
HAL Id: hal-04296583
https://hal.science/hal-04296583v1

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Expression of a Heat Shock Protein 70 from the Brown
Alga Ectocarpus sp. Imparts Salinity Stress Tolerance in

Arabidopsis thaliana
Pramod Rathor, Tudor Borza, Ramin Bahmani, Sophia Stone, Thierry Tonon,

Svetlana Yurgel, Philippe Potin, Balakrishnan Prithiviraj

To cite this version:
Pramod Rathor, Tudor Borza, Ramin Bahmani, Sophia Stone, Thierry Tonon, et al.. Expression of
a Heat Shock Protein 70 from the Brown Alga Ectocarpus sp. Imparts Salinity Stress Tolerance in
Arabidopsis thaliana. Journal of Applied Phycology, 2023, 35 (2), pp.803-819. �10.1007/s10811-022-
02897-7�. �hal-04296583�

https://hal.science/hal-04296583v1
https://hal.archives-ouvertes.fr


1 
 

Expression of a Heat Shock Protein 70 from the Brown Alga Ectocarpus sp. 

Imparts Salinity Stress Tolerance in Arabidopsis thaliana 

 

Pramod Rathor
a
, Tudor Borza

a
, Ramin Bahmani

a
, Sophia Stone

b
, Thierry Tonon

c,d
, Svetlana 

Yurgel
e
, Philippe Potin

d
, and Balakrishnan Prithiviraj

a* 

 

a 
Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Faculty of 

Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada; pramod.rathor@dal.ca (P.R.); 

Tudor.Borza@dal.ca (T.B.); rbahmani@dal.ca (R.B.); syurgel@dal.ca (S.Y.); bprithiviraj@dal.ca (B.P.) 

b 
Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; s.stone@dal.ca 

c 
Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington,York YO10 

5DD, UK; thierry.tonon@york.ac.uk 

d
 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, 

CNRS, UMR 8227, 29680 Roscoff, France; philippe.potin@sb-roscoff.fr 

e
 USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA; 

Svetlana.yurgel@usda.gov 

 

 

*
Corresponding author: 

Balakrishnan Prithiviraj; Marine Bio-Products Research Laboratory, Department of Plant, Food and 

Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada 

E-mail : bprithiviraj@dal.ca 

Phone: +1-902-9865720 

 

mailto:rbahmani@dal.ca
mailto:bprithiviraj@dal.ca
mailto:philippe.potin@sb-roscoff.fr
mailto:bprithiviraj@dal.ca


2 
 

Abstract 1 

The brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae in the phylum 2 

Heterokonts, which is also known as the Stramenopiles lineage. Ectocarpus is a dominant 3 

seaweed in temperate regions around the globe, abundant mostly in the intertidal zones, a habitat 4 

with harsh environmental conditions resulting from tidal cycles. Analysis of previously 5 

generated transcriptomic data of brown alga showed the up-regulation of the Esi0379_0027 6 

gene, encoding a HSP70 protein, in response to various abiotic stresses. Bioinformatics study 7 

demonstrated that the HSP70 protein is soluble, monomeric and well conserved compared to 8 

other organisms. Subcellular localization of EsHSP70 revealed that the protein is localized in 9 

nucleus. To explore the role of HSP70 in stress tolerance, it was expressed in Arabidopsis under 10 

constitutive and stress inducible promoters. Transgenic Arabidopsis plants generated using both 11 

promoters exhibited higher tolerance to salinity stress compared to wild type plant. Transcript 12 

analysis of various abiotic stress-responsive genes showed that genes participating in Na
+ 

efflux 13 

and
 
sequestration, and in ABA-mediated stress tolerance were remarkably upregulated in the 14 

EsHSP70-expressing transgenic Arabidopsis. Overall, our results showed that the expression of 15 

the EsHSP70 promotes salt stress tolerance by upregulating stress responsive genes in 16 

Arabidopsis. 17 

Keywords: Arabidopsis thaliana, Ectocarpus sp., Phaeophyceae, heat shock protein, salinity 18 
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 22 

 23 
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1. Introduction 26 

Plants being sessile organisms are incapable to avoid stressful or unfavorable growth conditions 27 

by changing place. These organisms are constantly exposed to several environmental stresses 28 

such as salinity, drought, high temperature, heavy metal and ultra-violet radiation. These 29 

stressors negatively affect plant growth and development leading to significant loss in 30 

productivity. High soil salinity is the predominant among various abiotic stresses which causes 31 

severe crop loss globally. In addition, the effect of global climate change further exasperates the 32 

effects of abiotic stresses on agricultural production (Lesk et al. 2016). The crop loss due to these 33 

stressors account up to 50% loss in production (Lobell et al. 2011). High salinity inhibits plant 34 

growth in multiple ways such as osmotic stress, ion accumulation and secondary stress. The 35 

primary stresses, such as salinity, drought and high temperature are often interconnected and lead 36 

to secondary stresses such as oxidative stress. At cellular level, these stresses result in 37 

physiological dehydration, which further damages cellular machinery (Wang et al. 2003). 38 

Increased soil osmotic potential due to presence of salt reduces the plants ability to uptake water 39 

and nutrients (Hasegawa et al. 2000). Accumulation of Na
+
 and Cl

- 
ions in significantly higher 40 

concentration than those of outside in the soil helps to maintain turgor pressure but cells must 41 

strictly regulate contents of these ions in each cellular compartment to avoid inactivation of 42 

enzymes thus prevent metabolic dysfunction (Munns and Gilliham 2015). Based on their ability 43 

to tolerate salt stress, plants are classified as halophytes and glycophytes (Flowers et al. 1977); 44 

halophytes are highly tolerant to salinity stress. These plants have evolved unique structural 45 

features such salt secretory glands in leaves that has the capacity to excrete excess salt that 46 

ensures their survival under higher levels of soil salinity. However, most of the crop plants are 47 

glycophytic and lacks such structures therefore doesn’t exhibit higher level of salinity stress 48 

tolerance (Hasegawa et al. 2000; Julkowska and Testerink 2015; Hasegawa et al. 2000). 49 

Generally, halophytes have higher concentration of Na
+
 and Cl

-
 ions in leaves than the outside 50 

environment that helps to maintain higher osmotic potential in the cells and therefore higher 51 

turgor pressure. These plants store Na
+
 and Cl

- 
in vacuoles and uses compatible solutes and K

+
 52 

ions to equilibrate the osmotic differences in different compartments of cytoplasm (Shabala 53 

