑛+1
∗

𝛾∗𝑈𝑛−𝑘 + 𝛿
∗𝑉𝑛−𝑘 + 𝑉𝑛+1

∗ ] =  

 

[
𝛼∗∗ 𝛽∗∗

𝛾∗∗ 𝛿∗∗
] [
𝑋𝑛−𝑘−1
𝑌𝑛−𝑘−1

] + [
𝑈𝑛+1
∗∗

𝑉𝑛+1
∗∗ ]                     (2.32) 

Then (2.29) is immediate since it is equivalent to 𝑑𝑒𝑡 [
𝛼∗∗ 𝛽∗∗

𝛾∗∗ 𝛿∗∗
] = 0, which is true since  

𝑑𝑒𝑡 [
𝛼∗∗ 𝛽∗∗

𝛾∗∗ 𝛿∗∗
] = 𝑑𝑒𝑡 [

𝛼∗ 𝛽∗

𝛾∗ 𝛿∗
] 𝑑𝑒𝑡 [

𝛼 𝛽

𝛾 𝛿
] = 0.  

It remains to show (2.30). According to (2.32): 

𝛼∗∗ = 𝛼∗𝛼 + 𝛽∗𝛾 ;                      (2.33) 

𝛾∗∗ = 𝛾∗𝛼 + 𝛿∗𝛾 ;                      (2.34)     

𝜌∗∗ = 𝐸[(𝛼∗𝑈𝑛−𝑘 + 𝛽
∗𝑉𝑛 −𝑘 + 𝑈𝑛+1

∗ )(𝛾∗𝑈𝑛−𝑘 + 𝛿
∗𝑉𝑛 −𝑘 + 𝑉𝑛+1

∗ )] = 𝛼∗𝛾∗𝜎𝑈
2+ 𝛼∗𝛿∗𝜌 + 𝛽∗𝛾∗𝜌 + 𝛽∗𝛿∗𝜎𝑉

2+ 𝜌∗,         (2.35) 

𝜎𝑈
∗∗2 = 𝐸[(𝛼∗𝑈𝑛−𝑘 +𝛽

∗𝑉𝑛−𝑘 + 𝑈𝑛+1
∗ )(𝛼∗𝑈𝑛−𝑘 + 𝛽

∗𝑉𝑛−𝑘 + 𝑈𝑛+1
∗ )] = 𝛼∗2𝜎𝑈

2+ 2𝛼∗𝛽∗𝜌 +𝛽∗2𝜎𝑉
2 + 𝜎𝑈

∗2          (2.36)                  

Then (2.30) is written 

(𝛼∗𝛼+ 𝛼∗𝛾)( 𝛼∗𝛾∗𝜎𝑈
2+ 𝛼∗𝛿∗𝜌 +𝛽∗𝛾∗𝜌 + 𝛽∗𝛿∗𝜎𝑉

2+ 𝜌∗ ) = (𝛾∗𝛼 + 𝛾∗𝛾)(𝛼∗2𝜎𝑈
2 + 2𝛼∗𝛽∗𝜌 + 𝛽∗2𝜎𝑉

2+ 𝜎𝑈
∗2),  

or equivalently 

𝛼∗𝛼𝛼∗𝛾∗𝜎𝑈
2+ 𝛼∗𝛼𝛼∗𝛿∗𝜌 + 𝛼∗𝛼𝛽∗𝛾∗𝜌 + 𝛼∗𝛼𝛽∗𝛿∗𝜎𝑉

2+𝛼∗𝛼𝜌∗+  

𝛼∗𝛾𝛼∗𝛾∗𝜎𝑈
2+ 𝛼∗𝛾𝛼∗𝛿∗𝜌 +𝛼∗𝛾𝛽∗𝛾∗𝜌+ 𝛼∗𝛾𝛽∗𝛿∗𝜎𝑉

2+ 𝛼∗𝛾𝜌∗ =  

𝛾∗𝛼𝛼∗2𝜎𝑈
2+ 𝛾∗𝛼2𝛼∗𝛽∗𝜌 + 𝛾∗𝛼𝛽∗2𝜎𝑉

2+ 𝛾∗𝛼𝜎𝑈
∗2 + 𝛾∗𝛾𝛼∗2𝜎𝑈

2+ 2𝛾∗𝛾𝛼∗𝛽∗𝜌+ 𝛾∗𝛾𝛽∗2𝜎𝑉
2+ 𝛾∗𝛾𝜎𝑈

∗2   

By rearranging products in alphabetical order and placing starred terms before non-starred terms, we gets: 

