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On marginal markovianity in Gaussian pairwise
Markov models

Woijciech Pieczynski

SAMOVAR Telecom Sudparis, Institut Polytechnique de Paris, Palaiseau, France
wojciech.pieczynski@telecom-sudparis.eu

Abstract— We considertwo discrete-time processes Xand Y, the pair (X,Y) being Gaussian, homogeneous and Markovian. Such
models, called "Gaussian homogeneous pairwise Markov models” (GH-PMMs), extend the classical Gaussian homogeneous hidden
Markov models (GH-HMMs), also called Gaussian homogeneous state space models. In GH-PMMs, neither X nor Y is necessarily
Markovian, and the problem addressed is to find conditions on the GH-PMM parameters for X (or Y) to be Markovian. We give
necessary and sufficient conditions for real-valued X and Y, and necessary conditions for the general multivariate case. The advantage
of GH-PMMs over GH-HMMs is that they are more general and still allow various treatments such as smoothing, filtering or
forecasting. A practical application of the proposed contributions is that when, fora given smoothing, filtering or forecasting problem,
the specified conditions cannot be justified, GH-PMMs should be used rather than GH-HMMs.

Keywords—Kalman filter, Pairwise Markov models, hidden Markov models, forecasting, pairwise Kalman filter, marginal Markovianity

. INTRODUCTION

Let us considerrandomprocesses X' = (X;, ..., Xy ), Y = (Yq,...,Yy),and ZV = (Z,,..., Zy), with Z,, = (X, Y,,). We will use
capital letters for designating random variables, and lowercase letters for designating their realisations. Different distributions will
be written p(xY), p(xY, yM), ... and p Y |x), p (¥ |y) for conditional distributions.

When considering the general problem of estimating XV - or part of it - from YN- or part of it - Hidden Markov Models (HMMs)
are very popular tools. Hundreds of papers are published every year. These include the pioneering papers [3], [45], and some recent
books [5], [6], [11], [7], [8], [28], [47], [50]. In HMMs, the hidden sequence X is Markovian, and p (y! |x) are sufficiently simple
to make p(x¥|yN) Markovian. The important points are that the Markovianity of p(xY|y¥) is sufficient to consider different
Bayesian estimates of X from Y, and the markovianity of XV is not necessary for that. This leads to pairwise Markov models
(PMMs), in which only the Markovianity of the pair (X}, YN) is assumed [42], [43]. In PMMs,p(xY|yN)is Markovian and all
Bayesian methods can be used in the same way as in HMMs.

PMMs are strictly more general than HMMs: an HMM is a PMM, while a PMM is not necessarily an HMM, because ina PMM
XY may or may notbe Markov. This higher generality has proved more effective in many applications. In the case of discrete finite
valued X, PMMs have mainly been applied to two problems: (i) image segmentation [1], [2], [9], [13], [14], [21], and (i) multi-
target tracking [30], [31], [32], [33], [34], [41], [48], [49]. Let us also mention promising introduction of variational inference in
PMMs [35], [36]. Some theoretical results in the case of both XV, YN finite valued can be seenin [24], [25], [26], [27]. In the case
of X¥ valued in R” and of Y'Y valued in RS, it has been showed that Kalman filter remains possible and is as easy to construct in
PMMs as in HMMs [16], [17], [18], [25], [26], [38], [39], [40], [43], [49], and to forecasting [12], [15]. It should be noted that if
exact calculations are not feasible, particle filtering, similar to that used in HMMs, can be considered [29]. In all the applications
studied, using PMMs instead of HMMSs can be of significant interest. For example, in the case studied in [9], where the data clearly
follows neithera PMM nor an HMM, usinga PMM instead of an HMM halves the segmentation error ratio.

As the Markovianity of XV is not necessary forits search from Y,¥, the following question arises. How does the modelling power
of PMMs decrease when XY is assumed to be Markovian? How can the Markovianity of X' be expressed in terms of constraints on
the parameters of the PMM? Are these constraints justified in a given real application? These unnecessary implicit constraints have
been little studied to date. To our knowledge, the only solutions to the problem in terms of necessary and sufficient conditions for
the Markovianity of XV exist in stationary invertible PMMs [42], [19], [20]. We study it here in the more general homogeneous
Gaussian PMMs (HG-PMMs) defined below, which are not stationary in general. To our knowledge, no study relating to this case
has been published.

