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Abstract: In mountainous regions, the scarcity of air temperature (Ta) measurements is a major 1

limitation for hydrological and crop monitoring. An alternative to in-situ measurements could be to 2

downscale the reanalysis Ta data provided at high-temporal resolution. However, the relatively coarse 3

spatial resolution of these products (i.e., 9 km for ERA5-Land) is unlikely to be directly representative 4

of actual local Ta patterns. To address this issue, this study presents a new spatial downscaling 5

strategy of hourly ERA5-Land Ta data with a three-step procedure. First, the 9 km resolution ERA5 6

Ta is corrected at its original resolution by using a reference Ta derived from the elevation of the 9 km 7

resolution grid and an in situ estimate over the area of the hourly Environmental Lapse Rate (ELR). 8

Such a correction of 9 km resolution ERA5 Ta is trained using several machine learning techniques 9

including Multiple Linear Regression (MLR), Support Vector Regression (SVR), and Extreme Gradient 10

Boosting (Xgboost), and ancillary ERA5 data (daily mean, standard deviation, hourly ELR and grid 11

elevation). Next, the trained correction algorithms are run to correct 9 km resolution ERA5 Ta, and 12

the corrected ERA5 Ta data are used to derive an updated ELR over the area (without using in situ Ta 13

measurements). Third, the updated hourly ELR is used to disaggregate 9 km resolution corrected 14

ERA5 Ta data at the 30-meter resolution of SRTM’s Digital Elevation Model (DEM). The effectiveness 15

of this method is assessed across the northern part of the High Atlas Mountains in central Morocco 16

through 1) k-fold cross-validation against five years (2016 to 2020) of in-situ hourly temperature 17

readings, and 2) comparison to classical downscaling methods based on a constant ELR. Our results 18

indicate a significant enhancement in the spatial distribution of hourly local Ta. By comparing our 19

model, which included Xgboost SVR and MLR, to the constant ELR-based downscaling approach, 20

we were able to decrease the regional root mean square error from approximately 3°C to 1.61°C, 21

1.75°C, and 1.8°C, reduce the mean bias error from -0.5°C to null, and increase the coefficient of 22

determination from 0.88 to 0.97, 0.96 and 0.96 for Xgboost, SVR, and MLR respectively. 23

Keywords: Reanalysis; ERA5-Land; air temperature; downscaling; complex terrain; machine learn- 24

ing. 25

1. Introduction 26

Access to spatially and temporally consistent climate data at high spatial and temporal 27

resolutions have progressively turned into a growing need in the 21st century, for being 28

a paramount to numerous fields of study that investigate ecological, hydrological, and 29

climate change processes, among others [1–7].Using numerical weather models and data 30
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assimilation techniques to produce model-based reanalysis products is one viable strategy 31

for generating climate datasets in light of this need [8–11]. Several international and local 32

meteorological centers and data assimilation offices have collaborated over the past few 33

decades to make numerous reanalysis products available to the public [12]. Examples 34

of the most popular reanalysis products are: the ERA5 and ERA5-Land from European 35

Centre for Medium Range Weather Forecasts (ECMWF); the second version of Modern-Era 36

Retrospective Analysis for Research and Applications (MERRA2) [13] produced by NASA’s 37

Global Modeling and Assimilation Office (GMAO); the second version of Climate Forecast 38

System Reanalysis (CFSv2) from the National Centers for Environment Prediction and 39

National Center for Atmospheric Research (NCEP/NCAR) [14]; NCEP/NCAR Global 40

Reanalysis Products from NCEP and NCAR [15,16]; and the Japanese 55-year Reanalysis 41

(JRA-55) [17] from the Japanese Meteorological Agency (JMA ) [12,18]. The common key 42

strength of the numerous existing reanalysis products resides in providing global data 43

sets devoid of gaps, at high temporal resolution and over long time periods (generally 44

over 3 or more decades). Still, reanalysis data frequently fail to simulate many of the 45

processes that drive regional and local climate variability. Their limitations lie in their 46

incapability of accurately depicting sub-km scale climate variables at the needed timescales 47

and do not allow for proper representations of the local topography and sub-grid scale 48

features that are essential in areas with complex terrain, microclimates or narrow mountain 49

valleys, as highlighted by Holden et al. [19], Zhang et al.[20], Le Roux et al. [21], Alessi & 50