𝛼∗2𝛾∗𝛼𝜎𝑈
2 + 𝛼∗2𝛿∗𝛼𝜌 +𝛼∗𝛽∗𝛾∗𝛼𝜌+ 𝛼∗𝛽∗𝛿∗𝛼𝜎𝑉

2+ 𝛼∗𝜌∗𝛼 + 𝛼∗2𝛾∗𝛾𝜎𝑈
2+ 𝛼∗2𝛿∗𝛾𝜌 + 𝛼∗𝛽∗𝛾∗𝛾𝜌 + 𝛼∗𝛽∗𝛿∗𝛾𝜎𝑉

2+ 𝛼∗𝜌∗𝛾 =  
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𝛼∗2𝛾∗𝛼𝜎𝑈
2+ 2𝛼∗𝛽∗𝛾∗𝛼𝜌 +𝛽∗2𝛾∗𝛼𝜎𝑉

2+ 𝜎𝑈
∗2𝛾∗𝛼 + 𝛼∗2𝛾∗𝛾𝜎𝑈

2+ 2𝛼∗𝛽∗𝛾∗𝛾𝜌 + 𝛽∗2𝛾∗𝛾𝜎𝑉
2 + 𝜎𝑈

∗2𝛾∗𝛾                   (3.37) 

Replacing 𝛾∗𝜎𝑈
∗2 with 𝛼∗𝜌∗ and 𝛼∗𝛿∗ with 𝛽∗𝛾∗ we find that (3.37) is verified, which completes the proof of (1). 

To show (2) let us temporally assume that 𝑁 = 3. According to (2.1), we have 

𝑋2 = 𝛼𝑋1 + 𝛽𝑌1+ 𝑈2                     (2.38) 

𝑋3 = (𝛼
2+ 𝛽𝛾)𝑋1 + (𝛼𝛽 + 𝛽𝛿)𝑌1+𝛼𝑈2 + 𝛽𝑉2 + 𝑈3   (2.39) 

Using 𝛽𝛾 = 𝛼𝛿, (2.38) and (2.39) imply 

𝑋3 = 𝛼(𝛼 + 𝛿)𝑋1 + 𝛽(𝛼 + 𝛿)𝑌1+ 𝛼𝑈2 + 𝛽𝑉2 + 𝑈3 ,  

which gives, using 𝛽𝜌 = 𝛿𝜎𝑈
2: 

𝐸(𝑋2𝑋2 ) = 𝛼
2𝜎1

2+ 𝛽2𝜎2
2+ 2𝛼𝛽𝜏 + 𝜎𝑈

2 ;  

E(𝑋2𝑋3 ) = (𝛼 + 𝛿)(𝛼
2𝜎1

2+ 𝛽2𝜎2
2+ 2𝛼𝛽𝜏 + 𝜎𝑈

2), 

and thus 

𝑋3 =
𝐸(𝑋2𝑋3 )  

𝐸 (𝑋2𝑋2 )
𝑋2 +𝑊3 = (

(𝛼+𝛿)(𝛼2𝜎1
2+𝛽2𝜎2

2+2𝛼𝛽𝜏+𝜎𝑈
2 )  

𝛼2𝜎1
2+𝛽2𝜎2

2+2𝛼𝛽𝜏+𝜎𝑈
2 ) 𝑋2 + 𝑊3 = (𝛼 + 𝛿)𝑋2 +𝑊3 ,  

with 

𝐸[𝑋3𝑊3 ] = 0,  

𝐸[𝑊3𝑊3 ] = 𝐸[𝑋3𝑋3 ] − (𝛼 + 𝛿)
2𝐸[𝑋2𝑋2 ] = (1 − 𝛿2)𝜎𝑈

2+ 𝛽2𝜎𝑉
2. 

