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 Abstract 

 Sensory-motor  systems  can  extract  statistical  regularities  in  dynamic  uncertain 

 environments,  enabling  quicker  responses  and  anticipatory  behavior  for  expected 

 events.  Anticipatory  smooth  pursuit  eye  movements  (aSP)  have  been  observed  in 

 primates  when  the  temporal  and  kinematic  properties  of  a  forthcoming  visual 

 moving  target  are  fully  or  partially  predictable.  To  investigate  the  nature  of  the 

 internal  model  of  target  kinematics  underlying  aSP,  we  tested  the  e�ect  of  varying 

 the  target  kinematics  and  its  predictability.  Participants  tracked  a  small  visual  target 

 in  a  constant  direction  with  either  constant,  accelerating  or  decelerating  speed. 

 Across  experimental  blocks,  we  manipulated  the  probability  of  each  kinematic 

 condition  varying  either  speed  or  acceleration  across  trials;  with  either  one 

 kinematic  condition  (providing  certainty)  or  with  a  mixture  of  conditions  with  a 

 �xed  probability  within  a  block.  We  show  that  aSP  is  robustly  modulated  by  target 

 kinematics.  With  constant-velocity  targets,  aSP  velocity  scales  linearly  with  target 

 velocity  in  blocked  sessions,  and  matches  the  probability-weighted  average  in  the 

 mixture  sessions.  Predictable  target  acceleration  does  also  have  an  in�uence  on  aSP, 

 suggesting  that  the  internal  model  of  motion  which  drives  anticipation  contains 

 some  information  about  the  changing  target  kinematics,  beyond  the  initial  target 

 speed.  However,  there  is  a  large  variability  across  participants  in  the  precision  and 

 consistency  with  which  this  information  is  taken  into  account  in  order  to  control 

 anticipatory behavior. 
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 Introduction 

 Smooth  pursuit  eye  movements  allow  us  to  maintain  the  image  of  a  moving 

 object  of  interest  steady  on  the  retinas.  To  do  so,  tracking  eye  movements  rely 

 primarily  on  the  neural  representation  of  the  moving  target’s  speed  and  direction 

 (Carl  &  Gellman,  1987;  Lisberger  &  Westbrook,;  Tychsen  &  Lisberger,  1986).  When 

 the  target  moves  at  constant  speed  across  the  visual  �eld,  the  eyes  start  accelerating 

 in  the  same  direction  as  the  target  motion  with  a  short  latency  (~100-130  ms  in 

 humans;  Carl  &  Gellman,  1987).  In  the  optimal  speed  range  for  human  pursuit  (i.e. 

 below  20-30°/s),  the  eyes  typically  reach  a  steady  state  velocity  close  to  the  target’s 

 velocity  within  ~300  ms  from  visual  motion  onset.  Steady-state  smooth  tracking,  in 

 close  coordination  with  the  so-called  catch-up  saccades  can  dynamically  maintain  a 

 good  alignment  between  the  fovea  and  the  target  retinal  image  position  (Carl  & 

 Gellman,  1987;  Orban  De  Xivry  &  Lefèvre,  2007).  Even  though  natural  objects 

 rarely  move  at  a  constant  velocity,  only  a  few  studies  have  investigated  eye  tracking 

 behavior  for  accelerating  (or  decelerating)  targets.  Those  studies  reported  that 

 humans  are  indeed  able  to  track  visible  targets  with  smoothly-varying  speed  (e.g. 

 Bennett  &  Benguigui,  2013;  Kreyenmeier  et  al.,  2022),  but  with  weak  accuracy.  Like 

 perceptual  discrimination  judgments,  tracking  eye  movements  discriminate  poorly 

 between  target  accelerations  as  compared  to  target  speeds  in  humans  (e.g., 

 Watamaniuk  &  Heinen,  2003;  Kowler  &  McKee,  1987)  and  macaque  monkeys 

 (Lisberger & Movshon, 1999). 
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 Most  of  the  early  work  on  pursuit  eye  movements  and  visual 

 speed/acceleration  processing  were  concerned  with  the  online  control.  However, 

 our  dynamic  environment  is  often,  at  least  in  part,  predictable,  because  either  the 

 motion  is  produced  by  our  own  body  (e.g.,  Gauthier  et  al.,  1988;  Landelle  et  al., 

 2016),  or  it  can  be  inferred  from  general  prior  knowledge,  past  experience  or 

 perceptual  cues  about  an  object's  motion  (Kowler  et  al.,  2019).  For  instance,  when  a 

 target’s  velocity  changes  in  a  periodic  way  (e.g.,  sinusoidal  motion),  ocular  tracking 

 can  rapidly  take  advantage  of  this  predictable  motion  such  that,  after  only  a  few 

 cycles,  the  fovea  is  aligned  to  the  target  position  with  nearly  no  lag  (Kowler  & 

 Steinman,  1979a).  Moreover,  motion  predictability  allows  anticipation  of  the  target 

 motion  onset,  or  target  reappearance  after  a  transient  occlusion  (e.g.  Dodge  et  al., 

 1930;  for  a  review,  see  Kowler  et  al.,  2019  and  Fukushima  et  al.,  2013).  These 

 anticipatory  smooth  pursuit  eye  movements  (aSP)  are  thought  to  help  in  quickly 

 reducing  the  retinal  position  and  velocity  errors  during  the  early  phase  of 

 visually-guided pursuit (e.g. Kao & Morrow, 1994). 

 Large  e�orts  have  been  devoted  to  understanding  what  kind  of  signals  drive 

 anticipatory  responses  (Kowler  et  al.,  2019).  The  underlying  computational 

 mechanisms  of  aSP  are  however  still  not  fully  understood.  Empirically,  target 

 motion  predictability  can  be  manipulated  across  di�erent  time  scales  (e.g.  across  or 

 within  trials  in  a  standard  visuomotor  experiment)  and  repetition  schedules.  Our 

 group,  and  others  have  previously  shown  that  aSP  amplitude  is  proportional  to  the 

 probability  of  a  given  target  motion  direction  in  a  direction-biased  task  (Damasse  et 

 al.,  2018;  Montagnini  et  al.,  2010;  Rubinstein  et  al.,  2024;  Santos  &  Kowler,  2017; 
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 Wu  et  al.,  2021).  Expectation  for  a  given  target  speed  also  modulates  aSP: 

 anticipatory  eye  velocity  increases  with  speed  predictability,  in  a  random  versus 

 fully  predictable  speed  design  (e.g.,  Heinen  et  al.,  2005;  Jarrett  &  Barnes,  2002;  Kao 

 &  Morrow,  1994).  aSP  also  depends  on  the  recent  trial  history  of  target  speed  (Maus 

 et  al.  2015).  However,  it  has  not  been  tested  whether  aSP  exhibits  the  same  linear 

 dependency upon speed probability as it does for direction probability. 

 Predictive  aSP  has  been  extensively  investigated  for  simple  target  trajectories 

 of  constant  speed  and/or  direction  (e.g.,  among  many  others,  in  Barnes  &  Asselman, 

 1991;  Heinen  et  al.,  2005;  Kowler  &  Steinman,  1979b).  However,  much  less  is 

 known  about  aSP  for  accelerating  targets  and  the  contribution  of  acceleration 

 signals  to  the  internal  representation  of  motion  raises  several  questions.  First,  it  is 

 still  not  known  if  acceleration  is  taken  into  account  when  preparing  for  anticipatory 

 movements,  or  if  the  latter  are  based  on  simple  estimates  approximating  the  target 

 motion  pro�le  (e.g.  instantaneous  at  some  critical  moments,  or  time-averaged  speed, 

 Bennett,  Orban  De  Xivry,  et  al.,  2010).  Second,  most  of  the  previous  studies  have 

 investigated  acceleration-based  predictive  behavior  only  on  a  short  time  scale, 

 namely  during  the  transient  occlusion  of  a  moving  target  with  an  accelerating 

 pro�le  (Bennett et al., 2007, 2010; Bennett & Barnes, 2006)  . 

 From  these  previous  studies,  target  acceleration  does  not  appear  to  be  fully 

 integrated  in  predictive  pursuit.  For  instance,  when  an  accelerating  target  is 

 occluded  after  a  short  presentation  of  accelerating  motion  (~  200  ms),  eye  velocity 

 during  the  blanking  period  reduces,  and  its  predictive  reacceleration  prior  to  the 
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 target  reappearance  is  not  in�uenced  by  the  target  acceleration  (Bennett  et  al., 

 2007).  However,  if  the  target  visibility  window  before  the  occlusion  is  long  enough 

 (>  500  ms),  eye  velocity  reduces  during  the  blanking  period,  but  recovers  in  an 

 acceleration-scaled  manner  prior  to  the  target  reappearance  (Bennett,  Orban  De 

 Xivry,  et  al.,  2010).  Moreover,  target  acceleration  is  not  appropriately  taken  into 

 account  neither  in  a  task  where  participants  are  asked  to  track  a  target  and,  after  a 

 period  of  occlusion,  to  predict  the  target  position,  or  to  predict  when  the  target  is 

 going  to  reach  a  certain  position  (Bennett  &  Benguigui,  2013;  Kreyenmeier  et  al., 

 2022).  However,  one  of  the  very  few  studies  addressing  the  e�ect  of  acceleration 

 predictability  on  a  longer  time  scale  (blocked  design)  showed  that  the  amplitude  of 

 aSP  observed  before  the  target  reappearance  in  an  occlusion  paradigm  scales  with 

 target  acceleration  (Bennett  &  Barnes,  2006)  .  Here,  we  aimed  at  better 

 understanding  how  target  motion  acceleration  shapes  aSP  when  the  predictability  of 

 the  kinematic  pro�le  is  manipulated  on  a  relatively  long  timescale,  namely  across 

 blocks of several tenths of trials. 

 In  the  present  study  we  tested  the  following  hypotheses:  1)  Anticipatory 

 smooth  pursuit  eye  velocity  scales  linearly  with  target  speed  probability  (similar  to 

 direction  probability,  Damasse  et  al.  2018,  Santos  et  al.  2017),  across  experimental 

 blocks  with  �xed  probability;  2)  Anticipatory  eye  velocity  is  modulated  by  target 

 acceleration  and  3)  it  scales  with  the  probability  of  the  accelerating  motion.  To  test 

 these  hypotheses,  we  analyzed  anticipatory  oculomotor  behavior  for  targets  moving 

 in  a  fully  predictable  direction  but  with  di�erent  speeds  and  accelerations.  We 

 manipulated  the  probability  of  each  kinematic  condition  across  blocks.  We  showed 
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 that  target  speed  probability  in�uences  aSP  similarly  to  motion  direction 

 probability,  with  a  linear  dependence  of  aSP  velocity  upon  target  speed  probability. 

 We  also  showed  that  aSP  can  be  driven  by  predictable  accelerating  targets,  in  a  way 

 that  accounts  for  the  expected  change  in  target  velocity  and  for  its  probability,  even 

 though with large inter-individual variability. 

 Methods 

 Participants 

 Twenty-nine  healthy  adult  volunteers  signed  an  informed  consent  to 

 participate  in  the  experiments  presented  in  this  study.  The  experimental  protocol 

 was  approved  by  the  Ethics  Committee  Comité  de  Protection  des  Personnes  OUEST  III 

 (CPP  reference:  PredictEye-2018-A02608-47),  in  full  respect  of  the  Helsinki 

 declaration  guidelines.  Three  of  the  authors  (AM,  GM,  DS)  participated  in 

 Experiment  1A  (n=3),  two  of  the  authors  (AM,  VCM)  participated  in  Experiment 

 1B-2A  (n=13)  and  one  of  the  authors  (VCM)  participated  in  Experiment  2B  (n=5) 

 and  in  Experiment  3  (n=8).  In  Experiment  1A,  anticipatory  eye  movements  and 

 initial  pursuit  were  recorded  with  high  precision  by  using  the  scleral  search  coil 

 technique  (Robinson,  1963)  in  a  small  participant  sample.  A  preliminary  version  of 

 the  results  from  Experiment  1A  was  presented  previously  at  the  VSS  conference 

 (Souto  et  al.,  2008).  The  core  �nding  of  this  experiment  motivated  Experiments 

 1B-2A-2B,  that  were  run  with  a  larger  sample  of  participants,  a  smaller  subset  of 

 probability  conditions,  and  using  a  less  invasive  technique  (video  eye  tracking). 