DeGaetano[22], Zhang et al. [23]. When evaluated in contrast to observational data, the raw 51

output data are regularly found to have systematic biases [24,25] limiting their usefulness 52

for local applications [26]. There is consequently a need to make local-scale predictions 53

more skillful by utilizing reanalysis data as input. In this context, a variety of techniques, 54

such as downscaling methods, have been developed to bridge the gap between the scale 55

at which data are available and the scale at which they are needed. The commonly used 56

methods include dynamical downscaling and statistical downscaling[27]. 57

Dynamical and statistical downscaling techniques are frequently used to refine coarser 58

climate products to higher resolution[28,29]. The former is a widely used methodology 59

to enhance the spatial information [30], in which a higher-resolution model, such as a 60

regional climate model (RCM), can be driven by reanalysis data and run at spatial reso- 61

lutions of up to a few meters’ projections (e.g. [31]), at which complex topography and 62

smaller-scale processes are better represented [32]. This approach can give a very good 63

simulation of local atmospheric conditions; however, it has significant computational cost 64

[30,31,33,34]. Statistical downscaling methods, on the other hand, use statistical relation- 65

ships to anticipate the evolution of local variables from large-scale variables. They are 66

computationally less demanding and represent a more flexible alternative to dynamical 67

downscaling. These methods have been shown to be effective in reproducing the fine- 68

scale temperature variability over mountainous regions, particularly when using local 69

observations (e.g., [1,35,36]). 70

This paper focuses on reanalysis air temperature (Ta) disaggregation over complex 71

terrain since (i) it is one of the most important input variables in agro-environmental 72

models and a crucial field for the vast majority of weather and climate applications, in- 73

cluding climate change studies (e.g., [37,38]), and (ii) this variable is projected to change 74

significantly in regions with irregular topography i.e., complex topography of mountain 75

landscapes known to have a highly variable climate, with microclimates that can differ 76

significantly from the surrounding area (e.g., [39,40]). Thus, having high-resolution Ta data 77

over mountains allows for a better understanding of the complex microclimates that exist 78

within mountain ranges, and can be particularly useful for predicting weather patterns and 79

for understanding the impacts of climate change on these regions. Several studies describe 80

the spatial interpolation methods used for downscaling in meteorology and climatology 81

[37,41]. These techniques include nearest neighbor methods, splines, regression, kriging 82

and cokriging but also machine learning techniques such as Artificial Neural Networks and 83

Support Vector Machines [42–45]. None of these studies, however, focused on adjusting 84
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reanalysis data to the regional real measured conditions prior to downscaling, nor worked 85

on hourly time-step required for hydrological modeling relying on the availability of quality 86

meteorological inputs at the simulation time step [46]. Recently, Sourp et al. [47] developed 87

a snow reanalysis pipeline using downscaled ERA5 and ERA5-Land data. The downscaling 88

is based on the MicroMet model [48,49] which performs spatial interpolation of meteoro- 89

logical variables using 100-m DEM [47]. Particularly, air temperature is downscaled to 90

hourly timestep using the DEM and constant monthly Environmental Lapse Rates (ELRs). 91

Extending these previous ideas, a machine learning/statistical downscaling scheme 92

is designed in this study to disaggregate hourly air temperature data with a 30-m spatial 93

resolution from the 9-Km ERA5-Land Ta. The main originality relies on the assumption 94

that the temporal variability of ELR should be taken into account for improving the spatial 95

distribution of downscaled Ta estimates. The approach is tested in a steep-sided catchment 96

in the western part of the High Atlas Mountains in central Morocco, where in situ Ta 97

measurements are available from 2016 to 2020. The paper is organized as follows: the study 98

area, data sets, and the methodology are presented in Section2. Section 3 presents and 99