 We see that neither 
𝐸(𝑋2𝑋3 )  

𝐸(𝑋2𝑋2 )
 nor 𝐸[𝑊3𝑊3 ] depend on 𝜎1

2, 𝜎2
2, 𝜏, so we can replace 𝑛 = 2 by any 𝑛 = 3 , …, 𝑁 − 1, which gives 

(2.23)-(2.24) and completes the proof. ■ 

Remark 2.1 

In certain real-life situations, the hidden 𝑋1
𝑁  can be Markovian. According to the theorem there are, in the context of GH-PMMs, four 

families with Markov 𝑋1
𝑁 : 

(F1) Classic GH-HMMs form the poorest family of models, since the  distributions 𝑝(𝑥𝑛+1,𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛) depend on four parameters;  

(F2) GH-PMMs with 𝛽 = 0, 𝛿 = 0 contain (F1) and are strictly richer; indeed, 𝑝(𝑥𝑛+1,𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛) depend on five parameters; 

(F3) GH-PMMs with 𝛽 = 0. This family obviously contain (F2) and is obviously strictly richer. In particular, 𝑝(𝑥𝑛+1,𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛) 
depend on six parameters; 

(F4) GH-PMMs with 𝑋1
𝑁  Markov and 𝛽 ≠ 0. In (F4) 𝑝(𝑥𝑛+1,𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛) are defined by five free parameters (there So, if we know 

a priori, in a given case, that 𝑋1
𝑁  is Markov, family (F3) seems the most interesting as it depends on the largest number of parameters. 

On the other hand, if 𝛽 is not close to zero, (F4) might be better suited. 

We illustrate the mutual positioning of (F1), .., (F4) in Fig.  1. 

 

 

 

           𝛽 = 0    𝛽 ≠ 0 

 

Fig. 1 Four families of GH-PMMs with 𝑋1
𝑁  Markov. F1: classic GH-HMMs (four free parameters); F2: GH-PMMs with 𝛽 = 0, 𝛿 = 0 (five free parameters); F3: GH-

PMMs with 𝛽 = 0  (six free parameters); F4: GH-PMMs with 𝛽 ≠ 0 (five free parameters). 

Example 2.1  

As mentioned in Remark 2.1, family (F3) seems to be the most interesting, since it is defined by the largest number of parameters. 

However, (F4) may be of interest for at least two reasons. Stationary GH-PMMs were recently applied to forecasting in [12] and it 

turned out, in the real data cases considered, that 𝛽 can be significantly different from zero. The second reason is the form of (2.23) 

and (2.24). They mean that if 𝛽2𝜎𝑉
2 < 𝛿2𝜎𝑈

2, we have (1 − 𝛿2)𝜎𝑈
2+ 𝛽2𝜎𝑉

2 < 𝜎𝑈
2, so that the Markov 𝑋1

𝑁  is less noisy in (F4) than in 

F3 F3                F3           

F3                     

   

              F2          F1         F4        
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(F3). This can be important for forecasting, where the quality of forecasting 𝑥𝑛+𝑘  from 𝑦1
𝑛  is measured by the variance of 

𝑝(𝑥𝑛+𝑘|𝑦1
𝑛). 

Since in a PMM 𝑋1
𝑁  and 𝑌1

𝑁  play symmetrical roles, the theorem also gives NSCs for Markovianity of 𝑌1
𝑁 , and NSCs for 

Markovianity of both 𝑋1
𝑁  and 𝑌1

𝑁. Writing (2.2) in the form 

[
𝑌𝑛+1
𝑋𝑛+1

] = [
𝛿 𝛾

𝛽 𝛼
] [
𝑌𝑛
𝑋𝑛
] + [

𝑉𝑛 +1
𝑈𝑛+1

],                  (2.40) 

We have 

Corollary 1 

Under the assumptions of theorem: 

(1) 𝑌1
𝑁 is Markov for each 𝜎1

2, 𝜎2
2, 𝜏, iff one of two conditions : 

(i) 𝛿 = 0 ;                   (2.41) 

(ii) det [
𝛿 𝛾

𝛽 𝛼
] = det [

𝛿 𝜎𝑉
2

𝛽 𝜌
] = det [

𝛾 𝜎𝑉
2

𝛼 𝜌
] = 0        (2.42) 

is verified; 

(2) Since (2.7), Markov 𝑌1
𝑁 is homogeneous and verify: 

 𝑌1 ∼ 𝑁(0, 𝜎2
2),                    (2.43) 

𝑌𝑛+1 = (𝛼 + 𝛿)𝑌𝑛 +𝑊𝑛+1
𝑌                     (2.44) 

