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Abstract

Sensory-motor systems are able to extract statistical regularities in dynamic environments,

allowing them to generate quicker responses and anticipatory behavior oriented towards

expected events. Anticipatory smooth eye movements (aSEM) have been observed in

primates when the temporal and kinematic properties of a forthcoming visual moving target

are fully or partially predictable. However, the precise nature of the internal model of target

kinematics which drives aSEM remains largely unknown, as well as its interaction with

environmental predictability. In this study we investigated whether and how the probability of

target speed or acceleration is taken into account for driving aSEM. We recorded eye

movements in healthy human volunteers while they tracked a small visual target with either

constant, accelerating or decelerating speed, keeping the direction fixed. Across experimental

blocks, we manipulated the probability of the presented target motion properties, with either

100% probability of occurrence of one kinematic condition (fully-predictable sessions), or a

mixture with different proportions of two conditions (mixture sessions). We show that aSEM

are robustly modulated by the target kinematic properties. With constant-velocity targets,

aSEM velocity scales linearly with target velocity across the blocked sessions, and it follows

overall a probability-weighted average in the mixture sessions. Predictable target

acceleration/deceleration does also have an influence on aSEM, but with more variability

across participants. Finally, we show that the latency and eye acceleration at the initiation of

visually-guided pursuit do also scale, overall, with the probability of target motion. This

scaling is consistent with Bayesian integration of sensory and predictive information.
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Introduction

Pursuit eye movements allow us to maintain steady on the retinas the image

of a moving object of interest. To do so, tracking eye movements rely heavily on the

visual estimate of the moving target’s speed and direction (Carl & Gellman, 1987;

Lisberger & Westbrook, 1985; Tychsen & Lisberger, 1986). When the target moves

at constant speed in the visual �eld, the eyes start accelerating in the same direction

as the target motion after a relatively short visuomotor latency (~100-130 ms in

humans (Carl & Gellman, 1987)). In the optimal speed range for human pursuit (i.e.

below 20-30°/s), the eyes typically reach a steady state velocity close to the target’s

velocity within ~300 ms from visual motion onset. Steady-state smooth tracking, in

close coordination with the so-called “catch-up saccades” can maintain a relatively

good alignment between the fovea and the target position over time (Carl &

Gellman, 1987; J.-J. Orban De Xivry & Lefèvre, 2007). Despite the fact that natural

objects rarely move with a constant velocity, only a few studies have investigated

smooth tracking for constantly accelerating or decelerating target motion. Those

studies reported that humans are able to track visible targets with smoothly-varying

speed (e.g. Bennett & Benguigui, 2013; Kreyenmeier et al., 2022) but pursuit of

constantly accelerating targets, seems to be limited in terms of accuracy. Similar to

perceptual discrimination judgments, tracking eye movements carry poor

discriminative power about visual acceleration compared to visual speed (e.g.,

Watamaniuk & Heinen, 2003). These previous works were thus mainly concerned

about whether, and with which accuracy, the primate visual motion system can

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


4

extract and represent motion acceleration for moving targets (Lisberger & Movshon,

1999).

Our dynamic environment and the stimuli motion properties are often, at

least in part, predictable, because either the motion is produced by our own body

(e.g., Gauthier et al., 1988; Landelle et al., 2016), or it can be inferred from general

prior knowledge, past experience or perceptual cues (Kowler et al., 2019). When the

moving target’s velocity changes in a periodic way (e.g., sinusoidal motion), after a

few cycles our gaze can dynamically adapt to the predictable motion and align to

the target with virtually no lag (Kowler & Steinman, 1979a). Importantly, motion

predictability allows not only to smoothly pursue a moving target with a reduced

lag but also to anticipate its motion onset, or its reappearance after a transient

occlusion (e.g. Dodge et al., 1930; for a review, see Kowler et al., 2019 and

Fukushima et al., 2013). It is commonly assumed that anticipatory smooth eye

movements (aSEM) that are initiated before target motion onset would contribute to

quickly reduce the retinal position and velocity errors (i.e. the di�erence between

the eye’s and the target’s position or velocity respectively) during the early phase of

motion tracking (e.g. Kao & Morrow, 1994). Target motion predictability can be

manipulated across di�erent time scales (e.g. across or within trials in a standard

visuomotor experiment) and aSEM were described in a range of conditions of

repetitive (or weakly varying among trials) target motion conditions along simple

trajectories and with constant speed (e.g., among many others, in Barnes &

Asselman, 1991; Heinen et al., 2005; Kowler & Steinman, 1979b). However, much

less is known about aSEM for accelerating and decelerating targets. One of the few
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studies that report aSEM for accelerating targets showed that during the transient

disappearance of the target (blank paradigm) amplitude of predictive smooth eye

movements scales with target acceleration (Bennett & Barnes, 2006).

Our group, and others have previously shown that aSEM amplitude is

proportional to the probability of a given target motion direction in a

direction-biased task (Damasse et al., 2018; Montagnini et al., 2010; Santos &

Kowler, 2017). Expectation for a given target speed also modulates aSEM:

anticipatory eye velocity increases with speed predictability, in a random versus

fully predictable speed design (e.g., Heinen et al., 2005; Jarrett & Barnes, 2002; Kao

& Morrow, 1994). However, we still do not know whether other kinematic

parameters, such as the acceleration pro�le can be taken into account when

predicting time-varying target speed or direction. Moreover, whereas it has been

reported that aSEM velocity increases linearly with the probability of target

direction, the functional dependence of anticipatory eye velocity upon the

probability of target velocity, or of its acceleration, was not investigated so far, to

our knowledge, or only to a very limited degree (Bennett, Orban De Xivry, et al.,

2010).

It is well known that tracking eye movements synchronize almost perfectly

with target motion kinematics during for instance sinusoidal (Barnes & Asselman,

1991), or circular (Orban De Xivry et al., 2008) trajectories. However, such

synchronization develops over seconds and it is not obvious to tease apart the

respective contribution of position, velocity and acceleration signals (Lisberger &
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Movshon, 1999). So far, target acceleration does seem to be suboptimally integrated

in predictive pursuit, even on a shorter time scale, such as during the transient

disappearance of a moving object. For instance, when an accelerating target is

occluded after a short presentation (~ 200 ms), eye velocity during the blanking

period reduces, and its predictive reacceleration prior to the target reappearance is

not in�uenced by the target acceleration (Bennett et al., 2007). However, if the

target visibility window before the occlusion is long enough (> 500 ms), eye

velocity reduces during the blanking period, but recovers in an acceleration-scaled

manner prior to the target reappearance (Bennett, Orban De Xivry, et al., 2010).

Moreover, in a task where participants are asked to track a target and to predict the

target position after a given period of time, or to predict when the target is going to

reach a certain position, both after the target is occluded, target acceleration is not

appropriately taken into account for the responses (Bennett & Benguigui, 2013;

Kreyenmeier et al., 2022). In principle, anticipating the motion trajectory of a

forthcoming accelerating target, by estimating the rate of change of its velocity,

would help the eye to more rapidly and more accurately reach the target’s velocity

and position during visually-guided tracking movement. Conversely, anticipation

would be suboptimal if it were only determined by the initial target velocity or by

its temporal average across a limited visible motion epoch disregarding its rate of

change, resulting in larger position/velocity errors at the end of the open-loop

tracking phase. To disentangle these alternatives, we aimed at better understanding

how target motion kinematics shape aSEM.
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Finally, visually-guided pursuit initiation can provide a more constrained

framework to tease apart sensory and predictive computations (Bogadhi et al., 2013;

Orban De Xivry et al., 2013) and identify the contribution of di�erent kinematic

cues. Since the pioneering work of Kao and Morrow (1994), very sparse empirical

e�orts have been put into building an integrated framework of how predictive

information coordinates anticipatory and visually-guided phases of tracking eye

movements. On the other hand, in the past decades optimal motor control theory

and the Bayesian framework (e.g. Körding & Wolpert, 2004) have gained interest in

the study of human movements. A few recent studies, including ours, have applied

such computational framework, sometimes in the form of the Kalman �lter

approach, to oculomotor control (e.g., Bogadhi et al., 2013; Darlington et al., 2018;

Deravet et al., 2018; Orban De Xivry et al., 2013). Overall, these studies have shown

that inferential integration models can account for the role of target motion

predictability on both the anticipatory (strongly driven by the Prior) and the

visually-guided phases (driven by a reliability-weighted combination of the Prior

and sensory information) of tracking eye movements. More recently, Darlington et

al (2018) provided the �rst evidence that pursuit-related neuronal preparatory

activity in macaque frontal eye �elds (FEF) can provide the neural correlate of the

prior information which is integrated with the sensory evidence to drive ocular

tracking. Therefore, the second objective of the current study was to precisely

estimate the dependency of the early visually-guided pursuit phase across the

di�erent speed/acceleration probability conditions, in order to probe the general

validity of the inferential integration model.
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To summarize, in the present study, we �rst tested aSEM behavior for targets

moving in a fully predictable direction but with ramp-like motions of di�erent

speeds and accelerations. We manipulated the probability of each kinematic

condition across blocks. We showed that the probability of target motion speed

controls aSEM similarly to the probability of motion direction, with a linear

dependence of anticipatory velocity upon the target speed probability. We also

showed that aSEM can be triggered by predictable accelerating/decelerating targets,

in a way that accounts for the expected target’s velocity change and for its

probability.

Second, we measured how eye velocity during the early portion of the

visually-guided phase of tracking is shaped by the target motion properties in

interaction with their predictability. We focused in particular on the latency and

early acceleration of visually-guided pursuit and, despite the lack of complete

homogeneity in the results, our data suggest that pursuit initiation is overall

coherent with the Bayesian integration hypothesis.

Methods

Participants

Twenty-one healthy adult volunteers signed an informed consent to

participate in the experiments presented in this study. The experimental protocol

was approved by the Ethics Committee Comité de Protection des Personnes OUEST III

(CPP reference: PredictEye-2018-A02608-47), in full respect of the Helsinki
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declaration guidelines. Three of the authors (AM, GM, DS) participated in

Experiment 1 (n=3), two of the authors (AM, VCM) participated in Experiment 2A

(n=13) and one of the authors (VCM) participated in the Experiment 2B (n=5). In

Experiment 1, anticipatory eye movements and initial pursuit were recorded with

high precision by using the scleral search coil technique (Robinson, 1963) in a small

participant sample. The core �nding of this experiment motivated the Experiments

2A,B on a larger sample of participants using a less invasive technique (video eye

tracking) that con�rmed the main results. A preliminary version of the results from

Experiment 1 was presented previously at the VSS conference (Souto et al., 2008).

Stimuli and procedure

In all experiments, participants were instructed to visually track a moving

target by smoothly pursuing it with their gaze, as accurately as they could, while

their eye movements were recorded.

Experiment 1

The detailed methods are described elsewhere (Wallace et al. 2005). Brie�y,

a PC running the REX package controlled both stimulus presentation and data

acquisition. Stimuli were generated with an SGI Fuel workstation and

back-projected onto a large translucent screen (80° x 60°, viewing distance: 1m)

using a Barco 908s video-projector (1280’’, 1024 pixels at 76 Hz). Oculomotor

recordings were collected using the scleral search coil technique (Collewijn et al.

1975). This experiment probed aSEM in di�erent speed probability contexts (Figure

1a). Each trial started with a �xation point, located at the centre of the screen for a
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random duration between 300 and 450 ms. If the participant �xed accurately (i.e.

within a 2°-side, square electronic window) during the last 200 ms, the �xation

target was extinguished and followed by a �xed-duration, 300 ms gap with nothing

on the screen. At the end of the gap period, the target (a white, gaussian-windowed

circle, 0.2 ° std, maximum luminance 45 cd/m2) appeared at the centre of the screen

and started moving horizontally, to the right, for a �xed period of 500 ms. The

target speed was either 5.5 °/s (LS) or 16.5 °/s (HS). In each experimental block, a

di�erent target speed-bias condition de�ned the proportion of trials at high speed

(P(HS)=0, 0.1, 0.25, 0.5, 0.75, 0.9 and 1, respectively). The complementary

proportion of trials had a low speed target motion (P(LS)=1-P(HS)). Participants

completed 500 trials per block, except for the P(HS)=0 and P(HS)=1 conditions

where only 250 trials were completed. One or two blocks were completed in a day,

with the constraint of not exceeding a total of one hour of duration.
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Figure 1. Experimental designs. Each trial started with a �xation point at the centre of the
screen for a random period, followed by a gap of 300 ms. The target then appeared at the
centre of the screen and started moving. (a). Experiment 1. The target moved to the right at
one of the two constant speeds (5.5 or 16.5 °/s). The probability of a high-speed (P(HS),
v=16.5 °/s) vs a low-speed (P(LS)=1-P(HS), v=5.5 °/s) trial was varied between
experimental blocks with 7 di�erent values of P(HS) (0, 0.1, 0.25, 0.5, 0.75, 0.9, 1). (b).
Experiment 2. The target always moved in a �xed direction, chosen between one of the four
diagonals (counterbalanced between participants). We displayed three di�erent constant
target speeds (v11, v22, v33 of 11, 22 and 33 °/s, respectively), one accelerating (vacc,
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acc=22 °/s2) and one decelerating (vdec, acc=-22 °/s2) speed pro�les. In a �rst version of the
experiment (Exp 2A), conditions were designed with a constant target displacement, while in
a second version of the experiment (Exp 2B) the time duration of the target motion was kept
constant at 600 ms (black dashed line). (c) Template analysis of eye velocity pro�les. The
bottom panel shows an example of the eye velocity trace (blue curve) and of the ANEMO
model �t (red curve, Pasturel et al., 20181) in an individual trial. From this model were
extracted the onset of the anticipatory phase (aSPon), its maximum velocity (aSPv), the
latency of the visually guided pursuit (SPlat) and its open-loop acceleration (SPacc), and the
steady state of the eye velocity (SPss). The model �t to this data was similar to the Experiment
1, except the steady state that was not �tted.