 Experiment  3  was  designed  to  test  the  e�ect  of  acceleration  on  anticipatory  eye 
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 speed  in  fully  predictable  blocks,  again  using  a  non-invasive  eye  recording 

 technique. 

 Stimuli and procedure 

 In  all  experiments,  participants  were  instructed  to  visually  track  a  small 

 moving  target  by  smoothly  pursuing  it  with  their  eyes,  as  accurately  as  they  could, 

 while  their  eye  movements  were  recorded.  We  used  di�erent  materials  across 

 experiments. 

 Experiment 1A 

 The  detailed  methods  are  described  elsewhere  (Wallace  et  al.  2005). Brie�y, 

 a  PC  running  the  REX  package  controlled  both  stimulus  presentation  and  data 

 acquisition.  Stimuli  were  generated  with  an  SGI  Fuel  workstation  (ABC  Corp.,  New 

 York,  USA,  no  longer  available)  and  back-projected  onto  a  large  translucent  screen 

 (80°  x  60°,  viewing  distance:  1m)  using  a  Barco  908s  video-projector  (1280’’,  1024 

 pixels  at  76  Hz).  Oculomotor  recordings  were  collected  using  the  scleral  search  coil 

 technique (Collewijn et al. 1975). 

 This  experiment  probed  aSP  in  di�erent  target  speed  probability  contexts 

 (  Figure  1a  ).  Each  trial  started  with  a  white  �xation  point,  located  at  the  center  of 

 the  screen  for  a  random  duration  between  300  and  450  ms,  on  a  black  uniform 

 background  (luminance  <1  cd/m  2  ).  If  the  participant  �xated  accurately  (i.e.  within 

 a  2°-side,  square  electronic  window)  during  the  last  200  ms,  the  �xation  target  was 

 extinguished  and  followed  by  a  �xed-duration,  300-ms  empty  screen.  At  the  end  of 
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 this  gap,  the  target  (a  white,  gaussian-windowed  circle,  0.2°  std,  maximum 

 luminance  45  cd/m  2  )  appeared  at  the  center  of  the  screen  and  started  moving 

 horizontally  to  the  right,  for  a  �xed  period  of  500  ms.  The  target  speed  was  either 

 5.5  °/s  (low  speed,  LS)  or  16.5  °/s  (high  speed,  HS).  In  each  experimental  block,  a 

 di�erent  target  speed-probability  condition  de�ned  the  proportion  of  trials  at  high 

 speed  (P(HS)=0,  0.1,  0.25,  0.5,  0.75,  0.9  and  1).  The  complementary  proportion  of 

 trials  had  a  low-speed  target  motion  (P(LS)=1-P(HS)).  Participants  completed  500 

 trials  per  block,  except  for  the  P(HS)=0  and  P(HS)=1  conditions  where  only  250 

 trials  were  completed.  One  or  two  blocks  were  completed  in  a  day,  with  the 

 constraint of not exceeding a total of one hour of duration. 
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 Figure  1.  Experimental  designs.  (a).  Each  trial  started  with  a  �xation  point  displayed  at  the 
 center  of  the  screen  for  a  random  period,  followed  by  a  gap  of  300  ms.  The  target  then 
 appeared  at  the  center  of  the  screen  and  started  moving.  (b).  Experiment  1.  In  Experiment 
 1A,  the  target  moved  horizontally  to  the  right  at  one  of  the  two  constant  speeds  (5.5  or  16.5 
 °/s,  in  blue).  The  probability  of  a  high-speed  (P(HS),  v=16.5  °/s)  vs  a  low-speed 
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 (P(LS)=1-P(HS),  v=5.5  °/s)  trial  was  varied  between  experimental  blocks  with  7  di�erent 
 values  of  P(HS)  (0,  0.1,  0.25,  0.5,  0.75,  0.9,  1).  In  Experiment  1B  the  target  always  moved  in  a 
 �xed  direction,  chosen  between  one  of  the  four  diagonals  (counterbalanced  between 
 participants).  We  displayed  two  di�erent  constant  target  speeds  (v11c  and  v33c,  of  11  and  33 
 °/s,  respectively,  in  blue).  Conditions  were  designed  with  a  constant  target  displacement,  and 
 we  manipulated  the  probability  of  the  target  kinematics  in  each  experimental  block  with  the 
 probability  of  v11c  spanning  the  values  (0,  0.3,  0.7,  1)  and  P(v33c)=1-P(v11c).  (c) 
 Experiment  2.  Experiment  2A  followed  a  design  similar  to  Exp  1B,  but  this  time  the  target 
 kinematics  included  acceleration  conditions.  The  initial  speed  was  kept  the  same  as  in  Exp  1B, 
 but  the  target  with  initial  speed  at  11°/s  accelerated  (v11a,  a=22  °/s  2  ,  in  green)  and  the  target 
 with  initial  speed  at  33  °/s  decelerated  (v33d,  a=-22°/s  2  ,  in  pink).  In  Experiment  2B,  target 
 kinematics  were  the  same  as  in  Exp  2A,  except  the  time  duration  of  the  target  motion  was 
 kept  constant  at  600  ms.  (d)  Experiment  3.  We  displayed  three  di�erent  initial  speeds  (v11, 
 v22,  v33  of  11,  22  and  33  °/s,  respectively)  combined  with  three  di�erent  acceleration  values 
 (a,  c  and  d,  of  22,  0  and  -22  °/s  2  ,  in  green,  blue  and  pink  respectively)  in  fully  predictable 
 blocks.  Target  motion  duration  was  kept  constant  and  lasted  500ms.  (e)  Model  �tting  of  eye 
 velocity  pro�les  in  individual  trials.  The  bottom  panel  shows  an  example  of  the  eye 
 velocity  trace  (blue  curve)  and  of  the  ANEMO  model  �t  (red  curve,  Pasturel  et  al.,  2018)  in  an 
 individual  trial.  The  selected  model  �tted  an  exponential  function  to  the  anticipatory  phase, 
 and  a  sigmoid  to  the  initial  visually-guided  pursuit  phase.  From  this  model  we  extracted  the 
 maximum  of  the  anticipatory  velocity  (aSPv).  The  model  �tting  procedure  for  Experiments  1B, 
 2A, 2B and 3 was similar to Experiment 1A. 

 Experiments 1B, 2 and 3 

 Experiment 1B-2A 

 The  same  group  of  participants  took  part  in  Experiments  1B  and  2A.  Stimuli 

 were  presented  using  the  Psychtoolbox  (Brainard,  1997)  package  for  MATLAB.  A 

 Display++  monitor  (CRS  Ltd.,  Rochester,  UK)  with  a  refresh  rate  of  120  Hz  was 

 placed  at  57  cm  distance  in  front  of  the  participant.  Eye  movements  were  recorded 

 using  an  Eyelink1000,  an  infrared  video-based  eye  tracker  (SR  Research  Ltd., 

 Ottawa,  Canada).  This  experiment  probed  aSP  with  di�erent  target  constant  and 

 varying  speed  conditions,  while  manipulating  the  probability  of  each  condition. 
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 With  respect  to  Experiment  1A,  a  larger  pool  of  participants  was  tested  with  a 

 di�erent  set  of  target  speed  values  and  a  smaller  set  of  speed  probabilities  and  fewer 

 trials  per  condition.  Because  several  studies  have  reported  anisotropies  for  saccadic 

 and  smooth  pursuit  eye  movements  across  di�erent  directions  (e.g.,  Grasse  & 

 Lisberger,  1992;  Ke  et  al.,  2013;  Rottach  et  al.,  1996;  Takeichi  et  al.,  2003),  we 

 decided  to  investigate  whether  the  results  observed  in  Experiment  1A  can  be 

 generalized  across  target  motion  directions.  Accordingly,  in  Experiment  1B-2A  the 

 target  moved  along  one  of  the  four  diagonal  directions,  counterbalanced  between 

 participants. 

 Figure  1a  shows  the  experimental  design.  Each  trial  started  with  a  white 

 �xation  dot  in  the  center  of  the  screen  for  a  random  interval  between  300  ms  and 

 600  ms.  This  �xation  period  was  followed  by  a  300  ms  gap.  At  the  end  of  this 

 period,  the  target  (a  white  circle  of  0.6°  diameter,  maximum  luminance  45  cd/m  2  on 

 a  black  background  with  luminance  <1  cd/m  2  )  appeared  at  the  center  of  the  screen 

 and  started  moving  in  one  of  the  four  diagonal  directions  (always  the  same  for  one 

 participant)  with  di�erent  target  kinematics  conditions:  the  target  speed  was  either 

 constant  (v11c  and  v33c;  11  and  33  °/s  respectively),  uniformly  accelerating  (v11a; 

 starting  from  11  °/s,  a=22  °/s  2  ),  or  decelerating  (v33d;  starting  from  33  °/s,  a=-22 

 °/s  2  ).  In  Experiments  1B  and  2A,  target  motion  duration  was  adapted  to  the  target 

 kinematic  properties  in  order  to  achieve  a  similar  spatial  displacement  on  the  screen 

 across  conditions:  in  practice  target  movement  lasted  1  and  0.52  s  for  v11c,  and 

 v33c, respectively, 0.87 s for v11a, and 0.72 s for v33d. 
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 13 

 Participants  �rst  completed  4  blocks  of  100  trials  with  a  single  target 

 kinematics  condition  (v11c,  v33c,  v11a,  v33d,  presented  in  randomized  order  across 

 participants).  Notice  that  these  conditions  can  be  considered  as  a  probability  of  1  for 

 each  kinematic  value.  Next,  the  probability  of  the  di�erent  target  kinematics  was 

 manipulated  across  blocks  of  200  trials  each.  For  blocks  with  constant  speed,  we 

 used  v11c  and  v33c,  with  P(v33c)  being  equal  to  either  0.3  or  0.7  and 

 P(v11c)=1-P(v33c).  The  two  probability  levels  were  presented  in  random  order 

 across  participants.  For  blocks  with  accelerating  speed,  P(v33d)  could  be  either  0.3 

 or  0.7  (P(v11a)=1-P(v33d)).  Again,  these  two  probability  conditions  were 

 randomly interleaved. 

 Experiment 2B 

 Having  di�erent  motion  durations  across  conditions  might  have  introduced 

 some  confounds  a�ecting  anticipatory  behavior.  First,  estimates  of  target 

 acceleration  can  be  impaired  if  the  target  motion  is  presented  too  brie�y  (Bennett, 

 De  Xivry,  et  al.,  2010;  Bennett  et  al.,  2007).  Second,  if  anticipatory  behavior  relies 

 on  the  estimate  of  mean  target  velocity,  rather  than  on  its  accelerating  dynamics 

 (Brouwer  et  al.,  2002;  Gottsdanker  et  al.,  1961;  Schmerler,  1976),  then  the  duration 

 of  the  visual  motion  epoch  might  in�uence  the  mean  velocity  estimate  for  targets 

 with  accelerating  speed.  Therefore,  we  ran  an  additional  control  experiment  (Exp 

 2B)  with  the  same  design  as  Exp  2A  but  with  one  main  di�erence:  target  motion 

 duration  was  held  constant  (600ms),  resulting  in  di�erent  target  �nal  positions 

 across conditions. 
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 Experiment 3 

 While  Experiments  1  and  2  were  designed  to  probe  the  e�ects  of  probability 

 manipulation  for  both  constant  and  accelerating  target  motion,  we  did  not  directly 

 address  whether  and  how  the  accelerating  motion  of  predictable  accelerating  targets 

 drive  anticipatory  eye  movements.  Most  of  the  literature  on  smooth  pursuit  focus  on 

 constant  speed  targets,  and  the  very  few  studies  manipulating  acceleration  focuses 

 on  the  e�ects  of  this  manipulation  on  the  visually-guided  pursuit  (Brostek  et  al., 

 2017;  Krauzlis  &  Lisberger,  1994)  or  short-term  predictive  tracking  (e.g.  blanking 

 paradigm,  Bennett  et  al.,  2007,  2010;  Bennett  &  Barnes,  2006;  Bennett  &  Benguigui, 

 2013)  .  Interestingly,  Bennett  &  Barnes  (2006)  showed  that  for  a  �xed  initial  target 

 speed  and  when  accelerating  target  motion  is  presented  in  a  blocked  design, 

 anticipatory  eye  movements  scale  with  target  acceleration.  In  order  to  better 

 understand  the  relationship  between  target  acceleration  and  anticipatory  eye 

 movements,  we  ran  Experiment  3  (  Figure  1d  ),  with  a  fully-crossed  design,  in  which 

 the  target  could  take  one  out  of  three  possible  initial  speeds  (v11,  v22,  and  v33  of 

 11,  22,  and  33  °/s,  respectively)  and  one  out  of  three  possible  acceleration  values 

 (of  22,  0  and  -22  °/s  2  ,  labeled  as  “a”  for  accelerating  ,  “c”  for  constant  and  “d”  for 

 decelerating,  respectively).  This  design  yielded  in  nine  blocks  of  fully-predictable 

 target  motion.  In  all  blocks,  the  target  motion  duration  was  held  constant  to  500  ms. 

