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Global stabilization of the cubic defocusing nonlinear

Schrödinger equation on the torus∗

Kévin Le Balc’h† Jérémy Martin ‡

November 20, 2023

Abstract

In this article, we prove the (uniform) global exponential stabilization of the cubic defocusing
nonlinear Schrödinger equation on the torus (R/2πZ)d, for d = 1, 2 or 3, with a linear damping
localized in a subset of the torus satisfying some geometrical assumptions. In particular, this an-
swers an open question of Dehman, Gérard and Lebeau from 2006. Our approach is based on three
ingredients. First, we prove the well-posedness of the closed-loop system in Bourgain spaces. Sec-
ondly, we derive new Carleman estimates for the nonlinear equation by directly including the cubic
term in the conjugated operator. Thirdly, by conjugating with energy estimates and Morawetz
multipliers method, we then deduce quantitative observability estimates leading to the uniform
exponential decay of the total energy of the system. As a corollary of the global stabilization result,
we obtain an upper bound of the minimal time of the global null-controllability of the nonlinear
equation by using a stabilization procedure and a local null-controllability result.
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1 Introduction

1.1 Control of Schrödinger equations on compact manifolds

Let (M, g) be a compact smooth connected boundaryless Riemannian d-dimensional manifold, for
d ∈ {1, 2, 3} and ∆g be the Laplace Beltrami operator onM associated to the metric g. Very quickly,
we will restrict ourselves to M = Td = (R/2πZ)d.

We are interested in the cubic defocusing nonlinear Schrödinger equation{
i∂tu = −∆gu+ |u|2u in (0,+∞)×M,
u(0, ·) = u0 in M.

(1.1)

This equation arises naturally in nonlinear optics, as a model of wave propagation in fiber optics.
The function u(t, x) ∈ C represents a wave and the nonlinear Schrödinger equation describes the
propagation of the wave through a nonlinear medium. In this context, the metric g can be interpreted
as an inhomogeneity of the optical index.

Formally, in (1.1), two quantities are conserved. First, by multiplying by u the equation (1.1) and
by taking the imaginary part, we observe that the L2-energy is conserved, i.e.

d

dt

(∫
M
|u(t, x)|2dx

)
= 0 ∀t ≥ 0. (1.2)

Secondly, by multiplying by ∂tu the equation (1.1) and by taking the real part, we also observe that
the nonlinear-energy (or H1-energy) is conserved, i.e.

d

dt

(
1

2

∫
M
|∇u(t, x)|2dx+

1

4

∫
M
|u(t, x)|4dx

)
= 0 ∀t ≥ 0. (1.3)

Concerning the (global) well-posedness of (1.1) for u0 ∈ H1(M), in the 1-dimensional case, this
comes from energy estimates and Sobolev embeddings, see for instance [Caz03, Corollary 3.5.2]. How-
ever, this strategy fails in the d-dimensional case (d ≥ 2), see for instance [Caz03, Corollary 3.5.2].
In order to obtain global existence results for initial data in Hs(M) for s ≥ 1, one needs to use
Strichartz-type estimates. For M = Td, we have that (1.1) is globally well-posed for u0 ∈ Hs(Td)
for every s ≥ 1, up to dimension d = 3, see [Bou93] and [Bou99, Chapter 5]. For M = Sd, (1.1) is
globally well-posed for u0 ∈ Hs(Td) for every s ≥ 1, up to dimension d = 3, see [BGT05a] for surfaces
and [BGT05b] for d = 3.

The goal of the paper is to analyse controllability and stabilization properties of (1.1) by mean of
a force h localized in ω, a nonempty open subset of M, satisfying some geometrical assumptions, see
below.

We first introduce the controlled linear Schrödinger equation{
i∂tu = −∆gu+ h1ω in (0,+∞)×M,
u(0, ·) = u0 in M.

(1.4)

In (1.4), at time t ∈ (0,+∞), u(t, ·) :M→ C is the state and h(t, ·) : ω → C is the control.
Controllability for the linear Schrödinger equation has been started to be strongly investigated in

the 1990’s. We recall the definitions of controllability and its dual notion, called observability.

Let s ≥ 0 and T > 0.
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The equation (1.4) is exactly controllable in Hs(M) at time T > 0 if for every u0 ∈ Hs(M)
and u1 ∈ Hs(M), there exists h ∈ L2(0, T ;Hs(M)) such that the mild solution u of (1.4) belongs to
C([0, T ];Hs(M)) and satisfies u(T, ·) = u1.

The linear Schrödinger equation is observable in H−s(M) at time T > 0 if there exists a constant

C = C(M, ω, T ) > 0 such that for every u0 ∈ H−s(M), ‖u0‖2H−s(M) ≤ C
∫ T

0

∥∥eit∆u01ω
∥∥2

H−s(M)
dt.

The Hilbert Uniqueness Method (H.U.M.) relates the two previous notions, see for instance
[Cor07, Theorem 2.42]. The controlled linear Schrödinger equation (1.4) is exactly controllable in
Hs(M) at time T > 0 if and only if the the linear Schrödinger equation is observable in H−s(M) at
time T > 0.

In this direction, one of the most breakthrough result is from [Leb92] that guarantees that the so-
called Geometric Control Condition (GCC) for the wave equation equation is sufficient for the exact
controllability of the Schrödinger equation in any time T > 0. The proof of this result is based on mi-
crolocal analysis. The GCC can be, roughly, formulated as follows, the subdomain ω is said to satisfy
the GCC in time T > 0 if and only if all rays of Geometric Optics that propagate inside the domain
reach the control set ω in time less than T . A particular case of this result was proved previously by
[Mac94] by multiplier technics. One can also see [LTZ04] for the obtention of such results by using
Carleman estimates. In [Phu01], the author establishes the connections between the heat, wave and
Schrödinger equations through suitable integral transformations called Fourier-Bros-Iagonitzer (FBI)
transformations. This allows him to get, for instance, estimates on the cost of approximate controlla-
bility for the Schrödinger equation when the GCC is not satisfied and also on the dependence of the
size of the control with respect to the control time. For the sphere Sd, by using explicit quasimodes
that concentrate on the equator, one can prove that the GCC is necessary and sufficient for the ob-
servability. On the other hand, there a number of results showing that, in some situations in which
the GCC is not fulfilled in any time, one can still achieve very satisfactory results for the Schrödinger
equation. For instance, any nonempty open subset of Td is sufficient for the observability then for
the exact controllability of the Schrödinger equation, see [Jaf90] or [KL05] for a proof using Ingham’s
estimates or [AM14] for a proof using semi-classical measures. Note that it has been recently extended
to any nontrivial measurable subset of T2 in [BZ19] with the crucial use of dispersive properties of the
Schrödinger equation. For the unit disk D with Dirichlet boundary conditions, explicit eigenfunctions
concentrate near the boundary so one can prove that the observability holds if and only if ω contains
a (small) part of the boundary ∂D, see [ALM16]. For a survey of these results up to 2002, one can
read [Zua03].

For λ ∈ R∗, the controlled cubic focusing (λ < 0) or defocusing (λ > 0) Schrödinger equation writes
as follows {

i∂tu = −∆u+ λ|u|2u+ h1ω in (0,+∞)×M,
u(0, ·) = u0 in M.

(1.5)

In (1.5), at time t ∈ (0,+∞), u(t, ·) :M→ C is the state and h(t, ·) : ω → C is the control.
Controllability and stabilization properties have been started to be investigated at the beginning

of the 2000′s. These notions are usually split into local, semiglobal and global. We just give the
definitions for the stabilization in Hs(M), for a feedback operator P ∈ L(Hs(Td)), to illustrate the
differences between them and because we will mainly focus on it after. Other precise definitions, in
particular concerning controllability, can be found in references mentioned below.

Let s ≥ 0 and assume that there exists a family of Hilbert spaces (ET,s)T>0 ⊂ C([0, T ], Hs(M))
such that for all T > 0, the equation (1.5) posed on the time interval [0, T ] with h = 0 and u0 ∈ Hs(M)
is well-posed on the space ET,s.

The equation (1.5) is locally exponentially stabilizable in Hs(M) if there exists P ∈ L(Hs(M))
such that the equation (1.5) with h = Pu is well-posed on ET,s for all T > 0, and there exist δ > 0,
C > 0 and γ > 0 such that for every u0 ∈ Hs(M) satisfying ‖u0‖Hs(M) ≤ δ, the solution u of (1.5)
satisfies ‖u(t, ·)‖Hs(M) ≤ Ce−γt for every t ≥ 0.

The equation (1.5) is semiglobally exponentially stabilizable in Hs(M) if there exists P ∈
L(Hs(M)) such that the equation (1.5) with h = Pu is well-posed on ET,s for all T > 0, and for
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every R > 0, there exist C = C(R) > 0 and γ = γ(R) > 0 such that for every u0 ∈ Hs(M) satisfying
‖u0‖Hs(M) ≤ R, the solution u of (1.5) satisfies ‖u(t, ·)‖Hs(M) ≤ Ce−γt for every t ≥ 0.

The equation (1.5) is globally exponentially stabilizable inHs(M) if there exists P ∈ L(Hs(M))
such that the equation (1.5) with h = Pu is well-posed on ET,s for all T > 0, and there exist
C > 0 and γ > 0 such that for every u0 ∈ Hs(M), the solution u of (1.5) satisfies ‖u(t, ·)‖Hs(M) ≤
Ce−γt ‖u0‖Hs(M) for every t ≥ 0.

We consider a ∈ C∞c (ω) such that a(x) ≥ a0 > 0 in ω̂ ⊂⊂ ω where ω is a nonempty open
subset of M. Local exact controllability in H1(T) for (1.5) has been first obtained in [ILT03]. It
has then been extended in Hs(T) in [RZ09] for every s ≥ 0 by using moments theory and Bourgain
analysis for the treatment of the semilinearity seen as a small perturbation of the linear case. Note
that the local stabilization with the feedback h = −ia(x)u has also been obtained in [RZ09]. This
type of result has been generalized to any d-dimensional torus Td, d ≥ 2, in [RZ10]. In [DGL06], for
M = T2 or M = S2, the authors prove that (1.5) for λ > 0 is semiglobally exponentially stabilizable
in H1(M) with h = a(x)(1 −∆)−1a(x)∂tu by using propagation of singularities and Strichartz-type
estimates from [BGT04], assuming that ω contains the union of a neighborhood of the generator circle
and a neighborhood of the largest exterior circle of T2 for M = T2 or ω contains a neighborhood
of the equator for M = S2. The authors in [DGL06] also deduce that (1.5) is semiglobally exactly
controllable in H1(M), by using the semiglobal stabilization and a local exact controllability result.
This type of result has been generalized to the situationsM = T3 andM = S3, with the same kind of
assumptions, in [Lau10b]. It is worth mentioning that [Lau10b] uses the Bourgain analysis to handle
the semilinearity and also proposes another approach for obtaining the semiglobal exact controllability.
Furthermore, [Lau10a] also obtains semiglobal controllablility and stabilizability results for (1.5), both
for focusing and defocusing cases, working at L2(T)-regularity, with the feedback h = −ia(x)u. More
recently, [CCDCAR18] and [YNC21] generalize among other things [DGL06] and [Lau10b] with the
feedback laws h = −ia(x)(−∆)1/2u and h = −ia(x)u. For a survey of these results up to 2014, one
can read [Lau14].