discusses the results, while Section 4 outlines the principal conclusions. 100

2. Materials and Methods 101

2.1. Study area 102

The High Atlas is a large mountain range located in Morocco, stretching for 800 km in 103

length and 60 km in width. It runs in a north-east to south-west direction and is known for 104

its diverse range of elevations, from the lowest point of 1060-m above sea level to the highest 105

peak in North Africa, Mount Toubkal, which reaches an elevation of 4167-m above sea 106

level (Figure 1) [50,51].The western part of the High Atlas is particularly notable for being 107

a vital source of water for the northern plain of the Tensift catchment, specifically around 108

the city of Marrakech [52].The high-altitude regions of the mountain range are known 109

for their low temperatures and sparse vegetation cover, with most agricultural activities 110

concentrated along river valleys [53,54]. The Rheraya sub-basin (Figure 1), which is located 111

40 km south of Marrakech (between latitudes 30°05’N and 30°20’N, and longitudes 7°40’W 112

and 8°00’W) and covers an area of 225 km², is one of the most intensely studied areas of 113

the High Atlas Mountains. It represents a part of the Tensift Observatory in the frame of 114

the SudMed [52] and the Joint International Laboratory LMI-TREMA [55] (https://www. 115

lmi-trema.ma/) funded by the University Cadi Ayyad (UCA, Morocco) and the French 116

Research Institute for Development (IRD, CESBIO Laboratory, France). It is considered 117

to be globally representative of the western watershed of the High Atlas Mountains. The 118

sub-basin contains four AWSs and is equipped with a variety of instruments to study the 119

area. 120

https://www.lmi-trema.ma/
https://www.lmi-trema.ma/
https://www.lmi-trema.ma/
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Figure 1. Location of the Tensift basin and Rheraya sub-basin.

2.2. Data set 121

2.2.1. Observed ground-based data 122

The air temperatures in the Rheraya sub-basin were measured on a semi-hourly basis 123

from Automatc Weather Stations (AWSs) positioned throughout the sub-basin: Imskerbour 124

(1404 m above sea level), Aremd (1940 m above sea level), Neltner (3207 m above sea 125

level), and Oukaimden (3230 m above sea level). The temperature records for the period 126

of 2016 to 2020 were converted from their original format to hourly time steps and any 127

half-hour intervals with missing records from one or more AWSs were excluded. In order 128

to ensure the accuracy of the data, the temperature records were checked for any excessive 129

amounts of missing values, as outlined in the study of Dodson and Marks [56]. The missing 130

values for the combined stations were ensured to not exceed 100 days per year. After 131

the preprocessing step, the minimum number of hours kept per day for all years is 22 132

hours/day. The locations of the stations are illustrated in Figure 1 and Table 1 provides 133

detailed information on the station names, heights, coordinates, yearly mean temperatures, 134

number of observations, and frequency. 135

Table 1. Information regarding the four AWSs installed in the Rheraya sub-basin. The data collection
period for all stations extends from January 1, 2016, to December 31, 2020.

AWS Latitude Longitude Elevation
(m.a.s.l) Tmean(°C) No. of ob-

servations Frequency

Imskerbour 31.21018° -7.93972° 1404 15.06 40870 30 min
Aremd 31.12948c -7.91967° 1940 12.1 43848 30 min
Neltner 31.06579° -7.91389° 3207 6.04 43829 30 min

Oukaimden 31.19328° -7.86546° 3230 5.85 42644 30 min

2.2.2. Reanalysis data 136

For this study, the most advanced global reanalysis data produced in Europe, specifi- 137

cally optimized for land surface applications, was used. The dataset used is the ERA5-Land 138

enhanced global dataset for the land component of the fifth generation of European Re- 139

analysis, which is freely available on the website https://cds.climate.copernicus.eu [57]. In 140

https://cds.climate.copernicus.eu
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comparison to ERA5 and older ERA-Interim, the ERA5-Land dataset has the advantage of 141

enhanced horizontal resolution of 9-km (released on a regular 0.1° x 0.1° grid) compared 142

to 31-km (ERA5) and 80-km (ERA-Interim), while maintaining the same hourly temporal 143

