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Abstract—Spaceborne L-band data have the potential to mon-
itor flooded and irrigated areas. However, further studies are
needed to assess in real cases the impact of flood-irrigated crops
on SMOS and SMAP surface soil moisture (SSM) data. This
paper demonstrates the ability of SMOS/SMAP SSM retrievals
to quantify the fraction of flood-irrigated area at the seasonal
scale and at a 25 km resolution in the Telangana State in
southern India. Over irrigated areas, both SMOS level 3 (L3)
SSM and SMAP L3 enhanced SSM products present a bimodal
annual cycle, with a peak of SSM during the monsoon (wet)
season corresponding to rainfall and irrigation, and a peak
during the dry season due to irrigation activities solely. The
second peak is absent or has a very small amplitude in areas
where rice represents a small fraction (typically below 5-10%).
More importantly, the amplitude of the second SSM peak is
significantly correlated to the rice cover fraction within 25x25
km? pixels (R=0.81 for SMOS and 0.77 for SMAP), showing
its potential to assess crop fraction and hence the water used
for irrigation. The SMOS/SMAP L3 SSM peak during the dry
period occurs several months before the harvest, constituting an
indicator for rice stocks at the end of the season. However the
irrigation signature is absent from the SMAP level 4 SSM product
derived from the assimilation of SMAP brightness temperatures
in a land surface model, which indicates that the data assimilation
scheme is inefficient to restitute irrigation information.

Index Terms—Soil moisture, SMOS, SMAP, Irrigation, Water
Management, Rice Cropping, Regional Scale.

I. INTRODUCTION

With the increase of agricultural production during the last
century, irrigation has become the first consumer of freshwater,
representing 70% of global freshwater withdrawals [1]. The
increase of soil moisture by irrigation practices also alters the
water cycle [2]. Knowledge of irrigated land is hence crucial
to manage the water resource and to ensure food security.
It is also important to understand the impact of irrigation
on the water cycle and climatology, and to participate to the
development of hydrological models that account for irrigation
in a realistic manner.

The dynamic mapping of inundated areas can be achieved
with microwave radiometers thanks to the high sensitivity of
the microwave brightness temperature (Tb) to open water.
Such data are insensitive to clouds and hence allow continuous
monitoring, in spite of having a lower spatial resolution
than optical data. The Tb at various frequencies has been
used to detect flooded pixels [3]-[6] or to estimate an open
water fraction within the microwave pixel by separating the

contributions of land and water. Especially, Tb data from the
multi-band Advanced Microwave Scanning Radiometer for
EOS (AMSR-E) sensor [7], [8], the L-band Soil Moisture
and Ocean Salinity (SMOS) mission [9], and the L-band Soil
Moisture Active Passive (SMAP) mission [5] have been used
at the 5 km and ~40 km resolution for AMSR-E (89 GHz)
and SMOS/SMAP, respectively. Note that higher resolutions
can be achieved by downscaling the microwave data using
disaggregation algorithms and ancillary data [5], [10].

The particular sensitivity of the L-band (1.4 GHz) to water
has been used to monitor the soil water content. Since 2010
and 2015 respectively, SMOS and SMAP satellite missions
have provided surface soil moisture (SSM) estimates every
3 days at a ~40 km resolution. L-band-derived SSM data
have been proven to be sensitive to irrigation, in particular
in heavily and flood irrigated areas [11], [12], demonstrating
their potential for irrigated area mapping and irrigation timing
detection. Notably, several indicators have been identified to
detect irrigation from the amplitude of SSM values in time
series [11] and using the spatial relative difference within an
area revealing the spatial distribution of irrigated sites [13].
Also, irrigated areas can be detected by comparing the SSM
retrievals with the SSM simulated by a land surface model
that does not take irrigation into account: larger observed
SSM values are attributed to irrigation [12]-[14]. Automatic
discrimination of irrigated areas from other land types has also
been achieved from SSM data with unsupervised classification
algorithms [13].