 Participants  completed  100  trials  in  each  block  with  v11  and  v22  as  initial  speeds, 

 and  120  trials  in  each  block  with  v33  as  initial  speed.  The  small  di�erence  in  the 

 number  of  trials  was  introduced  to  compensate  for  the  higher  number  of  excluded 

 trials  for  the  data  analysis,  due  to  a  higher  occurrence  of  saccades  around  target 
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 motion  onset,  a  phenomenon  already  observed  in  the  previous  experiments  when 

 the fastest speed (v33) was presented. 

 Eye-movements recording and preprocessing 

 For  Experiment  1A,  the  analog  voltage  measure  collected  with  the  scleral  coil 

 technique  and  re�ecting  the  right-eye  rotation  was  low-pass  �ltered  (DC-130  Hz) 

 and  digitized  with  16-bit  resolution  at  1000  samples  per  second  (to  obtain  the  eye's 

 horizontal  and  vertical  position).  For  Experiments  1B,  2A,  2B  and  3,  the  right-eye 

 horizontal  and  vertical  position  was  recorded  with  an  infrared  video-based  eye 

 tracker, EyeLink 1000 (SR Research), at 1 kHz. 

 For  all  sets  of  recorded  eye  movements,  position  data  was  converted  in  an 

 ASCII  format.  After  conversion,  the  ANEMO  toolbox  (Pasturel  et  al.,  2018)  and 

 custom-made  python  scripts  were  used  to  pre-process  the  data.  Position  data  was 

 low-pass  �ltered  (acausal  second-order  Butterworth  low-pass  �lters,  30  Hz  cut-o�), 

 numerically  di�erentiated  to  get  the  eye  velocity  in  degrees  per  second  and  then 

 de-saccaded  using  ANEMO’s  implementations.  In  practice,  saccade  detection  was 

 implemented  by  jointly  applying  the  absolute  eye  velocity  threshold  criterion 

 (30°/s,  by  default  in  the  Eyelink  system)  and  the  relative  velocity  threshold  (akin  to 

 the  method  proposed  by  Engbert  &  Kliegl,  2003).  The  epochs  corresponding  to 

 detected  saccades  were  removed  from  analysis  (given  not-a-number  values).  Trials 

 with  more  than  40%  of  missing  data  points  in  the  [-100,200]  ms  window  around 

 the  target  onset  for  Exp  1A  and  more  than  70%  of  missing  data  points  in  the 

 [-100,100]  ms  window  around  the  target  onset  for  Exp  1B,  2A,B  and  3,  or  with 
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 more  than  60%  of  missing  data  points  overall  (for  all  experiments),  were 

 automatically  excluded  from  the  pre-processing  pipeline.  ANEMO  was  used  to  �t  a 

 piecewise  linear  and  non-linear  model  to  individual  trials’  eye  velocity  to  extract  the 

 relevant  oculomotor  parameters  (see  Figure  1e  for  an  illustration  of  the  model 

 �tting  and  extracted  parameters).  The  model  comprised  a  linear  baseline  phase  (�at 

 linear  regression),  and  two  non-linear  phases:  an  anticipatory  phase  modeled  by  an 

 exponential  function  and  a  visually-guided  phase  modeled  by  a  sigmoid  function. 

 Importantly,  we  selected  this  model  after  comparing  its  performance  quantitatively 

 (using  AIC,  BIC  and  RMSE  indicators  of  goodness  of  �t)  with  a  more  standard 

 piecewise  linear  model  (implemented  in  ANEMO):  in  all  experiments  our  model 

 (linear  +  non-linear  model)  performed  better  than  the  linear  one  in  the  large 

 majority  of  trials.  In  Experiment  1A,  the  �t  was  performed  in  the  time  window  of 

 -300  to  350  ms  relatively  to  the  target  motion  onset.  In  Experiments  1B,  2A,B  and  3, 

 the  �t  was  performed  in  the  time  window  of  -300  to  300  ms  relatively  to  the  target 

 motion  onset.  The  relevant  model-�t  parameter  for  this  study  was  only  the 

 maximum  velocity  of  the  anticipatory  phase  (aSPv),  calculated  as  the  maximum 

 value  of  the  exponential  function  (i.e.  its  value  at  the  o�set  of  the  anticipatory 

 phase).  Other  oculomotor  parameters  are  automatically  extracted  by  the  ANEMO 

 toolbox, but we do not report them in the present study. 

 Eye  velocity  traces  and  model  �ts  were  visually  inspected  to  exclude  the 

 remaining  aberrant  trials  and  those  with  extremely  poor  �ts.  Overall,  12%  of  the 

 trials  were  excluded  on  average  for  Experiment  1A  (median:  10%,  max:  18%),  16% 
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 for  Experiment  1B-2A  (median:  14  %,  max:  32%),  13  %  for  Experiment  2B  (median: 

 13 %, max: 15 %), and 26 % for Experiment 3 (median: 25 %, max: 33 %). 

 Data analysis 

 In  all  experiments,  when  analyzing  the  e�ects  of  the  probability  bias,  the  �rst 

 10  trials  of  each  block  were  excluded  from  analysis.  This  was  done  in  the  aim  of 

 excluding  large  �uctuations  related  to  learning  the  stimuli  statistics  and  focus  on 

 average  values  rather  than  on  their  rate  of  change.  For  control,  we  also  repeated  all 

 analyses excluding the �rst 50 trials: the results did not change signi�cantly. 

 Linear  Mixed  E�ects  regression  Models  (  nlme  package  for  R)  were  used  to 

 evaluate  the  e�ects  of  the  target  kinematics  (di�erent  constant  speed  and 

 acceleration  conditions)  and  of  the  kinematic  probability  on  the  anticipatory  smooth 

 pursuit  velocity  (aSPv)  estimates.  Because  not  including  a  true  random  e�ect  can 

 increase  the  false  positive  rate  (Barr  et  al.,  2013),  participants  were  treated  as  a 

 random  e�ect  and  all  �xed  e�ects  were  allowed  to  vary  with  it.  Since  this  approach 

 usually  leads  to  models  that  don’t  converge  because  of  the  high  number  of 

 parameters  and  the  correlations  between  them,  when  needed,  we  used  the  buildmer 

 package  for  R  (Voeten,  2020)  to  �nd  the  maximal  model  (i.e.,  the  model  including 

 the  most  of  variables)  which  still  converges  for  the  dependent  variable.  After  �nding 

 the  models,  we  �tted  the  data  and  result  tables  were  exported  with  the  stargazer 

 package for R  (Hlavac, 2022)  . 
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 For  Experiment  1A,  the  models  included  only  speed  probability  as  a  �xed 

 e�ect  for  the  oculomotor  anticipatory  velocity  (aSPv).  We  chose  to  use  the 

 probability of the highest speed, P(HS), as the independent variable in the model 1: 

 (1)  aSPv ~ 1 + P(HS) + (1 + P(HS) | participant) 

 The  variable  before  the  ~  symbol  is  the  dependent  variable,  and  the  variables 

 after  it  are  the  independent  variables  (also  called  �xed  e�ects).  The  1  corresponds 

 to  the  model  intercept.  For  the  variables  within  the  parentheses,  each  one  before  the 

 |  symbol  is  allowed  to  vary  for  each  level  of  the  variable  after  it  (also  called  random 

 e�ect).  In  other  words,  for  each  participant,  the  model  will  return  a  di�erent  best-�t 

 value  for  the  intercept  and  the  slope  of  the  linear  dependence  upon  probability.  For 

 the  analysis  of  the  probability-mixtures  of  Experiment  1B  %  (v11c  vs  v33c)  and 

 Experiment  2  (v11a  vs  v33d),  we  also  added  the  axis  (horizontal/vertical)  as  an 

 interaction  factor  with  the  probability,  given  that  the  target  moved  along  one  of  the 

 diagonals.  For  Experiment  2,  we  included  an  interaction  with  the  experiment 

 (2A/2B).  The  �nal  models,  as  well  as  the  statistics  tables  are  presented  in  the 

 supplementary material. 

 It  is  known  that  recent  trial-history  can  a�ect  the  behavior  in  the  present  trial 

 (sequential  e�ect),  and  this  could  be  seen  as  a  confound  in  our  analyses  addressing 

 the  e�ect  of  the  target  motion  probability  across  several  trials.  Therefore,  we  re-ran 

 the  regression  models  for  Experiments  1A  and  1B  adding  the  target  velocity  at  trial 

 N-1 (  Tv  N-1  ) as an interaction variable: 

 (2) aSPv ~ 1 + P(HS)*Tv  N-1  +(1 + P(HS) +Tv  N-1  | participant) 
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 In  Experiment  3,  considering  that  each  target  kinematic  condition  could  be 

 uniquely  identi�ed  as  a  combination  of  an  initial  velocity  and  acceleration  values, 

 we  ran  a  second  linear  mixed-e�ects  regression  model:  this  time  the  main 

 independent  variables  were  the  target  initial  velocity  (  v0  :  11,  22,  or  33°/s)  and  the 

 target  acceleration  (  accel  :  0,+22  and  -22°/s  2  ),  as  well  as  their  interaction,  all  treated 

 as parametric variables: 

 (2)  aSPv ~ 1 + v0*accel + (1 + v0 + accel | participant) 

 In  order  to  test  the  actual  role  of  target  acceleration  this  model  was  tested 

 against  the  model  including  only  v0  as  �xed  e�ect  using  the  bayestestR  package  for 

 R  (Makowski  et  al.,  2019).  Pairwise  comparisons  between  aSPv  corresponding  to  the 

 target  kinematics  (  Tk  )  conditions  of  Experiment  3  were  based  on  a  categorical  LMM, 

 initially de�ned as: 

 (3)  aSPv ~ 1 + Tk+ (1 + Tk| participant) 

 Contrasts  between  the  di�erent  conditions  were  performed  using  the 

 emmeans  package  for  R  (Lenth,  2017)  and  p-values  were  adjusted  for  multiple 

 comparisons  using  the  Benjamini  &  Hochberg  method  for  controlling  the  false 

 discovery rate. 