resolution as ERA5 [18]. The high temporal and spatial resolutions of ERA5-Land, and 144

the consistency of the fields produced, make it a valuable dataset for diverse applications 145

related to water resources, land and environmental management. The variable of interest 146

in this study is the air temperature at 2-m above the surface of land, sea or in-land waters, 147

which is calculated through interpolation between the lowest model level and the Earth’s 148

surface, considering atmospheric conditions. Hourly ERA5-Land temperature data was 149

downloaded and processed to be consistent with the measured data screening. Addition- 150

ally, ERA5-Land temperature’s daily mean, minimum, maximum and standard deviation 151

were computed as ancillary data for the entire study period. 152

2.2.3. Digital Elevation model 153

To achieve fine-scale disaggregation, we used the Shuttle Radar Topography Mission 154

(SRTM) 1 Arc-Second Global digital elevation model (DEM) with 30-m resolution (https: 155

//earthexplorer.usgs.gov/). The related SRTM 1 Arc-Second tile (SRTM1N31W008V3) was 156

used to generate a DEM subset of the Rheraya sub-basin (figure 1). 157

2.3. Methodology 158

In this section, we outline the process for enhancing the spatiotemporal downscaling 159

of Ta. We first explain the use of machine learning models to correct ERA5-Land Ta 160

(hereafter referred to as Ta_5) using in-situ hourly Ta and ELR readings (Ta_st and ELR_st), 161

resulting in corrected Ta_5 (Ta_5_corr). Then, we describe the process of using Ta_5_corr to 162

downscale temperatures at a 30-meter resolution using a DEM, producing Ta_disagg_ML. 163

This final product will be validated against five years of in-situ hourly Ta_st readings and 164

compared to two other downscaling methods (Annual ELR average and MicroMet model) 165

to evaluate the improvement made. Further details on each step are provided in subsequent 166

subsections. 167

2.3.1. 1st step: : Ta_5 correction 168

The process of correcting Ta_5 starts with the creation of a reference Ta (Ta_5_ref) cor- 169

responding to each 9-km ERA5-Land grid elevation, utilizing only ground data, specifically, 170

hourly measured Ta_st and ELR_st. The Ta_5_ref is aligned with the measured Ta_st and 171

ELR and is intended to be more accurate than the one provided by ERA5-Land, serving as 172

the target to be achieved prior to downscaling. This step is illustrated in figure 2. In the 173

second step, using only ERA5-Land Ta_5, a set of variables is derived, and which may be 174

correlated with the local disaggregated temperature that is intended to be produced. This 175

set of variables will then be utilized in the machine learning approaches. In the third step, 176

Ta_5 is corrected to match the Ta_5_ref (9-km spatial resolution) using machine learning 177

models. In these models, the estimated value is Ta_5_corr, Ta_5_ref is the dependent 178

variable, and the independent variables include Ta_5 and the selected variables from step 2. 179

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 2. Example of Ta_5_ref estimates for ERA5-Land grid elevations based on observed hourly
ELR_st (slope). The dashed black line represents the regression line of measured temperature to
elevation. The red dashed lines show the difference of ERA5-Land Ta_5 to Ta_5_ref (what it should
be).

The Ta_st measured by AWSs are plotted against their corresponding elevations, and 180

linear regressions are used to calculate the slope hourly ELR_st and the intercept b_st 181

(representing air temperature at sea-level). These values are then used to interpolate hourly 182

Ta_5_ref for elevations of ERA5-Land grid points (9-km spatial resolution) over the period 183

of interest (from 2016 to 2020). The equation that governs this interpolation is as follow 184

(equation 1: 185

Ta_5_re f = ELR_st × E5 + b_st (1)

E5 being the elevation of ERA5-Land grid point in meters. 186

These Ta_5_ref values are then used to calibrate machine learning models as a de- 187

pendent variable to correct Ta_5. The input variables include Ta_5 and a set of variables 188

potentially correlated to the local disaggregated temperature that is intended to be pro- 189

duced. The input features for predicting a specific variable may be highly correlated with 190

one another, resulting in a processing and computational time loss. In addition, those 191

input features may not always be correlated with the target variable, which can result in an 192

overfitting of the constructed model. In other words, the learned model would be a better 193

fit for training data than test data [58]. To avoid those problems, carrying out a correlation 194

analysis holds the key to decide inputs to keep or to exclude. The Pearson Correlation 195