Experiment 2

Experiment 2A

Stimuli were presented using the Psychtoolbox (Brainard, 1997) package for

MATLAB. The Display++ monitor (CRS) with a refresh rate of 120 Hz, was placed

at 57 cm distance in front of the participant. Eye movements were recorded using

an Eyelink1000, an infrared video-based eye tracker (SR Research). This experiment

probed aSEM with di�erent target constant and varying speed conditions, while

manipulating the probability of each condition. With respect to Experiment 1, a

larger pool of participants was tested with a di�erent set of speed values and a

smaller set of speed probabilities. Because several studies showed a strong

anisotropy for saccadic and smooth pursuit eye movements across the

two-dimensional plane (e.g., Grasse & Lisberger, 1992; Ke et al., 2013; Rottach et

al., 1996; Takeichi et al., 2003), we decided to test the generalizability of the results

found for Experiment 1 beyond the horizontal direction. Therefore, in Experiment 2

1 The ANEMO analysis pipeline is available at:
https://github.com/invibe/ANEMO/tree/master/ANEMO
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the target moved along one of the four diagonal directions, counterbalanced

between participants.

Figure 1b shows the experimental design. Each trial started with a �xation

dot in the center of the screen for a random interval between 300 ms and 600 ms.

This �xation period was followed by a �xed gap window of 300 ms. At the end of

the gap window, the target appeared at the center of the screen and started moving

in one of the four diagonal directions (always the same for one participant) with

di�erent target kinematics conditions: the target speed was either constant (v11,

v22, and v33; 11, 22, and 33 °/s respectively), accelerating (vacc; starting from 11

°/s, a=22 °/s2), or decelerating (vdec - starting from 33 °/s, a=-22 °/s2). In

Experiment 2A, target motion duration was adapted to the target kinematic

properties in order to achieve a similar spatial displacement on the screen across

conditions: in practice target movement lasted 1, 0.82, and 0.52 s for v11, v22 and

v33, respectively, 0.87 s for vacc, and 0.72 s for vdec.

Participants �rst completed 5 blocks of 100 trials with a single target

kinematics condition (v11, v22, v33, vacc, vdec, “fully-predictable” blocks,

presented in randomized order across participants). Notice that these conditions can

be considered as a probability of 1 for each kinematic value and allow us to

estimate anticipatory and visually-driven pursuit initiation under these di�erent

fully-predictable target kinematics. Next, the probability of the di�erent target

kinematics was manipulated across blocks of 200 trials each (“mixture blocks”). For

constant speed blocks, we used v11 and v33, with P(v33) being equal to either 0.3
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or 0.7 and P(v11)=1-P(v33). The two probability levels were presented in random

order across participants. For the time-varying speed blocks, P(vdec) could be either

of 0.3 or 0.7 (P(vacc)=1-P(vdec). Again, these two probability conditions were

randomly interleaved.

Experiment 2B

Having di�erent motion durations across conditions might have introduced

some confounds a�ecting the resulting anticipatory behavior. First, the estimate of

the acceleration of a visual target can be impaired if the target is presented too

shortly (Bennett, De Xivry, et al., 2010; Bennett et al., 2007). Second, if anticipatory

behavior relies on the estimate of mean target velocity, rather than on its

accelerating dynamics (Brouwer et al., 2002; Gottsdanker et al., 1961; Schmerler,

1976), then the duration of the motion epoch might in�uence the mean velocity

estimate for targets with time-varying speed. Therefore, we ran an additional

control experiment (Exp 2B) with the same design as Exp 2A but with two

di�erences. First, target motion duration was held constant (600ms), resulting in

di�erent target end positions across conditions. Second, we collected the 5 blocks of

a single, fully-predictable, target kinematics and the 2 blocks of probability-mixture

for the time-varying target kinematics, but not the 2 blocks of probability-mixture

for the constant target speeds, considering that Experiment 1 already follows a �xed

duration design.
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Eye-tracker recordings and preprocessing

For Experiment 1, the analog voltage measure collected with the scleral coil

technique and re�ecting the right-eye rotation was low-pass �ltered (DC-130 Hz)

and digitized with 16-bit resolution at 1000 samples per second (to obtain the eye's

horizontal and vertical position). For Experiment 2A and 2B, the right-eye

horizontal and vertical position was recorded with an infrared video-based eye

tracker, EyeLink 1000 (SR Research), at 1 kHz.

For all sets of recorded eye movements, position data was converted in an

ASCII format. After conversion, the ANEMO package (Pasturel et al., 2018) and

custom-made python scripts were used to pre-process the data. Position data was

low-pass �ltered (acausal second-order Butterworth low-pass �lters, 30 Hz cut-o�),

numerically di�erentiated to get the eye velocity in degrees per second and then

de-saccaded using ANEMO’s implementations. Trials with more than 70% of missing

data points in the +/- 100 ms window around the target onset, or with more than

60% of missing data points overall, were automatically excluded from the

pre-processing pipeline. ANEMO was used to �t a piecewise linear model to

individual trials’ eye velocity in order to extract the relevant oculomotor parameters

(see Figure 1c for an illustration of the model �tting and parameters). Relevant

model-�t parameters were the temporal onset of the anticipatory phase (aSPon), the

maximum velocity of the anticipatory phase (aSPv), the latency of the visually

guided pursuit (SPlat) and its initial acceleration (SPacc). For Experiment 1, an

estimate of the pursuit steady-state velocity (SPss) was also extracted from the
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model (Figure 1a, bottom panel), but not further analyzed in this article. However,

when inspecting the ANEMO �t to the Experiment 1’ data, we noticed that for

low-speed trials, the model was not adapted to the eye velocity dynamics. In short,

for low-speed trials occurring in blocks with high probability for high speed trials,

the eye velocity at the visually guided pursuit initiation was consistently above the

target speed, and sometimes it even underwent a small “dip” before a reacceleration

(the latter phenomenon also occurred for high-speed trials). Since the ANEMO

model constrains the �t of visually-guided eye velocity between the anticipatory

value and the steady state of the eye velocity, it could not �t this pattern of eye

velocity data and in the end it did not allow for a reliable estimation of the latency

and initial pursuit acceleration. In this case, we decided to use a more local and less

constrained �tting model, aiming at estimating two regression lines around the end

of the anticipatory phase and the open-loop phase of the visually-guided pursuit in

order to extract the latency and initial pursuit acceleration. More speci�cally, we

�tted two regression lines in two di�erent time windows of 50 ms. The �rst

regression line could be �tted in any 50ms time window between [70, 120] ms and

[100, 150] ms. The best regression was chosen based on Pearson's R between the

real eye velocity values and the ones predicted by the regression. The second

regression line could be �tted in any 50ms time window between [130, 180] ms and

[150, 200] ms, with the constraint that the �rst and second regression lines'

windows did not overlap. Again the best regression was chosen based on Pearson’s

R. The intersection of the two regression lines was considered as the latency, and

the slope of the second regression line was considered as the initial acceleration of
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the visually guided pursuit. We visually inspected the �tted regression lines and the

estimated latency across trials. Note that even though this method improved

consistently the latency detection, we still had a considerable number of trials in

which we could not determine the intersection between the two regression lines in a

reasonable interval (between 80 and 180 ms after the target onset), because the eye

velocity did not change enough and the regression lines were almost parallel: each

participant had between 21 and 44% of the trials without a reliable estimation of

the latency.

Eye velocity traces and model �ts were visually inspected to exclude the

remaining aberrant trials and those with extremely poor �ts. Overall, 5% of the

trials were excluded on average for Experiment 1 (median: 2.5 %, max: 10 %), 11%

for Experiment 2A (median: 11 %, max: 20 %), and 6 % for Experiment 2B (median:

6 %, max: 9 %).

Data analysis

In all experiments, when analyzing the e�ects of the probability bias, the �rst

50 trials of each block were excluded from analysis. The probability bias is likely to

have reached an asymptote well before 50 trials, as suggested by work on history

e�ects (e.g. Maus et al., 2015; Pasturel et al., 2020), allowing us to focus on average

values and not their rate of change.

Linear Mixed E�ects Models (nlme package for R) were used to evaluate the

e�ects of the target kinematics (di�erent constant speed and acceleration

conditions) and of the probability context on the oculomotor parameters extracted
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from the ANEMO’s �t to oculomotor recordings. Because not including a true

random e�ect can increase the false positive rate (Barr et al., 2013), participants

were treated as a random e�ect and all �xed e�ects were allowed to vary with it.

Since this approach usually leads to models that don’t converge because of the high

number of parameters and the correlations between them, when needed, we used

the buildmer package for R (Voeten, 2020) to �nd the maximal model (i.e., the

model including the most of variables) which still converges for each dependent

variable. After �nding the models, we �tted the data and result tables were exported

with the stargazer package for R (Hlavac, 2022).

For Experiment 1, the models included only the speed probability as a �xed

e�ect for the oculomotor anticipation parameters (aSPon, aSPv). We chose to use

the probability of the highest speed, P(HS), as the independent variable in the

model 1:

(1) anticipatory parameter ~ 1 + P(HS) + (1 + P(HS) | participant)

and for the visually guided parameters (SPlat, SPacc) we added an interaction with

the target kinematics, Tk, in model 2:

(2) visually guided parameter ~ 1 + P(HS) * Tk + (1 + P(HS) + Tk | participant)

The variable before the ~ symbol is the dependent variable, and the variables

after it are the independent variables (also called �xed e�ects). The 1 corresponds

to the model intercept. For the variables within the parentheses, each one before the

| symbol is allowed to vary for each level of the variable after it (also called random

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


19

e�ect). In other words, for each participant, the model will return a di�erent best-�t

value for the intercept and the slope of the dependence upon probability. Since the

models 1 and 2 were simple and converged in all cases, we did not do a model

selection. For the analysis of the probability-mixtures of Experiment 2 (v11 vs v33,

vacc vs vdec), we also added the axis (horizontal/vertical) as an interaction factor

with the probability, given that the target moved along one of the diagonals. For the

vacc vs vdec condition mixture analysis, we included an interaction with the

experiment (2A/2B). The �nal models, as well as the statistics tables are presented

in the supplementary material.

To check for the e�ect of the constant-speed, accelerating and decelerating

targets on the parameters extracted from the model �t in Experiments 2A and 2B,

the “fully-predictable” conditions were tested for the e�ects of target kinematics

(Tk). Again, we included the direction axis (axis) as an interaction factor to

determine whether there were signi�cant di�erences between the horizontal and

vertical components of the eye velocity. Also, in order to test for di�erences

between Experiments 2A and 2B, we included a variable indicating to which

experiment each trial belonged (exp). Therefore, the LMM initial formulation was:

(3) parameter ~ 1 + Tk * axis * exp + (1 + Tk+ axis + exp| participant)

The Tk variable indicates the target motion condition between v11, v22, v33,

vacc or vdec. Note that, because we did not have a strong hypothesis about the

parametric dependence of oculomotor anticipatory parameters upon target
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acceleration or deceleration, we de�ned the target kinematics as a categorical

variable.

In the analysis of the equivalent target speed, we calculated for each

participant the regression :

(4) aSPv = slope*Tk + intercept

In this case, Tk included V11, V22, and V33. We then used the inverse

operation to �nd the equivalent constant speed that would have elicited the

observed aSPv for Vacc and Vdec:

(5) Predicted target speed = (aSPv - intercept)/slope

We �nally estimated the (2D) joint-distributions of the predicted target

speeds and anticipatory eye velocity (Figure 6) using the seaborn package for python

(v0.12.2), with the default parameters for the kernel density estimation (Scott

method with equal weights for all inputs).

Results

E�ects of target speed probability on anticipatory Smooth Eye

Movements

Using a state-of-the-art eye movement recording technique (scleral search

coil), we �rst investigated the e�ects of target speed probability upon anticipatory

smooth eye movements. In Experiment 1, three participants had to smoothly pursue

a target which moved rightward along the horizontal axis with two di�erent
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possible speeds (HS and LS) randomly interleaved across trials but with a given

probability (P(HS) and P(LS)=1-P(HS)) within a block. Figure 2a shows the

trial-averaged eye velocity curves for one participant, sorted by probability and

target speed conditions. Each probability condition is represented by one shade of

blue (lighter shades corresponding to higher probabilities of high-speed). The two

di�erent target speed pro�les are illustrated by the horizontal dotted lines, and time

zero corresponds to target motion onset. Participants were able to track the two

target motions with high accuracy, as shown by the convergence of eye velocity to

the proper target speed during steady-state pursuit. Since target motion direction

was always rightward, we observed a strong anticipatory response for all speed

probability conditions, as evidenced by the non-zero eye velocity at the usual

pursuit latency in humans (~100 ms). However these anticipatory responses were

also modulated by the speed probability. We analyzed such modulation by

considering the relationship between amplitude of anticipatory responses and

P(HS), the probability of the highest speed (16.5 °/s). As illustrated in Figure 2a,

higher values of P(HS) (lighter shades of blue) drove stronger anticipatory pursuit,

regardless of the target speed (16.5 ou 5.5 °/s). Figure 2b plots the relationship

between mean anticipatory eye velocity (aSPv) and P(HS), for the 3 participants.