More precisely, consider the following HG-PMM. The variables X, ,Y,,,Z,, take their values in in R", R®, and R"**, respectively.
ZN is Markovian, Gaussian and homogeneous. For simplicity, we take all the variables X;, ..., Xy, Y, ..., Y)y to have zero mean. We
call this model an homogeneous Gaussian pairwise Markov model (HG-PMM). It verifies
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with A, B, C, and D, matrices of related sizes, and [L];Z] [V ] Gussian, independent, zero mean, and equi-distributed.
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Let us note

Xl] 0 [Zl A]

[Yl N([o] ’ AT 22 )l (12)

Un] 0 [ZU A]

FARLIHA ) 13

L . .. A B Xy, A

Our aim is to give conditions on [C D] and ATy implied by the assumption that XV is Markov foreach . Due to the

|4

symmetry of the model, they will give conditions for Y;¥ to be Markov, and thus they will also give conditions for both XV and Y}V
to be Markov.
We present two original contributions:

(i) in the cases =7 =1, where 4,B,C,D,%,,Z,, 2,,Z,, A, and A are real numbers, we show that XY is Markov for each%,, Z,,
and A, if and only if (iff) either B = 0,0rAD — BC = AA—C%, = BA-DX, =0;

(ii) in the case of arbitrary s, r we show, underthe additional hypothesis of existence of A~1, thatif XV is Markov for each %,, Z,,
and A, then

B(CA™*B—D) =B(CA™ 'z, —AT)=0. (14)

The motivation in this particular situation is as follows. There are many problems, like filtering, smoothing, or forecasting, in which
unobserved parts of X¥ (or unobserved parts of YN) are estimated from observed parts of Y. The commonly used model is the
Hidden State Space Markov Model, which we will refer toas GH-HMM in the following. It is defined by

Xn+1 = FXn + Wn+1; (15)
Yn+1 = GXn+1 + Rn+1v (16)

wit [52] ~ NGS5

Reporting (1.5) into (1.6), we seethat GH-HMM is a particular GH-PMM:

Xn+1] [X ] [ W1 ]

[Yn+1 [GF 0] GWn+1 + Rn+1 (17)
and thus

A Bl _[F 0

[C D]_ GF 0oF (18)

Gz, GT
AT I, ] [sz G(Zy)GT + 2y ]
We see that PMM (1.1) is defined by eight matrices, while GH-HMM (1.5)-(1.6) is defined by four matrices, so that, a priori, the
simplification is quite crude.
Note that we have four families of HG-PMMs of increasing generality:
(F1) theclassical HG-HMMs (1.4)-(1.5), included in the family of HG-PMMs obtained by setting B = D = 0;

(F2) an extension of the classical HG-HMMs (1.4)-(15), obtained by setting B = 0. In these models XV is Markov, but the
components of YN can be correlated conditionally on X¥. In signal processing terminology, we say that “the measurement noise is
correlated”;

(F3) the extension of (F2) to all HG-PMMs with XY Markov (with B = 0 or not);

(F4) HG-PMMs.

Our goal is to characterize (F3) in terms of constraintson 4, B, C, D, %,,%,,and A. Thatis, we answerthe question "what conditions
onA4,B,C,D,%,,%,, and A are equivalent to (or, at least, implied by) the Markovianity of XV for each,X,, ,Z,, and A?”

Note the wide variety of possible applications of PMMs (1.1) in general. We have the classic filtering, smoothing, and forecasting of
unobserved componentsof X from observed components of Y;¥. We can also mention the smoothing and forecasting of unobserved
components of YV from its observed ones. In this case, XV is an additional latent process and can be taken among any process
correlated with the Y¥ under consideration.