 We  then  tested  the  hypothesis  that  anticipatory  eye  velocity  is  driven  by  an 

 estimate  of  the  mean  target  velocity  across  a  �nite  temporal  window  of  integration 

 (TWI)  starting  at  target  motion  onset  (time  0)  and  ending  at  time  TWI  end  .  In  order  to 

 do so we �tted, for the pooled participants’ data, the following linear regression: 
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 (4)  aSPv = slope*Tk + intercept 

 and  extracted  the  individual  best-�t  value  for  the  parameters  slope  i  and 

 intercept  i  .  Here,  Tk  included  v11c,  v22c,  and  v33c.  We  then  used  the  same  relation 

 (5)  for  the  six  conditions  with  accelerating  targets,  indexed  by  the  su�x  i,  replacing 

 Tk  by  the  target  speed  estimate  (TSE  i  ),  which  approximates  the  accelerating 

 kinematics: 

 (5)  aSPv  i  = slope*  TSE  i  + intercept 

 Solving with respect to TSE  i  we have: 

 (6)  TSE  i  = (  aSPv  i  -  intercept  )/  slope 

 By  imposing  the  equality  between  the  estimated  target  speed  TSE  i  and  the  mean  of 

 the  accelerating/decelerating  target  speed  over  a  �nite  TWI,  between  0  and  TWI  end  , 

 we obtain: 

 (7)  (  aSPv  i  -  intercept  )/  slope = 1/  TWI  end ×    
 0 

 𝑇𝑊𝐼𝑒𝑛𝑑 

∫ ( 𝑣  0 +  𝑎 *  𝑡    ) 𝑑𝑡 

 where  a  is  the  acceleration  value  and  v0  the  initial  target  speed  for  accelerating 

 conditions.  Finally,  by  solving  Equation  8  with  respect  to  TWI  end  we  could  estimate, 

 for  each  acceleration  condition,  the  �nal  point  in  time  of  the  temporal  window  of 

 integration, 

 (8)  TWI  end  = 2/a  [(  aSPv  i  -  intercept  )/  slope  - V0] ×
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 In  order  to  have  a  robust  estimate  of  the  variability  of  such  temporal  window  of 

 integration  across  the  population,  we  used  the  bootstrapping  technique  (n=1000, 

 Efron,  1979)  and  extracted  the  95%  con�dence  interval  around  the  mean  estimated 

 TWI  end  . 

 Results 

 E�ects  of  target  speed  probability  on  anticipatory  Smooth  Eye 

 Movements 

 Using  a  state-of-the-art  eye  movement  recording  technique  (scleral  search 

 coil),  we  �rst  investigated  the  e�ects  of  target  speed  probability  upon  anticipatory 

 smooth  eye  movements.  In  Experiment  1A,  three  participants  had  to  smoothly 

 pursue  a  target  which  moved  rightwards  along  the  horizontal  axis  with  two 

 di�erent  possible  speeds  (referred  to  as  high-speed,  HS,  and  low-speed,  LS) 

 randomly  interleaved  across  trials  but  with  a  given  probability  of  occurrence  (P(HS) 

 and  P(LS)=1-P(HS))  within  a  block.  Figure  2a  shows  the  trial-averaged  eye  velocity 

 curves  for  one  participant,  sorted  by  probability  and  target  speed  conditions.  Each 

 probability  condition  is  represented  by  a  di�erent  color.  The  two  di�erent  target 

 speed  pro�les  are  illustrated  by  the  horizontal  dotted  lines;  time  zero  corresponds  to 

 target  motion  onset.  Participants  were  able  to  track  the  two  target  motions  with 

 high  accuracy,  as  shown  by  the  convergence  of  eye  velocity  to  the  target  speed 

 during  steady-state  pursuit.  Since  target  motion  direction  was  always  rightward,  we 

 observed  a  strong  anticipatory  response  for  all  speed  probability  conditions,  as 

 evidenced  by  the  non-zero  eye  velocity  at  the  usual  pursuit  latency  in  humans 
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 (~100  ms).  However  these  anticipatory  responses  in  the  predicted  direction  were 

 also  modulated  by  target  speed  probability.  We  analyzed  such  modulation  by 

 considering  the  relationship  between  amplitude  of  anticipatory  responses  and 

 P(HS),  i.e.,  the  probability  of  the  highest  speed  (16.5  °/s).  As  illustrated  in  Figure 

 2a  ,  higher  values  of  P(HS)  drove  stronger  anticipatory  pursuit,  regardless  of  the 

 actual  target  speed  (16.5  ou  5.5  °/s).  Figure  2b  plots  the  relationship  between  mean 

 anticipatory  eye  velocity  (aSPv)  and  P(HS),  for  the  3  participants.  The  gray  curves 

 are  the  linear  relationships  estimated  from  the  Linear  Mixed  E�ects  Model  (LMM). 

 We  found  a  clear  linear  dependency  of  anticipatory  response  upon  the  probability  of 

 target  speed,  in  the  direction  of  target  motion.  The  LMM  statistical  analysis  (with 

 P(HS)  as  a  �xed  e�ect)  shows  that  aSPv  signi�cantly  increased  with  higher 

 probability  (P(HS)  e�ect:  beta  =  3.48,  95%  CI  =  (3.14,3.84),  p<.001).  Overall, 

 anticipatory  responses  were  stronger  by  ~200  %,  rising  from  2.5  to  7.5  °/s  when 

 P(HS) increased from 0 to 1. 
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 Figure  2.  Experiment  1A:  Dependence  of  anticipatory  eye  velocity  upon  target  speed 
 probability.  (a)  .  Average  eye  velocity  as  a  function  of  time  (+/-  95%  con�dence 
 interval)  for  one  representative  participant.  Trials  are  grouped  by  probability  of  the 
 higher  speed  (HS).  Each  color  corresponds  to  one  probability  condition.  The  time  zero 
 corresponds  to  the  target  onset,  and  the  dashed  lines  indicate  the  two  possible  target 
 speeds.  (b)  .  Anticipatory  eye  velocity  for  the  group  of  participants.  Each  box  plot 
 (median  in  yellow,  box  limits  corresponding  to  the  25%  and  75%  quartiles,  and  whiskers 
 corresponding  to  1.5  times  the  interquartile  range,  IQR)  corresponds  to  one  probability 
 condition. The gray lines show the linear mixed model �t for each participant. 

 In  a  second  version  of  this  Experiment  (Exp  1B),  our  objective  was  to 

 replicate  the  speed-probability  dependency  of  anticipatory  pursuit  on  a  larger  group 

 of  13  participants,  with  a  less  invasive  eye  tracking  technique.  We  used  two  new 
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 speeds  (11  and  33°/s)  and  a  reduced  set  of  probability  conditions  in  the  mixture 

 blocks  (P(v33c)=0,  0.3,  0.7  and  1).  By  using  an  oblique  target  motion  direction,  our 

 second  objective  was  to  generalize  this  speed  probability  dependency  across  visual 

 motion  directions,  by  having  the  target  moving  along  one  of  the  4  diagonal 

 directions  (  Figure  1b  ).  To  directly  compare  the  results  of  Experiment  1A  and  1B,  we 

 �rst  report  the  e�ects  of  target  speed  probability  observed  when  varying  P(v33c)  – 

 and  therefore  P(v11c)=1-P(v33c)  –  across  blocks  with  constant  speed  (v11c,v33c) 

 mixtures.  Figure  3a  shows  an  example  of  the  trial-averaged  eye  velocity  as  a 

 function  of  time  for  one  participant,  sorted  according  to  the  target  velocity  pro�les 

 (dotted  lines)  and  P(v33c)  values.  Horizontal  dotted  lines  depict  the  target 

 horizontal  and  vertical  velocity  components  (i.e.  7.77  and  23.3  °/s  for  11  and  33  °/s 

 radial  speed).  A  comparison  with  Figure  2a  shows  a  behavior  similar  to  Exp  1A 

 where  target  motion  was  horizontal.  Final  pursuit  velocity  matches  target  velocity, 

 especially  for  the  lowest  target  speed  (v11c).  The  fact  that  steady-state  eye  velocity 

 gain  remained  lower  than  1  for  the  fastest  target  speed  (v33c)  is  consistent  with 

 previous  studies  (Carl  &  Gellman,  1987;  Dodge,  1930).  As  in  Exp  1A,  target  motion 

 direction  remained  constant  within  a  block,  thus  a  robust  anticipatory  pursuit 

 response  was  always  observed.  However,  its  amplitude  increased  when  P(v33c) 

 increased.  Such  dependency  is  illustrated  in  Figure  3b  ,  where  horizontal  and 

 vertical  components  of  anticipatory  eye  velocity  (aSPv)  are  plotted  against  P(v33c). 

 Both  components  increased  linearly  with  the  probability  of  the  highest  speed.  A 

 symmetric  relationship  was  observed  with  P(v11c).  We  ran  the  LMM  statistical 

 models  for  the  anticipatory  response  (aSPv),  including  the  e�ect  of  P(v33c),  as  for 
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 Exp  1A.  We  added  the  e�ect  of  the  eye  velocity  axis  (horizontal  or  vertical)  and  its 

 interaction  to  test  whether  aSPv  was  di�erently  modulated  along  the  horizontal  and 

 vertical  dimensions.  aSPv  increased  signi�cantly  for  higher  probability  of  P(v33c) 

 (  Figure  3b  ,  P(v33c)  e�ect:  beta  =  2.74,  95%  CI  =  (1.82,  3.66),  p<.001).  We  did 

 not  �nd  a  signi�cant  di�erence  (given  a  criterion  of  alpha  <0.01)  between  axes 

 (main  axis  e�ect:  beta  =  -0.74,  95%  CI  =  (-1.46,  -0.016),  p=0.046),  but  the  e�ect 

 of  P(v33c)  was  signi�cantly  smaller  in  the  vertical  axis  (P(v33c)*axis  e�ect:  beta  = 

 -0.67,  95%  CI  =  (-0.98,  -0.36),  p<.0001).  Overall,  the  two  experiments  strongly 

 support  the  fact  that  anticipatory  eye  velocity  scales  with  the  probability  of  target 

 speed,  in  a  similar  way  across  di�erent  motion  directions  in  the  plane,  although 

 slightly less robustly along the vertical direction. 
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 Figure  3.  Experiment  1B:  Dependence  of  anticipatory  eye  velocity  upon  target 
 constant-speed  probability.  (a).  Average  eye  velocity  for  trials  grouped  by  probability  of  v33c 
 and  by  target  velocity  for  the  (v11c,v33c)  mix.  The  left  panel  shows  the  horizontal  eye 
 velocity,  while  the  right  panel  shows  the  vertical  eye  velocity  for  a  representative  participant. 
 Each  color  corresponds  to  the  di�erent  probabilities  of  v33c.  (b).  Amplitude  of  anticipatory 
 pursuit  is  plotted  against  P(v33c),  along  the  horizontal  (left  panel)  and  vertical  (right  panel) 
 axes. Data represented in the same way as Figure 2. 

 Short  and  long-time  scale  factors  a�ecting  speed  expectation  and  eye 
 movement anticipation 

 Recent  trial  history,  that  is  the  stimulus  properties  (e.g.  the  target  speed)  observed 

 in  the  previous  trial,  or  across  the  few  previous  trials,  can  modulate  anticipatory  eye 

 movements  (e.g.  Heinen  et  al.,  2005;  Kowler  &  McKee,  1987;  Kowler  &  Steinman, 

 1979;  Maus  et  al.,  2015).  Importantly,  several  studies  have  also  shown  that  both 

 short-term  factors  related  to  one  or  few  previous  trials,  and  longer-term  factors, 

 related  to  global  statistical  estimates  can  coexist  and  interact  to  control  perception 

 and  visuomotor  behavior  (e.g.  Chopin  &  Mamassian,  2012;  Maus  et  al.,  2015, 

 Damasse  et  al.,  2018;  Falmagne  et  al.,  1975;  Kowler,  1984;  Pasturel  et  al.,  2020;  Wu 

 et  al.,  2021)  .  In  order  to  quantify  the  e�ects  of  the  previous  trial’s  speed  on  the 

 anticipatory  eye  velocity  in  the  present  study,  as  well  as  its  interaction  with  the 

 block’s  speed  probability,  we  ran  a  new  LMM,  now  including  both  the 

 speed-probability  and  the  target  speed  at  the  trial  N-1  (Tv  N-1  ).  Note  that  our  study 

 was  not  designed  speci�cally  to  study  sequential  e�ects  (i.e.,  by  presenting  all 

 possible  combinations  of  N-1,  N-2,  N-3,…  trials),  and  therefore  we  limit  our  analysis 

 of  short-term  e�ects  only  to  the  e�ect  of  the  trial  N-1.  When  the  previous  trial  was  a 

 low-speed  trial,  aSPv  decreased  when  compared  to  a  previous  high-speed  trial 
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 (Exp1A:  beta  =  -0.50,  95%  CI  =  (-0.66,  -0.34),  p<.001;  Exp1B:  beta  =  -0.61,  95% 

 CI  =  (-0.88,  -0.34),  p<.001).  For  both  Experiment  1A  and  1B,  we  found  that  the 

 main  e�ect  of  target  speed  probability  upon  aSPv  remained  signi�cant  (Exp1A, 