The gray curves are the linear relationships estimated from the Linear Mixed E�ects

Model (LMM). We found a clear linear dependency of anticipatory response and

probability of target speed, in the direction of target motion. The LMM statistical

analysis (with P(HS) as a �xed e�ect) shows that aSPv signi�cantly increased with

higher probability (P(HS) e�ect: beta = 3.14, 95% C.I. = (2.87, 3.41), p<.001).
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Overall, anticipatory responses were stronger by ~100 %, rising from 2.5 to 5.5 °/s

when P(HS) increased from 0 to 1, but also started earlier. We found a signi�cant

decrease of aSPon as P(HS) increased (Figure 2c, P(HS) e�ect: beta = -15.90, 95%

C.I. = (-20.81, -10.99), p<.001). Across the 3 participants, anticipation for

P(HS)=0 started at ~ -83 ms, decreasing up to ~ -101 ms before target motion

onset, for P(HS)=1.
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Figure 2. Experiment 1: Dependence of anticipatory eye velocity upon target speed
probability. (a). Average eye velocity as a function of time (+/- 95% con�dence
interval) for one representative participant. Trials are grouped by probability of the
higher speed (HS). Each shade of blue corresponds to one probability condition (lighter
shades for higher probabilities of HS). The time zero corresponds to the target onset, and
the dashed lines indicate the two possible target speeds. (b). Anticipatory eye velocity for
the group of participants. Each box plot (median in yellow, box limits corresponding to
the 25% and 75% quartiles, and whiskers corresponding to 1.5*IQR (interquartile range))
corresponds to one probability condition. The gray lines show the linear mixed model �t
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for each participant. (c). Anticipation onset for the group. Again, each box plot
corresponds to one probability condition and the gray lines indicate the LMM �tted to
each participant.

In the second Experiment (Exp 2A), our �rst objective was to replicate the

speed-probability dependency of anticipatory pursuit on a larger group of 13

participants, with a less invasive eye tracking technique. We used di�erent speeds

(11, 22 and 33°/s) and a reduced set of probability conditions (0, 0.3, 0.7 and 1).

Now using an oblique target motion direction, our second objective was to

generalize this speed probability dependency across the visual �eld, by having the

target moving along the 4 oblique directions (Figure 1b). We �rst report the e�ects

of target speed probability observed when varying across blocks P(v33) and

therefore P(v11)=1-P(v33) within (v11,v33) mixes. Figure 3a shows an example of

the trial-averaged eye velocity as a function of time for one participant, sorted

according to the target velocity pro�les (dotted lines) and P(v33) values. Notice that

dotted lines indicate horizontal and vertical component velocities (i.e. 7.77 and 23.3

°/s for 11 and 33 °/s radial speed). A comparison with Figure 2a shows a behavior

similar to Exp 1 where target motion was horizontal. Final pursuit velocity matches

target velocity, at least for the lowest speed (v11) and the highest P(v33) value. The

fact that steady-state eye velocity gain remained lower than 1 for the fastest target

speed is consistent with previous studies (Carl & Gellman, 1987; Dodge, 1930).

More important, as in Exp 1, target motion direction remained constant within a

block, an anticipatory pursuit response was always observed. However, its

amplitude increased when P(v33) increased. Such dependency is illustrated in

Figure 3b, where horizontal and vertical components of anticipatory eye velocity
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(aSPv) are plotted against P(v33). Both components increased linearly with the

probability of the highest speed. A symmetric relationship was observed with

P(v11). We ran the LMM statistical models for the anticipatory parameters (aSPv

and aSPon), including the e�ect of P(v33), as for Exp 1. We added e�ects of eye

velocity axes (horizontal or vertical) and their interaction to test whether aSPv was

di�erently modulated along the horizontal and vertical dimensions. aSPv increased

signi�cantly for higher probability of P(v33) (Figure 3b, P(v33) e�ect: beta = 2.61,

95% C.I. = (1.42, 3.79), p<.001). We also found a signi�cant di�erence between

axes (vertical compared to horizontal axis: beta = -0.84, 95% C.I. = (-1.32, -0.35),

p<.001), but its interaction with the probability was not signi�cant. This lack of

interaction suggests that the directional anisotropy is related to purely oculomotor

properties rather than to di�erences in the expectancy of target radial speed.

However, and contrary to Exp 1, we did not �nd a signi�cant e�ect of probability or

axes on the aSPon. This di�erence with Exp 1 may be explained by the high

variability observed in the estimation of aSPon with the ANEMO method and the

higher instrumental noise seen with videoeye trackers, compared to the scleral

search coil technique (Drewes et al., 2012). Moreover, our experimental design in

naive volunteers resulted in a smaller number of trials, further reducing the

statistical power of our results. Yet, the two experiments strongly support the fact

that anticipatory eye velocity is scaled by the probability of target speed,

independently of the target motion direction.
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Figure 3. Experiment 2A: Dependence of anticipatory eye velocity upon target speed
probability (mixture blocks). (a). Average eye velocity for trials grouped by probability of
v33 and target velocity for the (v11,v33) mix. The left panel shows the horizontal eye
velocity, while the right panel shows the vertical eye velocity for a representative participant.
Shades of blue correspond to the di�erent probabilities of v33 (lighter shades for higher
probabilities). (b). Amplitude of anticipatory pursuit is plotted against P(v33), along the
horizontal (left panel) and vertical (right panel) axes. Data represented in the same way as
Figure 2.

E�ects of the time-varying target kinematic probability on anticipatory

eye movements

Following the same reasoning, we tested the e�ect of the probability of

time-varying target kinematics on aSEM. We compared di�erent probabilistic

mixtures of trials with accelerating or decelerating target kinematics. Participants
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ran blocks of 4 di�erent probability pairs (P(vdec), P(vac)): (0,1), (0.3, 0.7), (0.7,

0.3) and (1,0). We present data according to P(vdec) values as illustrated in Figure

4. Figure 4a shows horizontal and vertical trial-averaged eye velocities for one

participant and each available combination of P(vdec) and target kinematic

conditions. Again, each shade of red indicates one probability condition (lighter

shades for higher probabilities of P(vdec)) and time zero indicates the target

movement onset. We can see clear anticipatory responses, with stronger anticipation

occurring for higher probabilities of decelerating motion. After the anticipatory

phase, eye velocity traces corresponding to vacc or vdec trials separate and

converge to the target’s velocity. Notice that the anticipation seen with P(vdec)=0

(i.e., P(acc)=1) was particularly small but still signi�cant in participant 6, as in all

others. Figure 4b illustrates the horizontal and vertical aSPv, as a function of

P(vdec), for each participant. There is an increase in the amplitude of anticipatory

pursuit as P(vdec) increases, as con�rmed by the LMM statistical analysis (P(vdec):

beta = 2.25, 95% C.I. = (1.53, 2.97), p<.001). Consistently with the previous

analysis, we did not �nd any di�erence between the constant displacement and the

constant duration conditions, but we found that the aSPv was slightly slower in the

vertical axis (vertical vs. horizontal e�ect: beta = -0.61, 95% C.I. = (-1.04, -0.18),

p<.05). Lastly, we found that aSPon also increased with higher probability of

deceleration (P(Vdec): beta = 9.13, 95% C.I. = (0.35, 17.91), p<.05).
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Figure 4. Experiment 2A. E�ect of the probability of time-varying target kinematics upon
anticipatory eye movements (mixture blocks). (a). Average eye velocity across time for a
representative participant. Trials are grouped according to the probability of vdec (P(vdec))
and sorted from averaging across trials of di�erent target kinematics for each (P(vdec),
P(vacc)) mix. Left and and right panels show horizontal and vertical eye velocity pro�les,
respectively. Shades of red show the di�erent probabilities of Vdec (lighter shades for
higher probabilities). The dashed lines show the target velocity. (b). Mean anticipatory eye
velocity as a function of the probability of Vdec, group results. Data represented in the same
way as Figure 2.

E�ects of di�erent target kinematics on anticipatory Smooth Eye

Movements

We then addressed the question of how the anticipation for time-varying

target kinematics compares to the anticipation for constant target speeds. To do this,
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we focused on the fully-predictable blocks and compared three conditions where

oblique target motion had a constant speed (v11, v22 and v33, corresponding to

radial 11, 22 and 33 °/s, respectively) to a condition in which the target started at

v11 and accelerated uniformly (vacc, acceleration = 22 °/s2) and a condition in

which the target decelerated uniformly from the initial velocity v33 (vdec,

acceleration = -22 °/s2). The di�erent target kinematic conditions were presented in

a block design, with each condition being repeated over a block of 100 trials,

leading to full predictability of target kinematics (P(v11, v22, v33, vacc, vdec)=1).

In addition, we compared two di�erent conditions. In a �rst version of the

experiment (Exp 2A), target displacement was kept constant across blocks, leading

to varying target motion durations. In Exp 2B, we conversely kept the target motion

duration constant, while allowing for a di�erent target displacement across blocks.

The two experiments were analyzed together and, in order to assess whether there

were di�erences between experiments 2A and 2B, LMMs included an interaction

e�ect with the factor “experiment”. Figure 5a shows eye velocity pro�les recorded

in one participant, for Exp 2A, for each of the 5 target kinematic conditions,

illustrated by the dotted lines. Since targets were moving along one of the 4

diagonals, we show horizontal and vertical velocities of both eye and target

motions, as in Figure 3a. Constant speed targets drove strong anticipatory pursuits

that were scaled according to target speed. In addition, both accelerating and

decelerating conditions also resulted in clear anticipatory pursuit responses,

although somewhat smaller for the accelerating target motion condition.
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Anticipatory pursuit for the vdec condition was robust and very similar to that

observed with the v33 condition.

Figure 5b,c illustrate both the amplitude (aSPv) and onset timing (aSPon) of

these anticipatory pursuit responses for the 5 di�erent conditions. Right and

left-hand plots show horizontal and vertical components, respectively. Anticipatory

eye velocity increases with target constant speed. Moreover, aSPv measured for vdec

condition was in-between (and comparable to) the v22 and v33 conditions. Lastly,

the amplitude of anticipation was lower for the vacc condition and close to the one

elicited by the v11 condition. We ran an LMM model comparing the e�ects of v11,

v22, v33, vacc, and vdec on aSPv and aSPon, with target kinematics as a categorical

variable (see Methods and Supplementary material for details). As shown in Figure

5a, we found a signi�cant modulation of aSPv by target kinematics. First, aSPv in

the constant speed conditions v22 and v33 was signi�cantly higher than in the v11

condition (di�erence compared to v11, v22: beta = 1.67, 95% C.I. = (0.88, 2.45),

p<.001; v33: beta = 2.45, 95% C.I. = (1.61, 3.29), p<.001)), and aSPv in the

condition v33 was higher than in the v22 condition, although not signi�cantly.

Indeed, aSPv increased approximately linearly with constant target speed. The aSPv

in the accelerating condition (vacc) was signi�cantly lower than for v22, v33 and

vdec (di�erence compared to Vacc, V22: beta = 1.29, 95% C.I. = (0.24, 2.34),

p<.05); V33: beta = 2.07, 95% C.I. = (1.23, 2.92), p<.001; Vdec: beta = 1.78,

95% C.I. = (0.86, 2.70), p<.001). It was slightly higher, although not signi�cantly,

than aSPv measured in v11. By contrast, aSPv for the decelerating condition (vdec)

was signi�cantly higher than v11 (di�erence compared to Vdec, V11: beta = -2.16,
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95% C.I. = (-2.89, -1.43), p<.001). Its amplitude was found between v22 and v33

conditions, but not signi�cantly di�erent from both fast target speeds.

When comparing experiments 2A and 2B, we found that anticipatory pursuit

velocity (aSPv) with v11, v22 and v33 was faster when target duration was �xed, in

comparison to when target displacement was �xed (di�erence compared to constant

displacement, V11: beta = 0.73, 95% C.I. = (0.34, 1.13), p<.001; V22: beta =

0.50, 95% C.I. = (0.11, 0.89), p<.05; V33: beta = 0.50, 95% C.I. = (0.10, 0.90),

p<.05). However, we found no signi�cant di�erence between the two experiments

for both time-varying speed conditions (vacc and vdec). We also found no

di�erences between aSPv across the two axes (horizontal vs vertical) for V11, V33

and Vacc, but for V22 and Vdec, aSPv was faster in the horizontal component when

compared to the vertical one (di�erence compared to horizontal, V22: beta = -0.58,

95% C.I. = (-1.05, -0.12), p<.05; Vdec: beta = -0.73, 95% C.I. = (-1.19, -0.26),

p<.001).
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Figure 5. Experiment 2A. E�ect of target kinematics on aSEM (fully-predictable blocks).
(a). Average eye velocity over time with trials grouped by target kinematics-condition for
one representative participant. Constant speed target motion conditions are shown in
shades of blue, while accelerating target motion conditions are shown in shades of red.
The dashed lines show the target speed for the three constant speeds and for the
accelerating and decelerating target motions. (b). and (c). Group e�ect of target
kinematics on the aSPv (b) and aSPon (c) for both horizontal (left) and vertical (right)
components. Horizontal black lines indicate the pairs of conditions which are signi�cantly
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di�erent from each other: * p<.05; ** p<.01; *** p<.001. Data are represented in the
same format as in Figure 2.

Regarding the anticipatory pursuit onset timing (SPon), there was a strong

variability across participants and the e�ects were overall rather small (range of

5-20 ms across participants and conditions). Moreover, aSPon was not signi�cantly

di�erent across the 3 constant speed conditions (v11, v22, and v33). However,

anticipatory pursuit started earlier (i.e. aSPon was larger by ~10ms) for an

accelerating target (vacc) when compared to all other conditions (di�erence

compared to v11: beta = 7.82, 95% C.I. = (2.03, 13.60), p<.01; v22: beta = 9.83,

95% C.I. = (4.29, 15.37), p<.001; v33: beta = 11.87, 95% C.I. = (6.41, 17.33),

p<.001; vdec: beta = 6.21, 95% C.I. = (0.72, 11.70), p<.05). It is noteworthy that

v11 and vacc yield to di�erent anticipation timing, regardless that speed at target

motion onset was the same (11°/s). In the same vein, aSPon was always signi�cantly

larger (i.e anticipation onset was earlier) for a decelerating target when compared

to the v33 conditions, despite their similar target speed at motion onset (di�erence

compared to Vdec, V33: beta = 5.66, 95% C.I. = (0.39, 10.93), p<.05). For

comparison, aSPon occurred earlier for vdec when compared to v11 and v22,

although these di�erences were not statistically signi�cant. Regarding potential

di�erences due to horizontal and vertical components or constant

duration/displacement conditions, we did not observe any signi�cant e�ect on

aSPon.