𝐸[𝑊𝑛+1
𝑌 𝑊𝑛+1

𝑌 ] = (1 − 𝛼2)𝜎𝑉
2 + 𝛾2𝜎𝑈

2                   (2.45) 

Corollary 2 

Under the assumptions of the theorem: 

1. Both 𝑋1
𝑁  and 𝑌1

𝑁are Markovian iff one of the four conditions: 

(C1) det [
𝛼 𝛽

𝛾 𝛿
] = det [

𝛼 𝜎𝑈
2

𝛾 𝜌
] = det [

𝛿 𝜎𝑉
2

𝛽 𝜌
] = 0, 

 and 𝛽 ≠ 0, 𝛾 ≠ 0  ;                      (2.46) 

(C2) 𝛽 = 0 and (2.42) ;                (2.47) 

(C3) 𝛾 = 0 and (2.20) ;                 (2.48) 

(C4) 𝛽 = 0 and = 0 .                                 (2.49) 

2. Under (2.46), we have  

𝑋𝑛+1 = (𝛼 + 𝛿)𝑋𝑛 + 𝑊𝑛+1
𝑋 ;                  (2.50) 

𝐸[𝑊𝑛+1
𝑋 𝑊𝑛+1

𝑋 ] = 𝜎𝑈
2 ;                 (2.51) 

 𝑌𝑛+1= (𝛼 + 𝛿)𝑌𝑛 + 𝑊𝑛+1
𝑌 ;                   (2.52) 

𝐸[𝑊𝑛+1
𝑌 𝑊𝑛+1

𝑌 ] = 𝜎𝑉
2 ;                 (2.53) 

Proof 

As 𝑋1
𝑁  is Markov, we have 

𝑋𝑛+1 = (𝛼 + 𝛿)𝑋𝑛 + 𝑊𝑛+1
𝑋 ;                  (2.54) 

𝐸[𝑊𝑛+1
𝑋 𝑊𝑛+1

𝑋 ] = 𝜎𝑈
2 − 𝛿2𝜎𝑈

2+ 𝛽2𝜎𝑉
2;               (2.55) 

Furthermore, Markovianity of 𝑌1
𝑁 implies 𝜎𝑉

2 =
𝛿

𝛽
𝜌, and Markovianity of 𝑋1

𝑁  implies 𝜎𝑈
2 =

𝛽

𝛿
𝜌. Setting them into (2.55) gives 

𝐸[𝑊𝑛+1
𝑋 𝑊𝑛+1

𝑋 ] = 𝜎𝑈
2− 𝛿2𝜎𝑈

2 + 𝛽2𝜎𝑉
2= 𝜎𝑈

2− 𝛿𝛽𝜌 + 𝛽𝛿𝜌 = 𝜎𝑈
2.  

Similarly, [𝑊𝑛+1
𝑌 𝑊𝑛+1

𝑌 ] = 𝜎𝑉
2, which completes the proof. ■  
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Example 2.2  

Consider the case of both 𝑋1
𝑁  and 𝑌1

𝑁 Markovian with 𝛽 = 0 and 𝛾 = 0. We have 𝑋𝑛 +1 = 𝛼𝑋𝑛 + 𝑈𝑛+1, 𝑌𝑛+1 = 𝛿𝑌𝑛 + 𝑉𝑛+1, and 

correlations 𝐸[𝑋𝑛𝑌𝑛] are given recursively by 𝐸[𝑋1𝑌1] = 𝜏, 𝐸[𝑋𝑛+1𝑌𝑛+1] = 𝛼𝛿𝐸[𝑋𝑛𝑌𝑛] + 𝜌. Moreover, we have (𝑥𝑛+1|𝑥𝑛 ,𝑦𝑛) =
𝑝(𝑥𝑛+1|𝑥𝑛), 𝑝(𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛) = 𝑝(𝑦𝑛 +1|𝑦𝑛), but 𝑝(𝑥𝑛+1|𝑥𝑛 ,𝑦𝑛 , 𝑦𝑛+1) ≠ 𝑝(𝑥𝑛+1|𝑥𝑛) and 𝑝(𝑦𝑛+1|𝑥𝑛 ,𝑦𝑛 , 𝑥𝑛+1) ≠ 𝑝(𝑦𝑛+1|𝑦𝑛). 