Coefficient (PCC) can be used to calculate the correlation between candidate input variables 196

Xi and targeted variable Y. The PCC is by definition the covariance of Xi and Y over the 197

product of their standard deviations σXi and σY. It ranges from -1 to +1, where a value 198

of -1/+1 implies that Xi is completely negatively/positively linearly correlated to Y, and 199

a value of 0 indicates absolute absence of correlation between the two variables. In most 200

cases, a high absolute value of PCC (often greater than 0.8) indicates strong correlation [58]. 201

The expression of PCC is given in equation 2: 202

PCC =
COV(Xi, Y)

σXi × σY
(2)

The candidate variables selected for conducting the correlation analysis are hourly 203

Ta_5, hourly ELR calculated using Ta_5 (hereafter referred as ELR_E5), daily Ta_5 means, 204

minimums, maximums, standard deviations, and ERA5-Land grid points elevations. These 205

variables will be used to examine the correlation with the targeted variable, Ta_5_ref. The 206

goal is to use the selected input variables, all of which are sourced from ERA5-Land data, 207

to predict a more accurate corrected Ta_5_corr which will be applied for downscaling. We 208

have chosen to test three different models for predicting Ta_5_ref: (1) a basic multiple input 209
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linear regression method known as MLR, (2) the popular and widely used SVR model, and 210

(3) one of the newest machine learning methods the Xgboost algorithm, which is known for 211

its exceptional predictive abilities. Next is a brief theoretical explanation of the operation 212

and functioning of the models. 213

• MLR 214

In MLR, multiple independent variables are used to describe the behavior of the 215

dependent variable [59]. It is an extension of simple linear regression, and it describes the 216

relationship between two or more explanatory variables and a response variable by fitting 217

a linear equation to observed data. Each value of the independent variable corresponds 218

to a prediction value for the dependent variable. A good MLR model should be able to 219

explain a majority of the variance in the dependent variable with the smallest number of 220

independent variables possible. For a more detailed explanation of MLR theory, the reader 221

is encouraged to refer to the work of Helsel and Hirsch [60]. 222

• SVR 223

SVR is a branch of Support Vector Machine (SVM) that is widely used as a regression tech- 224

nique (detailed description of SVM can be found in several works (e.g., [61–63]. SVR finds 225

a multivariate regression function that predicts a desired output property or dependent 226

variable Y based on a set of input independent variables X (NxM) and Y (M). The main 227

difference between SVR and MLR is that in SVR, the original input space (which is usually 228

non-linearly related to the targeted variable) is mapped onto a higher dimensional feature 229

space using a kernel function (such as Linear, Radial Basis Function, Polynomial, sigmoid) 230

to find an optimal hyperplane to separate the sample points. The full description of SVR 231

equations is not included here but can be found in works such as [64], [65], and [66]. 232

• Xgboost 233

Xgboost, proposed by Chen et al. in 2015 [67], is an alternative method for predicting 234

a response variable based on certain covariates. It is similar to the well-known Random 235

Forest method, it builds classification and regression trees one by one, but instead of making 236

a decision based on a final vote, each subsequent model (tree or base learner) is trained 237

using the mistakes of the previous one. This technique is becoming increasingly popular 238

due to its design and ability to speed up training time using various techniques such as 239

parallel computing and sparsity-aware split-finding. For more details the reader is referred 240

to the following [34,67,68] 241

All the previously mentioned algorithms were implemented using the Python library 242

"Scikit-learn" developed by Pedregosa et al., in 2011 [69]. Scaling was performed prior to 243

using SVR kernel methods as they are based on distance, this was done to facilitate learning 244

and prevent features with the largest range from dominating the computations. The 245