In summary, highly predictable target motions along the diagonal directions

yield to anticipatory pursuit responses in both horizontal and vertical eye
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movements and both with constant or time-varying target speeds. We found a strong

and reliable dependency of anticipatory eye velocity upon target kinematics. Timing

of anticipatory response onset was also a�ected, although on a smaller scale and

less reliably across conditions and participants. Overall, aSPv was slower for the

accelerating condition (vacc) and closer from that observed with the v11 condition

than the other constant speeds. Conversely, aSPv was closer to that observed with

the v22 and v33 conditions. It must be recalled that (vacc,v11) and (vdec,v33) pairs

of conditions share the same target speeds (11 and 33 °/s, respectively) at motion

onset. This pattern of results suggest that, with time-varying velocity kinematics,

the target velocity estimated during the initial (and not the �nal) part of the target

motion largely determines the amplitude of anticipatory eye velocity. In the next

section we perform additional analyses to better characterize the nature of the

representation of accelerating/decelerating target motion that might be stored and

used in order to control aSEM.

Equivalent target speed estimation for time-varying speed targets

Previous studies investigating predictive smooth pursuit during the transient

disappearance of the target have suggested that the internal model of target motion

takes into account both the last sample of observed target velocity and its rate of

change. However, this was possible only if target displacement properties were

estimated during a su�ciently long interval (Bennet et al. 2007) and performance

was suboptimal as participants were not able to extrapolate accelerating motion

with su�cient accuracy (Bennet & Benguigui 2013). Here, we considered a simpler

version of the internal model of target velocity, which only takes into account an
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estimate of the mean expected target velocity during a particular time-epoch. We

�rst reasoned that if the aim of aSEM is to minimize the velocity error at the

initiation of visually guided pursuit, then aSEM should be proportional to the target

velocity during the 0-150 ms period preceding the visually-guided initiation. In this

time epoch, the mean target velocity is ~14.5 °/s for vacc and ~30 °/s for vdec. The

alternative hypothesis is that aSEM acts to minimize velocity error during steady

state pursuit. Then, aSEM should be proportional to the target velocity estimated

during a later phase of pursuit. Considering for instance the ~300-400 ms time

window after target movement onset, the mean target speed is now of ~19 °/s and

~25 °/s for vacc and vdec, respectively. If the time window used for velocity

estimation is even a later one, the estimated target velocity should practically not

di�er for vacc and vdec (as they converge to an intermediate speed). The results

shown in the previous section seem to be more coherent with an internal model

taking into account an estimate of the target kinematics in the early epoch of visual

motion, as we did not �nd di�erences on the aSPv between vacc and v11, nor

between vdec and v33, whereas vdec and vacc lead to signi�cantly di�erent

anticipatory eye velocity.

To better understand the relationship between aSPv and the internal

representation of the target kinematics in the accelerating/decelerating conditions,

we ran a new analysis, based on the assumption that an “equivalent constant speed”

estimation is indeed formed and used to guide anticipatory eye movements. It is

known that aSPv scales with constant target speed (e.g. Kao & Morrow, 1994), and

we replicated this result. Assuming a linear dependence, it can then be used to
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estimate which (equivalent, constant) target speed would have elicited the

anticipatory eye velocity observed in the accelerating/decelerating conditions. To

eliminate any oculomotor source of variability, we computed back the radial eye

velocity for each participant and �tted individual regressions using the constant

speed values (v11, v22, v33) as predictors for the mean aSPv. Then, the inverse

operation predicts the individual equivalent target speed for each participant’s mean

aSPv measured in the accelerating and decelerating conditions.

Figure 6 illustrates the mean predicted equivalent target speed for accelerating

and decelerating conditions (in red and orange, respectively) for each participant.

The left panel (Figure 6a) also shows an estimate of the distribution of the

predicted equivalent target speed for the constant target speeds. Such distribution

allows to visually estimate the variability of the individual mean regression

modeling the aSPv against target speed relationship. Note that the widths of the

distributions are large, but there is a clear positive relationship between

anticipatory eye velocity and predicted target speed across the constant speed

conditions. Regarding the predicted values for the accelerating and decelerating

conditions, there is also a very high variability across participants. The predicted

equivalent target speeds are overall lower for vacc than for vdec, but the individual

data points are spread throughout the three 2D distributions of the constant speed

conditions. Figure 6b illustrates the estimated distribution of the predicted target

speed for vacc and vdec. Given the extended superposition of the distributions

estimated for di�erent kinematic conditions, it is not possible to conclude in favor

of a unique representation format for accelerating/decelerating target motion in the
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predictive drive of anticipatory eye movements, at least not at the level of a mean

velocity approximation.

Figure 6. Equivalent target speed estimation. a. The density plots show the 2D
distributions of anticipatory eye velocity and predicted target speeds for the constant
speed conditions, each iso-contour corresponding respectively to 25, 50 and 75 % of the
density distribution. The dots correspond to the mean predicted equivalent target speed
and mean anticipatory eye velocity for each participant for the accelerating (red) and
decelerating (orange) conditions. b. The density plots show the 2D distributions of
anticipatory eye velocity and predicted equivalent target speeds for the time-varying
kinematics conditions.

Retinal velocity error (retinal slip) under di�erent conditions of predictable

target kinematics

Next, we asked how anticipatory behavior can be advantageous in terms of

tracking performance. Here we focus on a simple descriptive analysis of the retinal

velocity error (i.e. target velocity minus the average eye velocity), as the

minimization of this quantity has been previously hypothesized as the main goal of
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prediction-based anticipatory smooth eye movements (Damasse et al., 2018; Kao &

Morrow, 1994). Note also that the minimization of the retinal position error (i.e. the

accurate foveation of the moving target) can be reasonably seen as the product of

the synergistic coordination of smooth eye movements and catch-up saccades (e.g.

Coutinho et al., 2021), which is out of the scope of the present study. Figure 7

shows, for each participant in the top row and for the group in the bottom row, the

mean retinal velocity error for the constant and time-varying kinematic conditions

during di�erent phases of the pursuit, from anticipatory (-50 to 0ms), open-loop

(150-250ms) and early (300-400ms) and late (400-500ms) closed-loop pursuit

phases. Note that we ordered the time-varying velocity conditions based on the

average anticipatory pursuit velocity they elicit (see Figure 5b): thus vacc lies

between v11 and v22 and vdec lies between v22 and v33. Overall, retinal slip

increased with increasing constant target speed and reduced over time (blue lines).

The temporal dynamics of retinal velocity error di�ered in the two time-varying

speed conditions (orange curves). While it matched that observed with constant

speed during anticipatory and open-loop pursuit initiation, it showed no changes

with target acceleration conditions for late, closed-loop pursuit phases.

In this later phase, the eye velocity is consistently slower than the target

velocity for the accelerating targets, more dramatically than for constant velocity

targets leading to comparable eye velocity in the earlier phase. On the other hand,

for the decelerating target, the retinal slip is reduced in the late phase of

visually-guided pursuit, although this is probably more of a “passive” e�ect, or, in

other terms, it is simply due to the reduction of the target speed across time.
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Whereas this descriptive analysis does not allow to clearly elucidate what kind of

internal model drives the anticipation of accelerating targets, we can claim that the

cost in terms of mean retinal velocity error during the open-loop phase is not very

di�erent for time-varying and constant velocity targets when their kinematics is

fully predictable.

Figure 7. Mean retinal velocity error. The top row shows the mean retinal velocity error
for each participant, while the bottom row shows the group average. The mean retinal
velocity error is shown for di�erent time windows, roughly corresponding to the
anticipatory phase, the open-loop phase and two time windows in the closed-loop phase
(from left to right: -50-0 ms, 150-250 ms, 300-400 ms and 400-500ms). The errors for the
constant target speeds are shown in blue, while the errors for the accelerating targets are
shown in orange.
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E�ects of the target kinematic probability on the initiation of visually

guided pursuit

Our novel dataset and experimental conditions allow us to reconsider how

target motion uncertainty a�ects pursuit initiation driven by visual information

about target motion. Thus, we are in a position to compare di�erent target

kinematics, with either constant or changing speeds and along either horizontal or

diagonal motion directions. Moreover, we can probe how anticipatory pursuit

responses would impact pursuit initiation and whether predictive information

shapes anticipatory and visually-driven responses in a coordinated way in order to

optimally track a moving target. We can do so by estimating the di�erential e�ects

of a given target speed probability (e.g. P(HS)) on trials where the actual target

speed was either consistent (e.g. vHS) or di�erent (e.g. vLS).

Figure 8 illustrates the latency and initial acceleration of visually-driven

pursuit, as a function of P(HS), for horizontal target motion (Exp 1). Recall that eye

movements were here recorded in 3 highly experienced participants, with the

scleral search coil technique. P(HS) (and conversely P(LS)) had little e�ect on the

latency of visually-driven pursuit, but had a strong impact upon initial pursuit

acceleration. Figure 8b sorts trials according to the actual target speed (HS vs LS,

blue vs green curves, respectively), for each P(HS) condition. As the probability for

the highest speed (HS) increased, initial pursuit acceleration for the HS trials

increased. Conversely, initial pursuit acceleration for the LS trials decreased. We ran

LMM models similar to that used above for anticipatory oculomotor parameters
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(aSPv, aSPon) but this time with initial pursuit parameters extracted from ANEMO

(SPacc, SPlat). However, this time we added the target kinematics (Tk, LS vs HS) as

a �xed factor which could interact with the probability. The statistical analysis

con�rmed that target speed itself, but not speed probability, had an e�ect on the

latency (SPlat), with SPlat being ~5 ms longer for LS trials when compared to HS

trials (Tk e�ect: beta = 4.87, 95% CI = (2.22, 7.52), p<.001). More interesting,

initial pursuit acceleration (SPacc) was modulated by both current target speed and

its probability. SPacc was ~ 45 °/s2 lower for LS trials, as compared to HS trials (Tk

e�ect: beta = -45.48, 85% CI = (-55.56, -35.20), p<.001). For HS trials, SPacc

increased with P(HS) in a dramatic way, (P(HS) e�ect: beta = 31.94, 95% CI =

(23.22, 40.66), p<.001), such that the pursuit initial acceleration for a same target

speed (HS) was ~30% stronger when that speed was highly predictable. Similarly,

for LS trials, SPacc of response to the slow speed target increased with higher P(LS)

(P(HS) by Tk interaction e�ect: beta = -55.32, 95% CI = (-63.74, -46.89),

p<.001). Overall, uncertainty about target speed changes how visual motion

information is processed to drive pursuit initial acceleration.

Figure 8. Dependence of the latency and initial acceleration of visually guided pursuit
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upon probability and target speed for Experiment 1. (a). Group results for SPlat. (b).
Group results for the SPacc. In all panels, data are separated by target speed (LS trials in
green and HS trials in blue). Boxplots represent data in the same way as Figure 2.

Next, we ran a similar analysis for Exp 2A, where v11 and v33 constant

speeds were mixed within blocks of diagonal target trajectories. Figure 9a,b plots

the relationships between horizontal (left) and vertical (right) pursuit latency (a)

and acceleration (b) and P(v33). Again, trials were sorted according to the actual

target speed (v11: green, v33: blue). First, we can see that SPlat was ~16 ms

shorter, and SPacc was ~37 °/s2 slower for low-speed (v11) trials as compared to

high-speed (v33) trials (di�erence between v11 and v33, SPlat: beta = -16.15, 95%

C.I. = (-20.24, -12.07), p<.001; SPacc: beta = -36.91, 95% C.I. = (-48.63, -25.19),

p<.001). Unexpectedly, target speed probability di�erently a�ected pursuit latency

and acceleration, dependending upon the speed condition. For v33 speed trials,

SPlat decreased with increasing P(v33), SPlat: beta = -19.79, 95% C.I. = (-25.49,

-14.09), p<.001). However there was no signi�cant e�ect of P(v33) on pursuit

acceleration (SPacc). These non conclusive results for a 33°/s moving target stand in

contrast with the signi�cant interaction found with the v11 speed trials. When

targets moved at 11°/s, both SPlat and SPacc decreased with increasing P(v11) (i.e.,

decreasing P(v33), P(v33) by Tk interaction, SPlat: beta = 20.32, 95% C.I. =

(15.01, 25.63), p<.001; SPacc: beta = 14.30, 95% C.I. = (4.21, 24.38), p<.01).

These di�erences with Exp 1 (see Figure 8) could possibly be explained by the

lower signal-to-noise ratio in the eye position data due to video eye tracking in Exp

2A, as well as by the participation of naive, less trained participants. Moreover, we

observed partly di�erent results when considering horizontal and vertical
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components of the pursuit initiation (comparison between left and right panels in

Figure 9a). Indeed, SPacc was signi�cantly higher (~18 °/s2) in the vertical axis for

the v33 speed trials (axis e�ect: beta = 17.57, 95% C.I. = (8.58, 26.57), p<.001),

but ~ 11 °/s2 lower for the vertical axis with v11 trials (axis by Tk interaction: beta

= -11.11, 95% C.I. = (-17.26, -4.96), p<.001). The modulatory e�ect of P(v33)

was smaller along the vertical axis for both SPlat and SPacc (P(v33) and axis

interaction, SPlat: beta = 5.41, 95% C.I. = (1.30, 9.51), p<.01; SPacc: beta =

-16.80, 95% C.I. = (-26.79, -6.80), p<.001). Altogether, these methodological and

data-measurement di�erences may explain why we failed to reproduce in Exp 2a,b

the same pattern of results of Exp 1, and in particular a signi�cant e�ect of

probability upon pursuit initial acceleration.

Figure 9. Dependence of the latency and initial acceleration of visually guided pursuit
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upon probability and target speed for the constant speed mixes of Exp 2A. (a). Group
results for SPlat. (b). Group results for SPacc. Left panels correspond to the horizontal
component and right panels to the vertical component. In all panels, data are separated
by target speed (v11 trials in green and v33 trials in blue). Data represented in the same
way as Figure 2.