III. MARGINAL  MARKOVIANITY IN MULTIVARIATE CASE 

 In this section we consider the general multi-variate case, valid for any dimensions 𝑟, 𝑠 of state space and observation space, 

respectively. Unlike the previous case 𝑟 = 𝑠 = 1, conditions for the Markovianity of 𝑋1
𝑁  we present, valid in the case of invertible 

𝐴, are only necessary. The interest of the results presented in filtering, smoothing, or forecasting, is similar to its interest in the one-

dimensional case of the previous section: it shows what model restrictions  are imposed by unnecessarily assuming the Markovianity 
of the hidden chain. Note that insofar as the proposed conditions are only necessary, there may be additional parameter restr ictions 

not specified by the proposal below, which reinforce its interest. 

Proposition 1 

Let us consider random processes 𝑋1
𝑁 , 𝑌1

𝑁, and 𝑍1
𝑁 verifying (1.1)-(1.2), with 𝐴 invertible. Markovianity of 𝑋1

𝑁  implies 

𝐵(𝐶𝐴−1𝐵 − 𝐷) = 𝐵(𝐶𝐴−1Σ𝑈 − Δ
𝑇) = 0;   (3.1) 

Proof  

Let us first show that (3.1) is equivalent to the Markovianity of 𝑋𝑛−1
𝑛+1 for every 𝑛 = 2, …, 𝑁 − 1 and every Σ1, Σ2, Λ. Due to 

homogeneity, it suffices to show this for 𝑛 = 2. The Markovianity of 𝑋1
3  is quivalent to 

 𝐸[𝑋3𝑋1
𝑇 ] = 𝐸[𝑋3𝑋2

𝑇 ][𝐸[𝑋2𝑋2
𝑇 ]]−1𝐸[𝑋2𝑋1

𝑇 ]   (3.2) 

According to (1.1) we have 

𝑋2 = 𝐴𝑋1 +𝐵𝑌1+ 𝑈2,  

𝑋3 = (𝐴
2 + 𝐵𝐶)𝑋1 + (𝐴𝐵 + 𝐵𝐷)𝑌1+ 𝐴𝑈2 + 𝐵𝑉2 + 𝑈3, 

and thus 

𝐸[𝑋2𝑋1
𝑇 ] = 𝐴Σ1 + 𝐵Λ

𝑇  ;     (3.3) 

𝐸[𝑋2𝑋2
𝑇 ] = 𝐴Σ1𝐴

𝑇 + 𝐵Σ2𝐵
𝑇 + 𝐵Λ𝑇𝐴𝑇 + 𝐴Λ𝐵𝑇 + Σ𝑈  ; (3.4) 

𝐸[𝑋3𝑋2
𝑇 ] = ((𝐴𝐴 + 𝐵𝐶)Σ1 + (𝐴𝐵+𝐵𝐷)Λ

𝑇)𝐴𝑇 + ((𝐴𝐵 + 𝐵𝐷)Σ2 + (𝐴𝐴 + 𝐵𝐶)Λ)𝐵
𝑇+𝐴Σ𝑈 + 𝐵Δ

𝑇  ;  

𝐸[𝑋3𝑋1
𝑇 ] = (𝐴2 + 𝐵𝐶)Σ1 + (𝐴𝐵 + 𝐵𝐷)Λ

𝑇   (3.6) 

Reporting (3.3)-( 3.6) into (3.2) we get 

(𝐴2 + 𝐵𝐶)Σ1+ (𝐴𝐵 + 𝐵𝐷)Λ
𝑇 = [((𝐴𝐴 + 𝐵𝐶)Σ1 + (𝐴𝐵+𝐵𝐷)Λ

𝑇)𝐴𝑇 +     (3.7) 

((𝐴𝐵 + 𝐵𝐷)Σ2 + (𝐴𝐴 + 𝐵𝐶)Λ)𝐵
𝑇+𝐴Σ𝑈 + 𝐵Δ

𝑇 ] × [𝐴Σ1𝐴
𝑇 + 𝐵Σ2𝐵

𝑇 + 𝐵Λ𝑇𝐴𝑇 + 𝐴Λ𝐵𝑇 + Σ𝑈 ]
−1[𝐴Σ1+ 𝐵Λ

𝑇 ]   

(3.7) holds for every Λ; by setting Λ = 0, this implies: 