"RobustScaler" method was used as it can handle outliers. The performance of the machine 246

learning models heavily depends on the hyperparameter values, therefore, a significant step 247

was determining the optimal values for the model through hyperparameter tuning. This 248

was done using the "Scikit-learn" library’s Grid Search function, which considers multiple 249

hyperparameter combinations and chooses the one that returns the lowest error score. 250

Since MLR model does not have any hyperparameters to tune, only SVR’s and Xgboost’s 251

hyperparameters were tuned. The Grid search function also includes a pre-defined k-fold 252

cross validation method [70–74], where each fold serves as a single hold-out test fold, and 253

the model is built using the remaining k-1 folds. Grid search methodology with 5-fold 254

cross-validation was applied to get the optimal model parameters for SVR and Xgboost, 255

meaning that during the cross-validation process, 4 years of data were used for calibration 256

and 1 year of data for validation. 257

2.3.2. 2nd step: : Disaggregation 258

Climate impact studies frequently use a constant Ta lapse rate at specific locations, 259

that we hereafter refer to as ELR_cst and which is equal to -6.5 °C.km−1 (e.g., [75–78]). 260

However, this rate can vary significantly depending on factors such as location, season, and 261
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time of day. Studies have shown that the temperature ELR can range from -9.8 °C.km−1 to 262

-10 °C.km−1 in dry conditions (the dry adiabatic lapse rate), and values that are shallower 263

or equal to -6.5 °C.km−1 generally represent moist adiabatic conditions [28,79–81]. This 264

variability have been measured in our study area as it is shown in figure 3. 265

Figure 3. Pronounced ELR’s hourly temporal variability, measured using AWSs record over the
period of interest (from January 1st, 2016, to December 31st, 2020).

To account for this variability, the correction of ERA5-Land Ta_5 on an hourly basis 266

enables tracking actual local ELR values. Once the models predict corrected temperature 267

values Ta_5_corr, new hourly temperature lapse rates (ELR_corr) are computed through 268

linear regression, and then the Ta_5_corr (9-km) is downscaled to the DEM of the area of 269

interest (30-m) using those corrected values instead of the original ones. The equation used 270

for this downscaling process is shown in Equation 4 and the classic constant Ta lapse rate 271

method’s formula displayed in equation 3. 272

Ta_disagg_cst = Ta_5 + ELR_cst × (DEM − E5) (3)

Ta_disagg_ML = Ta_5_corr + ELR_corr × (DEM − E5) (4)

In addition to using machine learning and constant Ta lapse rate approach to down- 273

scale Ta_5, the MicroMet model was also applied for comparison. The MicroMet model is a 274

high-resolution meteorological distribution model designed to produce high-resolution 275

meteorological data such as air temperature, humidity, wind, radiation, and precipitation 276

for use in running spatially distributed terrestrial models over a variety of landscapes. It 277

uses established relationships between meteorological variables and the surrounding land- 278

scape to distribute those variables in a computationally efficient and physically plausible 279

way. Specifically for air temperature, the MicroMet model first adjusts the Ta_5 values to 280

sea level using the formula (equation 5): 281

Ta_0 = Ta_5 + ELR_month × (E5 − E0) (5)

Ta_0 and ELR_month being the Ta adjusted to sea-level and the monthly values of the 282

ELR respectively (see Table 2), where the ELR_month values vary depending on the month 283

of the year [82] or are calculated based on data from nearby stations. The sea-level Ta_0 284

values are then interpolated to the model grid using the Barnes objective analysis method 285

[83]. The gridded topography data and ELR_month are then utilized to adjust the sea-level 286

gridded temperatures to the elevations provided by the DEM, using the equation provided 287

in equation 6: 288

Ta_disagg_MM = Ta_0 + ELR_month × (DEM − E0) (6)
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Table 2. Air temperature ELR (°C.km−1) variations, for each month of the year, in the Northern
Hemisphere [82] .

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov Dec.