Then, we measured the e�ects of target acceleration/deceleration probability

on pursuit initiation. Similar to the constant speed probabilistic mixtures, latency of

both vacc and vdec trials decreased with higher P(vacc) and P(vdec), respectively

(P(vdec), vdec trials: beta = -9.06, 95% C.I. = (-13.75, -4.37), p<.001; P(vdec) by

Tk interaction: beta = 12.07, 95% C.I. = (7.67, 16.47), p<.001), and pursuit

acceleration was not signi�cantly modulated by the probability levels. We did not

�nd any systematic di�erences between duration/displacement conditions or

between horizontal/vertical axes.

Lastly, we compared constant and changing speed conditions (Exp 2A and

2B). Similar to Figure 5, Figure 10a,b illustrates pursuit latency and initial

acceleration for each condition, estimated from the fully-predictable blocks (P(v11,

v33, v22, vacc, vdec) = 1). One can see that initial acceleration (SPacc) was largely

a�ected by both constant and changing speed trajectories. First, we replicate and

extend the results of Exp 1: when target velocity (direction and speed) is highly

predictable, higher constant speeds (range 11-33°/s) linearly drive higher initial

acceleration (Figure 10b). LMM analysis indicated, as expected, that SPacc was

signi�cantly higher for v22 and v33 than for v11 (compared to v11, v22: beta =

25.75, 95% C.I. = (22.03, 29.48), p<.001; v33: beta = 47.05, 95% C.I. = (43.33,

50.77), p<.001) and that v33 was signi�cantly higher than v22 (compared to v22,
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v33: beta = 21.30, 95% C.I. = (17.67, 24.93), p<.001). However, latency was only

marginally and partly signi�cantly a�ected (Figure 10a). SPlat was signi�cantly

earlier for v33 when compared to v22, but we found no signi�cant di�erence

between v11 and v22, or between v11 and v33 (di�erence compared to V22, V33:

beta = -6.01, 95% C.I. = (-10.09, -1.93), p<.01).

By comparing constant and varying speed conditions in Figure 10, we can

see that pursuit latency varies little between conditions. Indeed, statistical analyses

failed to show a consistent pattern. We found that pursuit latency (SPlat) for

accelerating targets (vacc) was signi�cantly longer than for both v11 and v33 but

not for v22 (v11: beta = -4.02, 95% C.I. = (-7.74, -0.30), p<.05; v33: beta =

-7.47, 95% C.I. = (-11.38, -3.56), p<.001). In the decelerating conditions, SPlat

was signi�cantly longer than for v33 (di�erence compared to Vdec, v33: beta =

-3.87, 95% C.I. = (-7.63, -0.11), p<.05) but not signi�cantly di�erent from v11

and v22. On the contrary, we observed a consistent pattern of SPacc amplitude

across the 5 conditions, very similar to that observed with anticipatory pursuit

(aSPv, see Figure 5). Pursuit acceleration (SPacc) in the vacc condition was

intermediate between v11 and v22 conditions. It was found in between v22 and v33

conditions for the decelerating condition (vdec). We ran the LMM models to check

for pairwise statistical di�erences, indicated by * symbols in Figure 10b. When

comparing SPacc in the vacc condition to the three constant speeds, we found that it

was signi�cantly larger than for v11 (di�erence compared to vacc, v11: beta =

-12.44, 95% C.I. = (-16.18, -8.70), p<.001) but smaller than v22 (beta = 13.31,

95% C.I. = (9.66, 16.96), p<.001) and v33 (beta = 34.61, 95% C.I. = (30.96,
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38.25), p<.001). Pursuit acceleration during the accelerating target trials was

signi�cantly smaller than during deceleration trials (Vdec: beta = 27.05, 95% C.I.

= (23.41, 30.69), p<.001). Regarding SPacc during decelerating trials, it was

signi�cantly larger than with a v11 (beta = -39.49, 95% C.I. = (-43.20, -35.78),

p<.001) and v22 constant speeds (beta = -13.74, 95% C.I. = (-17.36, -10.12),

p<.001) but smaller than with the highest (v33) constant speed (beta = 7.56, 95%

C.I. = (3.94, 11.17), p<.001).

Finally, we did not �nd a signi�cant di�erence in either pursuit acceleration

or latency when comparing constant target motion duration/displacement and

horizontal/vertical responses.
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Figure 10. Latency and initial acceleration of the visually guided pursuit dependence
upon target kinematics for the Experiment 2. (a). Group results for the SPlat. (b). Group
results for the SPacc. Left panels correspond to the horizontal component and right panels
to the vertical component. Data represented in the same way as Figure 5.

Discussion

We had two main objectives with the present study. First, we wanted to analyze the

e�ects of a parametric change of the target speed probability upon human

anticipatory smooth eye movements. We have done this by re-analysing previously

collected data (see Souto et al., 2008) and by replicating and generalizing those

results in a larger group of participants and slightly di�erent conditions. In

particular, we used target motion trajectories along both horizontal and oblique
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directions but kept target motion direction constant within blocks. We also

compared di�erent target kinematics, namely constant or time-varying (accelerating

or decelerating) target speeds. We found that anticipatory responses were strongly

modulated by both constant and varying target speeds. We report a linear scaling of

anticipatory pursuit with target speed, similar to what we previously reported for

direction. Second, we probed how these di�erent probabilistic cues may shape both

anticipatory and visually-driven pursuit eye movements. We report that the

initiation of visually-guided pursuit is dependent on the interaction of target speed

and target speed probability, suggesting that the probabilistic representations of

motion cues can also a�ect the visuomotor transformation that drives pursuit eye

movements.

A linear dependence between anticipatory pursuit and probability of target

kinetic cues

In two separate experiments, we showed that the velocity of anticipatory

pursuit is modulated by the constant-speed probability of visual moving targets,

regardless of its fully predictable direction. These results are consistent with

previous reports (as reviewed in Kowler et al., 2019) that showed that anticipatory

smooth velocity is modulated by the predictability of target speed. Our results are

however novel on two aspects. First, we demonstrate a parametric, linear

relationship between amplitude of the anticipatory phase and the full range of

target speed probability. Such a linear relationship is present over a broad range of

target speeds (from 5 to above 30°/s) and is similar for targets moving along either
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the horizontal (Figure 2) or the oblique axes (Figure 3). It has been shown

previously that anticipatory responses to expected target motion are stronger for

targets at higher speed (Heinen et al., 2005; Kao & Morrow, 1994; Maus et al.,

2015). Here we report for the �rst time that anticipatory pursuit is a�ected by both

target speed and its probability in a parametric way. Higher order kinetic cues such

as acceleration or deceleration rates of varying-speed trajectories can also modulate

eye velocity during anticipatory pursuit, again regardless of the (predictable) target

motion direction. Such an e�ect is also modulated by the probability of these

di�erent higher-order kinetic cues (Figure 4), although the slope of the relationship

was slightly shallower. Overall, these novel results extend the previous �ndings of a

linear dependence of the anticipatory eye velocity upon the target direction

probability (Damasse et al., 2018; Santos & Kowler, 2017) and further demonstrate

that the statistical regularities of di�erent motion properties are e�ciently stored

and processed for anticipatory visuomotor control. Our results argue for a

probabilistic coding of target velocity (direction and speed) but future work is

needed to elucidate whether these aspects of target trajectories are encoded together

or separately. Nevertheless, anticipatory eye movements appear as an e�ective

approach to elucidate how direction and kinematic parameters are encoded to

control eye movements.

Second, using the most sensitive oculomotor recording technique in highly

experienced participants (the scleral search coil technique), we found that the

timing of anticipatory responses is also linearly modulated by target speed

probability. This e�ect was consistent, with anticipatory pursuit starting earlier by
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~20ms (relative to target motion onset) when target speed was fully predictable.

The timing of anticipatory responses has been previously related to the probabilistic

encoding of target timing itself and to the presentation of timing-cues during a

�xation-motion gap paradigm (Badler & Heinen, 2006) or a repeated target motion

ramp paradigm (Barnes & Donelan, 1999). Although we did not compare di�erent

cueing conditions, here we evidence that both strength and timing of anticipatory

responses are scaled (the stronger and the earlier) by target speed probability.

However, in Experiment 2, we could not replicate the signi�cant e�ect of

speed probability upon the onset timing of the oculomotor anticipation. Since we

found that the strength of anticipatory responses was not di�erent between di�erent

motion directions and that the range of target speeds was overlapping between the

two experiments, we can probably reject the possibility that this discrepancy is due

to di�erences in target motion properties. It may however be explained by

di�erences between experimental methods. First, the estimate of the anticipatory

onset is inherently a noisy measure, even more so when based on the video eye

tracker (like in Exp 2), compared to the scleral search coil technique (Exp 1), which

has a much higher signal-to-noise ratio. Second, there was a reduced statistical

power in the design of the second experiment compared to the �rst one: we had

actually a smaller number of trials per condition. The larger number of participants,

mostly naive, was not su�cient to compensate for these experimental factors and

future work using higher signal-to-noise ratio measurements and statistical power

shall be conducted in the future to con�rm our results. More robust evidence in this

sense would also allow us to understand whether or not timing and kinetic
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parameters of target motion are jointly or separately encoded in a probabilistic

framework (Badler & Heinen, 2006; Barnes & Donelan, 1999).

An internal representation of time-varying target kinematics

In this study, we show that accelerating and decelerating targets yield

di�erent eye velocities during anticipatory responses. Target motion conditions

were designed such that constant speeds can be compared with varying speed

conditions: speeds at target motion onset were similar for fast (33 °/s) and

decelerating speed conditions as well as for slow (11 °/s) and accelerating speed

conditions. An intermediate constant speed equal to 22 °/s was also presented in

fully predictable blocks. Despite that the target started moving at the same high/low

speed, decelerating and accelerating predictable target motion modulated

anticipatory eye velocity in a speci�c way. The quantitative comparisons indicated

that anticipatory eye velocity was not simply scaled based on the initial (i.e. 11 ou

33°/s) nor the mean (22°/s) target speed (Figure 5). Our additional exploratory

analysis based on the estimate of the equivalent target speed corresponding to

individual anticipatory eye velocity measured with accelerating/decelerating targets

(Figure 6) further con�rmed this observation. The estimated equivalent target

speed was actually very variable across participants, suggesting that the

representation of time-varying speed motion for the oculomotor drive is not related

in a simple and unique way to the initial or the time-averaged target velocity.

Moreover, the total displacement or duration of target motion had no systematic

in�uence on anticipation. Lastly, anticipatory eye velocity scaled with the

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


52

probability of a given target acceleration or deceleration (Figure 4). Altogether, and

despite the need to further understand the nature of the internal representation of

accelerating motion, these results suggest that target speed pro�le can be used to

control anticipatory pursuit, in a probability-dependent manner. Thus, humans can

learn the regularities of target trajectories from di�erent cues, such as direction,

speed and change in speed.

Whether or not acceleration of moving target is represented and used by the

primate tracking system is still unclear (Lisberger & Movshon, 1999), despite the

fact that target acceleration is a key component of most current models of smooth

pursuit eye movements (Goldreich et al., 1992). In humans, several previous studies

have attempted to demonstrate a role for acceleration and whether such high order

motion cues can be learned through the history of target motion. Bennett & Barnes

(2006) probed predictive smooth pursuit of accelerating targets, using the target

transient occlusion paradigm. They reported that, in highly predictable cases,

anticipatory eye velocity occurring before the end of target blanking was scaled to

the target acceleration. However, increasing uncertainty of target acceleration, by

mixing trials, canceled such dependency. Later on, Bennett et al. (2007) showed that

when smoothly pursuing an accelerating target which undergoes an occlusion after

a short exposition (200 ms), human participants are not able to adaptively use the

acceleration information. Instead, they seem to store the estimate of a constant

velocity and use saccades to compensate for the displacement error between the eye

position and the location where the target reappears. They found, however, that

after a longer exposure (500-800 ms, comparable to our visual motion duration),
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smooth pursuit and saccades discriminate between the di�erent acceleration

pro�les. Still, prediction of the target position at the end of the occlusion was not

optimal. Other studies came to the same conclusion: acceleration information can be

used to somehow control tracking eye (and hand) movements but not to build

predictive motor responses to moving targets, or related perceptual judgements

(Kreyenmeier et al. 2022).

How motion acceleration is estimated and represented is still disputed. Early

psychophysical studies have shown that the mean speed estimated over the stimulus

motion duration in�uences the perceptual discrimination of acceleration (Brouwer

et al., 2002; Gottsdanker et al., 1961; Schmerler, 1976). Watamaniuk & Heinen

(2003) showed that this is also the case when judging and tracking an accelerated

moving target. In addition, the duration of the temporal window during which the

target kinematic information is acquired seems to in�uence the accuracy of

acceleration estimation (Bennett et al., 2007). Here, we did not �nd any di�erence

between constant target motion duration and constant target motion displacement

(Exp 2A and 2B) for accelerating targets. In contrast, we found that anticipatory eye

velocity is stronger for constant target speeds when the target motion duration is

held constant. These results suggest that the exposure time is more important to

learn steady target velocity than its acceleration in order to drive and control

anticipatory responses. This �nding will need to be elucidated by future

investigation. For instance, a systematic investigation of the critical temporal

integration window for anticipatory eye movements with time-varying target speed

is still lacking. We also need a more complete understanding of how speed and
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acceleration cues can be integrated through learning sensorimotor contingencies in

speci�c tasks. A very peculiar example is the vertical tracking of a target that

changes speed by following the gravity acceleration (Zago et al., 2010). What is

being learned, and how to drive anticipatory pursuit responses question the

interactions between predictive and sensory information for an optimal tracking

behavior. In addition, in alternative or in parallel to the internal representation of

the retinal target speed and acceleration, the retinal velocity error could also be

estimated and eventually minimized over trials to improve tracking performance.