2013). Accumulation of Na
+
 and Cl

-
 ions in some leaves may be deleterious but at whole plant 54 

level it might be beneficial as plant can store the excess Na
+
 and Cl

-
 ions in those leaves and later 55 

remove these ions via abscission (Munns and Tester 2008).  56 



4 
 

Heat shock proteins are classified on the basis of their molecular weight into five major groups 57 

named as sHSP (small heat shock proteins), HSP60, HSP70, HSP90 and HSP100 (Wang et al. 58 

2004). These proteins are present and conserved in almost all living organisms from prokaryotes 59 

to eukaryotes (De Maio 1999). Heat shock proteins have a vital role in developmental processes 60 

and response to abiotic stresses like salt (Zou et al. 2012), drought (Cho and Choi 2009) and 61 

extremes of temperature (Lopez-Matas et al. 2004). Among several HSPs, HSP70 is a highly 62 

conserved protein and has been extensively studied in bacteria, plants and animals. It is the most 63 

abundant molecular chaperon, and is localized to various cellular compartments including 64 

cytosol, nucleus, mitochondria and endoplasmic reticulum, protecting proteins by folding of 65 

misfolded or unfolded proteins, disassembly of protein complex to translocate in another cellular 66 

compartment and in disaggregation of complex aggregates (Saibil 2013). HSP70 contains two 67 

main domains: a substrate binding domain and an ATPase domain (Kampinga and Craig 2010; 68 

Mayer 2010; Zuiderweg et al. 2012). The activity of HSP70 depends on the interaction between 69 

these two domains and other co-chaperons (Saibil 2013). Proteins which are not folded correctly 70 

in their native state contains several binding sites usually at every 30 to 40 residues for HSP70 71 

(Rüdiger et al. 1997). It is known that HSP70 binds to the 7-residue segment of a polypeptide 72 

chain which is hydrophobic in nature (Clerico et al. 2015). Even transient binding of polypeptide 73 

segment with HSP70 can prevent the misfolding and aggregation of proteins thus maintains 74 

protein in native state (Young 2010). Once reached to right destination polypeptide regains the 75 

native state in free solution by detaching from HSP70. If it fails to refold properly it will lead to 76 

rebinding to HSP70. Therefore, the function of HSP70 in proper folding seems to be in 77 

stabilization of unfolded proteins until it can refold correctly (Sharma et al. 2010). HSP70 78 

proteins have been identified in several plant species (Vierling 1991; Boston et al. 1996). In 79 

Arabidopsis 18 genes encoding the HSP70 family proteins have been discovered. Analysis of the 80 

expression profile of these genes showed that members of HSP70 family were expressed in 81 

response to several environmental stimuli such as high temperature, cold, drought, salinity and 82 

other chemical stresses (Lin et al. 2001; Sung et al. 2001). Several studies have been carried out 83 

and reported that overexpression of HSP70 improved drought, salinity and high temperature 84 

stress tolerance in transgenic plants. Cho and Choi (2009), reported that constitutive 85 

overexpression of nuclear localized HSP70 from Nicotiana tabacum improved high temperature 86 

and drought stress tolerance in transgenic tobacco, whereas the antisense plants were highly 87 
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susceptible (Cho and Choi 2009). Similarly, constitutive expression of HSP70 from cotton 88 

improved drought stress tolerance in transgenic tobacco (Ni et al. 2021). Overexpression of 89 

HSP70 from chrysanthemum have shown to improve salinity, drought and high temperature 90 

stress tolerance in transgenic Arabidopsis (Song et al. 2014). Arabidopsis plants transformed 91 

using fungal HSP70 from Trichoderma improved tolerance to heat, salinity, osmotic and 92 

oxidative stress (Montero-Barrientos et al. 2010). 93 

Seaweeds are an integral component of marine coastal ecosystems, where they form large 94 

dense forests and provides habitat for many organisms (Khan et al. 2009). Brown alga are 95 

multicellular organisms belonging to Stramenopiles lineage (also known as Heterokonts) (Cock 96 

et al. 2012). This lineage is distantly related to Archaeplastida (including green plants and red 97 

algae) and Opisthokonts (including animal and fungi) (Baldauf 2003; Brodie et al. 2017). Since 98 

each of these lineages have evolved independently it is thought that organisms in each of these 99 

lineages have evolved mechanisms necessary for the development of complex multicellularity. 100 

These mechanisms are well studied in land plants and in animals but very little is known in 101 

brown algae (Coelho et al. 2012). During the billions year of evolution brown algae have made 102 

the transition from unicellularity to complex multicellularity and therefore acquired novel 103 

features which are absent in other lineages (Cock et al. 2012; Brodie et al. 2017). Endosymbiotic 104 

gene transfer led to the significant incorporation of foreign genes and enriched the nuclear 105 

genome. Some of these genes were targeted to specific organelle through N-terminal transit 106 

peptide and many of these evolved novel functions in these organisms (Brodie et al. 2017). 107 

These novel features make it very interesting to explore and decipher the metabolisms and 108 

cellular biology of these organisms. Moreover, genome sequencing demonstrated that more than 109 

36% of genes are of unknown functions and doesn’t match to any other existing organisms. This 110 

indicates that these are novel genes or got considerably diverged from the homologue genes 111 

present in other organisms (Cock et al. 2012). Some of the novel features include metabolism of 112 

halogenated compounds, accumulation of complex polysaccharides and higher tolerance to biotic 113 

and abiotic stresses (Charrier et al. 2008). Moreover, in brown algae the photosynthetically fixed 114 

carbon is not stored as starch granules, instead it is stored as laminarin and mannitol (Craigie 115 

1974; Davis et al. 2003). In contrast to land plants, these organisms produce complex 116 

polysaccharides such as alginates and sulfated fucans (Kloareg and Quatrano 1988). Genome 117 

editing tools have been routinely applied to land plants to understand their complex organization. 118 
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However, their application in other lineages for instance in Stramenopile is very challenging as 119 

these are not easily amenable, lack of standardized protocols for genetic transformation, 120 

mutation, promoter analysis and subcellular localization. The genome sequencing of Ectocarpus 121 

provided some insights to brown algal biology, however, various biological aspects still remains 122 

largely unknown. Transcriptomics study on brown algae showed that the expression level of 123 

several genes was upregulated under different abiotic stresses conditions, along with elevated 124 

levels of stress tolerance (Ritter et al. 2014). One of these genes was identified as EsHSP70 125 

(Esi0379_0027). In the present work, to examine the role of EsHSP70 in abiotic stress tolerance, 126 

it was expressed in A. rabidopsis thaliana. Transgenic Arabidopsis plants expressing EsHSP70 127 

showed higher tolerance to salt stress. Furthermore, the transcript level of various stress-128 

responsive genes was found to be significantly higher in HSP70-expressing transgenic plants 129 

compared to the control (normal condition without salt) plants. 130 

 131 

2. Materials and Methods 132 

2.1. Brown alga growth condition and RNA isolation 133 

The axenic culture of brown algal model Ectocarpus sp. (Dilwyn) Lyngbye unialgal strain 134 