(𝐴2 + 𝐵𝐶)Σ1 = [((𝐴𝐴 + 𝐵𝐶)Σ1)𝐴
𝑇 + ((𝐴𝐵 +𝐵𝐷)Σ2 )𝐵

𝑇+𝐴Σ𝑈 + 𝐵Δ
𝑇 ] × [𝐴Σ1𝐴

𝑇 + 𝐵Σ2𝐵
𝑇+ Σ𝑈 ]

−1[𝐴Σ1]   (3.8) 

Multiplying both sides of (3.8) by [𝐴Σ1]
−1 𝐴Σ1𝐴

𝑇 + 𝐵Σ2𝐵
𝑇 + Σ𝑈 , we obtain 

(𝐴 + 𝐵𝐶𝐴−1)(𝐴Σ1𝐴
𝑇 + 𝐵Σ2𝐵

𝑇 + Σ𝑈) = [(𝐴𝐴 + 𝐵𝐶)Σ1𝐴
𝑇 + (𝐴𝐵 +𝐵𝐷)Σ2𝐵

𝑇+𝐴Σ𝑈 + 𝐵Δ
𝑇]    (3.9) 

Expanding (3.9) gives successively 

𝐴𝐴Σ1𝐴
𝑇 + 𝐴𝐵Σ2𝐵

𝑇+ 𝐴Σ𝑈 +𝐵𝐶𝐴
−1𝐴Σ1𝐴

𝑇 + 𝐵𝐶𝐴−1𝐵Σ2𝐵
𝑇+ 𝐵𝐶𝐴−1Σ𝑈 =  

𝐴𝐴Σ1𝐴
𝑇 + 𝐵𝐶Σ1𝐴

𝑇 + 𝐴𝐵Σ2𝐵
𝑇+ 𝐵𝐷Σ2𝐵

𝑇+𝐴Σ𝑈 + 𝐵Δ
𝑇, 

𝐵𝐶𝐴−1𝐵Σ2𝐵
𝑇+ 𝐵𝐶𝐴−1Σ𝑈 = 𝐵𝐷Σ2𝐵

𝑇+𝐵Δ𝑇,  

and finally  

𝐵(𝐶𝐴−1𝐵 − 𝐷)Σ2𝐵
𝑇+ 𝐵(𝐶𝐴−1Σ𝑈 − Δ

𝑇) = 0          (3.10) 

Since (3.10) holds for all Σ2, it implies 𝐵(Δ𝑇 − 𝐶𝐴−1Σ𝑈) = 0. 

Indeed, the result is obtained by considering any parametrized family (Σ2 ) >0 verifying Σ2
→0
→  0.  

Finally, 𝐵(𝐷 − 𝐶𝐴−1𝐵) = 0 is obtained applying Lemma 2 below to Σ2 = Σ,  𝐹  any line of 𝐵(𝐷 − 𝐶𝐴−1𝐵), and 𝐺 any column of 

𝐵𝑇, which completes the proof. ■ 
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Lemma 2 

Let 𝐹 , 𝐺 ≠ 0 be elements of ℝ𝑠. If 𝐹𝑇ΣG = 0 for any positive definite matrix Σ of size 𝑠 × 𝑠, then 𝐹 = 0.  

Proof  

Let 𝐹𝑇 = (𝑓1 , … , 𝑓𝑠 ), 𝐺 = (𝑔1 , … , 𝑔𝑠 ). Let Σ = (λ𝑖𝑗 )1≤𝑖,𝑗≤𝑠 be positive definite verifying λ𝑖𝑗 ≠ 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑠. Let 1 ≤ 𝑗 ≤ 𝑠  

be such that 𝑔𝑗 ≠ 0. To show that all 𝑓1 , … , 𝑓𝑠  are zero, assume that there exists 𝑓𝑖 ≠ 0. Let ε > 0, and  λ𝑖𝑗 = λ𝑖𝑗 + 휀. Let Σ  have 

all terms equal to those in Σ, except λ𝑖𝑗  which is replaced by λ𝑖𝑗 . We then have 𝐹𝑇Σ G = 𝐹𝑇 ΣG + 2휀𝑓𝑖𝑔𝑗 = 2휀𝑓𝑖𝑔𝑗 ≠ 0. Since for 

ε > 0 sufficiently small Σ  is positive definite, this shows the impossibility of 𝐹 ≠ 0, which completes the proof. ■ 

We remark that for 𝑟 = 𝑠 = 1, 𝛼 ≠ 0, and Σ𝑈 ≠ 0, condition (3.1) is condition (2.7) of the theorem. 