As a step further, L-band-derived SSM data have also been
used to estimate the quantity of water used for irrigation [15]-
[18]. Especially, the SM2RAIN algorithm [19] is based on
the inversion of the soil water balance equation. This requires
prior calibration during rainy periods, by assuming that there
is no irrigation during those periods. Such an approach has
been effective in quantifying irrigation water use over large
irrigated areas and where irrigation and precipitation periods
are distinct. However, SM2RAIN is not able to separate the
contributions of rainfall and irrigation to the observed SSM
dynamics [15]. Moreover, its application to smaller and sparse
irrigated areas would require disaggregated SSM data, which
may not be available at the required spatio-temporal scales
with a sufficient accuracy [20].

To this day, therefore, studies have mainly focused on the
binary discrimination of irrigated and non-irrigated pixels from



the SSM signals. However the microwave pixels (several tens
of km) are generally much larger than the size of agricultural
fields or even often the size of irrigation districts, and hence
the above methods do not provide sub-pixel information about
the portion of irrigated areas. In particular, further studies are
needed to assess the ability of L-band-derived SSM to estimate
the fraction of irrigated areas within SMOS and SMAP pixels,
in the same way that the open fraction water can be estimated
from Tb data. In this context, this paper aims to quantify the
sensitivity of SMOS and SMAP SSM data to the percentage of
irrigated rice within 25 km resolution (SMOS sampling grid)
pixels. The study is undertaken over the Telangana State in
southern India and for four years when field data are available
(2016 to 2019 included). The reference data of rice fraction at
the 25 km resolution are derived from an existing supervised
classification algorithm [21], [22] based on Sentinel-2 data and
previously evaluated using ground measurements in the area.

II. STUDY AREA AND DATA
A. Study area

The study focuses on the Telangana State in southern India
(see Figure 1). Highly rural and irrigated (15% of the State
area [23]), Telangana is dominated by a monsoon climate
alternating with a wet and dry season. Monsoon rainfall occurs
between July and October and ranges between 540 and 1300
mm a year with an average of 879 mm (Indian Meteorological
Department, https://mausam.imd.gov.in/). Annual precipitation
sustains generally two growing seasons of irrigated crops in a
year, one during the wet season (from July to November) and
one during the dry season (from January to April). Orchards,
vegetables and maize are irrigated, but rice is by far the largest
consumer of irrigation water in the area [24]. Rice is flooded
from early July until early September and from early January
until early March in the wet and dry season respectively.
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Fig. 1. Overview of the study area within the Telangana state in India overlaid
with the 25 km resolution SMOS sampling grid and the number of rice
occurrences during the 6 seasons when land cover maps are available.

B. Data

This section presents the reference rice cover maps,
SMOS/SMAP SSM data and other ancillary (vegetation index

and rainfall) data used to interpret the results. All data were
resampled (by simple averaging) on the same 25 km resolution
SMOS grid.

1) Land cover maps: Reference land cover maps were
produced from Sentinel-2 reflectances for wet and dry seasons
from 2016 to 2019 separately on 8 Sentinel-2 tiles of 100x 100
km? each at 10 m resolution. Sentinel-2 data were processed
by the MAJA processing chain [25] which detects clouds,
cloud and topographic shadows, and corrects reflectance levels
for atmospheric phenomena (absorption by atmospheric gases
and scattering by air molecules and aerosols). These images
were downloaded from Theia data platform (https://www.
theia-land.fr/). Rice cover maps are produced with the IOTA2
algorithm (Infrastructure pour I’Occupation des sols par Traite-
ment Automatique Incorporant les Orfeo Toolbox Applica-
tions, https://framagit.org/iota2-project/iota2), that achieves a
supervised multitemporal classification with a random forest
algorithm on the time series of Sentinel-2 images interpolated
at 10 days [22]. The land cover classifications in wet and
dry seasons are made on images acquired between July and
November and between January and April, respectively.