We can speculate that participants could simply learn by trial and error and adapt

their anticipation behavior in order to rapidly minimize the di�erence between the

gaze and target velocity. This hypothesis is qualitatively supported by our analysis

of the average velocity error during the open-loop and later phases of

visually-guided tracking (Figure 7): the velocity error seems to be similarly

minimized during the early open-loop phase for comparable constant and

time-varying speed. This observation suggests that regardless of the detailed

representation of accelerating motion, adaptive anticipatory behavior allows just the

e�cient reduction of that error. Again, this sort of cost-minimization process

remains to be thoroughly tested by future model-based experiments.

Integration of predictive and visually-guided information about target

kinematics

In order to investigate how predictive information interacts with sensory

driven pursuit components, we investigated how probability-based expectation of
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di�erent motion cues a�ect early visuomotor control. Smooth pursuit initiation, in

particular its latency and acceleration, primarily depend on the kinematic properties

of the visual moving target (Carl & Gellman, 1987). However, when reliable

extra-retinal, predictive information is available, it can also a�ect oculomotor visual

tracking, in agreement with the predictions of the Bayesian model of integration of

sensory and prior information (Bogadhi et al., 2013; Darlington et al., 2018; Deravet

et al., 2018; Orban De Xivry et al., 2013). These previous empirical and

computational studies have indeed suggested that eye velocity is controlled by an

internal estimate of target velocity that re�ects a reliability-weighted integration

between the sensory evidence (the target visual motion) and the expected velocity

(the prior, shaped by experience and by the context). Along the same lines, the

ocular tracking control system has been seen as an instantiation of a Kalman

sensorimotor �ltering (Orban de Xivry et al, 2013, Bogadhi et al., 2013). The

present experiments were not designed to explicitly test the reliability-based

combination of prior and sensory evidence. Nevertheless, using probabilistic

mixtures of targets moving with constant (or accelerating) speed, our present results

provide further support of this Bayesian integration hypothesis. Smooth pursuit

latency was in general (but not in all conditions) shorter and acceleration always

larger for higher speed targets compared to slower ones, as well established since

decades (Carl & Gellman, 1987). Yet, for high speed target trials, the latency

decreased when the probability of high-speed trials increased, while the latency of

slow speed trials increased concurrently (in Exp2, not signi�cantly in Exp1; similar

signi�cant e�ects were also found also for the mixture of accelerating/decelerating
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targets). Likewise, the open-loop acceleration of high speed trials increased further

with high speed probability, while the acceleration of slow-speed trials decreased.

Although the dependence on probability was not signi�cant across all conditions,

the overall pattern of results suggest that the initial, open-loop visuomotor

transformation driving pursuit initiation is also a�ected by target predictability.

Thus, visually guided pursuit follows the expected pattern predicted by a Bayesian

integration framework in which the visual input velocity is combined with prior

knowledge, with a stronger modulation of the prior when the probability of the

observed motion condition is larger. It is already known that optimal integration

can be based on di�erent visual cues about target motion trajectory, such as

position, velocity and acceleration, in order to reduce neural delays (Khoei et al.,

2017) or optimize sensorimotor transformations (Orban De Xivry et al., 2013). On

the other hand, several studies have shown the sub-optimal use of higher-order

motion cues for trajectory prediction in the context of hand or eye movements

(Bennett, Orban De Xivry, et al., 2010; Kreyenmeier et al., 2022; Watamaniuk &

Heinen, 2003; Werkhoven et al., 1992). The present results argue in favor of a

signi�cant, although limited role of target motion acceleration in both anticipatory

smooth eye movements ahead of target motion onset, as well as in the early phase

of the visually-guided ocular tracking. Future computational work shall elucidate

how dynamical multi-dimensional representations (i.e. direction, position, speed,

acceleration) of target trajectories weigh sensory and predictive motion information

for optimal sensorimotor tracking.
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Neuronal bases of predictive tracking and processing of di�erent kinematic

properties

Electrophysiological studies in the non-human primates have provided

evidence that a small subpart of the Frontal Eye Fields (FEFsem, slightly ventral

compared to the saccadic FEF) is implicated in the control of predictive smooth

pursuit (e.g. Fukushima et al., 2002; MacAvoy et al., 1991, see Kowler, 2019 for a

review). Darlington et al. (2018) showed that FEFsem �ring rate is modulated,

before visual motion onset, by the expectations about the target speed. In addition,

the speed-context modulation of neuronal activity continues throughout the

visually-guided phase of smooth pursuit, and it is stronger when the visual stimuli

are less reliable (i.e. at lower contrast), in agreement with a Bayesian-like

integration of prior beliefs and sensory evidence. Such integration was also apparent

in the oculomotor recordings, with the monkeys’ smooth pursuit eye velocity more

strongly modulated by the speed context for low-contrast targets. Unfortunately, the

authors could not compare the FEF preparatory activity with anticipatory eye

velocity, nor did they analyze the smooth pursuit latency dependence on motion

expectancy, thereby limiting the possibility to draw a correspondence with our

results. A second prefrontal oculomotor �eld, The Supplementary Eye Fields (SEF) is

also involved in the control of predictive smooth pursuit (Heinen & Liu, 1997). For

instance, de Hemptinne et al. (2008) showed that the activity of a population of SEF

neurons encoded the target direction expectations, as neurons became more active

after the presentation of a cue indicating deterministically a target motion in the

neuron’s preferred direction. The evidence for the neural substrates of predictive
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pursuit is much sparser in humans: Gagnon et al., 2006, have applied transcranial

magnetic stimulation (TMS) pulses to the human FEFsem and SEF regions during

visual tracking of sinusoidal target motion. They have reported an enhancement of

predictive pursuit when TMS was applied to FEFsem at di�erent epochs, but only in

some speci�c conditions when TMS was applied to SEF. Several questions remain

yet unanswered. First, the respective role of FEFsem and SEF in predictive eye

movement is still debated. Second, how the di�erent variables of target motion

trajectories are encoded and learned is yet to be investigated. Thanks to its fast,

block-designed protocole mixing di�erent target motion cues, the present study may

inspire future neurophysiological studies in non-human and human primates,

focusing on the joint analysis of anticipatory responses and preparatory neural

activities in these two prefrontal areas.

Our results call for a reevaluation of the role of higher-order motion cues

(acceleration/deceleration) in the control and learning of pursuit responses. There is

very little evidence that the primate nervous system encodes visual acceleration

explicitly, in the visual or in the oculomotor systems. Lisberger & Movshon (1999)

measured MT neurons' responses to image acceleration, but did not �nd evidence

that those neurons' activity varied with acceleration. They found, however, that the

coupled responses of a population of MT neurons was correlated to image

acceleration. On the other hand, they did not �nd evidence that MT population

signals could encode image deceleration. Similarly, Price et al. (2005) found speed

tuning in MT single neurons, but not an acceleration or deceleration tuning.

However, Schlack et al. (2007) showed that a linear classi�er can extract
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acceleration signals from the MT population response, given that the MT neurons’

tuning to speed depended on the acceleration and deceleration contexts of the task.

Note, however, that these earlier studies focused mainly on primate area MT while

other parietal (MST) and frontal (FEF) cortical areas might contribute to represent

complex target motion trajectories and higher-order kinematics. Future work shall

elucidate how position, velocity and acceleration cues are jointly or independently

encoded across the visuo-oculomotor distributed network, in order to represent and

learn target trajectories for the e�cient control of action.

Conclusion

In this study, we showed that when the target speed is predictable, human

participants show a linear dependance of anticipatory eye velocity with the speed

probability that is comparable to the one found for target direction predictability.

Moreover, participants also show anticipatory responses adjusted to time-varying

target kinematics, also when the latter are again modulated in terms of across-trials

probability. We also reported evidence that the open-loop phase of the

visually-guided pursuit is modulated by a combination of the target kinematic

predictability and the target motion visual properties, akin to the Bayesian

integration framework. Overall, this study contributes to the broad existing

literature about the sensory and cognitive control of eye movements by better

characterizing the role of predictive information about the target kinematics.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


60

Data availability statement

The data and analysis scripts are available ([link upon acceptance]).

References

Badler, J. B., & Heinen, S. J. (2006). Anticipatory movement timing using prediction and

external cues. Journal of Neuroscience, 26(17), 4519–4525.

Barnes, G. R., & Asselman, P. T. (1991). The mechanism of prediction in human smooth

pursuit eye movements. The Journal of Physiology, 439(1), 439–461.

https://doi.org/10.1113/jphysiol.1991.sp018675

Barnes, G. R., & Donelan, S. F. (1999). The remembered pursuit task: Evidence for

segregation of timing and velocity storage in predictive oculomotor control.

Experimental Brain Research, 129(1), 57–67.

https://doi.org/10.1007/s002210050936

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and

Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


61

Benguigui, N., & Bennett, S. J. (2010). Ocular pursuit and the estimation of

time-to-contact with accelerating objects in prediction motion are controlled

independently based on first-order estimates. Experimental Brain Research,

202(2), 327–339. https://doi.org/10.1007/s00221-009-2139-0

Bennett, S. J., & Barnes, G. R. (2006). Smooth ocular pursuit during the transient

disappearance of an accelerating visual target: The role of reflexive and voluntary

control. Experimental Brain Research, 175(1), 1–10.

https://doi.org/10.1007/s00221-006-0533-4

Bennett, S. J., & Benguigui, N. (2013). Is Acceleration Used for Ocular Pursuit and Spatial

Estimation during Prediction Motion? PLoS ONE, 8(5), e63382.

https://doi.org/10.1371/journal.pone.0063382

Bennett, S. J., De Xivry, J. J. O., Lefèvre, P., & Barnes, G. R. (2010). Oculomotor prediction

of accelerative target motion during occlusion: Long-term and short-term eVects.

Experimental Brain Research, 204(4), 493–504.

https://doi.org/10.1007/s00221-010-2313-4

Bennett, S. J., de Xivry, J.-J. O., Barnes, G. R., & Lefèvre, P. (2007). Target Acceleration Can

Be Extracted and Represented Within the Predictive Drive to Ocular Pursuit.

Journal of Neurophysiology, 98(3), 1405–1414.

https://doi.org/10.1152/jn.00132.2007

Bennett, S. J., Orban De Xivry, J.-J., Lefèvre, P., & Barnes, G. R. (2010). Oculomotor

prediction of accelerative target motion during occlusion: Long-term and

short-term effects. Experimental Brain Research, 204(4), 493–504.

https://doi.org/10.1007/s00221-010-2313-4

Bogadhi, A. R., Montagnini, A., & Masson, G. S. (2013). Dynamic interaction between

retinal and extraretinal signals in motion integration for smooth pursuit. Journal

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


62

of Vision, 13(13), 5–5. https://doi.org/10.1167/13.13.5

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.

Brouwer, A.-M., Brenner, E., & Smeets, J. B. J. (2002). Perception of acceleration with

short presentation times: Can acceleration be used in interception? Perception &

Psychophysics, 64(7), 1160–1168. https://doi.org/10.3758/BF03194764

Carl, J. R., & Gellman, R. S. (1987). Human smooth pursuit: Stimulus-dependent

responses. Journal of Neurophysiology, 57(5), 1446–1463.

https://doi.org/10.1152/jn.1987.57.5.1446

Coutinho, J. D., Lefèvre, P., & Blohm, G. (2021). Confidence in predicted position error

explains saccadic decisions during pursuit. Journal of Neurophysiology, 125(3),

748–767. https://doi.org/10.1152/jn.00492.2019

Damasse, J., Perrinet, L. U., & Montagnini, A. (2018). Reinforcement effects in anticipatory

smooth eye movements. 18(2018), 1–18.

Darlington, T. R., Beck, J. M., & Lisberger, S. G. (2018). Neural implementation of Bayesian

inference in a sensorimotor behavior. Nature Neuroscience, 21(10), 1442–1451.

https://doi.org/10.1038/s41593-018-0233-y

de Hemptinne, C., Lefevre, P., & Missal, M. (2008). Neuronal bases of directional

expectation and anticipatory pursuit. Journal of Neuroscience, 28(17),

4298–4310.

Deravet, N., Blohm, G., De Xivry, J.-J. O., & Lefèvre, P. (2018). Weighted integration of

short-term memory and sensory signals in the oculomotor system. Journal of

Vision, 18(5), 16. https://doi.org/10.1167/18.5.16

Dodge, R. (1930). OPTIC NYSTAGMUS: III. CHARACTERISTICS OF THE SLOW PHASE.

Archives of Neurology & Psychiatry, 24(1), 21.

https://doi.org/10.1001/archneurpsyc.1930.02220130024002

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


63

Drewes, J., Masson, G. S., & Montagnini, A. (2012). Shifts in reported gaze position due to

changes in pupil size: Ground truth and compensation. Proceedings of the

Symposium on Eye Tracking Research and Applications, 209–212.

https://doi.org/10.1145/2168556.2168596

Fukushima, K., Fukushima, J., Warabi, T., & Barnes, G. R. (2013). Cognitive processes

involved in smooth pursuit eye movements: Behavioral evidence, neural

substrate and clinical correlation. Frontiers in Systems Neuroscience, 7.

https://doi.org/10.3389/fnsys.2013.00004

Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S., & Peterson, B. W.

(2002). Coding of smooth eye movements in three-dimensional space by frontal

cortex. Nature, 419(6903), 157–162.

Gauthier, G. M., Vercher, J. L., Mussa Ivaldi, F., & Marchetti, E. (1988). Oculo-manual

tracking of visual targets: Control learning, coordination control and

coordination model. Experimental Brain Research, 73(1), 127–137.

https://doi.org/10.1007/BF00279667

Goldreich, D., Krauzlis, R. J., & Lisberger, S. G. (1992). Effect of changing feedback delay

on spontaneous oscillations in smooth pursuit eye movements of monkeys.