1.2 Main results

The goal of this paper is to prove the global exponential stabilization of the equation (1.5) on the
specific case M = Td for d ∈ {1, 2, 3}. Before stating our main results, it is worth mentioning that
this work only deals with such dimensions because of the well-posedness result of Proposition 2.1, see
below. More precisely, the Section 2 is devoted to well-posedness results in Bourgain spaces.

For d ∈ {1, 2, 3}, we now consider{
i∂tu = −∆u+ |u|2u+ h1ω in (0,+∞)× Td,
u(0, ·) = u0 in Td. (1.6)

The stabilization property will be established in the energy space associated to the total energy given
by the sum of the L2-energy and the nonlinear energy,

E(t) =
1

2

∫
Td

|u(t, x)|2dx︸ ︷︷ ︸
L2−energy

+
1

2

∫
Td

|∇u(t, x)|2dx+
1

4

∫
Td

|u(t, x)|4dx︸ ︷︷ ︸
nonlinear energy

∀t ≥ 0. (1.7)

Recall that for h = 0 in (1.6), we formally have the conservation law

d

dt
E(t) = 0 ∀t ≥ 0, (1.8)

since the L2-energy and the nonlinear energy are conserved, see (1.2) and (1.3).
Let ε ∈ (0, 2π) and assume that ω is a (nonempty) open subset of Td such that by denoting

Iε = (0, ε) ∪ (2π − ε, 2π) + 2πZ ⊂ T, (1.9)
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we have  ω0 := Iε ⊂ ω when d = 1,
ω0 := (Iε × T) ∪ (T× Iε) ⊂ ω when d = 2,
ω0 :=

(
Iε × T2

)
∪ (T× Iε × T) ∪

(
T2 × Iε

)
⊂ ω when d = 3.

(1.10)

When d = 1, up to a translation, (1.10) corresponds to the fact that ω contains an open interval,
therefore, we can only assume that ω is a non-open open subset of T1. When d = 2, (1.10) corresponds
to the fact where ω contains an union of a neighborhood of the generator circle and a neighborhood
of the largest exterior circle of T2. When d = 3, (1.10) corresponds to the fact that ω contains a
neighborhood of each face of the cube, the fundamental volume of T3. It is worth mentioning that
such a ω satisfies in particular GCC.

We consider a ∈ C∞c (ω) such that a(x) ≥ a0 > 0 in ω0. We then look at{
i∂tu = −∆u+ |u|2u− ia(x)u in (0,+∞)× Td,
u(0, ·) = u0 in Td. (1.11)

The main result of the paper is the (uniform) global stabilization of (1.11).

Theorem 1.1. Let d ∈ {1, 2, 3}. There exist C, γ > 0 such that for all u0 ∈ H1(Td), the solution u of
(1.11) belongs to C([0,+∞);H1(Td)) and satisfies

E(t) ≤ Ce−γtE(0) ∀t ≥ 0. (1.12)

From Theorem 1.1, one can obtain an estimate of the minimal time of the null-controllability for
(1.6).

From [Lau10a, Theorem 0.2] in 1-d, [DGL06, Theorem 2] in 2-d and [Lau10b, Theorem 0.1] in 3-d,
we have that for every u0 ∈ H1(Td), there exists a time T > 0 and a control h ∈ L2(0, T ;H1(Td)) such
that the solution u of (1.6) belongs to C([0, T ];H1(Td)) and satisfies u(T, ·) = 0. So, one can define,
for u0 ∈ H1(Td), the associated minimal time of controllability, i.e.

T (u0) = inf{T > 0 ; (1.6) is null-controllable at time T > 0 from u0}. (1.13)

Then, we define the following time of controllability

τ(R) = sup{T (u0) > 0 ; E(u0) ≤ R} ∀R ≥ 0. (1.14)

The second main result of the paper is an estimate from above of τ .

Theorem 1.2. Let d ∈ {1, 2, 3}. There exists C > 0 sufficiently large such that

τ(R) ≤ C log(R+ 1) ∀R ≥ 0. (1.15)

Comments. Theorems 1.1 and 1.2 differ from the existing literature. Indeed, Theorem 1.1 states
the (uniform) global exponential stabilization of (1.6) by the feedback h = −ia(x)u in the energy
space while Theorem 1.2 states the global null-controllability of (1.6) with an explicit estimate of the
(possible) minimal time in function of the size of the initial data in the energy space. Up to our
knowledge, they are the first results in this direction for nonlinear Schrödinger equations. The key
point is hidden in the exponential decay (1.12) where the constants C > 0, γ > 0 do not depend on
the initial data, but only on the geometry of the torus Td and the observation set ω. In particular,
this estimate answers by the affirmative the open problem stated in [DGL06, Remark 1].

For proving Theorem 1.1, we develop a new method in comparison to the above mentioned refer-
ences. Our strategy is based on new quantitative observability inequalities for the cubic defocusing
Schrödinger equation with the internal damping (1.11). The first ingredient for obtaining such inequal-
ities is a new Carleman estimate for (1.11). Instead of seeing |u|2u as V (t, x)u with V a time/space-
dependent potential then performing a Carleman estimate in a linear Schrödinger-type equation, we
directly include the cubic semilinearity in the symmetric part of the Carleman conjugated operator.
The internal linear damping −ia(x)u is then treated as a (local) source term that can be absorbed
in the Carleman estimate. First, note that such a strategy only enables us to treat defocusing cases,
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that is strongly in contrast with [Lau10a] where the author can manage to deal with focusing cases.
Second, one cannot handle internal linear dampings like a(x)(1−∆)−1a(x)∂tu or −ia(x)(−∆)1/2u that
are nonlocal. The second ingredient is a combination of energy estimates and Morawetz multipliers
method for obtaining the exponential decay of the energy of the solution to the damped equation.
As a consequence, we completely bypass the classical use of propagation of compactness-regularity for
tackling such a question. We strongly believe that such a method can have other applications to the
problem of exponential stabilization of partial differential equations, for instance for semilinear wave
equations as considered in [DLZ03].

The proof of Theorem 1.2 is a corollary of the global exponential stabilization from Theorem 1.1
and local controllability results given by [Lau10a, Theorem 3.2] in 1-d, [DGL06, Proof of Theorem 2]
in 2-d and [Lau10b, Theorem 0.3] in 3-d.

Extensions. Our main results, i.e. Theorems 1.1 and 1.2, can be extended into two directions, that
are the geometry of (M, ω) and the semilinearity. For the first point, the key tool is the adaptation of
the Carleman estimate in such a setting. For the second point, the key ingredient is the well-posedness
of the Cauchy problem (1.1) in C([0,+∞);Hs(M)) for every s ≥ 1. We mention below the following
situations that can be treated with our method:

• d = 1, M = T, ω a nonempty open subset of T, replacing |u|2u by |u|p−1u for every p > 1, see
[Bou99, Theorem 2.3] for the well-posedness,

• d = 2, M = T2, ω as in (1.10), replacing |u|2u by |u|p−1u for every p > 1, see [Bou99, Chapter
V] for the well-posedness,

• d = 2, M = S2, ω a nonempty open subset of S2 containing a neighborhood of {x3 = 0} ⊂ R3,
replacing |u|2u by |u|p−1u for every p > 1, see [DGL06, Section 2] for the well-posedness and
[Lau10b, Appendix B.1] for the Carleman part,

• d = 3, M = T3, ω as in (1.10), replacing |u|2u by |u|p−1u for every p ∈ (1, 5), see [Bou99,
Chapter V] for the well-posedness,

• d = 3, M = S3, ω a nonempty open subset of S2 containing a neighborhood of {x4 = 0} ⊂ R3,
replacing |u|2u by |u|p−1u for every p ∈ (1, 5), see [BGT05b, Theorem 1] for the well-posedness
and [Lau10b, Appendix B.1] for the Carleman part.

However, we decide for simplicity to focus on the toy model of the cubic defocusing Schrödinger equa-
tion on the d-dimensional torus.

Open questions. We finish this part by mentioning some open problems related to Theorems 1.1
and 1.2.

From (1.12) and the Sobolev embedding H1(Td) ↪→ L4(Td), we can deduce that there exist C > 0
and γ > 0 such that for every u0 ∈ H1(Td), the solution u of (1.11) satisfies

‖u(t, ·)‖2H1(Td) ≤ Ce
−γt

(
‖u0‖2H1(Td) + ‖u0‖4H1(Td)

)
, (1.16)

But, we do not know if (1.16) can be replaced with ‖u(t, ·)‖2H1(Td) ≤ Ce−γt ‖u0‖2H1(Td). Last but not

least, from (1.16), we obtain in particular the exponential decay of the L2-energy of the solution, but
for H1(Td)-initial data. In the 1-d case, where (1.11) is well-posed for initial data in L2(T), we may

wonder in the spirit of [Lau10a] if ‖u(t, ·)‖2L2(T) ≤ Ce−γt ‖u0‖2L2(T) holds true.

In comparison to what is known for the linear case, where an arbitrary open set of the torus Td is
sufficient for the control, we may wonder to what extent one can weaken the geometrical assumption
on ω, that satisfies (1.10) in our situation. Actually, in the Carleman part, one can consider ω,
containing only a neighborhood of the generator circle in 2-d by taking Carleman weights satisfying only
weak pseudoconvexity assumptions as done in [MOR08]. However, this only leads to an observability
inequality with a L2(Td)-left hand side. This is not sufficient for obtaining the exponential decay of
the total energy with our multipliers strategy.
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On the other hand, as said previously, one can extend our main results to the subcritical semilin-
earities, i.e. |u|p−1u for p ∈ (1, 5) in 3-d by using the corresponding well-posedness results. Concerning
the critical case, it is known from [IP12] that (1.1) replacing the cubic semilinearity |u|2u by the quin-
tic semilinearity |u|4u is globally well-posed in H1(T3). An interesting open question to adapt our
strategy is to prove that the closed-loop equation (1.11) replacing |u|2u by |u|4u is globally well-posed
in Hs(T3) for every s ≥ 1. It seems that it is probably the case but details remain to be written.

Finally, concerning the null-controllability adressed in Theorem 1.2, one may ask the question of the
uniform large-time controllability, respectively small-time null-controllability, that is there exists a time
T > 0, respectively for every time T > 0, for every initial data u0 ∈ H1(Td), (1.6) is null-controllable
at time T > 0 from u0.