The samples used for learning and evaluation of the classifi-
cation algorithm are field data acquired on several consecutive
days during each season of each year. Field data consist
in visual identification of homogenous land cover and their
delimitation as polygons using a GPS to locate them [21]. The
performance of the rice cropping classification is evaluated
with the F-score. The F-score is the harmonic mean of (i)
the recall, i.e. the ability of the algorithm to identify a rice
pixel, and (ii) the precision that measures the purity of the
rice class. The rice class is generally deemed reliable with a
F-score ranging from 75% to 92%. The interannual variability
of the performances is linked to (i) the number of samples that
varies between the years (262 to 1669) and (ii) the number of
available Sentinel-2 images, which can significantly change
during the wet season due to cloud coverage. In particular, the
maps produced for the wet seasons of 2016 and 2017 are not
used in this study because of their poor performance (F-score
below 20%). Figure 1 shows the number of rice occurrences
at the 10 m resolution during the 6 seasons when land cover
maps are available.

The seasonal rice cover fraction is then estimated within
each 25 km resolution SMOS grid pixel by averaging all 10
m pixels.

2) SMOS: The SMOS mission was launched in November
2009 and has a revisit time of 3 days at the Equator. The
SMOS satellite carries an interferometric radiometer working
at L-band. The data used for this study are the monthly level
3 (L3) SSM (L3SM REQ7) in the first 5 centimeters of soil,
provided by the Centre Aval de Traitement des Données SMOS
(CATDS, https://www.catds.fr/) [26]. The data have a ~40
km resolution on average but are distributed on the 25 km
resolution EASE?2 grid [27] for both ascending and descending
orbits. In this study we use the monthly average SSM of both
orbits.

3) SMAP: The SMAP satellite, launched in January 2015,
carries an L-band passive microwave radiometer. It provides
SSM estimates at ~40 km resolution with a revisit time of



3 days at the Equator. The data used for this study are the
enhanced L3 dataset (L3E) provided on a 9 km resolution grid
and obtained by exploiting the oversampling of the antenna
overpasses. In this study we use the average SSM of both
orbits. We also use the SMAP level 4 (L4) SSM data which
are obtained by assimilating the SMAP Tb in the NASA
Catchment Land surface Model (CLM) using an ensemble
Kalman filter [28]. The model describes the vertical transfer
of soil moisture between the surface and root zone reservoirs,
and provides fields of SSM and root zone soil moisture
globally at 9 km resolution every 3 hours. The model is driven
with observation-based surface meteorological forcing data,
including precipitation, but does not account for irrigation
activities. We use both L3 and L4 SSM data aggregated at
the monthly scale and averaged within the 25 km pixels of
the SMOS grid.

4) MODIS NDVI: The monthly NDVI (Normalized Differ-
ence Vegetation Index) allows monitoring the state of vege-
tation at a temporal scale finer than that of the seasonal land
cover maps. We use the monthly NDVI of MODIS (Moderate-
Resolution Imaging Spectroradiometer) sensor aboard Terra
and Aqua satellites (launched in 1999 and 2002, respectively),
at 1 km resolution (MOD13A3v006) and averaged within the
25 km pixels of the SMOS grid.

5) GPM IMERG rainfall: The Integrated Multi-satellitE
Retrievals algorithm provides a rainfall product that combines
information from the Global Precipitation Measurement mis-
sion (2014-present). We use monthly rainfall rates, provided
at a resolution of 0.1° and resampled (bilinear resampling) on
the 25 km resolution SMOS grid.

ITI. RESULTS AND DISCUSSION
A. SSM dynamics over contrasted areas

The sensitivity of L-band sensors to irrigation is illustrated
by the comparison of SMOS/SMAP SSM time series on
three contrasted 25x25 km?2 pixels, numbered from 1 to 3
(see Figure 1): 1) a heavily irrigated one (from 10 to 60%
of rice cover) supplied with water by the irrigation systems
downstream of large dams, 2) an upstream irrigated area where
rice sowing is limited by the lack of water availability, and 3)
a pixel with a dominant forest cover. Figure 2 shows the time
series of 25 km resolution SMOS L3, SMAP L3E and SMAP
L4 SSM monthly anomalies (obtained by subtracting the
temporal average of SSM values between 2016 and 2019 pixel-
wise) averaged within each 25x25 km? pixel. The percentage
of rice cover is shown for wet (large bands) and dry (thin
hatched bands) seasons. The monthly NDVI indicates the
crop/vegetation growth at higher temporal resolution.