32 (accession CCAP 1310/4, origin San Juan de Marcona, Peru) was established in a 10 liters L 135 

plastic tank filled with filtered, autoclaved natural sea water containing 1% (v/v) of provasoli 136 

Provasoli nutrient medium. Culture was maintained at 14 °C in the growth room with light cycle 137 

of 14h light/10h dark, with light intensity of 40 μmol. photons m
-2

s
-1

. Compressed air passing 138 

through a filter was used to continuously air bubble the nutrient medium. The culture was then 139 

treated with 1450 mM NaCl for 6 h to induce salt stress condition. Following the exposure to 140 

high salinity stress condition culture was collected using filtration, carefully dried on absorbent 141 

paper and promptly flash frozen in liquid nitrogen. Total RNA isolation was performed using 0.1 142 

g of tissue following the protocol described earlier with minor modifications (Apt et al. 1995). 143 

The modifications to the protocol were made as previously stated (Le Bail et al. 2008). One 144 

microgram of RNA was treated with Turbo DNAse (Ambion Austin, USA) following to the 145 

manufacturer’s instruction. The DNAse-treated RNA was converted to cDNA, using a 146 

SuperScript IV Reverse Transcriptase (Life Technologies, France), following the manufacturer’s 147 

procedures.  148 
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 149 

 150 

2.2. Bioinformatics analysis 151 

The protein transmembrane helices or domain were identified using HMMTOP v.2.0 152 

(http://www.enzim.hu/hmmtop/) and TMHMM v.2.0 (https://services.healthtech.dtu.dk/) 153 

prediction servers. To determine the subcellular localization of protein, the amino acid sequence 154 

was analyzed using TargetP 2.0, Signal P and DeepLoc-1.0 (https://services.healthtech.dtu.dk/), 155 

iPSORT (http://ipsort.hgc.jp), and WoLF PSORT (https://wolfpsort.hgc.jp) prediction servers. 156 

Homology modelling for secondary structure was carried out using PSIPRED (Buchan and Jones 157 

2019) (http://bioinf.cs.ucl.ac.uk/psipred). To obtain information about the tertiary structure and 158 

the folding of EsHSP70, protein model was generated using SWISS-MODEL (Waterhouse et al. 159 

2018). The best model (77.64 % sequence identity) was built using bovine heat shock cognate 71 160 

kDA as a template (SMTL ID: 4fl9.1; structure solved by X- ray diffraction 1.90 Å). BlastP 161 

search was performed using EsHSP70 as a query to find the protein sequence homology with 162 

different other taxa. MUSCLE alignments (Edgar 2004) of some selected protein sequences were 163 

done using MEGA X software (Kumar et al. 2018). The evolutionary history was inferred by 164 

using the Maximum Likelihood method and JTT matrix-based model (Jones et al. 1992). The 165 

evolutionary analysis, comprised of 49 sequences including EsHSP70, analyses were performed 166 

using MEGA X software (Kumar et al. 2018). 167 

2.3. Plasmid construction and transformation of Arabidopsis 168 

To create the plant transformation constructs, pEarleyGate 100 (Earley et al. 2006) and a 169 

promoterless vector pMCS:GW (Michniewicz et al. 2015) were obtained from ABRC 170 

(Columbus, OH, USA). Promoter sequence for a stress inducible gene RESPONSIVE TO 171 

DESICCATION 29A (RD29A) was amplified from the wild type (Col-0) Arabidopsis. Gateway 172 

vector containing stress inducible promoter of RD29A gene, was generated as described earlier 173 

(Rathor et al. 2021). The coding sequence of EsHSP70 was amplified by RT-PCR using gene 174 

specific primers flanked by attB sequences and cloned into pDONR221 by the BP Clonase
TM

 II 175 

Gateway
®

, following the manufacturer’s protocol to generate entry clone (Gateway
®

 Technology 176 

with Clonase II, Invitrogen, Ontario, Canada). The entry clone harboring full gene sequence was 177 

https://services.healthtech.dtu.dk/
https://wolfpsort.hgc.jp/
http://bioinf.cs.ucl.ac.uk/psipred
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then recombined into pEarleyGate 100 (35S) and pMCS:GW (RD29A promoter) by LR 178 

Clonase
TM

 II Gateway
®

, following the manufacturer’s protocol (Gateway
®

 Technology, 179 

Invitrogen, Ontario, Canada). The correctness of the RD29A promoter and EsHSP70 sequences 180 

was confirmed by PCR using the forward primer sequence from the RD29A promoter and 181 

reverse primer sequence from the EsHSP70. The expression clone was then transformed into 182 

Agrobacterium strain GV310 (pMB90) using the freeze-thaw method followed by Arabidopsis 183 

(ecotype Col-0) transformation through the floral dipping protocol (Clough and Bent 1998). 184 

Positive transformants were screened as stated earlier (Rathor et al. 2021). Expression of the 185 

transgene was analyzed in these lines using quantitative real time polymerase chain reaction 186 

(qRT-PCR) as described in later section. For further experiments two homozygous independent 187 

transgenic lines named as EsHSP-Ox1 and EsHSP-Ox2 (for 35S promoter) and three 188 

homozygous independent lines for stress inducible promoter (EsHSP-A, B, and C) were used. 189 

2.4. Plasmid construction for subcellular localization  190 

To generate the transformation vector, pEarleyGate 103 (C-GFP-HIS) (Earley et al. 2006) was 191 

obtained from ABRC. Stop codon was removed from the coding sequence of EsHSP70 and the 192 

entry clone produced as described in previous section. The entry clone harboring full gene 193 

sequence without stop codon was then recombined into pEarleyGate 103 (C-GFP-HIS) using LR 194 

Clonase
TM

 II Gateway
®

 as mentioned in previous section.  195 

2.5. Analysis of salinity stress tolerance 196 

Seeds of the wild type and transgenic Arabidopsis lines were germinated and grown 197 

vertically on half strength Murashige and Skoog (MS) solid media (Phytotech, USA) for 4 days. 198 

Uniform 4-day-old seedlings were selected and transferred on 1/2 MS solid media plates 199 

containing 100 mM NaCl. Plates were placed vertically for 7 days at 22 °C with 16 h light/8 h 200 

dark cycle, with light intensity of 100 µmol. photons m
-2

s
-1

. Primary root length was marked on 201 

the day of seedling transfer. After 7 days, plates were scanned using a scanner (Epson 202 