1.3 Organization of the paper

The article is organized as follows. In Section 2, we state the well-posedness of (1.11) for initial
data in Hs(Td) and source terms in L2(0, T ;Hs(Td)) for s ≥ 1 with the use of Bourgain spaces and
we also present energy estimates. In Section 3, we prove new Carleman estimates then quantitative
observability estimates for (1.11) by the use of energy estimates and Morawetz multipliers. In Section
4, we prove the main results of the paper i.e. Theorems 1.1 and 1.2; in Subsection 4.1, we deduce the
exponential decay of the total energy of the solution to (1.11) then in Subsection 4.2, we obtain the
upper bound on the minimal time of the global null-controllability of (1.6). Finally, the Appendix is
devoted to the proof of the results of Section 2.

2 Well-posedness results

Let d ∈ {1, 2, 3}. This section is devoted to present the well-posedness in Bourgain spaces Xs,b
T for

Cauchy problems associated to{
i∂tu = −∆u+ |u|2u− ia(x)u+ g in (0, T )× Td,
u(0, ·) = u0 in Td. (2.1)

where T > 0, s ≥ 1, b ∈ (1/2, 1) (depending on d and s), a ∈ C∞(Td;R), u0 ∈ Hs and g ∈
L2(0, T ;Hs(Td)).

In the first part, we introduce the so-called Bourgain spaces Xs,b
T and the well-posedness result.

In the second part, we present energy identities for solutions of (2.1). This section contains only the
statements and the proofs are given in the Appendix.

2.1 Bourgain spaces and well-posedness result

This subsection aims at presenting the Bourgain spaces and the well-posedness results for (2.1). The
proofs are given in the Appendix. This idea of defining Bourgain spaces for the well-posedness of cubic
nonlinear Schrödinger equation was first introduced in [Bou93], see for instance [Bou99, Chapter 5] for
a detailed account of these techniques.

In all the following, we use the notation

〈x〉 =
√

1 + x2 ∀x ∈ R.

For s ∈ R, we equip the Sobolev space Hs(Td) with the norm

‖u‖2Hs(Td) =
∑
k∈Zd

〈|k|〉2s|û(k)|2 ∀u ∈ Hs(Td). (2.2)

For s, b ∈ R, we define the Bourgain space by

Xs,b := {u ∈ L2(R× Td), ‖u‖Xs,b < +∞} (2.3)
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with

‖u‖2Xs,b =
∑
k∈Zd

∫
R
〈|k|〉2s〈τ + |k|2〉2b|ˆ̂u(τ, k)|2dτ =

∥∥u]∥∥2

Hb(R;Hs(Td))
, (2.4)

where u](t) = e−it∆u(t) and ˆ̂u(τ, k) denotes the Fourier transform with respect to the time variable
and the spatial variable.

For T > 0, the restricted Bourgain space Xs,b
T is the associated restriction space with the norm

‖u‖Xs,b
T

= inf{‖ũ‖Xs,b ; ũ = u in (0, T )× Td}. (2.5)

More generally, for I an interval in R, one can define Xs,b
I the associated restriction space. One can

readily show that, for b > 1/2, the space Xs,b
T is continously embedded in C([0, T ];Hs(Td)).

One of the main interests of the Bourgain spaces comes from the fact that these spaces are suitable
to study the well-posedness of (2.1). The following proposition ensures that (2.1) is well-posed in some
Bourgain spaces as soon as the initial data belongs to some Sobolev spaces.

Proposition 2.1. Let T > 0, s ≥ 1 and a ∈ C∞(Td;R). Then there exists b ∈ (1/2, 1) such that for

every u0 ∈ Hs, g ∈ L2(0, T ;Hs(Td)), there exists a unique solution u ∈ Xs,b
T to (2.1).

Moreover, the flow map

F :

∣∣∣∣ Hs(Td)× L2(0, T ;Hs(Td)) → Xs,b
T

(u0, g) 7→ u,
(2.6)

is Lipschitz on every bounded subset.

This proposition is instrumental in this work. It provides in particular that the solution of (2.1)
belongs to C([0, T ], Hs(Td)) as soon as the initial data belongs to Hs(Td) and the source term belongs
to L2(0, T ;Hs(Td)) and enables us to work with the energy defined in (1.7). Let us insist on the
fact that this well-posedness result is only proved for d ∈ {1, 2, 3}. This limitation comes from the
trilinear estimations given by Proposition A.3, which are only known for these dimensions, up to our
knowledge. Consequently, our stabilisation and control results Theorem 1.1 and 1.2 are limited to the
same dimensions.

2.2 Energy estimates

The purpose of this section is to present energy identities and energy estimates which play a key role to
prove the stability of the equation (1.11). The first proposition states energy identities and multipliers

identities for solutions of (2.1) in Xs,b
T , with s ≥ 2.

Proposition 2.2. Let T > 0, s ≥ 2, a ∈ C∞(Td;R), u0 ∈ Hs and g ∈ L2(0, T ;Hs(Td)). Assume that

u ∈ Xs,b
T is a solution of (2.1) for some b ∈ (1/2, 1), then

1

2

∫
Td

|u(t′, x)|2dx− 1

2

∫
Td

|u(t, x)|2

= −
∫ t′

t

∫
Td

a(x)|u(s, x)|2dxds+

∫ t′

t

∫
Td

=(g(s, x)u(s, x))dxds ∀0 ≤ t ≤ t′ ≤ T, (2.7)

1

2

∫
Td

|∇u(t′, x)|2dx+
1

4

∫
Td

|u(t′, x)|4dx−
∫
Td

|∇u(t, x)|2dx−
∫
Td

1

4
|u(t, x)|4dx

= −
∫ t′

t

∫
Td

a(x)=(u(s, x)∂tu(s, x))dxds−
∫ t′

t

∫
Td

<(g(s, x)∂tu(s, x)) ∀0 ≤ t ≤ t′ ≤ T, (2.8)
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and for P ∈ C∞(Td;R),∫ t′

t

∫
Td

(=(u∂tu)− |∇u|2 − |u|4)P (x)dxds

=
1

2

∫ t′

t

∫
Td

(∇P (x) · ∇)(|u|2)dxds+

∫ t′

t

∫
Td

<(g(s, x)Pu(s, x))dxds ∀0 ≤ t ≤ t′ ≤ T. (2.9)

Note that the equation (2.9) is inspired from Morawetz multipliers strategy.
The next result establishes energy estimates. Let us recall that the energy considered in this work

is E defined by (1.7).

Proposition 2.3. Let T > 0, s ≥ 1, a ∈ C∞(Td;R), u0 ∈ Hs and g ∈ L2(0, T ;Hs(Td)). There exists

a positive constant C = CT,d,a > 0 such that if u ∈ Xs,b
T is a solution of (2.1) for some b ∈ (1/2, 1),

then we have

E(t) ≤ C
(
E(0) + ‖g‖2L2(0,T ;H1(Td)) + ‖g‖4L2(0,T ;H1(Td))

)
∀t ∈ [0, T ]. (2.10)

Althought Proposition 2.2 is stated for sufficiently smooth solutions, it is worth mentionning that
Proposition 2.3 allows to consider solutions in Xs,b

T , with s ≥ 1.

3 Carleman estimate on the nonlinear equation

The goal of this part is to obtain a Carleman estimate for the nonlinear Schrödinger equation (2.1)
and to deduce from it an observability inequality. In order to do this, we closely follow the approach
of [MOR08] for establishing Carleman estimates for linear Schrödinger equation. We want to highlight
the fact that the main difference is the presence of the cubic defocusing nonlinearity −|u|2u, that we
include in our operator. Note that such a strategy has been proposed for instance in the context of
dissipative nonlinear parabolic equations in [BGO09] but up to our knowledge, this strategy seems to
be new in the context of nonlinear Schrödinger equation.

3.1 Definition of Carleman weights and main properties

Recall the definition of ω0 in (1.10) and let us define ω1 ⊂⊂ ω0 ⊂⊂ ω such that by denoting

Iε0 = (0, ε0) ∪ (2π − ε0, 2π) + 2πZ ⊂ T ε0 ∈ (0, ε), (3.1)

we have  ω1 := Iε0 ⊂ ω0 when d = 1,
ω1 := (Iε0 × T) ∪ (T× Iε0) ⊂ ω0 when d = 2,
ω1 :=

(
Iε0 × T2

)
∪ (T× Iε0 × T) ∪

(
T2 × Iε0

)
⊂ ω0 when d = 3.

(3.2)

First, we have the following easy lemma.

Lemma 3.1. There exists η ∈ C∞(Td;R+) such that for some c > 0

|∇η(x)| ≥ c > 0 ∀x ∈ Td \ ω0, (3.3)

D2η(x)(ξ, ξ) + |∇η(x) · ξ|2 ≥ c|ξ|2 ∀(x, ξ) ∈ (Td \ ω0)× Rd. (3.4)

Proof. First, let us define χ ∈ C∞c (Td) such that χ = 1 on Td \ ω0 and χ = 0 in ω1 ⊂⊂ ω0. The
function, defined by

η(x) = χ(x)|x|2 ∀x ∈ (0, 2π)d, (3.5)

can be extended to a smooth function in Td satisfying the two expected properties (3.3), (3.4).

Let us define the Carleman weights for λ ≥ 1 a parameter,

α(t, x) =
e2λm‖η‖∞ − eλ(η(x)+m‖η‖∞)

t(T − t)
, β(t, x) =

eλ(η(x)+m‖η‖∞)

t(T − t)
∀(t, x) ∈ (0, T )× Td, (3.6)

where m > 1 is a fixed number.
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3.2 The Carleman estimate

The main result of this part is the following Carleman estimate.

Proposition 3.2. There exist positive constants C = C(Ω, ω) > 0, C1 = C1(Ω, ω) > 0 and b ∈ (1/2, 1)
such that for all T > 0, λ ≥ C1, s ≥ C1(T + T 2 + T 2|a|∞), u0 ∈ H1(Td) and g ∈ L2(0, T ;H1(Td)),
the solution u ∈ X1,b

T of (2.1) satisfies

s3λ4

∫ T

0

∫
Td

e−2sαβ3|u|2dxdt+ sλ

∫ T

0

∫
Td

e−2sαβ|∇u|2dxdt+ s2λ2

∫ T

0

∫
Td

e−2sαβ2|u|4dxdt

≤ C
(∫ T

0

∫
Td

e−2sα|g|2dxdt+ s3λ4

∫ T

0

∫
ω0

e−2sαβ3|u|2dxdt

+ sλ

∫ T

0

∫
ω0

e−2sαβ|∇u|2dxdt+ s2λ2

∫ T

0

∫
ω0

e−2sαβ2|u|4dxdt
)
. (3.7)

Proof. By using a standard regularization argument using Proposition 2.1, we just need to consider
the case where u ∈ X2,b

T so in particular (2.1) is satisfied in the strong sense. Denote

ψ = e−sαu, Γ = e−sαg. (3.8)

Let us recall that we have

i∂tu+ ∆u = |u|2u− ia(x)u+ g = e2sα|ψ|2esαψ − ia(x)esαψ + esαg.