 Tv  N-1  =HS:  beta  =  4.35,  95%  CI  =  (3.98,  4.72),  p<.001;  Exp1B,  Tv  N-1  =v33:  beta  = 

 1.38,  95%  CI  =  (0.44,  2.32),  p<0.01).  The  interaction  between  the  previous  trial’s 

 speed  and  the  block’s  speed  probability  was  also  signi�cant,  although  with  a 

 di�erent  sign:  for  Experiment  1A  the  probability  e�ect  was  reduced  when  the 

 previous  trial  was  low-speed  compared  to  high  speed  (beta  =  -2.74,  95%  CI  = 

 (-3.10,  -2.38),  p<.001);  in  contrast,  for  Experiment  1B  the  probability  e�ect 

 increased  when  the  previous  trial  was  at  v11c  compared  to  v33c  (beta  =  0.82,  95% 

 CI  =  (0.38,  1.26),  p<.001).  These  results  are  illustrated  in  the  left  panels  of  Figure 

 4a,b  .  In  the  right  panels  of  Figure  4a  and  4b  we  plotted,  for  Experiment  1A  and  1B 

 respectively,  the  di�erence  between  the  mean  aSPv  for  trials  following  a  high-speed 

 (in  red)  or  a  low-speed  (in  blue)  trials  and  the  mean  aSPv  across  all  trials  in  a 

 probability  block.  This  illustration  allows  us  to  immediately  capture  how  the  N-1 

 trial’s  e�ect  is  modulated  across  the  probability  values:  a  high-speed  previous  trial 

 has  a  larger  excitatory  impact  on  subsequent  anticipatory  velocity  when  high-speed 

 trials  are  less  frequent.  The  symmetric  interaction  is  observed  for  a  low-speed 

 previous  trial,  namely  its  inhibitory  e�ect  is  stronger  in  blocks  with  a  low 

 probability of low-speed trials. 
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 Figure  4.  E�ect  of  previous  trial’s  speed  versus  block’s  probability.  (a)  Experiment  1A. 
 The  left  panel  shows  the  probability  e�ect  on  the  aSPv  given  that  the  trial  N-1  was  a 
 high-speed  trial  (HS,  red)  or  a  low-speed  trial  (LS,  blue).  The  right  panel  shows  the 
 di�erence  between  the  mean  aSPv  for  trials  with  N-1=HS  (red),  or  N-1=LS  (blue)  and 
 the  mean  aSPv  in  the  whole  block.  Each  trace  corresponds  to  one  participant,  while  dots 
 correspond  to  the  average  between  participants.  (b)  Same  analysis  for  Exp  1B.  On  the 
 right  panel,  individual  traces  were  substituted  by  the  95%  con�dence  interval  across 
 participants for the sake of clarity. 

 E�ects  of  the  accelerating  target  probability  on  anticipatory  eye 

 movements 

 Following  the  same  reasoning  as  for  constant  speed  mixture  blocks,  we  tested 

 the  e�ect  of  the  probability  of  accelerating  target  kinematics  on  aSP.  In  Experiments 

 2A  and  2B,  we  compared  di�erent  probabilistic  mixtures  of  trials  of  accelerating  or 

 decelerating  target  motion.  Participants  ran  blocks  of  4  di�erent  probability  pairs 
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 (P(v33d),  P(v11a)):  (0,1),  (0.3,  0.7),  (0.7,  0.3)  and  (1,0).  In  Figure  5,  we  present  the 

 results  relative  to  P(v33d)  values.  Figure  5a  shows  horizontal  and  vertical 

 trial-averaged  eye  velocities  for  one  participant  and  each  available  combination  of 

 P(v33d)  and  target  kinematic  conditions.  Again,  each  color  depicts  one  probability 

 condition  and  time  zero  indicates  the  target  movement  onset.  We  can  see  clear 

 anticipatory  responses,  with  stronger  anticipation  occurring  for  higher  probabilities 

 of  the  highest  initial  velocity  and  decelerating  motion.  After  the  anticipatory  phase, 

 eye  velocity  traces  corresponding  to  vacc  or  vdec  trials  separate  and  converge  to  the 

 target’s  velocity  which  keeps  changing  in  time  according  to  the  acceleration 

 condition.  Notice  that  the  anticipation  seen  with  P(v33d)=0  (i.e.,  P(v11a)=1)  was 

 particularly  small  but  still  signi�cant  in  participant  6,  as  in  all  others.  Figure  5b 

 plots  the  horizontal  and  vertical  aSPv,  as  a  function  of  P(v33d),  for  all  participants. 

 There  is  an  increase  in  the  amplitude  of  anticipatory  pursuit  as  P(v33d)  increases,  as 

 con�rmed  by  the  LMM  statistical  analysis  (P(v33d):  beta  =  1.88,  95%  CI  =  (1.11, 

 2.65),  p<.001).  Consistently  with  the  previous  analysis,  we  did  not  �nd  any 

 signi�cant  di�erence  between  axes  (axis  main  e�ect:  beta  =  -0.46,  95%  CI  = 

 (-1.26,  0.34),  p=0.26)  and  the  interaction  between  axis  and  probability  did  not 

 survive  the  model  selection  procedure,  suggesting  it  was  not  signi�cant.  We  found 

 that  the  aSPv  was  slightly  higher  in  Exp  2B  (constant  target  duration)  than  in  Exp 

 2A  (constant  target  displacement)  (experiment  e�ect:  beta  =  1.68,  95%  CI  =  (1.41, 

 1.95),  p<.001),  but,  again,  the  interaction  between  experiment  and  probability  was 

 excluded  from  the  selected  model.  Overall,  in  the  probability-mixture  blocks  with 

 accelerating  targets,  we  observed  a  robust  probability-dependent  anticipation, 
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 similar  to  the  mixture  blocks  with  constant  speed  and  this  regardless  of  the  motion 

 direction.  The  signi�cant  main  e�ect  of  the  experimental  design  (di�erence  between 

 Exp  2A  and  2B)  suggests  that  the  temporal  regularity  across  trials  generally  favors 

 anticipatory  behavior;  however,  the  lack  of  interaction  between  the  experiment 

 design  and  the  probability  e�ect  argues  against  a  critical  role  of  the  motion 

 presentation  duration  (at  least  in  the  tested  range,  namely  above  500ms)  on  the 

 integration of information about the target acceleration. 

 Figure  5.  Experiment  2A,B.  E�ect  of  the  probability  of  accelerating  target  kinematics  upon 
 anticipatory  eye  movements  (mixture  blocks).  (a).  Average  eye  velocity  across  time  for  a 
 representative  participant.  Trials  are  grouped  according  to  the  probability  of  v33d 
 (P(v33d))  and  sorted  by  the  di�erent  target  kinematic  conditions  for  each  (P(v33d), 
 P(v11a))  mixture.  Left  and  and  right  panels  show  horizontal  and  vertical  eye  velocity 
 pro�les,  respectively.  The  dashed  lines  show  the  target  velocity.  (b).  Mean  anticipatory  eye 
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 velocity  as  a  function  of  the  probability  of  v33d,  group  results.  The  left  panel  shows  the 
 data  for  Exp  2A,  while  the  right  panel  shows  the  data  for  Exp  2B.  Horizontal  data  is  shown 
 in red, and vertical data is shown in blue. Data represented in the same way as Figure 2. 

 E�ects  of  di�erent  target  kinematics  on  anticipatory  Smooth  Eye 

 Movements 

 Lastly,  we  questioned  in  Experiment  3  how  the  anticipation  for  accelerating 

 target  motion  compares  to  that  observed  for  constant  target  speeds.  We  compared 

 three  conditions  where  oblique  target  motion  had  a  constant  speed  (v11c,  v22c  and 

 v33c,  corresponding  to  radial  11,  22  and  33  °/s,  respectively)  to  conditions  in  which 

 the  target  started  at  11,  22  or  33  °/s  and  either  accelerated  uniformly  (v11a,  v22a, 

 v33a,  acceleration  =  22  °/s  2  )  or  decelerated  uniformly  (v11d,  v22d,  v33d, 

 acceleration  =  -22  °/s  2  ).  The  di�erent  target  kinematic  conditions  were  presented  in 

 a  block  design  and  motion  direction  was  �xed  for  each  participant,  leading  to  full 

 predictability  of  both  target’s  trajectory  and  kinematics  (P=1).  Figure  6  shows  eye 

 velocity  pro�les  recorded  in  one  participant,  for  Exp  3,  for  each  target  kinematic 

 condition  illustrated  by  the  dotted  lines.  Each  row  of  Figure  6  corresponds  to  one 

 initial  target  speed  value,  while  acceleration  values  are  shown  in  di�erent  colors 

 (accelerating  motion  in  green,  constant  motion  in  blue,  and  decelerating  motion  in 

 pink).  Predictable  constant  speed  targets  drove  strong  anticipatory  pursuits  that 

 were  scaled  according  to  target  speed  (blue  curves,  from  top  to  bottom).  Moreover, 

 accelerating  conditions  also  resulted  in  clear  anticipatory  pursuit  responses.  As 

 clearly  seen  with  the  22  and  33°/s  initial  speed  conditions,  green  and  red  curves  are, 
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 respectively,  above  and  below  the  blue  ones,  illustrating  that  anticipatory  responses 

 were modulated by both initial speed and target acceleration. 

 Figure  6.  Experiment  3:  E�ect  of  target  kinematics  on  aSP  (fully  predictable  blocks).  (a). 
 Average  eye  velocity  over  time  with  trials  grouped  by  target  speed  (rows:  v11,  v22,  and 
 v33  from  top  to  bottom)  and  target  acceleration  values  (color  coded:  accelerating  in  green, 
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 constant  in  blue,  decelerating  in  pink)  for  one  participant  of  Exp  3.  The  dashed  lines  show 
 the corresponding target speed pro�le for each acceleration value. 

 Figure  7  illustrates  the  amplitude  of  anticipatory  pursuit  responses  (aSPv)  for 

 the  di�erent  conditions  across  all  participants.  Note  that,  for  each  initial  speed, 

 there  is  a  tendency  for  aSPv  to  increase  as  the  acceleration  increases.  To  statistically 

 test  the  e�ect  of  acceleration  on  the  anticipatory  eye  velocity,  we  ran  a  parametric 

 linear  mixed-e�ects  regression  model  including  both  the  acceleration  and  the  initial 

 target speed as independent variables. 

 We  found  that  a  model  including  both  the  initial  speed  and  acceleration  was 

 signi�cantly  better  than  a  model  including  only  the  initial  speed  (speed-only  model 

 BIC  =  43521.6;  full  model  BIC  =  43308.97;  Bayes  Factor  =  1.48e+46).  The  initial 

 speed  signi�cantly  modulated  the  aSPv  (v0:  beta  =  0.24,  95%  CI  =  (0.15,  0.34), 

 p<.001),  while  the  acceleration  alone  had  a  signi�cant  but  smaller  positive  e�ect 

 on  the  aSPv  (accel:  beta  =  0.017,  95%  CI  =  (0.004,  0.030),  p=0.009),  indicating 

 that  indeed  aSPv  increases  with  target  acceleration.  We  also  found  a  signi�cant 

 positive  interaction  between  initial  speed  and  acceleration  (v0*accel:  beta  =  0.001  , 

 95%  CI  =  (0.0004,  0.002),  p=.004),  indicating  that  the  e�ect  of  acceleration  is 

 stronger for high initial speeds when compared to low initial speeds. 
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 Figure  7.  Experiment  3:  Group  e�ect  of  target  kinematics  on  the  aSPv.  aSPv  is  grouped 
 by  initial  velocity  (v11,  v22  and  v33,  from  left  to  right,  respectively)  and  acceleration 
 values  are  shown  in  di�erent  colors  (decelerating  target  motion  in  pink,  constant  target 
 motion  in  blue  and  accelerating  target  motion  in  green).  Data  are  represented  in  the  same 
 way as Figure 2. 