Journal of Neurophysiology, 67(3), 625–638.

https://doi.org/10.1152/jn.1992.67.3.625

Gottsdanker, R., Frick, J. W., & Lockard, R. B. (1961). IDENTIFYING THE ACCELERATION

OF VISUAL TARGETS. British Journal of Psychology, 52(1), 31–42.

https://doi.org/10.1111/j.2044-8295.1961.tb00765.x

Grasse, K. L., & Lisberger, S. G. (1992). Analysis of a naturally occurring asymmetry in

vertical smooth pursuit eye movements in a monkey. Journal of Neurophysiology,

67(1), 164–179. https://doi.org/10.1152/jn.1992.67.1.164

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


64

Heinen, S. J., Badler, J. B., & Ting, W. (2005). Timing and velocity randomization similarly

affect anticipatory pursuit. Journal of Vision, 5(6), 1–1.

https://doi.org/10.1167/5.6.1

Heinen, S. J., & Liu, M. (1997). Single-neuron activity in the dorsomedial frontal cortex

during smooth-pursuit eye movements to predictable target motion. Visual

Neuroscience, 14(5), 853–865. https://doi.org/10.1017/S0952523800011597

Hlavac, M. (2022). stargazer: Beautiful LATEX, HTML and ASCII tables from R statistical

output [R].

Jarrett, C. B., & Barnes, G. (2002). Volitional scaling of anticipatory ocular pursuit

velocity using precues. Cognitive Brain Research, 14(3), 383–388.

https://doi.org/10.1016/S0926-6410(02)00140-4

Kao, G. W., & Morrow, M. J. (1994). The relationship of anticipatory smooth eye

movement to smooth pursuit initiation. Vision Research, 34(22), 3027–3036.

https://doi.org/10.1016/0042-6989(94)90276-3

Ke, S. R., Lam, J., Pai, D. K., & Spering, M. (2013). Directional Asymmetries in Human

Smooth Pursuit Eye Movements. Investigative Opthalmology & Visual Science,

54(6), 4409. https://doi.org/10.1167/iovs.12-11369

Khoei, M. A., Masson, G. S., & Perrinet, L. U. (2017). The Flash-Lag Effect as a

Motion-Based Predictive Shift. PLOS Computational Biology, 13(1), e1005068.

https://doi.org/10.1371/journal.pcbi.1005068

Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning.

Nature, 427(6971), 244–247. https://doi.org/10.1038/nature02169

Kowler, E., Rubinstein, J. F., Santos, E. M., & Wang, J. (2019). Predictive Smooth Pursuit

Eye Movements. Annual Review of Vision Science, 5(1), 223–246.

https://doi.org/10.1146/annurev-vision-091718-014901

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


65

Kowler, E., & Steinman, R. M. (1979a). The effect of expectations on slow oculomotor

control—I. Periodic target steps. Vision Research, 19(6), 619–632.

https://doi.org/10.1016/0042-6989(79)90238-4

Kowler, E., & Steinman, R. M. (1979b). The effect of expectations on slow oculomotor

control—II. Single target displacements. Vision Research, 19(6), 633–646.

https://doi.org/10.1016/0042-6989(79)90239-6

Kreyenmeier, P., Kämmer, L., Fooken, J., & Spering, M. (2022). Humans Can Track But Fail

to Predict Accelerating Objects. Eneuro, 9(5), ENEURO.0185-22.2022.

https://doi.org/10.1523/ENEURO.0185-22.2022

Landelle, C., Montagnini, A., Madelain, L., & Danion, F. (2016). Eye tracking a self-moved

target with complex hand-target dynamics. Journal of Neurophysiology, 116(4),

1859–1870. https://doi.org/10.1152/jn.00007.2016

Lisberger, S. G., & Movshon, J. A. (1999). Visual motion analysis for pursuit eye

movements in area MT of macaque monkeys. The Journal of Neuroscience: The

Official Journal of the Society for Neuroscience, 19(6), 2224–2246.

https://doi.org/10.1523/JNEUROSCI.19-06-02224.1999

Lisberger, S., & Westbrook, L. (1985). Properties of visual inputs that initiate horizontal

smooth pursuit eye movements in monkeys. The Journal of Neuroscience, 5(6),

1662–1673. https://doi.org/10.1523/JNEUROSCI.05-06-01662.1985

MacAvoy, M. G., Gottlieb, J. P., & Bruce, C. J. (1991). Smooth-Pursuit Eye Movement

Representation in the Primate Frontal Eye Field. Cerebral Cortex, 1(1), 95–102.

https://doi.org/10.1093/cercor/1.1.95

Maus, G. W., Potapchuk, E., Watamaniuk, S. N. J., & Heinen, S. J. (2015). Different time

scales of motion integration for anticipatory smooth pursuit and perceptual

adaptation. Journal of Vision, 15(2), 16–16. https://doi.org/10.1167/15.2.16

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


66

Montagnini, A., Souto, D., & Masson, G. (2010). Anticipatory eye-movements under

uncertainty: A window onto the internal representation of a visuomotor prior.

Journal of Vision, 10(7), 554–554. https://doi.org/10.1167/10.7.554

Orban De Xivry, J. J., Missal, M., & Lefevre, P. (2008). A dynamic representation of target

motion drives predictive smooth pursuit during target blanking. Journal of Vision,

8(15), 6–6. https://doi.org/10.1167/8.15.6

Orban De Xivry, J.-J., Coppe, S., Blohm, G., & Lefèvre, P. (2013). Kalman Filtering Naturally

Accounts for Visually Guided and Predictive Smooth Pursuit Dynamics. The

Journal of Neuroscience, 33(44), 17301–17313.

https://doi.org/10.1523/JNEUROSCI.2321-13.2013

Orban De Xivry, J.-J., & Lefèvre, P. (2007). Saccades and pursuit: Two outcomes of a single

sensorimotor process: Saccades and smooth pursuit eye movements. The Journal

of Physiology, 584(1), 11–23. https://doi.org/10.1113/jphysiol.2007.139881

Pasturel, C., Montagnini, A., & Perrinet, L. U. (2020). Humans adapt their anticipatory eye

movements to the volatility of visual motion properties. PLOS Computational

Biology, 16(4), e1007438. https://doi.org/10.1371/journal.pcbi.1007438

Pasturel, C., Montagnini, A., & Perrinet, L. U. (2018). ANEMO: Quantitative tools for the

ANalysis of Eye MOvements. Grenoble Workshop on Models and Analysis of Eye

Movements, Grenoble, France.

https://laurentperrinet.github.io/publication/pasturel-18-anemo

Price, N. S. C., Ono, S., Mustari, M. J., & Ibbotson, M. R. (2005). Comparing Acceleration

and Speed Tuning in Macaque MT: Physiology and Modeling. Journal of

Neurophysiology, 94(5), 3451–3464. https://doi.org/10.1152/jn.00564.2005

Robinson, D. A. (1963). A Method of Measuring Eye Movemnent Using a Scieral Search

Coil in a Magnetic Field. IEEE Transactions on Bio-Medical Electronics, 10(4),

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


67

137–145. https://doi.org/10.1109/TBMEL.1963.4322822

Rottach, K. G., Zivotofsky, A. Z., Das, V. E., Averbuch-Heller, L., Discenna, A. O.,

Poonyathalang, A., & Leigh, R. J. (1996). Comparison of Horizontal, Vertical and

Diagonal Smooth Pursuit Eye Movements in Normal Human Subjects. Vision

Research, 36(14), 2189–2195. https://doi.org/10.1016/0042-6989(95)00302-9

Santos, E. M., & Kowler, E. (2017). Anticipatory smooth pursuit eye movements evoked

by probabilistic cues. Journal of Vision, 17(13), 1–16.

https://doi.org/10.1167/17.13.13

Schlack, A., Krekelberg, B., & Albright, T. D. (2007). Recent History of Stimulus Speeds

Affects the Speed Tuning of Neurons in Area MT. The Journal of Neuroscience,

27(41), 11009–11018. https://doi.org/10.1523/JNEUROSCI.3165-07.2007

Schmerler, J. (1976). The Visual Perception of Accelerated Motion. Perception, 5(2),

167–185. https://doi.org/10.1068/p050167

Souto, D., Montagnini, A., & Masson, G. S. (2008). Scaling of anticipatory smooth pursuit

eye movements with target speed probability. Journal of Vision, 8(6), 665–665.

https://doi.org/10.1167/8.6.665

Takeichi, N., Fukushima, J., Kurkin, S., Yamanobe, T., Shinmei, Y., & Fukushima, K. (2003).

Directional asymmetry in smooth ocular tracking in the presence of visual

background in young and adult primates. Experimental Brain Research, 149(3),

380–390. https://doi.org/10.1007/s00221-002-1367-3

Tychsen, L., & Lisberger, S. G. (1986). Visual motion processing for the initiation of

smooth-pursuit eye movements in humans. Journal of Neurophysiology, 56(4),

953–968. https://doi.org/10.1152/jn.1986.56.4.953

Voeten, C. (2020). buildmer: Stepwise elimination and term reordering for mixed-effects

regression [R].

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


68

Watamaniuk, S. N. J., & Heinen, S. J. (2003). Perceptual and oculomotor evidence of

limitations on processing accelerating motion. Journal of Vision, 3(11), 5.

https://doi.org/10.1167/3.11.5

Werkhoven, P., Snippe, H. P., & Alexander, T. (1992). Visual processing of optic

acceleration. Vision Research, 32(12), 2313–2329.

https://doi.org/10.1016/0042-6989(92)90095-Z

Zago, M., Iosa, M., Maffei, V., & Lacquaniti, F. (2010). Extrapolation of vertical target

motion through a brief visual occlusion. Experimental Brain Research, 201(3),

365–384. https://doi.org/10.1007/s00221-009-2041-9

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.10.31.564614doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564614


69

Supplementary material

Final models for the LMM analysis

Exp 2A, constant speed probability-mixtures:

(6)aSPon ~ 1 + P(V33) +axis + (1 + P(V33) + axis | participant)

(7)aSPv ~ 1 + P(V33) + axis + (1 + P(V33) + axis | participant)

(8)SPlat ~ 1 + P(V33) * axis + P(V33) * Tk + (1 + P(V33) + axis + Tk |

participant)

(9)SPacc ~ 1 + P(V33) * axis + P(V33) * Tk + axis * Tk + (1 + P(V33) +

axis + Tk | participant)

Exp 2A-B, time-varying target kinematics probability-mixtures:

(10) aSPon ~ 1 + P(Vdec) +axis + (1 + P(Vdec) + axis | participant)

(11) aSPv ~ 1 + P(Vdec) + axis + (1 + P(Vdec) + axis | participant)

(12) SPlat ~ 1 + P(Vdec) * axis + P(Vdec) * Tk + (1 + P(Vdec) + axis + Tk

| participant)

(13) SPacc ~ 1 + P(Vdec) * axis + Tk + (1 + P(Vdec) + axis + Tk |

participant)

Exp 2A-B, comparison between target kinematics:

(14) aSPon ~ 1 + Tk+ axis + (1 + axis | participant)

(15) aSPv ~ 1 + Tk * axis + Tk * exp + axis * exp + (1 + Tk+ axis |

participant)
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(16) SPlat ~ 1 + Tk * axis + Tk * exp + (1 + Tk+ axis | participant)

(17) SPacc ~ 1 + Tk * axis * exp + (1 + axis | participant)

LMM analysis - tables

Exp 1 - Anticipatory Parameters

Dependent variable:

aSPon aSPv

P(HS) -15.90*** (-20.81, -10.99) 3.14*** (2.87, 3.41)

t = -6.35 t = 22.80

Constant -85.83*** (-100.04, -71.61) 2.55*** (2.01, 3.08)

t = -11.83 t = 9.32

Random E�ects

Groups 3 3

sd(Constant) 14.92 0.57

sd(P(HS)) 0.00 0.22

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A, constant target speed - Anticipatory Parameters

Dependent variable:

aSPon aSPv

Axis[y] 0.02 (-10.34, 10.39) -0.84*** (-1.32, -0.35)

t = 0.004 t = -3.40

P(V33) 5.52 (-6.18, 17.22) 2.61*** (1.42, 3.79)

t = 0.92 t = 4.31

Constant -115.61*** (-128.62, -102.59) 2.45*** (1.58, 3.32)

t = -17.41 t = 5.50

Random E�ects

Groups 13 13

sd(Constant) 21.37 1.63
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sd(Axis) 15.68 0.86

sd(P(v33)) 13.55 2.21

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, accelerating target kinematics - Anticipatory
Parameters

Dependent variable:

aSPon aSPv

Axis[y] 6.75 (-0.15, 13.66) -0.61** (-1.04, -0.18)

t = 1.92 t = -2.80

P(Vdec) 9.13* (0.35, 17.91) 2.25*** (1.53, 2.97)

t = 2.04 t = 6.13

Constant -123.73*** (-136.28, -111.18) 2.96*** (2.26, 3.65)

t = -19.32 t = 8.35

Random E�ects

Groups 16 16

sd(Constant) 24.12 1.43

sd(Axis) 10.40 0.85

sd(P(Vdec)) 9.79 1.43

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Anticipatory Parameters
V11 as level 0

Dependent variable:

aSPon aSPv

V22 2.01 (-3.65, 7.67) 1.67*** (0.88, 2.45)

t = 0.70 t = 4.18

V33 4.05 (-1.52, 9.63) 2.45*** (1.61, 3.29)

t = 1.42 t = 5.73

Vacc -7.82** (-13.60, -2.03) 0.38 (-0.27, 1.03)

t = -2.65 t = 1.14

Vdec -1.61 (-7.22, 4.01) 2.16*** (1.43, 2.89)

t = -0.56 t = 5.77

Axis[y] 4.60 (-1.36, 10.56) -0.35 (-0.82, 0.12)
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t = 1.51 t = -1.48

Experiment [constant
time]