We then have

Pψ := i∂tψ+isαtψ+∆ψ+2s∇α ·∇ψ+s(∆α)ψ+s2|∇α|2ψ−e2sα|ψ|2ψ = −ia(x)ψ+Γ =: Γψ,g. (3.9)

We decompose P = P1 + P2 with

P1ψ = isαtψ + 2s∇α · ∇ψ + s(∆α)ψ, (3.10)

P2ψ = i∂tψ + ∆ψ + s2|∇α|2ψ − e2sα|ψ|2ψ. (3.11)

For the rest of the proof, we denote QT = (0, T )× Td and qT = (0, T )× ω0.
We have

‖P1ψ + P2ψ‖2L2(QT ) = ‖P1ψ‖2L2(QT ) + ‖P2ψ‖2L2(QT ) + 2<〈P1ψ, P2ψ〉L2(QT ) = ‖Γψ,g‖2L2(QT ) , (3.12)

therefore
2<〈P1ψ, P2ψ〉L2(QT ) ≤ ‖Γψ,g‖

2
L2(QT ) . (3.13)

We then decompose
2<〈P1ψ, P2ψ〉L2(QT ) = I1 + I2 + I3, (3.14)

with

I1 = 2<
(∫

QT

(2s∇α · ∇ψ + s(∆α)ψ)(−i∂tψ + ∆ψ + s2|∇α|2ψ − e2sα|ψ|2ψ)

)
, (3.15)

I2 = 2<
(∫

QT

i(∂tα)ψ(−i∂tψ + ∆ψ)

)
, (3.16)

I3 = 2<
(∫

QT

i(∂tα)ψ(s2|∇α|2ψ − e−2sα|ψ|2ψ))

)
= 0. (3.17)

We first deal with I1, decomposing as follows

I1 = 2<
(∫

QT

(2s∇α · ∇ψ + s(∆α)ψ)(∆ψ + s2|∇α|2ψ − e−2sα|ψ|2ψ)

)
(3.18)

− 2<
(∫

QT

i(2s∇α · ∇ψ + s(∆α)ψ)∂tψ

)
(3.19)

= I1
1 + I2

1 . (3.20)
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By integration by parts, we have

J :=

∫
QT

(∇α · ∇ψ)∆ψ = −
∫
QT

∇ψ · ∇(∇α · ∇ψ)). (3.21)

Moreover we have

∇ψ · ∇(∇α · ∇ψ)) = D2(α)(∇ψ,∇ψ) +D2(ψ)(∇ψ,∇α), (3.22)

2<D2(ψ)(∇α,∇ψ) = ∇α · ∇|∇ψ|2. (3.23)

Therefore, from (3.21), (3.22), (3.23) and an integration by parts, we have

2<J = −2<
(∫

QT

D2(α)(∇ψ,∇ψ)

)
− 2<

(∫
QT

D2(ψ)(∇α,∇ψ)

)
= −2<

(∫
QT

D2(α)(∇ψ,∇ψ)

)
+

∫
QT

∆α |∇ψ|2 . (3.24)

We can now expand I1
1 as follows, using ∇|ψ|2 = 2<(ψ∇ψ) and ∇|ψ|4 = 4<(|ψ|2ψ∇ψ),

I1
1 = 2<

{
2sJ +

∫
QT

s(∆α)ψ∆ψ +

∫
QT

2s3(∇α · ∇ψ)|∇α|2ψ

+

∫
QT

s3(∆α)|ψ|2|∇α|2 −
∫
QT

2s(∇α · ∇ψ)e2sα|ψ|2ψ − s
∫
QT

(∆α)e2sα|ψ|4
}

= 4s<J − 2s<
∫
QT

((∇∆α)ψ + ∆α∇ψ) · ∇ψ − 2

∫
QT

s3∇ · (|∇α|2∇α)|ψ|2

+ 2

∫
QT

s3(∆α)|ψ|2|∇α|2 +

∫
QT

s(∆α)e2sα|ψ|4 + 2

∫
QT

s2|∇α|2e2sα|ψ|4 − 2

∫
QT

s(∆α)e2sα|ψ|4

= −4s<
(∫

QT

D2(α)(∇ψ,∇ψ)

)
+ s

∫
QT

(∆2α)|ψ|2 − 2s3

∫
QT

∇α · ∇(|∇α|2)|ψ|2

+ 2s2

∫
QT

|∇α|2e2sα|ψ|4 − s
∫
QT

(∆α)e2sα|ψ|4. (3.25)

We now compute I2
1 , using 2<z = z + z, we get by integration by parts

−I2
1 =

∫
QT

i(2s∇α · ∇ψ + s(∆α)ψ)ψt − i
∫
QT

(2s∇α · ∇ψ + s(∆α)ψ)ψt

=

∫
QT

−i [2s∇αt · ∇ψ + 2s∇α · ∇ψt + s(∆αt)ψ + s(∆α)ψt]ψ

− i
∫
QT

2s(∇α · ∇ψ)ψt − i
∫
QT

s(∆α)ψψt.

The second term in the right hand side of the previous computation becomes

−i
∫
QT

2s(∇α · ∇ψ)ψt = 2is

∫
QT

(∆α)ψψt + 2is

∫
QT

(∇α · ∇ψt)ψ. (3.26)

As a consequence, we get

−I2
1 =

∫
QT

−i2s(∇αt · ∇ψ)ψ − is
∫
QT

(∆αt)|ψ|2 =

∫
QT

−i2s(∇αt · ∇ψ)ψ + is

∫
QT

∇αt · ∇|ψ|2

= i

∫
QT

s∇αt · (ψ∇ψ − ψ∇ψ)) = 2s<
(
i

∫
QT

∇αt · (ψ∇ψ))

)
. (3.27)
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Finally, we obtain from (3.25) and (3.27)

I1 = −4s<
(∫

QT

D2(α)(∇ψ,∇ψ)

)
+ s

∫
QT

(∆2α)|ψ|2 − 2s3

∫
QT

∇α · ∇(|∇α|2)|ψ|2

+ 2s2

∫
QT

|∇α|2e2sα|ψ|4 − s
∫
QT

(∆α)e2sα|ψ|4 − 2s<i
∫
QT

∇αt · (ψ∇ψ)) (3.28)

We now turn to the other term I2, we have

I2 = 2<
∫
QT

isαtψ(−iψt + ∆ψ) = s

∫
QT

αt∂t|ψ|2 + 2s<i
∫
QT

αtψ∆ψ

= −s
∫
QT

αtt|ψ|2 − 2s<i
∫
QT

(∇αtψ + αt∇ψ) · ∇ψ

= −s
∫
QT

αtt|ψ|2 − 2s<
∫
QT

i(∇αt · ∇ψ)ψ. (3.29)

Consequently, we get from (3.14), (3.28), (3.29) and using ∇α · ∇|∇α|2 = 2D2(α)(∇α,∇α) that

2<(P1ψ, P2ψ) =

∫
QT

[
−4s3D2(α)(∇α,∇α)− sαtt + s(∆2α)

]
|ψ|2

− 4s<
∫
QT

D2(α)(∇ψ,∇ψ)

+

∫
QT

[s2|∇α|2e2sα − s(∆α)e2sα]|ψ|4

− 4s<
∫
QT

iψ∇αt · ∇ψ. (3.30)

The following identities and estimates will be useful in the reminder of the proof

∇α = −λβ∇η, (3.31)

D2(α)(X,Y ) = −βλ
[
D2(η)(X,Y ) + λ(∇η ·X)(∇η · Y )

]
∀X,Y ∈ Rd. (3.32)

|∇αt| ≤ CTλβ2, |αtt| ≤ CT 2β3, (3.33)

|∆α| ≤ Cλ2β, |∆2α| ≤ Cλ4β. (3.34)

Then, we have from the properties of the weight (3.3), (3.4) and (3.31), (3.32),

−4s3D2(α)(∇α,∇α) = 4s3λβ
[
D2(η)(∇α,∇α) + λ |∇η · ∇α|2

]
≥ cs3λ4β3 in Td \ ω0, (3.35)

−4sD2(α)(X,X) = sλβ
[
D2(η)(X,X) + λ|∇η ·X|2

]
≥ csλβ|X|2 in Td \ ω0, ∀X ∈ Rd, (3.36)

s2|∇α|2 ≥ cs2λ2β2 in Td \ ω0. (3.37)

We then have from (3.30), (3.9), (3.13) and (3.35), (3.36), (3.37),

s3λ4

∫
QT

β3|ψ|2 + sλ

∫
QT

β|∇ψ|2 + s2λ2

∫
QT

β2e2sα|ψ|4

≤ C

(∫
QT

|Γ|2 +

∫
QT

|a|2|ψ|2 +

∣∣∣∣∫
QT

[
−sαtt + s(∆2α)

]
|ψ|2

∣∣∣∣+

∣∣∣∣∫
QT

s(∆α)e2sα|ψ|4
∣∣∣∣

+

∣∣∣∣4s< ∫
QT

iψ∇αt · ∇ψ
∣∣∣∣

+ s3λ4

∫
qT

β3|ψ|2 + sλ

∫
qT

β|∇ψ|2 + s2λ2

∫
qT

β2e2sα|ψ|4
)
. (3.38)
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Now, we will absorb some right hand side terms in (3.38). Take ε > 0 a small positive number and
Cε > 0 a positive constant depending only of ε that can vary from one line to another, we have from
(3.33), (3.34) that∫

QT

|a|2|ψ|2 ≤ |a|2∞
∫
QT

|ψ|2 ≤ εs3λ4

∫
QT

β3|ψ|2 for s ≥ CεT 2|a|2/3∞ , (3.39)

s

∫
QT

|αtt||ψ|2 ≤ CsT 2

∫
QT

β3|ψ|2 ≤ εs3λ4

∫
QT

β3|ψ|2 for s2 ≥ CεT 2 i.e. s ≥ CεT, (3.40)

s

∫
QT

|∆2α||ψ|2 ≤ Csλ4

∫
QT

β|ψ|2 ≤ εs3λ4

∫
QT

β3|ψ|2 for s2 ≥ Cεβ−2 i.e. s ≥ CεT 2, (3.41)

s

∫
QT

|∆α|e2sα|ψ|4 ≤ Csλ2

∫
QT

βe2sα|ψ|4 ≤ εs2λ2

∫
QT

β2e2sα|ψ|4 for s ≥ Cεβ−1 i.e. s ≥ CεT 2,

(3.42)∣∣∣∣4s< ∫
QT

iψ∇αt · ∇ψ
∣∣∣∣ ≤ CTsλ ∫

QT

β2|∇ψ||ψ|

≤ εsλ
∫
QT

β|∇ψ|2 + CεsλT
2

∫
QT

β3|ψ|2

≤ εsλ
∫
QT

β|∇ψ|2 + εs3λ4

∫
QT

β3|ψ|2 for s ≥ CεT. (3.43)

We finally get from (3.39), (3.40), (3.41), (3.42), (3.43) and (3.38) that

s3λ4

∫
QT

β3|ψ|2 + sλ

∫
QT

β|∇ψ|2 + s2λ2

∫
QT

β2e2sα|ψ|4

≤ C

(∫
QT

|Γ|2 + s3λ4

∫
qT

β3|ψ|2 + sλ

∫
qT

β|∇ψ|2 + s2λ2

∫
qT

β2e2sα|ψ|4
)
. (3.44)

Now we reuse the expression of ψ in function of u and Γ in function of g given in (3.8) to get the
desired Carleman estimate (3.7).