 Temporal  window  of  estimation  of  the  mean  target  speed  for  accelerating 
 motion 

 Previous  studies  investigating  predictive  smooth  pursuit  during  the  transient 

 disappearance  of  the  target  have  compared  di�erent  possible  schemes  of  temporal 

 integration  to  build  an  internal  model  of  complex  target  motion.  Such  alternative 

 internal  models  could  either  take  into  account  only  the  last  sample  of  observed 

 target  velocity  before  target  blanking,  or  an  average  of  velocity  across  a  �nite  time 

 window,  or  use  both  the  last  velocity  sample  and  its  rate  of  change.  Their  results 

 suggest  that  the  rate  of  speed  change  (i.e.  acceleration)  was  only  taken  into  account 

 if  target  displacement  properties  were  estimated  during  a  su�ciently  long  interval 
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 (Bennet  et  al.  2007).  Performance  was  in  any  case  inaccurate  due  to  a  lack  of 

 su�cient  extrapolation  of  accelerating  motion  (Bennet  &  Benguigui  2013).  Together 

 with  the  results  of  Bennet  and  Barnes  (2006),  our  results  suggest  that  the  target’s 

 acceleration  is  integrated,  though  with  a  small  weight  and  large  variability,  in  the 

 internal  model  of  visual  motion  that  drives  anticipatory  smooth  eye  movements 

 across  a  block  of  trials  where  the  target  motion  is  highly  predictable  (as  illustrated 

 in  the  previous  section).  However,  such  an  e�ect  does  not  imply,  per  se  ,  that  a 

 representation  of  target  acceleration  is  accessible  to  the  visuo-motor  system.  For 

 instance,  an  estimate  of  target  speed  across  a  �nite  temporal  window  could  be  used 

 as  a  proxy  for  target  motion  and  drive  anticipation.  Thus,  we  simulated  a  similar  but 

 more  realistic  version  of  the  simplest,  initial  speed  based,  internal  model  of  target 

 motion.  We  reasoned  that,  rather  than  an  instantaneous  estimate  of  target  velocity 

 (in  our  case  the  target  velocity  at  time  0,  or  target  motion  onset)  the  internal  model 

 of  motion  stored  in  memory  would  take  into  account  an  estimate  of  the  mean  target 

 velocity  computed  over  a  �nite  time-window  around  target  motion  initiation.  This 

 alternative  model  could  accommodate  the  observation  that  expectancy-based 

 anticipatory  velocity  di�ers,  but  only  weakly,  for  two  targets  with  the  same  initial 

 velocity  and  a  di�erent  acceleration.  Note  that  we  can  already  speculate  that  such 

 hypothetical  temporal  window  of  integration  should  be  shorter  than  500ms.  If  this 

 was  not  the  case,  aSPv  should  not  di�er  between  target  kinematic  conditions  that 

 lead  to  the  same  mean  target  speed  across  the  500ms  window  of  motion 

 presentation.  In  Experiment  3,  two  pairs  of  conditions  �t  to  this  requirement, 

 namely  (v11a,  v22d)  and  (v22a,  v33d).  For  both  pairs,  aSPv  is  signi�cantly  higher 
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 for  the  second  than  for  the  �rst  target  kinematic  condition  (v11a-v22d  =  -1.503,  SE 

 = 0.139, p<.0001; v22a-v33d = -0.443, SE = 0.132, p<.001). 

 Figure  8  illustrates  the  rationale  and  the  results  of  our  model-based  analysis  of  the 

 temporal  window  of  velocity  integration.  We  have  shown  in  the  previous  sections 

 that  a  linear  regression  describes  the  relationship  between  target  speed  and 

 anticipatory  eye  velocity  for  predictable,  constant  target  speeds  (schematically 

 illustrated  in  Figure  8a  ,  upper  panel,  blue  line).  We  assumed  that  1)  the  same  linear 

 regression  applies  to  the  accelerating  conditions  as  well,  to  describe  the  relationship 

 between  anticipatory  eye  velocity  and  the  target  speed  estimate  (TSE) 

 approximating  the  accelerating  kinematics;  2)  such  an  estimate,  TSE,  would 

 correspond  to  the  mean  target  speed  computed  over  a  �nite  temporal  window  of 

 integration  (TWI),  starting  at  time  0  (target  motion  onset)  and  ending  at  time 

 TWI  end  .  Thus,  in  order  to  have  a  reliable  estimate  of  TWI  end  for  all  kinematic 

 conditions  across  participants,  we  �rst  estimated  the  linear  regression  between  aSPv 

 and  target  speed  at  the  group  level,  by  pooling  the  data  of  all  participants  together. 

 We  then  computed  the  mean  TSE  knowing  the  aSPv  values  corresponding  to 

 accelerating  conditions  and  inverting  the  above-mentioned  linear  relation  (as 

 illustrated  in  the  top  panel  of  Figure  8a  ).  From  the  TSE  value,  we  �nally  inferred 

 the  mean  TWI  end  (as  schematized  in  Figure  8a,  bottom  panel)  and  its  variability 

 using  a  bootstrapping  procedure  (  Efron,  1979  ,  see  Figure  8b  ;  for  details  of  the 

 calculations  please  refer  to  the  �gure  caption  and  the  Methods  section)  .  Note  that 

 the  estimated  TWI  end  for  accelerating  conditions  is  between  0  and  500  ms,  although 

 the  distribution  is  very  broad  (v11a,  mean  =  0.15,  95%  CI  =  (-0.04,  0.34);  v22a, 
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 mean  =  0.18,  95%  CI  =  (-0.03,  0.33);  v33a,  mean  =  0.19,  95%  CI  =  (-0.14, 

 0.49)).  Remarkably,  the  TWI  end  distribution  for  decelerating  conditions  displays 

 smaller  values,  largely  overlapping  with  0,  but  also  includes  a  wide  range  of 

 unrealistic  (negative)  values  (v11d,  mean  =  -0.01,  95%  CI  =  (-0.17,  0.10);  v22d, 

 mean  =  -0.09,  95%  CI  =  (-0.23,  0.07);  v33d,  mean  =  0.004,  95%  CI  =  (-0.33, 

 0.32)). 

 Figure  8.  Testing  the  hypothesis  of  a  �nite  temporal  window  of  integration  (TWI)  to 
 extract  a  target  speed  estimate  (TSE)  for  accelerating  conditions.  (  a  )  Schematic 
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 illustration  of  the  procedure  to  compute  the  temporal  window  (the  number  of  datapoints 
 is  reduced,  for  the  sake  of  clarity:  for  details  refer  to  the  Methods  section).  Upper  panel  : 
 At  the  group  level  and  for  the  constant  speed  blocks,  we  calculated  the  linear  regression 
 between  aSPv  and  target  speed  (blue  straight  line).  On  the  basis  of  this  regression,  for 
 accelerating  blocks  (pink  or  green  dots),  we  performed  the  inverse  operation  to  calculate 
 the  estimated  target  speed  (TSE)  that  would  have  elicited  the  observed  aSPv.  Lower 
 panel  :  The  TWI  is  estimated  as  the  temporal  window  over  which  the  mean  of  the 
 accelerating  target  speed  equals  TSE,  as  exempli�ed  for  two  particular  accelerating 
 conditions  (v11a  and  v33d).  (b)  Distribution  of  the  bootstrapped  estimates  of  TWI  for  the 
 accelerating  conditions.  Each  panel  shows  the  TWI  distributions  for  one  initial  speed 
 (v11,  v22  and  v33  from  top  to  bottom)  and  for  the  accelerating  (pink)  vs  decelerating 
 (green) target motion. The smooth line depicts a gaussian �t of the histograms. 

 Overall,  these  results  cannot  exclude  the  possibility  that  visual  accelerating 

 motion  is  approximated  by  the  mean  target  speed  estimate  across  a  �nite  time 

 window.  However,  the  large  variability  of  the  inferred  TWI  and  the  presence  of 

 incoherent  results,  like  negative  TWI  end  (especially  for  deceleration  targets)  impose  a 

 strong  caution  in  the  interpretation.  We  will  further  discuss  this  �nding  in  the 

 Discussion section. 

 Discussion 

 We  had  two  main  objectives  with  the  present  study.  First,  we  wanted  to  analyze  the 

 e�ects  of  a  parametric  change  of  the  target  speed  probability  upon  human 

 anticipatory  smooth  eye  movements.  We  have  done  this  by  re-analyzing  previously 

 collected  data  (see  Souto  et  al.,  2008)  and  by  replicating  and  generalizing  those 

 results  in  a  larger  group  of  participants  and  di�erent  conditions,  including  targets 

 with  di�erent  motion  direction,  speed  and  acceleration  pro�les.  We  used  target 

 motion  trajectories  along  both  horizontal  and  oblique  directions  but  kept  target 
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 motion  direction  constant  within  blocks  in  all  experiments.  Second,  we  compared 

 di�erent  fully  predictable  target  kinematics,  namely  constant  or  accelerating  target 

 speeds  and  analyzed  their  e�ect  on  anticipatory  eye  movements.  We  found  that 

 anticipatory  responses  were  strongly  modulated  by  both  constant  and  accelerating 

 target  speeds.  We  report  a  linear  scaling  of  anticipatory  smooth  pursuit  with  target 

 speed  (or  acceleration)  probability,  similar  to  what  we  previously  reported  for  a 

 probability  bias  in  direction  and  distinct  from  the  short-term  trial  history  e�ects.  We 

 also  investigated,  through  statistical  and  model-based  analyses,  whether  the  internal 

 model  of  visual  motion  that  drives  anticipatory  smooth  pursuit  would  integrate 

 information  about  the  target’s  accelerating  pro�le.  Our  results,  although  very 

 variable  across  participants,  provide  evidence  that  humans  can  integrate  some 

 information  about  acceleration  and  use  it  to  anticipate  the  forthcoming  target 

 motion.  Whether  this  integration  is  grounded  on  an  internal,  noisy  representation  of 

 motion  acceleration,  or  on  an  approximation  of  the  target  mean  velocity  over  an 

 extended temporal window remains to be further investigated. 

 A  linear  dependence  between  anticipatory  pursuit  and  the  probability  of 

 target kinematic cues 

 In  two  separate  experiments,  we  showed  that  the  velocity  of  anticipatory 

 pursuit  is  modulated  by  the  constant-speed  probability  of  visual  moving  targets, 

 regardless  of  its  fully  predictable  direction.  These  results  are  consistent  with 

 previous  reports  (as  reviewed  in  Kowler  et  al.,  2019)  that  showed  that  anticipatory 

 smooth  velocity  is  modulated  by  the  predictability  of  target  speed,  as  well  as  by 
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 short-term  trial-sequence  e�ects.  Our  results  are  however  novel  in  several  aspects. 

 First,  we  demonstrate  a  parametric,  linear  relationship  between  the  amplitude  of  the 

 anticipatory  phase  and  a  broad  range  of  target  speed  probability.  Such  a  linear 

 relationship  is  observed  also  over  a  large  interval  of  target  speeds  (from  5  to  above 

 30°/s)  and  is  similar  for  targets  moving  along  either  the  horizontal  (  Figure  2  )  or  the 

 oblique  axes  (  Figure  3  ).  In  addition,  similar  to  a  previous  study  of  our  group 

 (Damasse  et  al.,  2018)  we  have  provided  evidence  that  short-term  e�ects  driven  by 

 the  previous  trial’s  speed  can  coexist  and  interact  with  the  long-term  e�ects  that 

 were  the  main  objective  in  the  present  study.  In  particular,  experiencing  a  high 

 (low)  speed  trial  yields  an  increase  (decrease)  of  aSPv  in  the  following  trial  with 

 respect  to  the  block’s  average  (  Figure  4  ),  but  this  e�ect  is  strongly  modulated  by 

 the  context,  namely  by  the  probability  of  high  (or  low)  speed  trials.  Moreover,  we 

 show  that  higher  order  kinematic  cues  such  as  acceleration  can  also  modulate  eye 

 velocity  during  anticipatory  pursuit,  again  regardless  of  the  (predictable)  target 

 motion  direction  and  such  an  e�ect  is  also  modulated  by  the  probability  of  these 

 higher-order kinematic cues (  Figure 5  ). 