Expression 10000 XL, Epson, Ontario, Canada), and increase in root length and the lateral roots 203 

number was measured using Image J software (NIH, United StatesUSA). The percent leaf 204 

chlorosis was recorded visually on 7
th

 day after transfer. The seedlings were harvested on the 9
th

 205 

day to determine the fresh weight, subsequently oven-dried for 5 days at 70 °C for dry weight 206 

measurement. All the experiments were conducted in triplicate and 30 plants per each treatment 207 
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were examined. To investigate if the phenotypes observed in seedlings were evident in plants, 208 

seeds of wild type and of EsHSP70-overexpressing lines were stratified for 2 days at 4 °C and 209 

were sown directly on Jiffy peat pellets (Jiffy, NB, Canada). 13-day-old plants grown on peat 210 

pellets were completely saturated with water to equilibrate amount of water in all peat pellets 211 

across the treatments. After three days, they were treated with NaCl at the final concentration of 212 

the 100 mM. The peat pellets moisture were kept equally during the experiment by irrigation 213 

once every three days. Plants were photographed after 3 weeks and their fresh and dry biomass 214 

were measured. Three independent experiments with five replications were performed. 215 

In order to understand the effect of salinity stress on membrane intactness an experiment 216 

for electrolyte leakage was performed. Plants were grown and treated as described above. 217 

Following the exposure to salinity stress rosette leaves were harvested from 3 plants in one 218 

biological replicate (5 biological replicates) and transferred into vials comprising 20 ml of 219 

deionized water. Electrolyte leakage was measured using SympHony SB70C (VWR, ON, 220 

Canada) conductivity meter as described by (Cao et al. 2007).  221 

2.6. Plant RNA isolation and quantitative RT-PCR (qRT-PCR) 222 

The expression of abiotic stress associated key marker genes was examined in EsHSP-Ox1 223 

(35S promoter) and EsHSP-A (RD29A promoter) lines. Plants were grown and treated as 224 

described above. Total RNA was isolated from leaves at 24 and 120 h after salt stress treatment 225 

using GeneJET plant RNA purification kit (Thermoscientific, ON, Canada). After quantification 226 

of the RNA using a NanoDrop spectrophotometer (Thermoscientific, ON, Canada), 2 µg of total 227 

RNA was treated with RQ1 RNAse free DNAse following the manufacturer’s protocol 228 

(Promega, ON, Canada) and used for cDNA synthesis using the RevetAID cDNA Synthesis kit 229 

according to the manufacturer’s instructions (Thermoscientific, ON, Canada). qRT-PCR was 230 

conducted on the StepOne plus Real-Time PCR system (Applied Biosystems, Ontario, Canada), 231 

using iTaq SYBR green (Bio-RAD, ON, Canada). The relative expression was determined by 232 

normalization to the Actin transcript abundance (as an internal control) following the 2
−ΔΔCT

 233 

method (Pfaffl 2001). Finally, transcript levels were expressed relative to the treatment with 234 

lowest expression. The oligonucleotide primer sequences are given in Supplemental Table S1. 235 

2.7 Protoplast isolation and transfection 236 
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Four weeks old Arabidopsis wild-type (Col-0) plant was used for protoplast isolation and 237 

transfection as previously described (Yoo et al. 2007). The transformed protoplasts were 238 

incubated for 16-18h at room temperature before imaging using an LSM 710 LASER scanning 239 

confocal microscope (Carl Zeiss, Canada) following the protocol stated earlier (Wu et al. 2009). 240 

2.8. Statistical analyses 241 

Analysis of Variance (ANOVA) was accomplished for all the data followed by Tukey post 242 

hoc test at P ≤ 0.05 using Minitab 19.0 software (Minitab LLC, State College, Pennsylvania, 243 

USA). 244 

3. Results 245 

3.1. Prediction of transmembrane domain and intracellular localization of EsHSP70  246 

The presence of the transmembrane domains in EsHSP70 (Esi0379_0027) was analyzed 247 

using the HMMTOP v.2.0 and TMHMM v.2.0 online prediction servers, however, 248 

transmembrane domains was not identified in this protein. SignalP, iPSORT and TargetP 2.0 249 

online servers were employed to analyse the subcellular localization of EsHSP70 protein. 250 

According to the results, the presence of a mitochondrial signal peptide, chloroplast, or thylakoid 251 

luminal transfer peptide was ruled out. In plants, it is known that endogenous HSP70 is present 252 

in different cellular compartments and it is likely that EsHSP70 in transgenic plants likely to be 253 

same. However, final destination in particular cellular compartment may occur by interaction 254 

with other proteins. Protein structure prediction was performed based on the PSIPRED method 255 

and exhibited the secondary structure of EsHSP70 protein with a MW of 71.9 kDa and an 256 

isoelectric point (pI) of 5.0 (Fig. 1 a). The EsHSP70 protein structure was further explored using 257 

the SWISS-MODEL server. The best model (77.64% sequence identity) was obtained using 258 

bovine Heat shock cognate 71 kDA as a template (SMTL ID: 4fl9.1). This suggested that 259 

EsHSP70 is a well-structured protein. Information coming from all these databases indicated that 260 

EsHSP70 is a soluble, monomeric protein (Fig. 1 b-d). 261 

 262 

 263 
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 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

Fig 1. Structure prediction of EsHSP70 Protein.  281 

(a) PsiPred sequence plot. The secondary structure prediction of EsHSP70. Model was generated 282 

at: http://bioinf.cs.ucl.ac.uk/psipred/ (b) EsHSP70 three-dimensional (3D) structure modelling. 283 

3D structure of the full length protein generated with ProMod3 3.0.0 in SWISS-MODEL. (c) 284 

Template (SMTL ID: 4fl9.1). (d) Sequence alignment of EsHSP70 (Model_02) with bovine Heat 285 

shock cognate 71 kDA template. 286 

http://bioinf.cs.ucl.ac.uk/psipred/
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3.2. Phylogenetic analysis indicated that EsHSP70 considerable diverged from land plants 287 

Phylogenetic analyses of EsHSP70 (Fig. 2) showed the close evolutionary relationships 288 

between Ectocarpus sp. sequences and other two brown alga (Saccharina japonica and Undaria 289 

pinnatifida). Three sequences from Ectocarpus genus were in the same group as EsHSP70, while 290 

these taxa are clustered separately from the Tracheophytes (vascular plants), and Bryophyta 291 

(non-vascular land plants). These results implying that these Ectocarpus sp. sequences occurred 292 

through duplication and divergent evolution. 293 
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 294 