3.3 From the Carleman estimate to the observability inequality

The goal of this part is to obtain an observability inequality for (2.1), starting from the Carleman esti-
mate previously obtained in Proposition 3.2 and energy and multipliers estimates stated in Proposition
2.2.

Proposition 3.3. There exist a positive constant C = C(Ω, ω, |a|∞) > 0 and b ∈ (1/2, 1) such that

for every T > 0 and u0 ∈ H1(Td), the solution u ∈ X1,b
T of (2.1) with g = 0 satisfies

∀t ∈ [0, T ], E(t) ≤ exp

(
C

(
1 +

1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds. (3.45)

Proof. From the properties of the weights (3.6) and from the choices of λ, s in Proposition 3.2, we
deduce that

e−2sα(β + β2 + β3) ≥ exp

(
−C

(
1 +

1

T

))
in (T/4, 3T/4)× Td,

e−2sα(1 + β3 + β + β2) ≤ C
(

1 +
1

T 6

)
in (0, T )× Td.
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We then obtain from the Carleman estimate (3.7) and the property of a in ω0 that∫ 3T/4

T/4

E(t)dt ≤ exp

(
C

(
1 +

1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxdt. (3.46)

As a first step, let us show that

∀t ∈ [0, T ],

∫
Td

|u(t, x)|2dx ≤ exp

(
C

(
1 +

1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds. (3.47)

Indeed, thanks to (2.7), we have for all t, t′ ∈ [0, T ],∫
Td

|u(t, x)|2dx ≤
∫ T

0

∫
Td

a(x)|u(s, x)|2dxds+

∫
Td

|u(t′, x)|2dx.

By integrating on {T/4 ≤ t′ ≤ 3T/4}, we deduce from the above estimate together with (3.46) that∫
Td

|u(t, x)|2dx ≤
(

1 +
2

T
exp

(
C

(
1 +

1

T

)))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds,

which proves (3.47) for a suitable constant C > 0.
By now, let us deal with the whole energy E(t). Notice that from the identities (2.7) and (2.8), we

have for all 0 ≤ t ≤ t′ ≤ T ,

E(t′)− E(t) = −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds−
∫ t′

t

∫
Td

a(x)Im(u∂tu)dsdx.

Moreover, by using (2.9) with P = a, this leads to

E(t′)− E(t)

= −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds− 1

2

∫ t′

t

∫
Td

∇a(x) · ∇(|u|2)dxds−
∫ t′

t

∫
Td

a(x)(|∇u|2 + |u|4)dxds

= −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds+
1

2

∫ t′

t

∫
Td

∆a(x)|u|2dxds−
∫ t′

t

∫
Td

a(x)(|∇u|2 + |u|4)dxds.

We then deduce that for all t, t′ ∈ [0, T ],

E(t) ≤
∫ T

0

∫
Td

a(x)(|u|2 + |∇u|2 + |u|4)dxds+
‖∆a‖L∞

2

∫ T

0

∫
Td

|u(s, x)|2dxds+ E(t′). (3.48)

After integrating on {T/4 ≤ t′ ≤ 3T/4}, the conclusion of Proposition 3.3 follows from (3.46) and
(3.47).

From Proposition 3.3, we finally obtain the following useful result.

Corollary 3.4. There exist a positive constant C = C(Ω, ω, |a|∞) > 0 and b ∈ (1/2, 1) such that for

every u0 ∈ H1(Td), the solution u ∈ X1,b
T of (2.1) with g = 0 satisfies

E(0) +

∫ T

0

E(t)dt ≤ exp

(
C

(
1 +

1

T

))∫ T

0

∫
Td

a(x)(|u(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|4)dxdt. (3.49)

4 Proof of the main results

4.1 Exponential decay of the solution to the nonlinear equation

The goal of this part is to prove Theorem 1.1.
We first state a technical lemma that would be useful in the sequel, it comes from [YNC21,

Lemma 4.4].
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Lemma 4.1. Let a ∈ C1(Td) be a non-negative real function. For all ε > 0, there exists a positive
constant Cε > 0 such that

∀x ∈ Td, |∇a(x)|2 ≤ Cεa(x) + ε.

Proof. Let us proceed by contradiction and assume that there exist ε0 > 0 and a sequence (xn)n∈N ⊂ Td
such that for all n ∈ N,

|∇a(xn)|2 ≥ na(xn) + ε0. (4.1)

Up to a subsequence, we can assume that (xn)n∈N tends to some x∞ ∈ Td. Since a is non-negative
and ε0 > 0, (4.1) implies that a(x∞) = 0. In particular, x∞ minimizes a and we obtain ∇a(x∞) = 0.
The contradiction then follows from the fact that 0 < ε0 ≤ |∇a(x∞)|2 = 0.

Proof of Theorem 1.1. Once again, we only deal with the case where u0 ∈ H2(Td). The general case
follows from a standard regularization argument and Proposition 2.1. We first express the right hand
side of the observability estimate (3.49) thanks to the total energy of the system. We proceed as
follows. From (2.7), we have∫ T

0

∫
Td

a(x)|u(s, x)|2dxds =
1

2

∫
Td

|u(0, x)|2dx− 1

2

∫
Td

|u(T, x)|2dx,

From (2.9) with P = a together with (2.8), we have

∫ T

0

∫
Td

a(x)(|∇u|2 + |u|4)dxds =

∫ T

0

∫
Td

a(x)(=(u∂tu))dxds− 1

2

∫ T

0

∫
Td

(∇a(x) · ∇)(|u|2)dxds

=
1

2

∫
Td

|∇u(0, x)|2dx+
1

4

∫
Td

|u(0, x)|4dx− 1

2

∫
Td

|∇u(T, x)|2dx− 1

4

∫
Td

|u(T, x)|4dx

− 1

2

∫ T

0

∫
Td

(∇a(x) · ∇)(|u|2)dxds

We sum the last two previous identities and we use the observability estimate (3.49) to get that

E(0) +

∫ T

0

E(t)dt ≤ CT
2

∫ T

0

∫
Td

|∇a(x)||∇u(t, x)||u(t, x)|dxdt+ CT (E(0)− E(T )). (4.2)

Let ε > 0 to be chosen later. According to Lemma 4.1, there exists a positive constant Cε > 0 such
that

∀x ∈ Td, |∇a(x)|2 ≤ Cεa(x) + ε.

We therefore deduce from (4.2) and the L2-identity (2.7) that there exists a new constant C ′ε > 0 such
that

E(0) +

∫ T

0

E(t)dt

≤ CT
2

(
C ′ε

∫ T

0

∫
Td

a(x)|u(t, x)|2dxdt+ E(0)− E(T ) + ε

∫ T

0

E(t)dt

)

≤ CT
2

(
C ′ε
2

(
‖u(0, ·)‖2L2(Td) − ‖u(T, ·)‖2L2(Td)

)
+ E(0)− E(T ) + ε

∫ T

0

E(t)dt

)
. (4.3)

By now, we choose ε = C−1
T . This readily provides

E(0) +

∫ T

0

E(t)dt ≤ CT
(
C̃T

(
‖u(0, ·)‖2L2(Td) − ‖u(T, ·)‖2L2(Td)

)
+ E(0)− E(T )

)
, (4.4)

where C̃T > 0 is a new positive constant depending only on T .
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Let us define an auxiliary energy by

∀t ≥ 0, Ẽ(t) = E(t) + C̃T ‖u(t, ·)‖2L2(Td),

which satisfies for all t ≥ 0,
E(t) ≤ Ẽ(t) ≤ (1 + C̃T )E(t).

From (4.4), we have
Ẽ(0) ≤ ĈT (Ẽ(0)− Ẽ(T )), (4.5)

where ĈT = (1 + C̃T )CT . This last inequality directly implies that

Ẽ(T ) ≤ ĈT − 1

ĈT
Ẽ(0).

Thanks to the Gronwall’s inequality from Proposition 2.3, one can readily obtain that there exists a
positive constant MT > 0 such that

∀0 ≤ t ≤ T, Ẽ(t) ≤MT Ẽ(0).

Finally, we obtain that there exists two positive constants K, γ > 0 such that for all t ≥ 0,

Ẽ(t) ≤ Ke−γtẼ(0)

and then,
∀t ≥ 0, E(t) ≤ (1 + C̃T )Ke−γtE(0).

This concludes the proof of Theorem 1.1.

4.2 Global null-controllability of the nonlinear equation

This section is devoted to the proof of Theorem 1.2. We adopt the classical strategy (see for example
[Lau10a], [Lau14]) which consists in using our stabilisation result Theorem 1.1 after proving a local
controllability result near to 0.

Let ϕ ∈ C∞c (0, T ) be a nonnegative function different from zero.

4.2.1 First step: study of the linear system.

Before studying the local controllability of nonlinear equation, let us consider the linear system{
i∂tΨ = −∆Ψ + a2(x)ϕ2(t)eit∆φ0 in (0,+∞)× Td,
Ψ(T, ·) = 0 in Td, (4.6)

for φ0 ∈ L2(Td). Let us define the linear operator

S : L2(Td) −→ L2(Td)
φ0 7−→ Ψ(0, ·).

where Ψ is the mild solution of (4.6). One can easily check that S is an injective continuous map.
Let us highlight that the surjectivity of S would lead to the exact controllability of the linear system
(4.6). Thanks to the Hilbert Uniqueness Method, the question of its surjectivity is equivalent to the
observability estimates

∃Ca,ϕ > 0,∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ Ca,ϕ
∫
R
ϕ(t)2‖aeit∆u0‖2L2(Td)dt,

which are known to hold in any dimension, see [AM14, Theorem 4]. The linear map S is therefore
an isomorphism from L2(Td) to L2(Td). Actually, the following proposition states that S is also an
isomorphism from H1(Td) to H1(Td).
Proposition 4.2 ([Lau10a, Lemma 3.1]). The Sobolev space H1(Td) is S invariant and S : H1(Td) −→
H1(Td) is an isomorphism.