In heavily irrigated areas (as in pixel 1), the SSM retrieved
from SMOS and SMAP sensors has a bimodal annual cycle.
During the wet season, the first peak of SSM is correlated with
the precipitation, and the contribution of irrigation to SSM
cannot be easily disentangled. During the dry season, SMOS
and SMAP SSM show a systematic augmentation in the dry
season, between December and March. The maximum SSM
value of the second peak is reached generally in January or
February, when rice crops are flooded. The absence of pre-
cipitation coinciding with this peak suggests an anthropogenic

source. The peak of NDVI two months later, associated with
crop growth, strengthens this interpretation.

In upstream irrigated areas (as in pixel 2), the rice cover
is lower and rarely exceeds 20% because of the lack of water
availability, particularly during the dry season. SSM still has a
bimodal cycle, but with lower amplitude for the SSM peaks in
the dry season (SSM anomaly of 0.05 m®/m? at most), while
the NDVI presents a single annual peak.

By contrast, the SSM of non-irrigated areas (as in pixel 3)
presents a single peak in the year during the wet season which
has its origins in monsoon rainfall. The different behaviors of
SSM dynamics over irrigated and not irrigated areas confirm
the findings of [11] in the western United States.

Contrary to SMOS and SMAP L3 SSM, SMAP L4 SSM
does not show a peak in the dry season in irrigated areas and
seems correlated solely to rainfall. This corroborates the lim-
itations of assimilation approaches in representing unmodeled
processes [14]. Two reasons can explain this result: first, an
incorrect forcing of the model that integrates the contribution
of rainfall but not irrigation to soil moisture, and second, the
high dependency of assimilation results to the weights and
uncertainties associated with observations and models.
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Fig. 2. Time series of monthly anomalies of SMOS and SMAP SSM (obtained
by subtracting the temporal average of SSM values between 2016 and 2019
pixel-wise), GPM IMERG rainfall, MODIS NDVI, and seasonal land cover
fraction (%) on three pixels of 25x25 km?. First axis: GPM IMERG rainfall
(mm/month). Second axis: SMOS L3 (black line), SMAP L3E (solid dark
red line) and SMAP L4 (dotted dark red line) SSM. Third axis: Land cover
fraction (%) for wet (large bands) and dry (thin hatched bands) season. Fourth
axis: MODIS NDVI (solid green line).



TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN RICE COVER (%) AND
SSM FOR EVERY SEASON OF EACH YEAR OR FOR ALL YEARS (“ALL”).
ALL SIGNIFICANT CORRELATIONS ARE ASSOCIATED WITH A P-VALUE

BELOW 0.05.

Season Year SMOS L3 SMAP L3E SMAP L4
R p-value R p-value R p-value

Dry 2016 | 0.67 3.7e-19 0.58 1.7e-13 | 0.05 0.6
2017 | 0.89 8.6e-47 0.77 2.4e-26 | 0.55 3.9e-12
2018 | 0.86 1.5e-41 0.67 6.5e-18 | 0.36 1.5e-05
2019 | 0.62 1.2e-15 0.71 3.8e-22 | 0.56 1.0e-12
All 0.81 1.3e-107 | 0.77 1.6e-96 | 0.55 8.1le-18
Wet 2018 | 0.76 4.8e-27 0.63 2.1e-16 | 0.44 6.9e-08
2019 | 0.65 9.5e-18 0.56 1.le-12 | 0.24 4.2e-3
All 0.68 4.8e-38 0.55 7.1e-23 | 0.34 1.0e-08

B. Spatio-temporal analysis

At the scale of each 25 km resolution pixel, the amplitude
of the SSM peak is generally correlated in time with the
corresponding proportion of rice cultivated within the area.
This is illustrated in Figure 2 on pixel 1, in which a small
proportion of rice is sown during the 2016 dry season (11%
of rice) due to a lack of available water after a succession of
dry years. This situation explains a low SSM peak amplitude
(SSM anomaly of -0.05 m3/m?). On the other hand, the heavy
monsoon rainfall in September 2016 has replenished surface
and groundwater that allowed a large rice cultivation in the
following 2017 dry season (58% of rice for a SSM anomaly
of 0.1 and 0.2 m®/m3 for SMOS and SMAP respectively).