Fig. 2. Phylogenetic analysis of HSP70 in different species. The numbers of node indicate the 295 

percentages of bootstrapping after 500 replications. Phylogenetic tree was generated using 296 

Maximum Likelihood method and JTT matrix-based model. Tracheophytes (vascular plants), 297 

Chlorophyta (green algae), Bryophyta (non-vascular land plants), Opalinata (non-phagotrophic 298 

heterokonts), Oomycote (fungus), Pelagophyceae (heterokont algae), Bacillariophyta (diatoms), 299 

Xanthophyceae (yellow-green algae), Eustigmatophytes eustigmatophytes (eukaryotic algae), 300 

and Phaeophyceae (brown algae).301 
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3.3. EsHSP70 is highly expressed in nucleus  302 

To determine the protein expression pattern, the C-terminal fusion construct of EsHSP70 303 

with GFP tag was transiently expressed in Arabidopsis protoplast. Fluorescence microscopy 304 

analysis of protoplast revealed the nucleus localization of the EsHSP70 (Fig. 3). 305 

 306 

 307 

Fig. 3. Subcellular localization of EsHSP70. The coding region of EsHSP70 without stop codon 308 

was fused to GFP under control of the constitutive 35S cauliflower mosaic virus promoter 309 

(CaMV35S promoter). Arabidopsis protoplast was transformed with p35S::EsHSP70-GFP by 310 

using PEG-mediated protocol. Scale bars = 20 µm. 311 

 312 

3.4. Gene expression analysis shown that EsHSP70 is abundantly expressed in Arabidopsis 313 

under control and salt stress conditions 314 

To understand the role of this protein in abiotic stress tolerance it was expressed under 35S 315 

and stress inducible promoter RD29A. Results of qPCR demonstrated that in control condition 316 

(normal condition without salt stress), the transcript level in the EsHSP-overexpressing lines 317 

(EsHSP-Ox1 and –Ox2) was markedly high as compared to the EsHSP-A, EsHSP-B and EsHSP-318 

C lines (Fig.4). In EsHSP-Ox lines, having 35S promoter the expression level was very close to 319 

as actin, the reference gene. Ct values for actin ranged between 21-22 cycles while those of 320 

EsHSP70 in EsHSP-Ox1 and EsHSP-Ox2 were 20 and 20.5, respectively, suggesting the 321 

efficient transcription of EsHSP70 and high mRNA stability in A. thaliana. When exposed to salt 322 

stress, the gene expression level was remarkably enhanced in EsHSP-A, EsHSP-B and EsHSP-C 323 

lines (57.8, 7.0 and 8.5 times, respectively), whereas in EsHSP-Ox1 and EsHSP-Ox2 the changes 324 

in transcripts level were on the lower range compared to other transgenic lines (8.0 and 5.8 325 

times, respectively). Further up-regulation of this gene in the 35S lines under salinity stress 326 

suggests that mRNA is likely more stable under salinity stress (Shi et al. 2003). 327 
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 328 

Fig. 4. Expression of EsHSP70 in two independent lines under the 35S promoter and three 329 

independent lines harboring the stress inducible (RD29A) promoter under control (normal 330 

condition without salt stress) and salt stress conditions. The values on the bars indicate fold 331 

change ratio compared to the line with the lowest EsHSP70 expression, i.e. EsHSP-C in normal 332 

condition. Different letters above the bars represent significant differences according to Tukey’s 333 

test (p ≤ 0.05).334 
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3.5. Expression of EsHSP70 ameliorated salt tolerance in Arabidopsis  335 

To investigate the salt stress tolerance of overexpression lines, 4-day-old seedlings grown 336 

on 1/2 MS solid media medium plate were treated with 100 mM NaCl and further grown for 7 337 

days. All the transgenic lines exhibited higher tolerance to salt stress (Fig. 5). After one week 338 

following the exposure to salinity stress it was noticed that seedlings of overexpression lines had 339 

significantly longer roots (12-13 and 9-10% increase under standard conditions and 35-36 and 340 

30-40% increase under salinity stress for 35S and stress inducible overexpression lines, 341 

respectively), higher number of lateral roots per cm of primary root (16-23 and 7-8% decrease 342 

under standard conditions and 15-20 and 17-38% increase under salinity stress for 35S and stress 343 

inducible overexpression lines, respectively), reduced leaf chlorosis (50-60 and 50-73% for 35S 344 

and stress inducible overexpression lines, respectively), higher fresh weight (10-15 and 10-15% 345 

increase under standard conditions and 75-80 and 45-50% increase under salinity stress for 35S 346 

and stress inducible overexpression lines, respectively), and higher dry weight (14-15 and 10-347 

15% increase under standard conditions and 70-80 and 40-42% increase under salinity stress for 348 

35S and stress inducible overexpression lines, respectively) in contrast to the wild type plants 349 

(Fig. 5). Under in-vivo condition, wild type plants exposed to the salt stress, displayed severe 350 

growth retardation in contrast to transgenic plants which continued to grow better (Fig. 6). In 351 

response to salt stress, transgenic plants showed higher fresh weight (50-60 and 40-50% increase 352 

under salinity stress for 35S and stress inducible overexpression lines, respectively) and dry 353 

weight (60-65 and 45-60% increase under salinity stress for 35S and stress inducible 354 

overexpression lines, respectively) in compared to the wild type plants (Fig. 6). Interestingly, no 355 

significant differences were observed between transgenic lines generated using 35S promoter 356 

and stress inducible promoter under both normal and salt stress condition (Fig. 7). 357 
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 358 

Fig. 5. Salt stress tolerance in control and EsHSP70-expressing Arabidopsis under in-vitro 359 

condition. (a, g) WT, (b, h) EsHSP-A, (c, i) EsHSP-B, (d, j) EsHSP-C, (e, k) EsHSP-Ox1, (f, l) 360 

EsHSP-Ox2. Wild type, 2 independent 35S promoter (EsHSP-Ox1-2,) and 3 independent stress 361 

inducible promoter (EsHSPA-C) transgenic Arabidopsis lines were treated with 0 (control) and 362 

100 mM NaCl. (a) to (f), seedlings grown under salt stress conditions (100mM NaCl). (g) to (l), 363 

seedlings grown in normal conditions. Seedlings were photographed 9 days after transfer to the 364 

control and 100 mM NaCl solid media. (m) root length, (n) number of lateral roots per cm of 365 

primary root, (o) fresh weight, (p) dry weight and (q) leaf chlorosis of the wild type and 366 

transgenic plant expressing HSP70. Values correspond to the means ± SE (n = 3). Different 367 

letters above the bars represent significant differences according to Tukey’s test (p ≤ 0.05). 368 
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 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