 Overall,  these  novel  results  extend  our  previous  �ndings  of  a  linear 

 dependence  of  the  anticipatory  eye  velocity  upon  the  target  direction  probability 

 (Damasse  et  al.,  2018;  Santos  &  Kowler,  2017)  and  further  demonstrate  that  the 

 statistical  regularities  of  di�erent  motion  properties  are  e�ciently  stored  in  memory 

 and  used  to  drive  anticipatory  visuomotor  control  across  a  timescale  of  several 

 seconds  to  several  minutes  and  more.  Our  results  argue  for  a  probabilistic  coding  of 

 target  velocity  (direction  and  speed),  and  possibly  of  target  acceleration  as  well.  Yet, 
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 future  work  is  needed  to  elucidate  whether  these  aspects  of  target  trajectories  are 

 encoded  together  or  separately  and  by  which  neuronal  populations  and 

 computational  processes.  It  is  important  to  notice  that  the  present  and  most  of  the 

 previous  results  demonstrating  some  degree  of  sensorimotor  adaptation  to  the 

 statistical  regularities  in  the  environment  do  not  imply  that  probabilities  are 

 explicitly  learnt  and/or  represented  as  abstract  concepts  in  the  brain.  The  very 

 nature  of  probabilistic  coding  in  the  brain  is  at  the  heart  of  important  lines  of 

 research,  and  the  relation  between  probabilistic  coding  and  probability-based 

 behavior  is  not  trivial  at  all.  In  any  case,  anticipatory  smooth  pursuit  eye 

 movements  appear  as  an  e�ective  behavioral  measure  to  elucidate  how  direction 

 and  kinematic  parameters  are  encoded,  together  with  their  uncertainty,  to  control 

 eye movements. 

 Is there an internal representation of accelerating target kinematics? 

 In  this  study,  we  also  addressed  the  question  of  how  information  about 

 accelerating  motion  could  be  integrated  in  the  internal  model  of  motion  that  drives 

 anticipatory  eye  movements.  To  do  so,  we  analyzed  how  predictable  accelerating 

 targets  a�ect  anticipatory  eye  velocity  compared  to  constant-speed  targets.  Target 

 motion  conditions  were  designed  such  that  constant  speeds  can  directly  be 

 compared  with  accelerating  conditions:  each  value  of  initial  speed  (11,  22  or  33  °/s) 

 was  paired  with  di�erent  acceleration  values.  The  linear  mixed-e�ects  regression 

 model  indicated  that  anticipatory  eye  velocity  was  not  simply  scaled  based  on  the 

 instantaneous  initial  target  speed,  but  also  on  its  acceleration.  Moreover,  the  e�ect 
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 of  acceleration  increased  with  the  initial  speed  (see  Figure  7  ,  and  statistical 

 analyses  reported  in  the  text).  We  performed  an  additional  model-based  analysis  to 

 tease  apart  the  possibility  that  the  internal  model  driving  anticipatory  smooth 

 pursuit  relies,  rather  than  on  an  exact  representation  of  target  acceleration,  on  a 

 simple  approximation  of  it,  namely  the  estimation  of  mean  target  speed  across  a 

 �nite  temporal  window  close  to  motion  onset.  Leveraging  on  the  linear  relation 

 between  predictable  target  speed  and  anticipatory  eye  velocity,  this  analysis  allowed 

 us  to  simulate  the  size  of  the  temporal  window  of  integration  and  its  variability 

 across  the  group  of  participants  tested  in  this  study  (  Figure  8  ).  Overall,  the 

 estimated  temporal  window  of  integration  was  strongly  variable  across  participants 

 and  in  the  case  of  decelerating  targets  these  estimates  were  often  unrealistic  (e.g. 

 negative  temporal  windows).  Interestingly,  the  distribution  of  TWI  estimates  with 

 accelerating  targets  was  clearly  di�erent  from  the  one  obtained  with  decelerating 

 targets,  and  centered  on  positive  and  plausible  values  (i.e.  around  two-hundred 

 milliseconds after target motion onset). 

 Whether  and  how  the  acceleration  of  moving  targets  is  represented  and  used 

 by  the  primate  visual  tracking  system  is  still  unclear  (Lisberger  &  Movshon,  1999), 

 even  though  target  acceleration  is  a  key  component  of  many  models  of  visual 

 target-driven  smooth  pursuit  eye  movements  (Brostek  et  al.,  2017;  Goldreich  et  al., 

 1992;  Krauzlis  &  Lisberger,  1994).  In  humans,  several  previous  studies  have 

 attempted  to  demonstrate  a  role  for  acceleration  and  whether  such  high-order 

 motion  cues  can  be  learned  through  the  history  of  target  motion,  on  both  the  short 

 (a  few  hundreds  milliseconds)  and  medium  to  long  (seconds  to  minutes  and  more) 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 31, 2024. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


 43 

 timescales.  Bennett  et  al.  (2007)  showed  that  when  smoothly  pursuing  an 

 accelerating  target  which  undergoes  an  occlusion  after  a  short  exposition  (200  ms) 

 in  a  random-presentation  condition,  human  participants  are  not  able  to  adaptively 

 use  the  acceleration  information.  Instead,  participants  seem  to  store  the  estimate  of 

 a  constant  velocity  and  use  saccades  to  compensate  for  the  displacement  error 

 between  the  eye  position  and  the  location  where  the  target  reappears.  Those  authors 

 found,  however,  that  after  a  longer  exposure  (500-800  ms,  comparable  to  our  visual 

 motion  duration),  smooth  pursuit  and  saccades  discriminate  between  the  di�erent 

 acceleration  pro�les.  Still,  prediction  of  the  target  position  at  the  end  of  the 

 occlusion  was  not  accurate.  Using  again  the  transient  target-occlusion  paradigm, 

 Bennett  &  Barnes  (2006)  probed  predictive  smooth  pursuit  of  accelerating  targets  in 

 blocked  vs  random  presentation  conditions.  They  reported  two  interesting  and 

 complementary  results:  in  a  blocked-design  paradigm  (thus  with  highly  predictable 

 motion  over  a  long  timescale),  anticipatory  eye  velocity  occurring  (1)  before  the 

 target  motion  onset  and  (2)  before  the  end  of  target  blanking  was  scaled  to  the 

 target  acceleration.  However,  increasing  uncertainty  about  target  acceleration,  by 

 mixing  trials,  had  canceled  such  dependency  and  anticipatory  eye  movements  were 

 no  longer  distinguishable  between  acceleration  conditions.  Other  studies  came  to 

 the  same  conclusion:  on  a  short  timescale  acceleration  information  can  be  used  to 

 somehow  control  online  tracking  eye  (and  hand)  movements  but  not  to  build  robust 

 predictive  motor  responses  to  moving  targets,  or  related  perceptual  judgements 

 (Kreyenmeier  et  al.  2022).  On  the  other  hand,  predictability  over  a  longer  timescale 

 seems  to  favor  the  integration  of  acceleration  information  for  visuomotor  control 
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 (  Bennett  &  Barnes,  2006  ).  Our  results  tend  to  corroborate  the  latter  claim,  with  the 

 caveat  of  a  large  inter-individual  variability  observed  in  the  anticipatory  behavior 

 with predictable accelerating motion. 

 Early  psychophysical  studies  have  shown  that  the  mean  speed  estimated  over 

 the  stimulus  motion  duration  in�uences  the  perceptual  discrimination  of 

 acceleration  (Brouwer  et  al.,  2002;  Gottsdanker  et  al.,  1961;  Schmerler,  1976). 

 Watamaniuk  &  Heinen  (2003)  showed  that  this  is  also  the  case  when  judging  and 

 tracking  an  accelerated  moving  target.  In  addition,  the  duration  of  the  temporal 

 window  during  which  the  target  kinematic  information  is  acquired  seems  to 

 in�uence  the  accuracy  of  acceleration  estimation  (Bennett  et  al.,  2007).  In  the 

 present  study,  our  model-based  analysis  of  the  temporal  window  of  integration 

 highlighted  a  large  inter-individual  variability,  as  well  as  a  dependence  on  the 

 acceleration  sign,  in  the  timescale  that  would  be  relevant  to  estimate  the  motion  of 

 accelerating  targets.  Overall,  several  contextual  factors  seem  to  in�uence  the 

 encoding  and  processing  of  visual  motion  acceleration.  The  precise  nature  -and  the 

 mere  existence!-  of  an  explicit  representation  of  visual  acceleration  in  the  brain 

 remains to be elucidated. 

 We  also  need  a  more  complete  understanding  of  how  speed  and  acceleration 

 cues  can  be  integrated  through  learning  sensorimotor  contingencies  in  speci�c  tasks. 

 A  very  peculiar  example  is  the  vertical  tracking  of  a  target  that  changes  speed  by 

 following  the  gravity  acceleration  (Zago  et  al.,  2010).  What  is  being  learned  in  an 

 experimental  session  (e.g.  probabilities  of  occurrence)  versus  the  entire  lifespan  (e.g. 
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 the  law  of  gravity,  or  friction,  see  Souto  &  Kerzel,  2013  ),  and  how  this  drives 

 anticipatory  pursuit  responses  questions  the  complex  interactions  between 

 predictive and sensory information for an optimal tracking behavior. 

 Finally,  in  addition,  in  alternative  or  in  parallel  to  the  internal  model  of  the 

 retinal  target  speed  and  acceleration,  reinforcement  learning  processes  could  play 

 an  important  role  in  adapting  anticipatory  eye  movements  to  predictable  motion 

 properties.  Any  combination  of  retinal  position,  velocity  or  acceleration  errors  could 

 be  estimated  and  eventually  minimized  over  trials,  akin  to  a  cost  function  ,  to 

 improve  target  visibility  and  tracking  performance.  Thus,  we  can  speculate  that 

 participants  could  simply  learn  by  trial  and  error  and  adapt  their  anticipation 

 behavior  to  rapidly  minimize  the  di�erence  between  the  eyes  and  target  position 

 and  velocity,  as  well  as  its  change  over  time.  Again,  this  sort  of  cost-minimization 

 process remains to be thoroughly tested by future model-based experiments. 

 Neuronal  bases  of  predictive  tracking  and  processing  of  di�erent  kinematic 

 properties 

 Electrophysiological  studies  in  the  non-human  primates  have  provided 

 evidence  that  a  small  subpart  of  the  Frontal  Eye  Fields  (FEFsem,  slightly  ventral 

 compared  to  the  saccadic  FEF)  is  implicated  in  the  control  of  predictive  smooth 

 pursuit  (e.g.  Fukushima  et  al.,  2002;  MacAvoy  et  al.,  1991,  see  Kowler,  2019  for  a 

 review).  Darlington  et  al.  (2018)  showed  that  FEFsem  �ring  rate  is  modulated, 

 before  visual  motion  onset,  by  the  expectations  about  the  target  speed.  In  addition, 

 the  speed-context  modulation  of  neuronal  activity  continues  throughout  the 
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 visually-guided  phase  of  smooth  pursuit,  and  it  is  stronger  when  the  visual  stimuli 

 are  less  reliable  (i.e.  at  lower  contrast),  in  agreement  with  Bayesian  integration  of 

 prior  beliefs  and  sensory  evidence.  Such  integration  was  also  apparent  in  the 

 oculomotor  recordings,  with  the  monkeys’  smooth  pursuit  eye  velocity  more 

 strongly  modulated  by  the  speed  context  for  low-contrast  targets.  Unfortunately,  the 

 authors  could  not  compare  the  FEF  preparatory  activity  with  anticipatory  eye 

 velocity,  nor  did  they  analyze  the  smooth  pursuit  latency  dependence  on  motion 

 expectancy,  thereby  limiting  the  possibility  to  draw  some  correspondence  with  our 

 results.  A  second  prefrontal  oculomotor  �eld,  the  Supplementary  Eye  Fields  (SEF)  is 

 also  involved  in  the  control  of  predictive  smooth  pursuit  (Heinen  &  Liu,  1997).  For 

 instance,  de  Hemptinne  et  al.  (2008)  showed  that  the  activity  of  a  population  of  SEF 

 neurons  encoded  the  target  direction  expectations,  as  neurons  became  more  active 

 after  the  presentation  of  a  cue  indicating  deterministically  a  target  motion  in  the 

 neuron’s  preferred  direction.  The  evidence  for  the  neural  substrates  of  predictive 

 pursuit  is  much  sparser  in  humans:  Gagnon  et  al.  (2006)  have  applied  transcranial 

 magnetic  stimulation  (TMS)  pulses  to  the  human  FEFsem  and  SEF  regions  during 

 visual  tracking  of  sinusoidal  target  motion.  They  have  reported  an  enhancement  of 

 predictive  pursuit  when  TMS  was  applied  to  FEFsem  at  di�erent  epochs,  but  only  in 

 some  speci�c  conditions  when  TMS  was  applied  to  SEF.  Several  questions  remain 

 yet  unanswered.  First,  the  respective  role  of  FEFsem  and  SEF  in  predictive  eye 

 movement  is  still  debated.  Second,  how  the  di�erent  variables  of  target  motion 

 trajectories  are  encoded  and  learned  is  yet  to  be  investigated.  Thanks  to  its  fast, 

 block-designed  protocol  mixing  di�erent  target  motion  cues,  the  present  study  may 
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 inspire  future  neurophysiological  studies  in  non-human  and  human  primates, 

 focusing  on  the  joint  analysis  of  anticipatory  responses  and  preparatory  neural 

 activities in these two prefrontal areas. 