0.73*** (0.34, 1.13)

t = 3.61

Axis:Experiment -0.35* (-0.67, -0.02)

t = -2.11

Constant -119.31*** (-130.99, -107.63) 2.05*** (1.47, 2.63)

t = -20.02 t = 6.94

Random E�ects

Groups 16 16

sd(Constant) 22.17 1.16

sd(Axis) 8.26 0.88

sd(V22) NaN 1.56

sd(V33) NaN 1.69

sd(Vacc) NaN 1.27

sd(Vdec) NaN 1.45

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Anticipatory Parameters

V22 as level 0

Dependent variable:

aSPon aSPv

V11 -2.01 (-7.67, 3.65) -1.67*** (-2.45, -0.88)

t = -0.70 t = -4.18

V33 2.04 (-3.28, 7.36) 0.78 (-0.22, 1.79)

t = 0.75 t = 1.53

Vacc -9.83*** (-15.37, -4.29) -1.29* (-2.34, -0.24)

t = -3.48 t = -2.40

Vdec -3.62 (-8.97, 1.73) 0.49 (-0.11, 1.09)

t = -1.33 t = 1.61

Axis[y] 4.60 (-1.36, 10.56) -0.58* (-1.05, -0.12)

t = 1.51 t = -2.45

Experiment [constant time] 0.50* (0.11, 0.89)

t = 2.53

Axis:Experiment -0.35* (-0.67, -0.02)
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t = -2.11

Constant -117.30*** (-128.85, -105.74) 3.72*** (2.97, 4.47)

t = -19.90 t = 9.73

Random E�ects

Groups 16 16

sd(Constant) 22.17 1.64

sd(Axis) 8.26 0.88

sd(V22) NaN 1.69

sd(V33) NaN 2.06

sd(Vacc) NaN 1.71

sd(Vdec) NaN 1.48

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Anticipatory Parameters

V33 as level 0

Dependent variable:

aSPon aSPv

V11 -4.05 (-9.63, 1.52) -2.45*** (-3.29, -1.61)

t = -1.42 t = -5.73

V22 -2.04 (-7.36, 3.28) -0.78 (-1.79, 0.22)

t = -0.75 t = -1.53

Vacc -11.87*** (-17.33, -6.41) -2.07*** (-2.92, -1.23)

t = -4.26 t = -4.80

Vdec -5.66* (-10.93, -0.39) -0.29 (-1.04, 0.45)

t = -2.11 t = -0.77

Axis[y] 4.60 (-1.36, 10.56) -0.46 (-0.92, 0.01)

t = 1.51 t = -1.92

Experiment [constant time] 0.50* (0.10, 0.90)

t = 2.47

Axis:Experiment -0.35* (-0.67, -0.02)

t = -2.11

Constant -115.25*** (-126.77, -103.74) 4.51*** (3.71, 5.30)

t = -19.62 t = 11.06

Random E�ects
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Groups 16 16

sd(Constant) 22.17 1.64

sd(Axis) 8.26 0.88

sd(V22) NaN 1.69

sd(V33) NaN 2.06

sd(Vacc) NaN 1.71

sd(Vdec) NaN 1.48

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Anticipatory Parameters
Vdec as level 0

Dependent variable:

aSPon aSPv

V11 1.61 (-4.01, 7.22) -2.16*** (-2.89, -1.43)

t = 0.56 t = -5.77

V22 3.62 (-1.73, 8.97) -0.49 (-1.09, 0.11)

t = 1.33 t = -1.61

V33 5.66* (0.39, 10.93) 0.29 (-0.45, 1.04)

t = 2.11 t = 0.77

Vacc -6.21* (-11.70, -0.72) -1.78*** (-2.70, -0.86)

t = -2.22 t = -3.80

Axis[y] 4.60 (-1.36, 10.56) -0.73** (-1.19, -0.26)

t = 1.51 t = -3.06

Experiment [constant time] 0.20 (-0.18, 0.58)

t = 1.02

Axis:Experiment -0.35* (-0.67, -0.02)

t = -2.11

Constant -120.91*** (-132.45, -109.38) 4.21*** (3.42, 5.00)

t = -20.55 t = 10.47

Random E�ects

Groups 16 16

sd(Constant) 22.17 1.62

sd(Axis) 8.26 0.88
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sd(V22) NaN 1.45

sd(V33) NaN 1.16

sd(Vacc) NaN 1.48

sd(Vdec) NaN 1.86

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 1 - Visually Guided Parameters

Dependent variable:

SPlat SPacc

P(HS) 1.84 (-1.10, 4.78) 31.94*** (23.22, 40.66)

t = 1.23 t = 7.18

TargetVelocity [LS] 4.87*** (2.22, 7.52) -45.38*** (-55.56, -35.20)

t = 3.60 t = -8.74

P(HS):TargetVelocity -1.63 (-4.94, 1.68) -55.32*** (-63.74, -46.89)

t = -0.97 t = -12.87

Constant 130.50*** (128.52, 132.49) 91.54*** (78.85, 104.23)

t = 128.80 t = 14.14

Random E�ects

Groups 3 3

sd(Constant) 0.74 12.76

sd(P(HS)) 1.82 6.83

sd(Target Velocity) 1.79 9.37

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A, constant target speed - Visually Guided Parameters

Dependent variable:

SPlat SPacc

Target Velocity [V11] -16.15*** (-20.24, -12.07) -36.91*** (-48.63, -25.19)

t = -7.76 t = -6.17

P(V33) -19.79*** (-25.49, -14.09) 8.25 (-0.29, 16.78)

t = -6.81 t = 1.89

Axis[y] 0.01 (-3.00, 3.02) 17.57*** (8.58, 26.57)

t = 0.01 t = 3.83
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P(V33):Target
Velocity

20.32*** (15.01, 25.63) 14.30** (4.21, 24.38)

t = 7.50 t = 2.78

P(V33):Axis 5.41** (1.30, 9.51) -16.80*** (-26.79, -6.80)

t = 2.58 t = -3.29

Target Velocity:Axis -11.11*** (-17.26, -4.96)

t = -3.54

Constant 118.64*** (113.05, 124.22) 73.90*** (62.54, 85.25)

t = 41.65 t = 12.75

Random E�ects

Groups 13 13

sd(Constant) 8.31 17.50

sd(P(V33)) 6.28 NaN

sd(Target Velocity) 4.24 18.05

sd(Axis) 2.69 8.21

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, accelerating target kinematics - Visually Guided Parameters

Dependent variable:

SPlat SPacc

Axis[y] -1.01 (-3.67, 1.64) 2.48 (-8.26, 13.22)

t = -0.75 t = 0.45

TargetVelocity [Vacc] -7.20*** (-10.49, -3.90) -33.71*** (-41.69, -25.74)

t = -4.28 t = -8.29

P(Vdec) -9.06*** (-13.75, -4.37) -3.74 (-11.33, 3.85)

t = -3.79 t = -0.97

P(Vdec):TargetVelocity 12.07*** (7.67, 16.47)

t = 5.38

P(Vdec):Axis 5.38** (1.91, 8.86) 9.33** (2.90, 15.76)

t = 3.03 t = 2.84

Constant 111.06*** (107.13, 114.98) 84.17*** (78.22, 90.13)

t = 55.46 t = 27.71

Random E�ects

Groups 16 16

sd(Constant) 5.79 8.54
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sd(Target Velocity) 3.94 15.43

sd(P(Vdec)) 5.74 9.56

sd(Axis) 3.12 20.82

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Visually Guided Parameters

V11 as level 0

Dependent variable:

SPlat SPacc

V22 2.56 (-1.58, 6.71) 25.75*** (22.03, 29.48)

t = 1.21 t = 13.56

V33 -3.45 (-7.16, 0.26) 47.05*** (43.33, 50.77)

t = -1.82 t = 24.81

Vacc 4.02* (0.30, 7.74) 12.44*** (8.70, 16.18)

t = 2.12 t = 6.52

Vdec 0.42 (-3.81, 4.65) 39.49*** (35.78, 43.20)

t = 0.19 t = 20.86

Experiment [constant time] -0.46 (-4.07, 3.16) 0.12 (-5.96, 6.20)

t = -0.25 t = 0.04

Axis[y] 1.59 (-0.96, 4.15) 2.91 (-2.81, 8.63)

t = 1.22 t = 1.00

Axis:Experiment -7.22 (-15.73, 1.28)

t = -1.66

Constant 102.41*** (99.16, 105.66) 39.91*** (35.13, 44.69)

t = 61.80 t = 16.37

Random E�ects

Groups 16 16

sd(Constant) 5.44 7.94

sd(V22) 6.57 NaN

sd(V33) 5.46 NaN

sd(Vacc) 5.39 NaN

sd(Vdec) 6.81 NaN

sd(Axis) 2.79 8.33

Note: *p<0.05; **p<0.01; ***p<0.001
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Exp 2A-B, fully predictable target kinematics - Visually Guided Parameters

V22 as level 0

Dependent variable:

SPlat SPacc

V11 -2.56 (-6.71, 1.58) -25.75*** (-29.48, -22.03)

t = -1.21 t = -13.56

V33 -6.01** (-10.09, -1.93) 21.30*** (17.67, 24.93)

t = -2.89 t = 11.50

Vacc 1.46 (-2.40, 5.32) -13.31*** (-16.96, -9.66)

t = 0.74 t = -7.14

Vdec -2.14 (-6.78, 2.49) 13.74*** (10.12, 17.36)

t = -0.91 t = 7.43

Experiment [constant time] 1.86 (-1.96, 5.68) 4.25 (-1.70, 10.20)

t = 0.95 t = 1.40

Axis[y] 1.00 (-1.50, 3.49) 5.49 (-0.11, 11.10)

t = 0.78 t = 1.92

Axis:Experiment -2.65 (-10.98, 5.67)

t = -0.62

Constant 104.97*** (100.56, 109.39) 65.67*** (60.96, 70.38)

t = 46.59 t = 27.31

Random E�ects

Groups 16 16

sd(Constant) 6.22 7.94

sd(V22) 5.39 NaN

sd(V33) 5.92 NaN

sd(Vacc) 6.15 NaN

sd(Vdec) 9.29 NaN

sd(Axis) 2.79 8.33

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Visually Guided Parameters

V33 as level 0

Dependent variable:
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SPlat SPacc

V11 3.45 (-0.26, 7.16) -47.05*** (-50.77, -43.33)

t = 1.82 t = -24.81

V22 6.01** (1.93, 10.09) -21.30*** (-24.93, -17.67)

t = 2.89 t = -11.50

Vacc 7.47*** (3.56, 11.38) -34.61*** (-38.25, -30.96)

t = 3.75 t = -18.59

Vdec 3.87* (0.11, 7.63) -7.56*** (-11.17, -3.94)

t = 2.02 t = -4.10

Experiment [constant time] 1.70 (-1.84, 5.24) 6.73* (0.80, 12.65)

t = 0.94 t = 2.22

Axis[y] 5.36*** (2.87, 7.84) -5.56 (-11.16, 0.04)

t = 4.22 t = -1.95

Axis:Experiment 0.24 (-8.05, 8.53)

t = 0.06

Constant 98.96*** (94.91, 103.01) 86.96*** (82.26, 91.67)

t = 47.91 t = 36.20

Random E�ects

Groups 16 16

sd(Constant) 6.22 7.94

sd(V22) 5.39 NaN

sd(V33) 5.92 NaN

sd(Vacc) 6.15 NaN

sd(Vdec) 9.29 NaN

sd(Axis) 2.79 8.33

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Visually Guided Parameters

Vacc as level 0

Dependent variable:

SPlat SPacc

V11 -4.02* (-7.74, -0.30) -12.44*** (-16.18, -8.70)

t = -2.12 t = -6.52

V22 -1.46 (-5.32, 2.40) 13.31*** (9.66, 16.96)
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t = -0.74 t = 7.14

V33 -7.47*** (-11.37, -3.56) 34.61*** (30.96, 38.25)

t = -3.75 t = 18.59

Vdec -3.60 (-8.81, 1.61) 27.05*** (23.41, 30.69)

t = -1.35 t = 14.56

Experiment [constant time] 0.94 (-2.64, 4.53) 0.76 (-5.19, 6.72)

t = 0.52 t = 0.25

Axis[y] 1.55 (-0.96, 4.05) 4.65 (-0.98, 10.28)

t = 1.21 t = 1.62

Axis:Experiment -3.85 (-12.18, 4.48)

t = -0.91

Constant 106.43*** (102.90, 109.95) 52.36*** (47.63, 57.08)

t = 59.17 t = 21.70

Random E�ects

Groups 16 16

sd(Constant) 6.22 7.94

sd(V22) 5.39 NaN

sd(V33) 5.92 NaN

sd(Vacc) 6.15 NaN

sd(Vdec) 9.29 NaN

sd(Axis) 2.79 8.33

Note: *p<0.05; **p<0.01; ***p<0.001

Exp 2A-B, fully predictable target kinematics - Visually Guided Parameters

Vdec as level 0

Dependent variable:

SPlat SPacc

V11 -0.42 (-4.64, 3.81) -39.49*** (-43.20, -35.78)

t = -0.19 t = -20.86

V22 2.14 (-2.49, 6.78) -13.74*** (-17.36, -10.12)

t = 0.91 t = -7.43

V33 -3.87* (-7.63, -0.11) 7.56*** (3.94, 11.17)

t = -2.02 t = 4.10

Vacc 3.60 (-1.61, 8.81) -27.05*** (-30.69, -23.41)
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t = 1.35 t = -14.56

Experiment [constant time] 1.09 (-2.63, 4.82) 2.58 (-3.33, 8.48)

t = 0.58 t = 0.85

Axis[y] 4.16** (1.68, 6.64) 6.11* (0.52, 11.71)

t = 3.28 t = 2.14

Axis:Experiment 8.40* (0.14, 16.66)

t = 1.99

Constant 102.83*** (98.71, 106.94) 79.41*** (74.70, 84.11)

t = 48.99 t = 33.08

Random E�ects

Groups 16 16

sd(Constant) 6.22 7.94

sd(V22) 5.39 NaN

sd(V33) 5.92 NaN

sd(Vacc) 6.15 NaN

sd(Vdec) 9.29 NaN

sd(Axis) 2.79 8.33

Note: *p<0.05; **p<0.01; ***p<0.001
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