Fig. 6. Salt stress tolerance in wild type and EsHSP70-expressing Arabidopsis under in-vivo 383 

condition. Wild type, 2 independent 35S promoter (EsHSP-Ox1-2,) and 3 independent stress 384 

inducible promoter (EsHSPA-C) transgenic Arabidopsis lines were grown for 13 days under 385 

normal condition and subsequently treated with no (control) and 100 mM NaCl. (a) WT, (b) 386 

EsHSP-A, (c) EsHSP-B, (d) EsHSP-C, (e) EsHSP-Ox1, (f) EsHSP-Ox2, (g) fresh weight and (h) 387 

dry weight. The plants were photographed after 3 weeks. Values correspond to the means ± SE 388 

(n = 3). Different letters above the bars represent significant differences according to Tukey’s 389 

test (p ≤ 0.05). 390 

 391 
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 392 

Fig. 7. Phenotype of wild type and 2 independent 35S promoter (EsHSP-Ox1-2,) and of 3 393 

independent stress inducible promoter (EsHSPA-C) transgenic Arabidopsis plants, expressing 394 

EsHSP70, in normal conditions. (a) WT, (b) EsHSP-A, (c) EsHSP-B, (d) EsHSP-C, (e) EsHSP-395 

Ox1, (f) EsHSP-Ox2.396 
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3.6. Expression of EsHSP70 demonstrated reduced leakage of electrolytes 397 

To examine the membrane stability under salt stress condition, 15-day-old wild type and 398 

overexpression lines were exposed to 100 mM NaCl. Electrolyte leakage was estimated at 24 and 399 

48 h after salinity stress exposure. Electrolyte leakage at 48 h was significantly lower in both 35S 400 

and stress inducible promoter lines (50-53 and 52-60% in 35S and stress inducible 401 

overexpression lines, respectively) in compared to control plants (wild type) suggesting that 402 

membranes were highly intact in overexpression lines (Fig. 8).  403 

 404 

 405 

Fig. 8. Electrolyte leakage in wild type and EsHSP70-expressing Arabidopsis under salt stress 406 

condition. Wild type, 2 independent 35S promoter (EsHSP-Ox1-2) and of 3 independent stress 407 

inducible promoter (EsHSPA-C) transgenic Arabidopsis plants were grown and treated as 408 

described in materials and methodd section. Values correspond to the means ± SE (n = 5). 409 

Different letters above the bars represent significant differences according to Tukey’s test (p ≤ 410 

0.05).411 
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3.7. Expression of the stress responsive genes is modulated in EsHSP70-expressing 412 

Arabidopsis 413 

To elucidate the mechanism by which EsHSP70 improved salt tolerance in Arabidopsis, 414 

the gene expression level of various stress responsive genes including DREB2A (Dehydration-415 

Responsive Element-Binding Protein 2A), RD29A (Response to Desiccation 29A), RD29B 416 

(Response to Desiccation 29B), RD26 (Response to Desiccation 26), RD22 (Response to 417 

Desiccation 22), RD20 (Response to Desiccation 20), RAB18 (Responsive to ABA), LEA14 (Late 418 

Embryogenesis Abundant), HSP70 (Heat Shock Protein 70), SOS1 (Salt Overly Sensitive 1) and 419 

NHX1 (Sodium/Hydrogen Exchanger 1) was measured in EsHSP-Ox1(35S promoter) and 420 

EsHSP-A (RD29A promoter) by qRT-PCR. No significant change in transcript level of the 421 

studied genes was observed between wild type and transgenic lines in normal condition except 422 

for RAB18 that was 3.9-fold up-regulated in EsHSP-A at 120 h. Contrary to this, EsHSP-Ox1 423 

and EsHSP-A exhibited higher expression level of the stress responsive genes after 24 h and 120 424 

h salt stress exposure (Figs. 9 and 10). The expression level of DREB2A and HSP70 genes was 425 

more than 2-fold higher in EsHSP-Ox1 in compared to wild type under both time points of the 426 

salt stress condition (Figs. 9a and i, respectively). The expression of these genes was 427 

significantly up-regulated in EsHSP-A line at both time points under salinity stress, and the 428 

difference was 1.7 and 1.4-fold for DREB2A and 1.7 and 2.4-fold for HSP70 (Figs. 10a and i, 429 

respectively). In general, the expression level of RD29A, RD29B, RD26, RD22, and RD20 was 430 

enhanced (> 2-fold) at 24 h and reduced at 120 h salt stress conditions (Figs. 9b-f, respectively). 431 

However, the expression of RD29A, and RD26 was significantly different from wild type at 120 432 

h (Figs. 9b and d, respectively). The expression of these genes except RD22 was up-regulated in 433 

EsHSP-A line. The difference was 2.0 and 1.8-fold for RD29A, 2.0 and 2.1-fold for RD29B, 1.9 434 

and 2.2-fold for RD26 and 1.9 and 1.5-fold for RD20 (Figs. 10b-f, respectively). The Expression 435 

of RD22 was significantly different at 24 h salt stress but not at 120 h in EsHSP-OX1 whereas no 436 

significant differences were found in EsHSP-A line at both time points (Figs. 9e and 10e). The 437 

expression of RAB18 (coding for a protein from the dehydrin family), and LEA14 were also 438 

increased by salt stress in both EsHSP-Ox1 and EsHSP-A, at both time points, and this 439 

difference was 1.9 and 3.0-fold for RAB18 and 1.6 and 1.9 fold for LEA14 (Figs. 9g and h 440 

respectively) in EsHSP-OX1, whereas the difference was 1.5-fold at both time points for RAB18 441 

and 1.5 and 1.3-fold for LEA14 in EsHSP-A line (Figs. 10g and h respectively). Expression of 442 
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SOS1, an Na
+
/H

+ 
antiporter, was significantly up-regulated in EsHSP-Ox1 at both 24 h and 120 h 443 

salt stress exposure by 1.5 and 2.4-fold, respectively (Fig. 9j), whereas no significant differences 444 

were observed in EsHSP-A line at both time points (Fig. 10j). The expression of NHX1, an 445 

Na
+
/H

+ 
antiporter showed 1.5-fold induction in EsHSP-OX1 and 1.3-fold induction in EsHSP-A 446 

at 24 h and no significant difference was observed at 120 h in both lines (Figs. 9k and 10k).  447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 
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 462 