We characterize the amplitude of the SSM annual peaks
by the maximum value of SSM anomaly between December
and March (resp. May and November) in the dry (resp. wet)
season. Table I reports the Pearson correlation coefficients
between the amplitude of the 3 SSM datasets and the percent-
age of rice cover (obtained from land cover maps produced
as explained in section II-B1) for the dry and wet seasons
between 2016 and 2019. The last line presents the correlation
coefficients for all years, cumulating both the spatial and
temporal effects. Rice cover and SSM SMOS L3 and SMAP
L3E show the same spatial pattern (as illustrated for the dry
season of 2018 in figure 3a), resulting in spatial correlations
close to 1 in Table I (0.81 and 0.77 on average for SMOS and
SMAP L3, respectively). Correlations between rice cover and
the SSM peak amplitude are weaker in the 2016 and 2019 dry
seasons due to the low SSM peak amplitude caused by the
low extent of rice planting in both exceptionally dry years.
Correlations tend to be lower during the wet season because
the SSM amplitude is due both to rainfall and irrigation. The
spatial correlations with SSM SMAP L4 are much lower than
with L3 SSM products.

To go further, we investigated the impact of rainfall during
the wet season by removing the effect of rainfall on the SSM
dynamics (using a simple correction of SSM based on a linear
regression between SSM and rainfall). Interestingly, such a
correction increases the correlation between the amplitude of
SMOS SSM and the percentage of rice cover from 0.76 to
0.83 and from 0.65 to 0.77 for the wet season of 2018 and
2019, respectively.
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Fig. 3. (a) Maps of rice cover (%) and amplitude of the peak during the
2018 dry season for SMOS L3, SMAP L3E and SMAP L4 SSM (m®/m3)
(obtained by subtracting the temporal average of SSM values between 2016
and 2019 pixel-wise). (b) Scatterplot of rice cover and the SSM products. The
linear regression fit to the data points is indicated by the red line.

IV. CONCLUSION

SMOS and SMAP L-band data have been used for irrigation
mapping and irrigation water quantification because of their
sensitivity to soil moisture and open water. Prior to retrieving
SSM from Tb observations, the SMOS and SMAP algorithms
remove the contribution of saturated surfaces using maps at
a typical 1 km resolution (e.g. ECOCLIMAP) of permanent
surface water. However, permanent surface water is scarce
in Telangana: hundreds of large dams and ~45,000 small
reservoirs fill with each monsoon and empty with domestic
and agricultural water use. These strong dynamics are now
available in high-resolution global surface water products [29]
but are not yet reflected in the SSM restitution algorithms.
Therefore, studies are needed to evaluate in real cases the
impact of irrigated crops on the SMOS and SMAP SSM data.

This study demonstrates for the first time the potential of
SMOS and SMAP L3 SSM data to quantify the fraction of
flood-irrigated crops within a 25 km pixel in Telangana, a State
in southern India. Areas with a large fraction of cultivated rice
present a clear bimodal annual cycle with two peaks of SSM.
One peak occurs during the wet season and is associated with
the combined effect of rainfall and irrigation, while the other
peak occurs during the dry season and is due to irrigation



alone. We identified a high correlation (R=0.81) between rice
cover percentage and the amplitude of the SSM peak in the
dry season, and a relatively lower correlation (R=0.68) in
the wet season. The correlation is closer to 1 in the dry
season than in the wet season because the spatial variability of
rainfall disturbs the relationship between SMOS/SMAP SSM
and irrigated areas in the wet season. Interestingly, if the effect
of precipitation in the wet season is removed, the correlation
reaches values (R=0.80) almost as high as those in the dry
season. This approach could be used in combination with
the knowledge of rice water needs and cultural practices to
estimate the water used for irrigation.
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