 Our  results  call  for  a  reevaluation  of  the  role  of  higher-order  motion  cues 

 (acceleration/deceleration)  in  the  control  and  learning  of  predictive  pursuit 

 behavior.  There  is  very  little  evidence  that  the  primate  nervous  system  encodes 

 visual  acceleration  explicitly,  in  the  visual  or  in  the  oculomotor  systems.  Lisberger  & 

 Movshon  (1999)  measured  MT  single  neurons'  responses  to  image  acceleration,  but 

 did  not  �nd  evidence  that  those  neurons'  activity  varied  with  acceleration.  They 

 found,  however,  that  the  simulated  nonlinear  readout  of  a  population  of  MT 

 neurons  was  correlated  to  image  acceleration  (though  not  to  its  deceleration). 

 Similarly,  Price  et  al.  (2005)  found  speed  tuning  in  MT  single  neurons,  but  not  an 

 acceleration  or  deceleration  tuning.  However,  Schlack  et  al.  (2007)  showed  that  a 

 linear  classi�er  can  extract  acceleration  signals  from  the  MT  population  response, 

 given  that  the  MT  neurons’  tuning  to  speed  depended  on  the  acceleration  and 

 deceleration  contexts  of  the  task.  Note,  however,  that  these  earlier  studies  focused 

 mainly  on  primate  area  MT  while  other  parietal  (MST)  and  frontal  (FEF)  cortical 

 areas  might  contribute  to  represent  complex  target  motion  trajectories  and 

 higher-order  kinematics.  Future  work  shall  elucidate  how  position,  velocity  and 

 acceleration  cues  are  jointly  or  independently  encoded  across  the  visuo-oculomotor 

 distributed  network,  to  represent  and  learn  target  trajectories  for  the  e�cient 

 control of action. 
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 Conclusion 

 In  this  study,  we  showed  that  when  the  target  speed  is  predictable,  human 

 participants  show  a  linear  dependence  of  anticipatory  eye  velocity  upon  the  speed 

 probability  that  is  comparable  to  the  dependence  found  for  target  direction 

 probability.  Moreover,  participants  also  show  anticipatory  responses  adjusted  to 

 accelerating  target  kinematics,  and  to  their  probability  across-trials.  Overall,  this 

 study  contributes  to  the  broad  existing  literature  about  the  sensory  and  cognitive 

 control  of  eye  movements  by  better  characterizing  the  role  of  predictive  information 

 about the target kinematics. 

 Data availability statement 

 The data and analysis scripts are available (  DOI 10.17605/OSF.IO/SYD3T  ). 
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 Supplementary material 

 Final models for the LMM analysis 

 Exp 1A: 

 aSPv ~ 1 + P(HS) + (1 + P(HS) | participant) 

 aSPv ~ 1 + P(HS)*Tv  N-1  + (1 + P(HS) +Tv  N-1  | participant) 

 Exp 1B, constant speed probability-mixtures: 

 aSPv  ~  1 + P(v33) + axis + (1 + P(v33) + axis | participant) 

 aSPv ~ 1 + P(v33)*Tv  N-1  + (1 + P(v33) +Tv  N-1  | participant) 

 Exp 2A-B, accelerating target probability-mixtures: 

 aSPv ~ 1 + prob + axis + exp + axis:exp + (1 + prob + axis | participant) 

 Exp 3, comparison between fully predictable blocks: 

 aSPv ~ 1 + v0*accel + (1 + v0 | participant) 

 Exp3, categorical model for pairwise comparisons: 

 aSpv ~ 1 + condition + (1 | participant) 
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 LMM analysis - result tables 

 Exp1A: Anticipatory Parameters 

 Dependent variable: 

 aSPv 

 P(HS)  3.488  ***  (3.138, 3.838) 

 t = 19.541 

 p = 0.000 

 Constant  2.759  ***  (2.036, 3.482) 

 t = 7.480 

 p = 0.000 

 Random E�ects 

 Groups  3 

 sd(Constant)  0.77 

 sd(P(HS))  0.33 

 Note:  * 
 p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 1A: Anticipatory Parameters– Sequential E�ects 

 Dependent variable: 

 aSPv 

 Tv  N-1  [LS]  -0.501  ***  (-0.663, -0.340) 

 t = -6.073 

 p = 0.000 

 P(HS)  4.357  ***  (3.983, 4.732) 

 t = 22.827 

 p = 0.000 

 P(HS):Tv  N-1  [LS]  -2.744  ***  (-3.102, -2.386) 

 t = -15.030 

 p = 0.000 

 Constant  4.427  ***  (3.801, 5.053) 

 t = 13.853 

 p = 0.000 

 Random E�ects 

 Groups  3 

 sd(Constant)  0.70 

 sd(P(HS))  0.10 

 sd(Tv  N-1  [LS])  0.29 

 Note:  * 
 p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 1B: Anticipatory Parameters – Const Speed 

 Dependent variable: 

 aSPv 

 P(v33)  2.743  ***  (1.824, 3.663) 

 t = 5.847 

 p = 0.000 

 Axis[vert.]  -0.740 (-1.464, -0.016) 

 t = -2.002 

 p = 0.046 

 P(v33):Axis[vert.]  -0.674  ***  (-0.985, -0.363) 

 t = -4.252 

 p = 0.00003 

 Constant  2.707  ***  (1.740, 3.673) 

 t = 5.490 

 p = 0.00000 

 Random E�ects 

 Groups  13 

 sd(Constant)  1.82 

 sd(P(v33))  1.68 

 sd(Axis[vert.])  1.32 

 Note:  * 
 p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 1B: Anticipatory Parameters – Const Speed - Sequential 
 E�ects 

 Dependent variable: 

 aSPv 

 Tv  N-1  [v11]  -0.613  ***  (-0.882, -0.345) 

 t = -4.482 

 p = 0.00001 

 P(v33)  1.380  *  (0.437, 2.323) 

 t = 2.869 

 p = 0.005 

 Tv  N-1  [v11]:P(v33)  0.823  **  (0.383, 1.263) 

 t = 3.663 

 p = 0.0003 

 Constant  3.948  ***  (3.114, 4.781) 

 t = 9.279 

 p = 0.000 

 Random E�ects 

 Groups  13 

 sd(Constant)  1.58 

 sd(P(v33))  1.67 

 sd( Tv  N-1  [v11])  0.43 

 Note:  * 
 p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 2A-B: Anticipatory Parameters – Accelerating Target 

 Dependent variable: 

 aSPv 

 P(vdec)  1.884  ***  (1.111, 2.657) 

 t = 4.779 

 p = 0.00001 

 Axis[vert.]  -0.460 (-1.264, 0.343) 

 t = -1.123 

 p = 0.262 

 Exp.[const.Time]  1.683  ***  (1.410, 1.956) 

 t = 12.086 

 p = 0.000 

 Exp.[const.Time]:Axis[vert.]  -1.651  ***  (-2.027, -1.275) 

 t = -8.611 

 p = 0.000 

 Constant  3.041  ***  (2.099, 3.983) 

 t = 6.326 

 p = 0.000 

 Random E�ects 

 Groups  16 

 sd(Constant)  1.96 

 sd(P(V3))  1.58 

 sd(Axis[vert.])  1.66 

 Note:  * 
 p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 3: Anticipatory Parameters – Parametric Variables 

 Dependent variable: 

 aSPv 

 V0  0.246  ***  (0.149, 0.343) 

 t = 4.963 

 p = 0.00000 

 Accel  0.017  *  (0.004, 0.030) 

 t = 2.640 

 p = 0.009 

 V0:Accel  0.001  *  (0.0004, 0.002) 

 t = 2.905 

 p = 0.004 

 Constant  0.364 (-0.324, 1.052) 

 t = 1.037 

 p = 0.300 

 Random E�ects 

 Groups  7 

 sd(Constant)  0.95 

 sd(v0)  0.14 

 Groups  7 

 Note:  *  p<0.01;  **  p<0.001;  ***  p<1e-04 
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 Exp 3: Pairwise comparisons 

 contrast       estimate      SE      df         t.ratio     p.value 

 V1a - V1c    0.640     0.140    8749      4.559    <.0001 

 V1a - V1d    0.934     0.143    8749      6.545    <.0001 

 V1a - V2a   -2.236     0.136    8749    -16.396    <.0001 

 V1a - V2c   -1.037     0.140    8749     -7.430    <.0001 

 V1a - V2d   -1.503     0.139    8749    -10.779    <.0001 

 V1a - V3a   -4.114     0.130    8749    -31.598    <.0001 

 V1a - V3c   -3.320     0.135    8749    -24.626    <.0001 

 V1a - V3d   -2.679     0.136    8749    -19.647    <.0001 

 V1c - V1d    0.294     0.142    8749      2.065    0.0390  *n.s. 

 V1c - V2a   -2.876     0.136    8749    -21.149    <.0001 

 V1c - V2c   -1.677     0.139    8749    -12.051    <.0001 

 V1c - V2d   -2.143     0.139    8749    -15.417    <.0001 

 V1c - V3a   -4.754     0.130    8749    -36.624    <.0001 

 V1c - V3c   -3.960     0.134    8749    -29.472    <.0001 

 V1c - V3d   -3.319     0.136    8749    -24.415    <.0001 

 V1d - V2a   -3.170     0.138    8749    -22.921    <.0001 

 V1d - V2c   -1.971     0.141    8749    -13.932    <.0001 

 V1d - V2d   -2.437     0.141    8749    -17.251    <.0001 

 V1d - V3a   -5.048     0.132    8749    -38.177    <.0001 

 V1d - V3c   -4.254     0.137    8749    -31.095    <.0001 
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 V1d - V3d   -3.613     0.138    8749    -26.115    <.0001 

 V2a - V2c    1.199     0.135    8749      8.875    <.0001 

 V2a - V2d    0.733     0.135    8749      5.434    <.0001 

 V2a - V3a   -1.878     0.125    8749    -14.982    <.0001 

 V2a - V3c   -1.084     0.130    8749     -8.326    <.0001 

 V2a - V3d   -0.443     0.132    8749     -3.362    0.0008 

 V2c - V2d   -0.466     0.138    8749     -3.372    0.0008  *e�ect in the 

 opposite direction 

 V2c - V3a   -3.077    0.129   8749    -23.872     <.0001 

 V2c - V3c   -2.283     0.134    8749    -17.100    <.0001 

 V2c - V3d   -1.642     0.135    8749    -12.153    <.0001 

 V2d - V3a   -2.611     0.129    8749    -20.288    <.0001 

 V2d - V3c   -1.818     0.133    8749    -13.631    <.0001 

 V2d - V3d   -1.176     0.135    8749     -8.719    <.0001 

 V3a - V3c    0.794     0.124    8749      6.413    <.0001 

 V3a - V3d    1.435     0.125    8749     11.442    <.0001 

 V3c - V3d    0.641     0.130    8749      4.927    <.0001 

 Degrees-of-freedom method: containment 

 P value adjustment: BH method for 36 tests 
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