(1.9)



Remark thatin classical GH-HMMs, there is an asymmetry between XV and Y,N. In many potential applications, there is a symmetry
and therefore no reason to consider XY as Markovian and Y;'as non-Markovian, as is usually the case. There are countless examples
in all fields: any pair of two time series correlated with each other is one of them. For example, in economics, suppose XV is
unemployment and ¥V is inflation. We may want to estimate XV from Y.V, butwe may also want to estimate Y,¥ from X In signal
processing terminology, YN can be thought of as anoisy version of XV , but XV can also be thought ofas anoisy version of Y. PMMs
are preferable to HMMs in such situations because they provide a single model, simultaneously extending the two different particular
HMMs.

The paperis organised as follows. The next section is devoted to the real case: the variables X, , Y,, take their values in R. Section 111
deals with the general multivariate case, and the last section IV contains conclusionsand prospects.
II. MARGINAL MARKOVIANITY IN REAL VALUED PROCESSES

Let XV = (Xy, .., Xy), Y& = (Yq,..., YY), and ZV = (Z,,..., Z), with Z,, = (X,,Y,). Variables X,,Y, take their values in R, Z¥ is
Markov, Gaussian, homogeneous, and zero mean: E[X,] = E[Y,] = 0 forn =1, ..., N. To distinguish this particular case from the
multivariate case considered in the next section, let us considerthe following notations:

-Xn+1] [“ 3] [Xn] [Un+1]

_Yn+1 Y ) Yn * Vn+1 orn T ( )
-X1:| 0 I:CJ']_2 T] .

y, |~ N ([0]' : o2 @2
_Un+1] 0 [0-5 p] =

Han N([O]’ ) o2 yforn=1,..,N—1, 23

where a, B, v, 8, a2, 6%, p, 02, o2, T are real numbers. The problem we consider is therefore to give necessary and sufficient
conditions (NSCs) on a, 8, v, 8, 6, 62, p sothat X} is Markov for each 62, 62, 7.

We will use the following

Lemma 1
Let Z3 verify (2.1)-(2.3) forn=1,and
X, = a, X, + BV, + Us, (2.4)
with Uj independent from (X,,Y,,X,,Y,), and
Elu;l=0 (2.5)
Then X3 is Markov for each o, 62, 7, iff either

B =0, (2.6)
or

det[“ ﬁ]=det[a ”5]=det [ﬁ "5]=0. @7

y 6 Yy »p § p

Before developing the proof, let us note the following point. In the GH-PMMs considered in the paper, we have 5, = f5; however,
in the proof of the theorem below we will use this Lemma twice: once for 8; = 8, and oncefor 3, # .

Proof
Accordingto (2.1), (2.4), we have

X, =a, X, + B, Y, + Us = a,(aX, + BY, + U,) + B,y X, +8Y, +V,) + Us.

Thus

X, = aX, + BY, + U, ; 2.8)

X; = (a @+ Byy)X; + (@ B+ B, + ay Uy + BV, + U3 (2.9)

which implies

E(X,X,) = ac? + fit; (2.10)

EX,X;) = ala,a + By)ot+ Bla,f + B,6)c + (aa,f + aB6 + Baja+ BBy)T + ay02+ Bip  (211)
EX,X,) = a’cf + B0} + 2aft + of; (212



EX, X3) = (aya + Byy)a? + (a8 + B,6)t. (2.13)
X3 is Markov for each o2, Z, and 7, if and only if Cov(X,, X,)Cov(X,,X3) = Cov(X;, X;)Var (X,), which is equivalent to

EX, X)E(X, X3) = E(X; X3)E (X, X,). (214)
According to (2.10)-(2.13), (2.14) is written
lac? + prllala,a + Biy)a? + e, B+ B18)of + (aa,f + aB,6 + Baja + BBY)T+ a,0f + Bipl = (2.15)

[(a,a + gyy)oZ + (a, B + B 8)tl[a?c? + B0} + 2aBT + of].