Let us mention that Proposition 4.2 is proved in [Lau10a, Lemma 3.1] in the one-dimensional
setting. However the strategy adopted by the author [Lau10a] can be easily adapted in any dimension
d ≥ 1.
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4.2.2 Second step: controlability near to 0.

As a first step, we prove the following proposition:

Proposition 4.3. Let T > 0 and b ∈ (1/2, 1) be the parameter provided by Proposition 2.1. There
exists ε > 0 such that for all u0 ∈ H1(Td) satisfying ‖u0‖H1(Td) ≤ ε, there exists g ∈ C([0, T ], H1(Td))
supported in [0, T ]× ω so that the unique solution u ∈ X1,b

T of{
i∂tu = −∆u+ |u|2u+ g1ω in (0,+∞)× Td,
u(0, ·) = u0 in Td, (4.7)

satisfies u(T, ·) = 0.

Proof. For φ0 ∈ H1(Td), we consider u ∈ X1,b
T the unique solution of{

i∂tu = −∆u+ |u|2u+ a2(x)ϕ2(t)eit∆φ0 in (0,+∞)× Td,
u(T, ·) = 0 in Td, (4.8)

v ∈ X1,b
T the unique solution of{

i∂tv = −∆v + |u|2u in (0,+∞)× Td,
v(T, ·) = 0 in Td, (4.9)

and define Lφ0 = u(0) and Kφ0 = v(0). We therefore have

∀φ0 ∈ H1(Td), Lφ0 = Kφ0 + Sφ0.

Our goal is to show that there exists η > 0 such that BH1(0, η) ⊂ Im(L). Notice that the equation
u0 = Lφ0 is equivalent to

φ0 = S−1u0 − S−1Kφ0

and this question is then equivalent to find a fixed point of

Bφ0 := S−1u0 − S−1Kφ0,

for u0 sufficiently small in H1(Td).
Let 0 < η, ε ≤ 1 be two small parameters to be chosen later and u0 ∈ BH1(0, η). Without loss of

generality, we can assume T ≤ 1. Since S : H1(Td) −→ H1(Td) is an isomorphism, we have that for
all φ0 ∈ H1(Td),

‖Bφ0‖H1(Td) ≤ C(‖u0‖H1(Td) + ‖Ku0‖H1(Td))

= C(‖u0‖H1(Td) + ‖v(0, ·)‖H1(Td)).

Moreover, we have thanks to the continuous embedding of X1,b
T in C([0, T ], H1(Td)), Lemma A.2 and

the trilinear estimate (A.6), that there exists b′ ∈ (0, 1/2) such that

‖v(0, ·)‖H1(Td) ≤ C‖v‖X1,b
T

≤ CT 1−b−b′‖|u|2u‖X1,−b′

≤ C‖u‖3
X1,b′

T

≤ ‖u‖3
X1,b

T

.

Furthermore, by using the fact that the flow map, defined by (2.6), is Lipschitz on the bounded set
BH1(Td)(0, 1)×BL2(0,T ;H1(Td))(0, 1), we obtain for all φ0 ∈ BH1(Td)(0, ε),

‖u‖X1,b
T
≤ C‖φ0‖H1(Td) ≤ Cε.

As a consequence, we deduce that for all φ0 ∈ BH1(Td)(0, ε),

‖Bφ0‖H1(Td) ≤ C(η + ε3),
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for some positive constant C > 0 independent on ε and η. We can therefore choose ε0 > 0 such that

ε3
0 ≤

ε0

2C
,

and η = ε0
2C , and we obtain that the closed ball BH1(Td)(0, ε0) is B invariant. It remains to check

that B is a contraction mapping on this ball. Let φ0, φ1 ∈ BH1(Td)(0, ε0). We obtain thanks to the

continuous embedding of X1,b
T in C([0, T ], H1(Td)) and Lemma A.2, that for all b′ ∈ (0, 1/2) satisfying

b+ b′ ≤ 1,

‖Bφ0 −Bφ1‖H1(Td) = ‖S−1(Kφ0 −Kφ1)‖H1(Td)

≤ C‖v0(0, ·)− v1(0, ·)‖H1(Td)

≤ C‖v0 − v1‖X1,b
T

≤ CT 1−b−b′‖|u0|2u0 − |u1|2u1‖X1,−b′
T

,

where v0 (respectively v1) is solution to (4.9) with φ0 (respectively with φ1). It follows from the
last inequality, together with the trilinear estimates (A.7), that if b′ is the parameter provided by
Proposition A.3, then

‖Bφ0 −Bφ1‖H1(Td) ≤ C
(
‖u0‖2

X1,b′
T

+ ‖u1‖2
X1,b′

T

)
‖u0 − u1‖X1,b′

T

≤ C
(
‖u0‖2X1,b

T

+ ‖u1‖2X1,b
T

)
‖u0 − u1‖X1,b

T
.

By using once again the fact that the flow map given by (2.6) is Lipschitz on bounded set, we obtain
a new constant C > 0 independant on ε0 such that

‖Bφ0 −Bφ1‖H1(Td) ≤ C
(
‖φ0‖2H1(Td) + ‖φ1‖2H1(Td)

)
‖φ0 − φ1‖H1(Td)

≤ 2Cε2
0‖φ0 − φ1‖H1(Td).

By now, we set ε0 ≤ 1
2
√
C

and B : BH1(Td)(0, ε0) −→ BH1(Td)(0, ε0) is a contraction mapping and

admits an unique fixed point, according to the Banach fixed point Theorem.

4.2.3 Third step: application of the stabilization result.

According to Proposition 4.3, there exists ε > 0 such that for all w0 ∈ H1(Td) satisfying ‖w0‖H1(Td) ≤ ε
there exists g ∈ C([0, 1], H1(Td)) supported in [0, 1]× ω so that the unique solution w ∈ X1,b

1 of (4.7)
satisfies w(1, ·) = 0.

LetR ≥ 1 and u0 ∈ H1(Td) such that E(u0) ≤ R. By the stabilization result stated by Theorem 1.1,
there exists a control h1 ∈ C([0,+∞), H1(Td)) such that the solution of (1.6) satisfies

∀t ≥ 0, E(u(t)) ≤ Ce−γtE(u0),

where C, γ are positive constants only depending on ω. In particular, for T = γ−1 lnR + γ−1 ln
(
C
ε2

)
,

we have
‖u(T )‖2H1(Td) ≤

√
E(u(T )) ≤ Ce−γTR ≤ ε2.

On the other hand, thanks to Proposition 4.3, there exists a control h2 ∈ C([0, 1], H1(Td)) supported
in [0, 1]× ω such that the solution ũ of (1.6) started from u(T ) satisfies ũ(1, ·) = 0.

To conclude, it suffices to define the control by h(t, ·) = h1(t, ·) on [0, T ] and h(t, ·) = h2(t − T, ·)
on [T, T + 1]. With this choice of control, the solution u of (1.6) satisfies u(T + 1, ·) = 0 and T + 1
is a controllability time independent on u0. In particular, τ(R) ≤ T + 1 ≤ C̃ ln(R + 1) where C̃ is a
positive constant depending on γ and C.
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A Appendix

Let d ∈ {1, 2, 3}. This appendix is devoted to establish the well-posedness in Bourgain spaces Xs,b
T for

Cauchy problems associated to{
i∂tu = −∆u+ |u|2u− ia(x)u+ g in (0, T )× Td,
u(0, ·) = u0 in Td, (A.1)

where T > 0, s ≥ 1, b ∈ (1/2, 1) (depending on d and s), a ∈ C∞(Td;R), u0 ∈ Hs and g ∈
L2(0, T ;Hs(Td)). Of course, this is an adaptation of the breakthrough idea introduced in [Bou93],
see for instance [Bou99, Chapter 5] for a detailed account of these techniques. However, since we did
not find the exact result we needed in the literature, we present here the main steps of the proofs for
obtaining such a result. We will mainly follow and adapt the presentation given by [Lau10b, Section
1 and Section 2] for the treatment of the 3-d case to our d-dimensional case with d ∈ {1, 2, 3}. Note
that in the one-dimensional case, one can directly use [Lau10a, Section 1 and 2] since we consider the
same damping terms than the author.

In the first subsection, we introduce the so-called Bourgain spaces Xs,b
T , recall their main properties

and present trilinear estimates that will be one of the key points for the proof of the well-posedness
result. In the second part, we present a priori energy identities and estimates for solutions to (A.1).
In the two last parts, we prove the well-posedness result stated by Proposition 2.1.

A.1 Properties of the Bourgain spaces

This subsection recalls basic properties of Bourgain spaces, as well as trilinear estimates which are
instrumental in this work. The definition of Bourgain spaces is given in Section 2.1.

Let us begin by enumerate several useful properties without proof:

• The Bourgain spaces Xs,b and Xs,b
T are Hilbert spaces.

• If s1 ≤ s2 and b1 ≤ b2, then Xs2,b2 is continously embedded in Xs1,b1 .
• For all s ∈ R and b > 1/2, the space Xs,b

T is continously embedded in C([0, T ];Hs(Td)).
• For all s1 < s2 and b1 < b2, the space Xs2,b2

T is compactly embedded in Xs1,b1
T .

• The dual space of Xs,b
T is X−s,−bT .

• For θ ∈ (0, 1), the complex interpolation space (Xs1,b1 , Xs2,b2)θ is X(1−θ)s1+θs2,(1−θ)b1+θb2 .

• If s ∈ R, b ∈ ( 1
2 , 1), 0 < T1 < T2, u1 ∈ Xs,b

(0,T1) and u2 ∈ Xs,b
(T1,T2) with u1(T1) = u2(T1), then the

function u defined by u(t, ·) =

{
u1(t, ·), t ∈ [0, T1]
u2(t, ·), t ∈ [T1, T2]

belongs to Xs,b
(0,T2).

The following result studies the stability of the Bourgain spaces with respect to multiplication
operators.

Lemma A.1. Let ϕ ∈ C∞c (R), ψ ∈ C∞(Td), s ∈ R, b ∈ [−1, 1] and T > 0. The following linear
mappings

Φ : u ∈ Xs,b 7→ ϕ(t)u ∈ Xs,b, ΦT : u ∈ Xs,b
T 7→ ϕ(t)u ∈ Xs,b

T , (A.2)

Ψ : u ∈ Xs,b 7→ ψ(x)u ∈ Xs−|b|,b, ΨT : u ∈ Xs,b
T 7→ ψ(x)u ∈ Xs−|b|,b

T , (A.3)

are continuous.