Fig 9. Expression of stress inducible genes in response to salt stress in EsHSP-Ox1(35S 463 

promoter) and wild type plants. qRT-PCR results indicating the transcript levels of various stress 464 

inducible genes in the wild type and EsHSP70-Arabidopsis under normal (control) and salt stress 465 

condition (100 mM NaCl for 24 h and 120 h). Actin was used as the internal control and 466 

transcript levels were normalized to the individual with the lowest expression. Values under the 467 

bars indicate fold difference. Default font values represent up-regulation while italicised values 468 

represent down-regulation. Data represents mean ± SE (n=3). (a) DREB2A, (b) RD29A, (c) 469 

RD29B, (d) RD26, (e) RD22, (f) RD20, (g) RAB 18, (h) LEA14, (i) HSP70, (j) SOS1 and (k) 470 
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NHX1. Different letters above the bars represent significant differences according to Tukey’s test 471 

(p ≤ 0.05). 472 

 473 

Fig. 10. Expression of stress inducible genes in response to salt stress in EsHSP-A (RD29A 474 

promoter) and wild type plants. qRT-PCR results indicating the transcript levels of various stress 475 

inducible genes in the wild type and EsHSP70-Arabidopsis under normal (control) and salt stress 476 

condition (100 mM NaCl for 24 h and 120 h). Actin was used as the internal control and 477 

transcript levels were normalized to the individual with the lowest expression. Values under the 478 

bars indicate fold difference.  Default font values represent up-regulation while italicised values 479 
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represent down-regulation. Data represents mean ± SE (n=3). (a) DREB2A, (b) RD29A, (c) 480 

RD29B, (d) RD26, (e) RD22, (f) RD20, (g) RAB 18, (h) LEA14, (i) HSP70, (j) SOS1 and (k) 481 

NHX1. Different letters above the bars represent significant differences according to Tukey’s test 482 

(p ≤ 0.05). 483 

4. Discussion 484 

Role of heat shock proteins have been extensively studied in bacteria, plants and animals. 485 

Functions of HSP70 protein in response to abiotic stresses has been investigated in several crop 486 

plants including rice, soybean, pepper, and Arabidopsis (Lin et al. 2001; Jung et al. 2013; Sarkar 487 

et al. 2013; Zhang et al. 2015a; Zhang et al. 2015b). Transcriptomics analysis of the brown alga 488 

Ectocarpus sp. identified HSP70 gene in this organism and similarity searches revealed that this 489 

protein is well conserved. This gene was consistently up-regulated in Ectocarpus sp. under 490 

different abiotic stresses suggesting that it plays an important role to provide protection against 491 

these physiological conditions in this organism (Ritter et al. 2014). To understand the function of 492 

this gene we expressed it in A. thaliana under the 35S and stress inducible promoter 493 

RESPONSIVE TO DESSICATION 29A (RD29A). This is the first report on the overexpression of 494 

Ectocarpus sp. HSP70 improving high salinity stress tolerance in land plants. 495 

Heat shock proteins, also known as chaperons, plays critical role in maintaining the metabolic 496 

and structural integrity of cells by ensuring proper folding of misfolded or unfolded proteins and 497 

preventing protein aggregation under abiotic stress conditions (Vierling 1991; Sung and Guy 498 

2003; Wang et al. 2004). HSPs are shown to be induced by salinity stress in rice (Ngara and 499 

Ndimba 2014), wheat (Sobhanian et al. 2011) and Poplar (Manaa et al. 2011). Previously, 500 

transgenic plants have been generated to promote abiotic stress tolerance by expressing HSP70 501 

gene from microbes and other land plants. HSP70 from these two types of organism had higher 502 

sequence similarity to the HSP70 of other plants. For instance, overexpression of HSP70 from 503 

Erianthus arundinaceus has been shown to enhance salinity and drought stress tolerance of 504 

sugarcane (Augustine et al. 2015). This increase in tolerance was due to higher membrane 505 

stability and up-regulation of abiotic stress responsive genes including DREB2A, LEA, RD29 and 506 

ERD. It has been reported that overexpression of HSP70 gene (T34) from Trichoderma 507 

harzianum improved salinity stress tolerance in Arabidopsis (Montero-Barrientos et al. 2010). 508 

Higher salt stress tolerance was ascribed to the higher expression level of SOS1 and APX1 in 509 
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transgenic plants. In another study, drought tolerance was enhanced by overexpression of 510 

NtHSP70-1 (Cho and Hong 2006). Similarly, MsHSP70-expressing transgenic Arabidopsis 511 

showed higher drought tolerance (Li et al. 2017). Its multiple sequence alignment showed that it 512 

had higher sequence similarity with other land plants including wheat, rice, corn and peas. 513 

Transgenic Arabidopsis lines expressing chrysanthemum HSP70 exhibited enhanced tolerance to 514 

abiotic stress (Song et al. 2014). Taken together, all these studies suggest that HSP70 plays an 515 

important role in abiotic stress tolerance in plants. However, HSP70 gene used in these studies 516 

had high sequence similarity to the HSP70 of the plants. In the current study, we isolated the 517 

HSP70 gene from brown algal model Ectocarpus. sp. Phylogenetic analysis indicated that this 518 

gene got considerably diverged from HSP70 in land plants as the close relatives were only two 519 

brown algae and other algae from Xanthophyceae family. This gene has no similarity to HSP70 520 

of the plants suggesting that this is a novel HSP70. Expression of EsHSP70 in A. thaliana 521 

significantly improved plant tolerance to salinity stress in all lines, irrespective of the promoter 522 

used. It is worth mentioning that under both salinity stress and normal conditions, there was no 523 

positive correlation between the EsHSP70 transcript abundance and phenotypic data. Although, 524 

EsHSP70 expression was higher in 35S lines (constitutive over-expressed lines) than that of 525 

RD29A lines (stress-inducible lines), they exhibited a similar phenotype (Figures 5, 7, and 8). 526 

This might be due to the similar protein expression in these lines. Indeed, there is no correlation 527 

between the transcript level and the final protein expression. It has been shown that several 528 

processes such as translation rates, translation rate modulation, delay in protein synthesis, and 529 

protein transport are significantly contribute in protein expression. This was further observed in 530 

the transcriptomics and proteomics studies (Maier et al. 2009; Vogel and Marcotte 2012; Liu et 531 

al. 2016). Furthermore, the elevated expression level of EsHSP70 in constitutive over-expressed 532 

lines, might already very high for the translational system leading to a saturation or a plateau 533 

level. 534 

Plants face alterations in their growing environment and responds to these variations by 535 

adjusting their metabolism and physiology. The crucial changes during these alterations include 536 

osmotic adjustment by production and accumulation of compatible solutes to maintain turgor 537 

pressure, exclusion of Na
+
 ions, modulation of root architecture, shoot growth, organization of 538 

leaves, leaf senescence, flowering time and biomass accumulation (Munns 2002; Sun et al. 2008; 539 