Before developing (2.15), let us showthat a; plays no role. Let us see what are terms products by a,.0On the Lh.s. we have
a,lac? + prllaac? + BB} + aft + Bat + o 1;

and on the right-hand side we have

a,lac? + prl[a?cf + %07 + 2aBT + 0]

As they are equal, we can remove them from (2.15), and (2.15) becomes

Bilac? + prllyac? + 8802 + adt + Byt + p 1 = Bilyo? + 6tl[a?0f + %0} + 2aBT + o). (2.16)
Thus it is equivalent to either 8; = 0, or 5, # 0 and

lac? + Brllyac? + 8BaZ + aét + Byt + p 1 = [yo? + 6tl[a?0? + B?0Z + 2aBT + 0]

Developing gives

8Bolac? + pac?+ BytBt + p Bt = B2clycl + olyol + af1ét + 06T, (2.17)
equivalentto

BSa — py)a2o} + (pa — a2y)af + BBy — ad)rr + (pf — Z8)t =0 (2.18)

Since (2.18) is true for every o, o2, 7, it is equivalent to

Ba — By) = pa — afy = pBy — a8) = pp — 046 =0,

which is (2.7) since 8, # 0, and ends the proof. m

Theorem

Let (XV,Y¥) be a HG-PMM (2.1)-(2.2). Then

(1) For N > 3, X[V is Markov for each o2, 6, 7, iff either

B =0,or (2.19)
det [;‘ g] = det [;‘j ‘;5] = det [g "p"z] = 0; (2.20)
(2) Under (2.19), Markovian X is homogeneous and verifies:

X, ~N(0,02); (2.21)
Xpi1 = aX, + Upyq, (2.22)
and under (2.20) with 8 # 0, Markovian X is homogeneous and verifies:

Xy =(a+8)X, + WE ., (2.23)
Ew} WX 1 =0 -68)ai + B2, (2.24)

with W%, ..., Wi zero mean and independent.
Proof

(1) If x¥ is Markov then X3 is Markov, and we have (2.19) or (2.20) by virtue of Lemmal applied to 8, = 8.

Conversely, assume (2.19) or (2.20). For 8 = O we haveX, ,, = aX, + U,,,, and thus it appears directly that XY is Markov and
verifies (2.22). Assume (2.20) with 8 # 0. Note that XY is Markovian iff for eachn =2, ..., N — 1, thetriplet (X, _,, X,,, X, +1) is
Markovian fork = 1, ..., n— 1. Indeed, p(x .1 1x}) = p(x,,41]x,,) iff X, ., and X2~ are independent conditionally on X,, and, in



Gaussian case we are, this is the case iff (X,,_j, X, X, +1) IS Markov for1 < k<n—1. Let N — 1 > n = 2. We will show that
Markovianity of (X, _,, X,,, X,,+,) (for 2 < k < n — 1) implies Markovianity of (X,,_,_1, X,,, X, +1)- As this is verified fork = 1,
this will be verified for each1 < k < n — 1, implying Markovianity of XV

Let us set
Xn+1] [0!* .B*] [Xn—k [U‘rz+1

=1_. . +1,,: |, 2.25
[Yn+1 ) Yn—k Vn+1 ( )
Xn+1] [a** ] [Xn k- 1] Upi1

=] o 2.26
[Yn+1 Y n k-1 Vn+1 ( )

Let us assume that (X,, _, X,,, X,, 4+, ) is Markovian. Let’s apply Lemma 1 with a, B, y, 8, o2, and p replaced by a*, B*,v*, 6%, a5*,
and p*, and 3, replaced by B. As § # 0, Markovianity of (X, _,,X,, X,,+1) IS equivalentto

a*s = By*; (2.27)

a*p*=yra)?. (2.28)

The aim is to show that (X, _,_,, X,,, X,, +1) is Markovian, which is equivalent to

a6 = By (2.29)

a*p™=yo,?. (2.30)

Since

E Rl M i R eay

(2.5) gives

Xnia] _ “ Xn - 1 Un k” [Unﬂ

Y41 Yo k- 1 Vn K Vit1

[a” ﬁ*] [ n— k—] [ n-k T B Voo ¥ Upia] _

ly* 6" Yik-1 VUn k+5V A

[

Then (2.29) is immediate since it is equivalent to det [i** g** = 0, which is true since