Example 3.1  

Let's recall, as an application example, the Kalman filter. It was proposed in [43], and taken up in [16], [17], [18], [32], [33], [34], 

[38], [39], [40] in PMMs defined as follows  

[
𝑋𝑛+1
𝑌𝑛
] = [

𝐴′ 𝐵′
𝐶′ 𝐷′

] [
𝑋𝑛
𝑌𝑛−1

]+ [
𝑈𝑛
𝑉𝑛
],                   (3.10) 

Let us recall how “pairwise” Kalman filter (PKF) runs in PMM considered in the form (1.1). Both forms are equivalents; however, 

the form (1.1) is more concise and better suited for our purpose, since we wish to have a model symmetrical with respect to 𝑋1
𝑁  and 

𝑌1
𝑁. The very first PKF formulated in (1.1) form was written in stationary PMM in [4], and taken up in [22], [23], [12]. PKF runs as 

follows: 

Proposition 2  

Let 𝑋1
𝑁 , 𝑌1

𝑁 satisfy (1.1)-(1.3), and let 𝑝(𝑥𝑛|𝑦1
𝑛) ∼ 𝑁(𝑀𝑛 , Γ𝑛 ). Then  

𝑝(𝑥𝑛+1|𝑦1
𝑛+1) ∼ 𝑁(𝑀𝑛+1, Γ𝑛+1),   (3.11) 

with 

𝑀𝑛+1 = 𝑀𝑛+1
1 + Σ𝑛+1

2 [Σ𝑛+1
4 ]−1(𝑦𝑛+1− 𝑀𝑛+1

2 );  (3.12) 

Γ𝑛+1 = Σ𝑛+1
1 − Σ𝑛+1

2 [Σ𝑛+1
4 ]−1Σ𝑛+1

3 ,   (3.13) 

where 

[
𝑀𝑛+1
1

𝑀𝑛+1
2
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑀𝑛
𝑦𝑛
];    (3.14) 

[
Σ𝑛+1
1 Σ𝑛+1

2

Σ𝑛+1
3 Σ𝑛+1

4
] = [

𝐴Γ𝑛𝐴
𝑇 + Σ𝑈 𝐴Γ𝑛𝐶

𝑇 + Δ

𝐶Γ𝑛𝐴
𝑇 + Δ𝑇 𝐶Γ𝑛𝐶

𝑇 + Σ𝑉
].  (3.15) 

Proof  

It is sufficient to show that (3.14) and (3.15) are the mean and variance of the Gaussian 𝑝(𝑥𝑛+1,𝑦𝑛 +1|𝑦1
𝑛). Indeed, since 

𝑝(𝑥𝑛+1|𝑦1
𝑛+1) = 𝑝(𝑥𝑛+1|𝑦𝑛+1, 𝑦1

𝑛), (3.12) and (3.13) are obtained from (3.14) and (3.15) by classical Gaussian conditioning. We 

use the total expectation formula: for every random vectors 𝑊, 𝑄 we have 𝐸[W] = 𝐸[𝐸[W|𝑄]]]. Applying it to the conditional 