Proof. We only prove the first parts of (A.2) and (A.3).
By using the commutation of e−it∆ with ϕ(t), we have

‖ϕu‖Xs,b =
∥∥e−it∆[ϕ(t)u]

∥∥
Hb

t (Hs
x)

=
∥∥ϕu#

∥∥
Hb

t (Hs
x)
≤ C

∥∥u#
∥∥
Hb

t (Hs
x)
≤ C ‖u‖Xs,b , (A.4)

which concludes the proof of (A.2).
For (A.3), we first treat the two cases b = 0 and b = 1.
For b = 0, we notice that Xs,0 = L2(R, Hs) and the result is obvious.
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For b = 1, we have u ∈ Xs,1 if and only if u ∈ L2(R, Hs) and i∂tu + ∆u ∈ L2(R, Hs), with the
norm

‖u‖2Xs,1 = ‖u‖2L2(R,Hs) + ‖i∂tu+ ∆u‖2L2(R,Hs) .

Then, we have, by using that the commutator [ψ,∆] is an operator of order 1 in space,

‖ψ(x)u‖2Xs−1,1 = ‖ψu‖2L2(R,Hs−1) + ‖i∂t(ψu) + ∆(ψu)‖2L2(R,Hs−1)

≤ C
(
‖u‖2L2(R,Hs−1) + ‖ψ (i∂tu+ ∆u)‖2L2(R,Hs−1) + ‖[ψ,∆]u‖2L2(R,Hs−1)

)
≤ C

(
‖u‖2L2(R,Hs−1) +

∥∥i∂tu+ ∂2
xu
∥∥2

L2(R,Hs−1)
+ ‖u‖2L2(R,Hs)

)
≤ C ‖u‖2Xs,1 ,

that concludes the proof in the case b = 1.
We finally conclude by interpolation and duality.

The following elementary lemma holds, see [Gin96, Lemma 3.2].

Lemma A.2. Let ϕ ∈ C∞c (R), b, b′ ∈ R such that 0 < b′ < 1/2 < b, b+ b′ ≤ 1 and T > 0.
If f ∈ H−b′(R), then∥∥∥∥t 7→ ϕ

(
t

T

)∫ t

0

f(τ)dτ

∥∥∥∥
Hb(R)

≤ CT 1−b−b′ ‖f‖H−b′ (R) . (A.5)

One of the key points for establishing well-posedness results associated to the cubic defocusing
nonlinear Schrödinger equation consists in establishing the following trilinear estimates.

Proposition A.3. For every s0 > 1/2, for every s2 ≥ s1 ≥ s0, there exist b′ ∈ (0, 1/2) and C > 0

such that for every T ∈ (0, 1), u, v ∈ Xs2,b
′

T ,∥∥|u|2u∥∥
X

s2,−b′
T

≤ C ‖u‖2
X

s1,b′
T

‖u‖
X

s2,b′
T

, (A.6)∥∥|u|2u− |v|2v∥∥
X

s2,−b′
T

≤ C
(
‖u‖2

X
s2,b′
T

+ ‖v‖2
X

s2,b′
T

)
‖u− v‖

X
s2,b′
T

. (A.7)

Proposition A.3 is part of the “folklore” for the study of nonlinear Schrödinger equation with
periodic boundary conditions. This is a straightforward corollary of [Lau10a, Lemma 0.3] in 1-d (one
can even take s0 = 0 and b′ = 3/8), [BGT05a, Proposition 2.5 and Proposition 3.5] in 2-d (one can
even take s0 > 0) and [Lau10b, Assumption 3, Lemma 1.1] in 3-d.

A.2 Energy estimates for strong solutions

In this section, we establish energy identities given by Proposition 2.2.

Proof of Proposition 2.2. Let u ∈ Xs,b
T be a solution of the equation (A.1) with s ≥ 2 and for some

b ∈ ( 1
2 , 1). Since X2,b

T ⊂ C([0, T ];H2(Td)), u satisfies (A.1) in the strong sense.
For the identity (2.7), we multiply (A.1) by u and integrate on Td. By integration by parts, we get∫

Td

i∂tu(s, x)u(s, x)dx−
∫
Td

|∇u(s, x)|2 =

∫
Td

|u(s, x)|4dx−i
∫
Td

a(x)|u(s, x)|2dx+

∫
Td

g(s, x)u(s, x)dx.

Then, by taking the imaginary part and by using the fact that 2=(i∂tuu) = 2<(∂tuu) = ∂t|u|2, we
obtain

1

2

d

ds

∫
Td

|u(s, x)|2dx = −
∫
Td

a(x)|u(s, x)|2dx+

∫
Td

=(g(s, x)u(s, x))dx.

We then integrate for s ∈ (t′, t) to get the result.
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For the identity (2.8), we multiply (A.1) by ∂tu and integrate on Td. By integration by parts, we
get∫

Td

i|∂tu(s, x)|2dx−
∫
Td

∇u(s, x) · ∂t∇u(s, x)

=

∫
Td

|u(s, x)|2u(s, x)∂tu(s, x)dx− i
∫
Td

a(x)u(s, x)∂tu(s, x)dx+

∫
Td

g(s, x)∂tu(s, x)dx.

Then, by taking the real part and by using the facts that 2<(∇u∂t∇u) = ∂t|∇u|2, 4<(|u|2u∂tu) = ∂t|u|4
and <(iz) = −=(z), we obtain

1

2

d

ds

∫
Td

|∇u(s, x)|2dx+
1

4

d

ds

∫
Td

|u(s, x)|4dx

= −
∫
Td

a(x)=(u(s, x)∂tu(s, x))dxds−
∫
Td

<(g(s, x)∂tu(s, x))

We then integrate for s ∈ (t′, t) to get the result.
Let us multiply (A.1) by Pu and integrate on (t′, t)× Td. By taking the real part and since

Re

∫ t

t′

∫
Td

∆uPudxds = −
∫ t

t′

∫
Td

Re(∇u · ∇P (x)u) + |∇u|2P (x)dxds

= −
∫ t

t′

∫
Td

1

2
(∇P (x) · ∇)(|u|2) + |∇u|2P (x)dxds,

it follows that u satisfies (2.9).

The next result deals with a particular case of Proposition 2.3 when the solution belongs to Xs,b
T ,

with s ≥ 2. The general case will be made in Section A.4, thanks to a regularization argument.

Proposition A.4. Let T > 0, s ≥ 2, a ∈ C∞(Td;R), u0 ∈ Hs and g ∈ L2(0, T ;Hs(Td)). There exists

a positive constant C = CT,d,a > 0 such that if u ∈ Xs,b
T is a solution of (A.1) for some b ∈ (1/2, 1),

then we have

E(t) ≤ C
(
E(0) + ‖g‖2L2(0,T ;H1(Td)) + ‖g‖4L2(0,T ;H1(Td))

)
∀t ∈ [0, T ]. (A.8)

Proof. First, from (2.7), we deduce from a Gronwall’s estimate that

‖u(t, ·)‖2L2(Td) ≤ C
(
‖u(0, ·)‖2L2(Td) + ‖g‖2L2(0,T ;L2(Td))

)
∀t ∈ [0, T ]. (A.9)

We then use (2.9) with P = a to estimate the first term in the right hand side of (2.8), we then have
for every t ∈ [0, T ],∫ t

0

∫
Td

a(x)Im(u(s, x)∂tu(s, x))dxds

≤ C
∫ t

0

∫
Td

|∇u|2dxds+ C

∫ t

0

∫
Td

|u|4dxds+ C

∫ t

0

∫
Td

|u|2dxds+ C

∫ t

0

∫
Td

|g|2dxds. (A.10)

We then estimate the second term in the right hand side of (2.8) by using the equation (A.1), integration
by parts, Hölder’s estimate and the Sobolev embedding H1(Td) ↪→ L4(Td) and Young’s inequality, we
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then have for every t ∈ [0, T ],∫ t

0

∫
Td

<(g∂tu) =

∫ t

0

∫
Td

<(gi∆u− i|u|2u+ ia(x)u− ig)

≤ C
(∫ t

0

‖g(s, ·)‖H1(Td) ‖u(s, ·)‖H1(Td) ds+

∫ t

0

‖g(s, ·)‖L2(Td) ‖u(s, ·)‖L2(Td) ds

+

∫ t

0

‖g(s, ·)‖H1(Td) ‖u(s, ·)‖3L4(Td) ds+ ‖g‖2L2(0,T ;L2(Td))

)
≤ C

(∫ t

0

‖g(s, ·)‖H1(Td) (E(s)1/2 + E(s)3/4) + ‖g‖2L2(0,T ;L2(Td))

)
. (A.11)

We plug (A.9), (A.10), (A.11) together with (2.8) to obtain

E(t) ≤ C
(
E(0) + ‖g‖2L2(0,T ;L2(Td))

+

∫ t

0

E(s)ds+

∫ t

0

‖g(s, ·)‖H1(Td) (E(s)1/2 + E(s)3/4)ds
)

∀t ∈ [0, T ].

Nonlinear Gronwall’s estimate leads to (A.8).

A.3 Well-posedness results for the nonlinear Schrödinger equation

Now we can state the local well-posedness result for Cauchy problems associated to (A.1). Let us
consider the functional

Φu0,g(u)(t) = eit∆u0 − i
∫ t

0

ei(t−τ)∆[|u|2u− ia(x)u+ g](τ)dτ t ∈ [0, T ]. (A.12)

where u0 ∈ L2(Td), g ∈ L2((0, T )×Td) and u ∈ Xs,b
T for some s ≥ 1 and b ∈ ( 1

2 , 1). It is straightforward

to prove that if u ∈ Xs,b
T is a solution to the distributional sense of (A.1) then u coincides with Φu0,g,

see for instance [Lau10a, Proof of Theorem 2.1]. The following lemma is instrumental in this section.

Lemma A.5. Let S ≥ 1 and M > 0. There exist b ∈ ( 1
2 , 1) and b′ ∈ (0, 1

2 ) with b + b′ < 1 and a
positive constant C = Cb,b′,S > 0 such that for all 0 < T ≤ 1, 1 ≤ s ≤ S, g1, g2 ∈ L2((0, T ), Hs(Td)),
u0, v0 ∈ Hs(Td) and u, v ∈ Xs,b

T with ‖u‖Xs,b
T
≤M and ‖v‖Xs,b

T
≤M ,

‖Φu0,g1(u)− Φv0,g2(v)‖Xs,b
T

≤ C
(
‖u0 − v0‖Hs(Td) + ‖g1 − g2‖L2(0,T ),Hs(Td)) + (1 + 2M2)T 1−b−b′‖u− v‖Xs,b

)
. (A.13)

Proof. By Proposition A.3, for all 1 ≤ s1 ≤ s2 ≤ S, we have some parameter b′s1,s2 ∈ (0, 1
2 ) such that

(A.6) and (A.7) hold. By choosing b′ = max1≤s1≤s2≤S b
′
s1,s2 , we obtain that (A.6) and (A.7) hold for

all 1 ≤ s1 ≤ s2 ≤ S with the same parameter b′ ∈ (0, 1
2 ).