P N Y oy PO Y

It remains to show (2.30). Accordingto (2.32):

a* =a‘a+ By, (2.33)

Yy =y'a+6y; (2.34)

p" =El@ Uy + BV o+ U DG Uy + 8V + Vi Dl =’y o+ a8 p+ By p+ B 80l + pT, (2.35)
oy =El(@ U, +B Vo + Ui ) a Uy + BV + Ui D] =a?62 + 2a*B7p + 20} + o (2.36)

Then (2.30) is written

(@at+ay(ayoj+asp+pyp+p8oi+p)= G atyy)(a?ef+2a B p+ 0]+ 0p?),
or equivalently

a‘aa*y*ol + ataa*S* p+ ataf’yp + a*a[)’*é‘*avz + a*ap* +

a*ya*y ol + atya*Sp +a*yByip+ a*yf 8ol + atyp”

Yaa?of +y a2a’fp+y apof +y ao)? +yyatof + ZV*Va*B*p+ Y'YB?0¢ + v yay

By rearranging products in alphabetical order and placing starred terms before non-starred terms, we gets:

a?y*act + a?Sap +a*Byrap+ a*f5aci + atpra+ a*?y yol + a5 yp+ a* By yp + a8 yoi + atpty =



a?yrach + 2a*By ap + By ac) + opfyra + ayiyof + 227 By yp + By yed + ofy'y (3.37)

Replacing y*a;? with a*p* and a*6* with B*y* we find that (3.37) is verified, which completes the proof of (1).
To show (2) let us temporally assumethat N = 3. According to (2.1), we have

X, =aX, +pY,+ U, (2.38)
X; = (a?+ By)X, + (@B + B, +alU, + BV, + U; (2.39)
Using By = ad, (2.38) and (2.39) imply

X, =a(a+8)X, + Bla + 8)Y, + aU, + BV, + Us,

which gives, using fp = §a:

E(X,X,) = a’c? + B%0} + 2aft + o} ;

E(X,X;) = (a + 8)(a?cZ + B%0Z + 2afT + a?),

and thus
_E(XpX3) _ (a+8)(a?0f +p20% +2aft +0}) ) _
3 - E(X2X2) XZ + W3 - ( (l20'12+ﬂ20'22+2aﬁ‘[+0'121 XZ - W3 - (a T 6)X2 +Ws,
with
E[X;W;] =0,

EW,W;] = E[X; X1 — (a + 8)’ElX, X,]1 = (1 — §%)af + B?ai.

We see that neither?(f?—?)norE[%Vl@] depend ono?, 62,7, SO we can replace n = 2 by anyn = 3, ..., N — 1, which gives
242

(2.23)-(2.24) and completes the proof. m

Remark 2.1

In certain real-life situations, the hidden X' can be Markovian. According to the theoremthere are, in the context of GH-PMMs, four
families with Markov X}":

(F1) Classic GH-HMMs form the poorest family of models, sincethe distributions p (x,,4 1, ¥ +1 1%, ¥,) depend on four parameters;
(F2) GH-PMMs with B = 0,8 = 0 contain (F1) and are strictly richer; indeed, p(x 41, Vn+11%n,¥,) depend on five parameters;

(F3) GH-PMMs with g = 0. This family obviously contain (F2) and is obviously strictly richer. In particular, p(x 41, Vn+1 1% Vn)
depend on six parameters;

(F4) GH-PMMs with XY Markov and 8 = 0. In (F4) p (X411, Vn+1 1% V,) are defined by five free parameters (there So, if we know
apriori,in a given case, that X}V is Markov, family (F3) seems the most interesting as it depends on the largest number of parameters.
On the otherhand, if B is not closeto zero, (F4) might be bettersuited.

We illustrate the mutual positioning of (F1), .., (F4) in Fig. 1.

F1 F2 F3 F4
B=0 B %0

Fig. 1 Four families of GH-PMMs with X} Markov. F1: classic GH-HMMs (four free parameters); F2: GH-PMMswith 8 = 0, § = 0 (fivefree parameters); F3: GH-
PMMswith g = 0 (six free parameters); F4: GH-PMMswith 8 # 0 (fivefree parameters).