expectation 𝐸[ . |𝑦1
𝑛], and vectors W = 𝑍𝑛+1 = [

𝑋𝑛+1
𝑌𝑛+1

], 𝑄 = 𝑋𝑛 , and setting Τ = [
𝐴 𝐵
𝐶 𝐷

], we can write  

𝐸[𝑍𝑛+1|𝑦1
𝑛] = 𝐸[𝐸[𝑍𝑛+1|𝑋𝑛 , 𝑦𝑛]|𝑦1

𝑛] = 𝐸[Τ [
𝑋𝑛
𝑦𝑛
] |𝑦1

𝑛] = Τ [
𝐸[𝑋𝑛|𝑦1

𝑛]
𝑦𝑛

] = Τ [
𝑀𝑛
𝑦𝑛
], 

which is (3.14). Similarly 

𝐸[𝑍𝑛+1𝑍𝑛+1
𝑇 |𝑦1

𝑛] = 𝐸[𝐸[𝑍𝑛+1𝑍𝑛+1
𝑇 |𝑋𝑛 , 𝑦𝑛]|𝑦1

𝑛] =  

 𝐸 [Τ [
𝑋𝑛𝑋n

𝑇 𝑋𝑛𝑦n
𝑇

𝑦𝑛𝑋n
𝑇 𝑦𝑛𝑦n

𝑇
] Τ𝑇 + [

Σ𝑈 Δ

Δ𝑇 Σ𝑉
] |𝑦1

𝑛] = Τ [
Γ𝑛 +𝑀𝑛𝑀n

𝑇 𝑀𝑛𝑦n
𝑇

𝑦𝑛𝑀n
𝑇 𝑦𝑛𝑦n

𝑇
] Τ𝑇 + [

Σ𝑈 Δ

Δ𝑇 Σ𝑉
]  

Then 

𝐸[𝑍𝑛+1𝑍𝑛+1
𝑇 |𝑦1

𝑛] − 𝐸[𝑍𝑛+1|𝑦1
𝑛][𝐸[𝑍𝑛+1|𝑦1

𝑛]]
𝑇
= Τ [

Γ𝑛 + 𝑀𝑛𝑀n
𝑇 𝑀𝑛𝑦n

𝑇

𝑦𝑛𝑀n
𝑇 𝑦𝑛𝑦n

𝑇
] Τ𝑇 + [

Σ𝑈 Δ

Δ𝑇 Σ𝑉
] − Τ [

𝑀𝑛
𝑦𝑛
] [
𝑀𝑛
𝑦𝑛
]
𝑇

Τ𝑇 = 
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Τ [
Γ𝑛 0
0 0

] Τ𝑇 + [
Σ𝑈 Δ

Δ𝑇 Σ𝑉
] = [

𝐴Γ𝑛𝐴
𝑇 + Σ𝑈 𝐴Γ𝑛𝐶

𝑇+ Δ

𝐶Γ𝑛𝐴
𝑇 + Δ𝑇 𝐶Γ𝑛𝐶

𝑇+ Σ𝑉
]   

which completes the proof. ■ 

IV. CONCLUSIONS AND PERSPECTIVES 

We considered Gaussian Homogeneous Pairwise Markov Models (GH-PMMs) 𝑍1
𝑁 = (𝑍1 ,… , 𝑍𝑁), where for 𝑛 = 1, …, 𝑁, 𝑍𝑛 =

(𝑋𝑛 , 𝑌𝑛) and 𝑋1
𝑁 = (𝑋1 , … , 𝑋𝑁 ), 𝑌1

𝑁 = (𝑌1 ,… , 𝑌𝑁) are valued in ℝ𝑟 , ℝ𝑠, respectively. In classic Gaussian Homogeneous Hidden 

Markov Models (GH-HMMs) both 𝑋1
𝑁  and 𝑍1

𝑁 are Markovian, whereas in GH-PMMs only 𝑍1
𝑁 is assumed Markovian. In the case 

𝑟 = 𝑠 = 1, we have provided necessary and sufficient conditions on the parameters defining 𝑝(𝑧1
𝑁), for 𝑋1

𝑁  (or 𝑌1
𝑁) to be Markovian. 

In the general case, we provided necessary conditions for 𝑋1
𝑁  (or 𝑌1

𝑁) to be Markovian. One possible application of the proposed 

results relates to the problem of estimating unobserved 𝑋1
𝑁  from observed 𝑌1

𝑁. Since GH-PMMs enable Bayesian estimation methods 

(filtering, smoothing, forecasting, …) similar to those associated with GH-HMMs, a practical interest of the proposed results for real 
applications is that when, for the given problem, the specified conditions on the parameters cannot be justified, it is appro priate to 

use GH-PMMs rather than GH-HMMs.    

 Extending the results presented to the homogeneous non-Gaussian case or searching for sufficient – as weak as possible - 

conditions of marginal Markovianity in the general case are possible perspectives for further work. In particular, switching systems 
are of interest in numerous applications, among which tracking. In classical models, the computational complexity increases 

exponentially with the number of switches [37], [10], [46], among others. The problem can be solved by considering the Markov ianity 

of the pair (Switches, Observations), resulting in the "Markov Conditional Switching Hidden Linear Models" (CMSHLMs) proposed 
in [44]. It would therefore be interesting to understand how the modelling power of general models - which also encompass the 

classical switching GH-HMMs - decreases when one assumes the latter marginal Markovianity 
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