First, we notice that if g1, g2 ∈ L2(0, T ;Hs(Td)) then g1, g2 ∈ Xs,−b′
T .

Now, let us fix b such that b > 1/2 and b+ b′ ≤ 1. We have for all t ∈ (0, T ),

Φu0,g1(u)(t)−Φv0,g2(v)(t) = eit∆(u0−v0)− i
∫ t

0

ei(t−τ)∆[(|u|2u−|v|2v)− ia(x)(u−v)+(g1−g2)](τ)dτ.

Let ψ ∈ C∞c (R) be such that ψ = 1 on [−1,+1]. Then we have∥∥ψ(t)eit∆(u0 − v0)
∥∥
Xs,b = ‖ψ‖Hb(R) ‖u0 − v0‖Hs(Td) . (A.14)

Therefore, for T ≤ 1, we have ∥∥eit∆(u0 − v0)
∥∥
Xs,b

T

≤ C ‖u0 − v0‖Hs(Td) . (A.15)
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The estimate (A.5) from Lemma A.2 then implies that∥∥∥∥ψ(t/T )

∫ t

0

ei(t−τ)∆F (τ)dτ

∥∥∥∥
Xs,b

T

≤ CT 1−b−b′ ‖F‖
Xs,−b′

T

. (A.16)

Then, by using the trilinear estimate (A.6) from Lemma A.3, the multiplication estimate (A.3) from
Lemma A.1 and Bourgains spaces embeddings, we get∥∥∥∥∫ t

0

ei(t−τ)∆[(|u|2u− |v|2v)− ia(x)(u− v) + (g1 − g2)](τ)dτ

∥∥∥∥
Xs,b

T

≤ CT 1−b−b′ ∥∥|u|2u− |v|2v − ia(x)(u− v) + g1 − g2

∥∥
Xs,−b′

T

≤ CT 1−b−b′
(∥∥|u|2u− |v|2v∥∥

Xs,−b′
T

+ ‖a(x)(u− v)‖
Xs,−b′

T

+ ‖g1 − g2‖Xs,−b′
T

)
≤ CT 1−b−b′

(∥∥|u|2u− |v|2v∥∥
Xs,−b′

T

+ ‖a(x)(u− v)‖Xs,0
T

+ ‖g1 − g2‖Xs,−b′
T

)
≤ CT 1−b−b′

(∥∥|u|2u− |v|2v∥∥
Xs,−b′

T

+ ‖u− v‖Xs,b
T

+ ‖g1 − g2‖Xs,−b′
T

)
≤ CT 1−b−b′ ‖u− v‖Xs,b

T

(
1 + ‖u‖2X1,b

T
+ ‖v‖2X1,b

T

)
+ CT 1−b−b′ ‖g1 − g2‖Xs,−b′

T

. (A.17)

Then,

‖Φu0,g1(u)− Φv0,g2(v)‖Xs,b
T

≤ C ‖u0 − v0‖Hs(Td) + C ‖g1 − g2‖Xs,−b′
T

+ CT 1−b−b′ ‖u− v‖Xs,b
T

(
1 + ‖u‖2X1,b

T
+ ‖u‖2X1,b

T

)
, (A.18)

that exactly gives (A.13) recalling the bound on u and v in the Bourgain spaces Xs,b
T .

Proposition A.6 (Local existence). Let a ∈ C∞(Td,R) and S ≥ 1. There exists b ∈ ( 1
2 , 1) such that

for every 1 ≤ s ≤ S, u0 ∈ Hs(Td) and g ∈ L2(0, T ;Hs(Td)), there exists T > 0 and a unique solution

u ∈ Xs,b
T to (A.1). Moreover, u satisfies

∀t ∈ (0, T ), u(t) = Φu0,g(u)(t).

Proof. Let us show that Φu0,g admits a unique fixed point in Xs,b
T provided that T > 0 is sufficiently

small. Let 0 < T ≤ 1. According to (A.13), we have for all u, v ∈ Xs,b
T , with ‖u‖Xs,b

T
≤ M and

‖v‖Xs,b
T
≤M ,

‖Φu0,g(u)− Φu0,g(v)‖Xs,b
T
≤ CT 1−b−b′ ‖u− v‖Xs,b

T

(
1 + 2M2

)
and

‖Φu0,g(u)‖Xs,b
T
≤ C(‖u0‖Hs(Td) + ‖g‖L2((0,T ),Hs(Td)) + CT 1−b−b′ ‖u‖Xs,b

T

(
1 + ‖u‖2Xs,b

T

)
. (A.19)

Let us considerM = C(‖u0‖Hs(Td)+‖g‖L2((0,T ),Hs(Td))+1 and T > 0 such that T 1−b−b′CM(1+2M2) <
1
2 . With this choice, we readily show that Φu0,g is a contraction map from BXs,b

T
(0,M) to itself and

then, admits an unique fixed point.

Proposition A.6 allows us to define the unique maximal solution starting from u0 ∈ Hs(Td). We
define for u0 ∈ Hs(Td) and g ∈ L2(0, T ), Hs(Td)) and s ≥ 1,

T (u0, g) := sup{T > 0; ∃u ∈ Xs,b
T solution to (2.1) starting from u0}.

Thanks to Proposition A.6, together with Lemma A.5, there exists a unique maximal solution u ∈ Xs,b
T ,

for all 0 < T < T (u0, g).
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Let us show that T (u0, g) does not depend on s when u0 ∈ H1(Td). Let us take here s > 1. By
using that u0 ∈ Hs(Td) ↪→ H1(Td) and g ∈ L2(0, T ;Hs(Td)) ↪→ L2(0, T ;H1(Td)), one can construct

a maximal solution u1 ∈ X1,b
T1

and a maximal solution u2 ∈ Xs,b
T2

for some T1, T2 > 0. We clearly have

T2 ≤ T1. Moreover, by uniqueness in X1,b
T1

, we also have u1 = u2 in [0, T2). Assume that T2 < T1, then
there exists C > 0, δ > 0 such that

lim
t→T2

‖u2‖Xs,b
t

= +∞ and ‖u2‖X1,b
t
≤ C ∀t ∈ [T2 − δ, T2). (A.20)

We deduce that ‖u2‖C([T2−δ,T2);H1(Td)) ≤ C. By using the local existence in H1(Td) and gluing of
solutions, we then get that there exists C > 0 such that

‖u2‖X1,b
T2

≤ C.

Then by using (A.13) on [T2 − ε, T2] for ε > 0 small enough such that Cε1−b−b′(1 + ‖u‖2X1,b
T2

) < 1/2,

we obtain (recalling that a solution of (A.1) in the distribution sense is necessarily a solution in the
Duhamel sense),

‖u2‖Xs,b
[T2−ε,T2]

≤ C ‖u2(T2 − ε, ·)‖Hs(Td) + C ‖g‖
Xs,−b′

T2

. (A.21)

Therefore, by using gluing of solutions, we obtain that u2 ∈ Xs,b
T2

contradicting (A.20).

The following proposition shows that when u0 ∈ H2(Td), the solution is actually defined at any
time.

Proposition A.7 (Global existence for H2(Td)-data). Let a ∈ C∞(Td,R) and S ≥ 2. Let b ∈ ( 1
2 , 1)

provided by Proposition A.6. For all u0 ∈ H2(Td) and g ∈ L2(0,+∞;H2(Td)), T (u0, g) = +∞.

Proof. Let u0 ∈ H2(Td) and assume by contradiction that T (u0, g) < +∞. Let us consider the

maximal solution u ∈ X2,b
T , for all 0 < T < T (u0, g) starting from u0. According to Proposition A.6,

u is also the maximal solution starting from u0 seen as a H1(Td)-function. We therefore have

lim
t→T (u0,g)

‖u‖X1,b
t

= +∞.

However, thanks to the energy estimates (A.8), the energy E(t) is bounded on (0, T (u0, g)) and yields

‖u‖C([0,T ];H1(Td)) ≤ C ∀T < T (u0, g). (A.22)

By using the local existence in H1(Td) and gluing of solutions, we then get that there exists C > 0
such that

‖u‖X1,b
T (u0,g)

≤ C.

This is a contradiction.

A.4 Energy estimates and global existence for less regular data

Thanks to the global existence of solutions for H2(Td)-data, we are now in position to establish energy
estimates given by Proposition 2.3 for H1(Td)-data.

Proof of Proposition 2.3. Let T > 0, g ∈ L2((0, T ), H1(Td)) and u0 ∈ H1(Td). Let (u0,n) ∈ (H2(Td))N
a sequence tending to u0 in H1(Td) and (gn)n∈N ∈ (L2((0, T ), H2(Td)))N a sequence tending to g in

L2((0, T ), H1(Td)). Associated to u0,n and gn, we can define the solution un ∈ X2,b
T , which satisfies

En(t) ≤ C
(
En(0) + ‖gn‖2L2(0,T ;H1(Td)) + ‖gn‖4L2(0,T ;H1(Td))

)
∀t ∈ [0, T ], (A.23)

thanks to Proposition A.4. Then by using (A.13), one can prove that for T ∗ small enough depending
on ‖u0‖H1(Td) and ‖g‖L2(0,T ;H1(Td)) that

‖un − u‖X1,b
T∗
≤ C(‖u0,n − u0‖H1(Td) + ‖gn − g‖L2(0,T∗;H1(Td))) (A.24)
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We then just have to piece solutions together in small intervals by using the fact that X1,b
T∗ -norm

controls the L∞(0, T ∗;H1(Td))-norm. We obtain

‖un − u‖X1,b
T
≤ C(‖u0,n − u0‖H1(Td) + ‖gn − g‖L2(0,T ;H1(Td))) (A.25)

This allows us to pass to the limit in (A.23).

By proceeding in the same manner as in the proof of Proposition A.7, the energy estimates (2.10)
ensure that the solution, associated to H1-data, are global:

∀u0 ∈ H1(Td),∀g ∈ L2(0,+∞, H1(Td)), T (u0, g) = +∞.

We are now in position to give the proof of Proposition 2.1 which states the global well-posedness
of (A.1). Actually, it remains to show that data in Hs(Td) lead to global solutions in Xs,b, for any
s ≥ 1 and to prove that the flow map is Lipschitz on every bounded subset.

Proof of Proposition 2.1. The local existence given by Proposition A.6 with s = 1 and the a priori
energy estimate (A.8) implies therefore global existence in X1,b

T . This implies the global existence in

Xs,b
T for s ≥ 1.

For the local Lipschitz estimate on the flow, we know from (A.13) that this is true in small time
intervals. By gluing solutions together, we then deduce that it is true in the time interval [0, T ].
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