Example 2.1

As mentioned in Remark 2.1, family (F3) seems to be the most interesting, since it is defined by the largest number of parameters.
However, (F4) may be of interest for at least two reasons. Stationary GH-PMMs were recently applied to forecasting in [12] and it
turned out, in the real data cases considered, that 8 can be significantly different from zero. The second reason is the form of (2.23)
and (2.24). They mean thatif 520 < 6202, we have (1 — §2)aZ + B20 < 0, sothatthe Markov XV is less noisy in (F4) than in



(F3). This can be important for forecasting, where the quality of forecasting x,,,, from y* is measured by the variance of
P X piclyi)-

Since in a PMM XV and Y» play symmetrical roles, the theorem also gives NSCs for Markovianity of Y, and NSCs for
Markovianity of both XV and Y. Writing (2.2) in the form

el =lp 2l Lz e
We have

Corollary 1

Under the assumptions of theorem:

(1) YN is Markov for each 62, 62, 7, iff one of two conditions :
@Hs=0; (2.41)

(i) det[g Z]zdet[g iﬂzdet[z; ‘;Vz]zo (2.42)
is verified;

(2) Since (2.7), Markov Y}¥ is homogeneous and verify:

Y, ~ N(0,02), (243)
Ypor = (@ +8)Y,+ W), (2.44)
ElwY, . wr.l=0 -a®as? +y?c? (2.45)
Corollary 2

Under the assumptions of the theorem:

1. Both XV and Yare Markovian iff one of the four conditions:

2 2
(C1) det [;X/ g] = det [;Z/ Jp”] = det J ap"] =0,

B
and #0,y #0 ; (2.46)
(C2) B =0and(242) ; (2.47)
(C3) ¥y =0 and (2.20) ; (2.48)
(C4H) p=0and=0. (2.49)
2. Under (2.46), we have
X, .1 = (a+8)X, + WX ,; (2.50)
ElwX wX.l=0?; (2.51)
Yper= (@ +8)Y, + WY . (2.52)
Elwy,,wY. .l =02; (2.53)
Proof

As XV is Markov, we have

X, = (a+8)X, + W (2.54)

EwX WX .l =02 - 8%%+ B0 (2.55)

Furthermore, Markovianity of YN implies o2 = %p, and Markovianity of XY implies o2 = %p. Setting them into (2.55) gives
EW Wil = of — 6%} + B*0} = af — 6Bp + BSp = a5

Similarly, [WY WY, .]1= o2, which completes the proof. m



Example 2.2

Consider the case of both XV and YN Markovian with 8 = 0 andy = 0. We have X, ., = aX, + U1, Yoi1 = 6Y, + V.4, and
correlations E[X, Y, ] are given recursively by E[X, Y,]1 = 7, E[X,,,Y,,.] = aSE[X,Y,] + p. Moreover, we have (x,,,,lx,,y,) =

p(xn+1|xn)v p(yn+1|xn')’n) = p(yn +1|yn)l bUtp(xn+1|xn'Yn'yn+1) * p(xn+1|xn) and p(yn+1|xn'yn'xn+1) * p(yn+1|yn)'
I1l. MARGINAL MARKOVIANITY IN MULTIVARIATE CASE

In this section we consider the general multi-variate case, valid for any dimensions r, s of state space and observation space,
respectively. Unlike the previous caser = s = 1, conditions for the Markovianity of X¥ we present, valid in the case of invertible
A, are only necessary. The interest of the results presented in filtering, smoothing, or forecasting, is similar to its interestin the one-
dimensional case of the previous section: it shows what model restrictions are imposed by unnecessarily assuming the Markovianity
of the hidden chain. Note that insofar as the proposed conditions are only necessary, there may be additional parameter restrictions
not specified by the proposalbelow, which reinforce its interest.