Park et al. 2013). Phytohormone The phytohormone ABA plays a crucial role in plant tolerance 540 
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to abiotic stresses (Finkelstein et al. 2002). ABA is involved in the activation of the various 541 

stress responsive genes, however, some of them are activated through an ABA-independent 542 

pathway (Zhu 2002; Yamaguchi-Shinozaki and Shinozaki 2005). Stress responsive genes in 543 

plant contain two main classes of cis acting elements referred as ABRE and DRE in the promoter 544 

regions. ABRE functions in ABA dependent signaling pathway and DRE functions in ABA 545 

independent pathway (Kim et al. 2011). In the present work, we analyzed the expression level of 546 

various key marker genes associated to abiotic stress tolerance in Arabidopsis (i.e., DREB2A, 547 

RD29A, RD29B, RD26, RD22, RD20, RAB18, LEA14, HSP70, SOS1 and NHX1).  548 

A DRE binding transcription factor DREB2A contains ethylene responsive factor elements 549 

in promoter region (ERF/APETALA2). It functions as transcriptional activator of downstream 550 

stress responsive genes by binding to DRE sequences present in promoter regions (Liu et al. 551 

1998; Nakashima et al. 2000; Sakuma et al. 2002). The DREB2A expression was significantly 552 

up-regulated in EsHSP70-expressing Arabidopsis under salt stress condition (at both 24 and 120 553 

h) when compared to the wild wild-type plant (Figs. 9a and 10a). It was shown that the 554 

overexpression of the DREB2A activated the expression of several downstream genes including 555 

RD29A, RD29B, RD17 and LEA14 (Sakuma et al. 2006a). Likewise, the expression of these 556 

genes i.e., RD29A, RD29B and LEA14 was significantly up-regulated in EsHSP70-expressing 557 

Arabidopsis when compared to the wild wild-type plant (Figs. 9 and 10b, c, and h, respectively). 558 

Promoter region of these genes contain DRE suggesting that expression of these genes was 559 

regulated by DREB2A (Sakuma et al. 2006b). Therefore, higher expression of these genes in 560 

transgenic lines can be ascribed to the EsHSP70-mediated activation of the DREB2A. RD26 561 

encodes NAC transcription factor functions in ABA dependent pathway as its expression was 562 

up-regulated by salinity, drought, and ABA (Fujita et al. 2004). RD20 encodes a Ca
2+ 

binding 563 

protein functions is directly regulated by RD26 as the expression of this gene was up-regulated in 564 

transgenic plants overexpressing RD26 (Fujita et al. 2004). Our result showed the higher 565 

expression of RD26 and its target gene RD20 in EsHSP70-expressing Arabidopsis line at both 566 

time points for RD26 and at 24 h for RD20 (Figs. 9 and 10d and f, respectively).   567 

Salinity stress causes disorganization of membrane and therefore results more electrolyte 568 

leakage (Tuteja 2007). Electrolyte leakage is widely used to understand and measure the plant 569 

tolerance to abiotic stresses. It determines the intactness of cellular membranes under abiotic 570 
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stress condition. In this study, a lower leakage of electrolytes was found in EsHSP70-expressing 571 

plants under salt stress condition suggesting higher membrane stability in transgenic lines. 572 

Several LEA proteins accumulated in response to abiotic stresses in plants. These proteins 573 

protect macromolecules such as nucleic acid and enzymes by balancing redox and stabilization 574 

of cellular membranes (Baker et al. 1988; Ingram and Bartels 1996; Veeranagamallaiah et al. 575 

2011; Jia et al. 2014). Moreover, the expression level of LEA14 in EsHSP70-expressing 576 

Arabidopsis was significantly higher than that of control (Figs. 9 and 10h). In support of our 577 

result, Jia et al. (2014) demonstrated that overexpression of LEA14 increased salt stress tolerance 578 

(Jia et al. 2014). 579 

The expression of HSP70 was significantly up-regulated (> 2 fold) under salt stress 580 

condition in the transgenic line in contrast to WT (Fig. 9 and 10i). Similarly, overexpression of 581 

HSP70 improved plant tolerance to high salinity, drought and temperature stress in Arabidopsis 582 

(Wang et al. 2004) . To improve plant salt tolerance, it is important to prevent the entry of Na
+
 583 

into plants to avoid its accumulation in the cytoplasm or organelles, except in the vacuoles. If 584 

plant fails to restrict movement of Na
+ 

from outside environment then it stores these toxic ion 585 

into vacuoles by increased activity of transporters, and utilizes K
+
 and other compatible solutes 586 

to balance the osmotic differences in cytoplasm thus reduces the concentration in cytoplasm to 587 

prevent damage to cellular machinery (Shabala 2013). In Arabidopsis, SOS1 has been shown 588 

localized at plasma membrane (Shi et al. 2000; Qiu et al. 2002; Quintero et al. 2002; Shi et al. 589 

2002). Based on its expression in different tissues it was suggested that it plays diverse role in 590 

Na
+ 

efflux from roots, reducing concentration of Na
+
 ions in cytoplasm (Zhu 2002). 591 

Overexpression of SOS1 increased tolerance to salt stress (Shi et al. 2003). AtNHX1 encodes 592 

Na
+
/H

+
 antiporter localized on tonoplast membrane of vacuoles. It functions in sequestration of 593 

Na
+ 

ions into vacuoles (Blumwald 2000). Overexpression of NHX1 increased salt tolerance in 594 

Arabidopsis (Gaxiola et al. 2001) and rice (Ohta et al. 2002). In our study, higher expression of 595 

the SOS1 and NHX1 was observed in EsHSP70-expressing lines in compared to control under 596 

salt stress condition (at 24 and 120 h) (Figs. 9 and 10j and k, respectively). Together, these 597 

results suggest that overexpression of EsHSP70 improves salinity stress tolerance by 598 

transcriptional activation of Arabidopsis stress responsive genes. 599 

6. Conclusions 600 
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In the present study, heterologous expression of the heat shock protein 70, from the brown alga 601 

Ectocarpus sp., increased salt stress tolerance in Arabidopsis. According to the gene expression 602 

analysis, higher tolerance of HSP70-expressing Arabidopsis can be ascribed to the higher 603 

expression of the stress-responsive genes involved in ABA-induced abiotic stress tolerance, K
+
 604 

homeostasis, and Na
+ 

sequestration. Our results suggest that, in addition to the land plants and 605 

microbes, brown algae can be employed as a genetic source to generate transgenic plants with 606 

promoted tolerance to various abiotic stresses.  607 
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