Proposition 1

Let us considerrandom processes XV, YN, and Z¥ verifying (1.1)-(1.2), with 4 invertible. Markovianity of X~ implies
B(CA™*B—-D) =B(CA™ 'z, — AT)=0; (3.1)
Proof

Let us first show that (3.1) is equivalent to the Markovianity of X**1 for everyn =2, ..., N — 1 and every Z,, Z,, A. Due to
homogeneity, it suffices to showthis for n = 2. The Markovianity of X3 is quivalent to

E[X;X]] = E[X; X; ][E[X, X ]] " E[X,X] ] 32
According to (1.1) we have

X, = AX, +BY, + U,,
X, = (A2 + BO)X, + (AB + BD)Y, + AU, + BV, + Us,

and thus

E[X,XT] = AZ, + BAT ; (3.3

E[X,X]] = AZ,AT + BZ,BT + BATAT + AABT + 3 ; (3.4)

E[X;X]] = ((AA + BC)Z, + (AB+BD)AT)AT + ((AB + BD)X, + (AA + BC)A)BT+Ax, + BAT ;

E[X;XT] = (A% + BC)Z, + (AB + BD)AT (36)

Reporting (3.3)-( 3.6) into (3.2) we get

(A% + BC)Z, + (AB + BD)AT = [((AA + BC)Z, + (AB+BD)AT)AT + (3.7)
((AB + BD)Z, + (AA + BC)A)BT +AZ,, + BAT] X [AZ, AT + BZ,BT + BATA" + AABT + 3,]7'[AZ, + BAT]

(3.7) holds for every A; by setting A = 0, this implies:

(42 + BC)x, = [((AA + BCO)E AT + ((AB + BD)X,)BT+Ax, + BAT] x [AZ,AT + BX,BT + 3,] 1[AZ,] (3.8)
Multiplying both sides of (3.8) by [AZ,]™* AX, AT + BZ,BT + %, we obtain
(A4 BCA™Y)(AZ,AT + BZ,BT + 3)) = [(AA + BC)X, AT + (AB + BD)X, BT+Ax, + BAT] (3.9

Bxpanding (3.9) gives successively

AAZ,AT + ABY,BT + AY, + BCA™*AL, AT + BCA™'BZ,B"+ BCA 'y, =

AAZ,AT + BCZ, AT + ABX, BT + BDZ,BT+AZ, + BAT,

BCA™'BZ,B"+ BCA™'%, = BDZ,BT+BAT,

and finally

B(CA™*B-D)E,BT+B(CA 'z, —AT) =0 (3.10)

Since (3.10) holds for all X, it implies B(AT — CA™%,) = 0.
Indeed, the result is obtained by considering any parametrized family (£5).-, verifying X5 o 0.
E—

Finally, B(D — CA™*B) = 0 is obtained applying Lemma 2 below to %, = %, F any line of B(D — CA~*B), and G any column of
BT, which completes the proof. m



Lemma 2

Let F, G # 0 be elements of RS. If FTXG = 0 for any positive definite matrix X of size s X s,then F = 0.

Proof

Let FT = (£, ... £), G = (gq, .., gs). Lt T = (Aij)1<i,j<s b€ positive definite verifying A;; # 0 forall 1 < i,j <s. let1 <j<s
be suchthat g; # 0. Toshowthatall f;, ..., f; are zero, assume that there exists f; # 0. Let € >0, and Aj; = A;; + . Let X, have
all terms equal to those in Z, except A;; which is replaced by Af;. We then have FT2,G=FT3G+ 2efig; = 2¢f;g; # 0. Since for
e > 0 sufficiently small X, is positive deflnlte, this shows the impossibility of F = 0, which completes the proof. m

We remark thatforr = s =1, @ # 0,and £, # 0, condition (3.1) is condition (2.7) of the theorem.

Example 3.1

Let's recall, as an application example, the Kalman filter. It was proposed in [43], and taken up in [16], [17], [18], [32], [33], [34],
[38], [39], [40] in PMMs defined as follows

el=1e ol e @1

Let us recall how “pairwise” Kalman filter (PKF) runs in PMM considered in the form (1.1). Both forms are equivalents; however,
the form (1.1) is more concise and bettersuited for our purpose, since we wish to have a model symmetrical with respectto X and
YN, The very first PKF formulated in (1.1) form was written in stationary PMM in [4], and taken up in [22], [23], [12]. PKF runs as
follows:

Proposition 2
Let XV, YN satisfy (1.1)-(1.3), and let p(x,|y*) ~ N(M,,T,). Then
P (Xns1 |yt H) ~NMy 41,041 (3.11)
with
M,y = Mn+1 + Zn+1[21“11-+1]_1(yn+1 - M%+1); (312)
L1 = z:7}L+1 z"1%+1[2n+1] 1Zn+1v B1)
where
M%H] A B [Mn]
= ; 3.14
[M,ZH1 [C D] Yo I’ (3.14)

[zn+1 z,zm]_ AT, AT +3, AL,CT+A (315)
23, Zhod o ler, AT +AT cr,cT+ 3,0 '

Proof

It is sufficient to show that (3.14) and (3.15) are the mean and variance of the Gaussian p(x,.1,V,+11¥1"). Indeed, since
POy = p (1 |Vnss, YY), (3.12) and (3.13) are obtained from (3.14) and (3.15) by classical Gaussian conditioning. We
use the total expectation formula for every random vectors W, Q we have E[W] = E[E[WIQI]]. Applying it to the conditional

X .
expectation E[ .|y{*],and vectorsW = Z,,,, = [ ”“] Q = X,,,andsettingT = [ g],we can write

X E[X
ELZpaly?] = ELELZy, 1%, 3,037 = T | g = 7 P T < o[ M)
Yn Yn Yn
which is (3.14). Similarly
E[Zn+1Z£+1|Y111] = E[E[Zn+1Z£+1|Xn'yn]|y111] =
X xT X yT P A L +M M Myl P A
E[T nr;w nyl;]TT+[l’; ]lyin]zT n r; n ny?]TT‘l‘[LTI ]
yan Ynn A 2:V ynMn Yndn A z:V
Then
I‘n+1wn]\4r71‘ nyn]TT Iy A]_ M, ][ ] 7 =

T
E[Zn+1ZrT;+1|y1n] - E[Zn+1|3’1n] [E[Zn+1|y1n]] =T ynMg; ynyn AT z,



%y A]_AFnAT+ZU AT,CT+ A

L, O0].r
T(" T + =
[ ] AT 3z, 0 Llen, AT + AT CT,CT+ 3,

0 O

which completes the proof. m

IV. CONCLUSIONS AND PERSPECTIVES

We considered Gaussian Homogeneous Pairwise Markov Models (GH-PMMs) Z¥ = (Z,,...,Zy),whereforn=1, .., N,Z, =
(X,, Y, and XN = (X, ..., Xy), Y = (Y,,...,¥y) are valued in R", R, respectively. In classic Gaussian Homogeneous Hidden
Markov Models (GH-HMMs) both XY and Z¥ are Markovian, whereas in GH-PMMs only Z¥ is assumed Markovian. In the case
r = s = 1, we have provided necessary and sufficient conditions on the parameters defining p(zY), for X (or Y¥) to be Markovian.
In the general case, we provided necessary conditions for X¥ (or Y.N) to be Markovian. One possible application of the proposed
results relates to the problem of estimating unobserved XY fromobserved Y;". Since GH-PMMs enable Bayesian estimation methods
(filtering, smoothing, forecasting, ...) similar to those associated with GH-HMMSs, a practical interest of the proposed results for real
applications is that when, for the given problem, the specified conditions on the parameters cannot be justified, it is appro priate to
use GH-PMMs rather than GH-HMMs.

Extending the results presented to the homogeneous non-Gaussian case or searching for sufficient — as weak as possible -
conditions of marginal Markovianity in the general case are possible perspectives for further work. In particular, switching systens
are of interest in numerous applications, among which tracking. In classical models, the computational complexity increases
exponentially with the number of switches [37], [10], [46], among others. The problemcan be solved by considering the Markov ianity
of the pair (Switches, Observations), resulting in the "Markov Conditional Switching Hidden Linear Models” (CMSHLMs) proposed
in [44]. It would therefore be interesting to understand how the modelling power of general models - which also encompass the
classical switching GH-HMMs - decreases when one assumes the latter marginal Markovianity
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