ELR 4.4 5.9 7.1 7.8 8.1 8.2 8.1 8.1 7.7 6.8 5.5 4.7

2.3.3. 3rd step: : Validation and results assessment 289

The quality of the final products (i.e., the downscaled Ta_disagg_ML) was evaluated 290

through ins-situ validation and comparison to the other two scenarios (Ta_disagg_MM 291

and Ta_disagg_cst) using statistical parameters. Three simulation evaluation scores were 292

used: Root Mean Square (RMSE), coefficient of determination (R²) which is the square of 293

the previously described PCC (Pearson’s Correlation Coefficient), and the Mean Bias Error 294

(MBE) [84]. The scores were computed for each AWS for validation. The mathematical 295

expressions of the above scores are presented in equations 7 and 8 (R² is the square of PCC 296

in equation 2). 297

MBE =
1
N

N

∑
i=1

(Predi − Obsi) (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(Predi − Obsi)2 (8)

Predi being the predicted value and Obsi the measured one. The above-mentioned steps 298

and methodology description have been summarized in the following flowchart (figure 299

4. ). It provides a clear and concise summary of the method and can serve as a guide to 300

understand and replicate the study’s methodology. 301

Figure 4. Flowchart of the methodological approach.
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3. Results 302

3.1. Ta_5 correction 303

• Reference temperature Ta_5_ref 304

The obtained hourly reference Ta_5_ref values were compared to the Ta_5 values 305

sourced directly from ERA5-Land data. The comparison was done over all ERA5-Land 306

grids and the entire study period (2016 to 2020). The results of this comparison are shown in 307

figure 5. The mean R², RMSE, and MBE of Ta_5_ref and Ta_5 were found to be 0.88, 2.51 °C, 308

and -0.48 °C, respectively. The results indicate that the predicted values closely follow the 309

reference values, however, the difference between the two can reach up to approximately 310

10 °C. 311

Figure 5. Comparison of ERA5-Land’s original Ta_5 and reference Ta_5_ref air temperatures.

The next figure ( figure 6) illustrate a temporal comparison of Ta_5_ref to the original 312

Ta_5 for two ERA5-Land grids. The lines are plotted on top of each other and the difference 313

between the two temperatures can be easily observed. The figure shows an example of the 314

comparison for two ERA5-Land grids over the first two and a half months of 2016, and 315

similar behavior is observed throughout the study period. 316
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Figure 6. Hourly Comparison of Ta_5 and reference Ta_5_ref over time (as dashed red line and black
line respectively). Example of the ERA5-Land grid situated at: (a) 7.9°W and 31.1° N, and (b) 7.9° W
and 31.2° N.

The plot indicates that the trend of the two variables is similar, meaning that they both 317

increase or decrease at the same rate over time. However, the amplitude of the Ta_5_ref 318

variable is less than the amplitude of the original reanalysis Ta_5, meaning that the range of 319

temperatures it covers is smaller. This suggests that the reanalysis Ta has higher amplitude 320

of Ta variations than what it should be over the study area. The corrections to be applied to 321

the Ta_5 are then to adjust for the bias that may present in the reanalysis dataset. This bias 322

can be caused by errors in the input data, topographical effects, the modeling approach or 323

in the assimilation of observations. The bias can also be caused by the lack of representation 324

of the complex topography or urbanization of the study area in the reanalysis dataset. At 325

first, we attempted to debias/correct the Ta_5 using simple linear regression, modeling 326

daily temperature changes as a sinusoidal function, and constant (positive or negative) 327

bias correction prior to downscaling. However, these methods did not yield significant 328

improvement and were not practical for the study area, hence the choice of the machine 329

learning approaches. As we stated in the methodology section a correlation analysis was 330

carried out to select proper input variables prior to Ta_5 correction, and thus based only 331

on a set of variables independent from in-situ data (Ta_5 and its derivates, as well as 332

ERA5-land grid points elevations). 333

• Correlation analysis and feature selection 334

Figure 7 depicts the results of the correlation analysis. To test for correlated input variables, 335

the independent targeted variable Ta_5_ref was also introduced to the correlation matrix. 336

The Latter shows that Ta_5, Ta_5’s daily minimum, Ta_5’s daily maximum, and Ta_5’s 337

daily mean are all highly correlated, with PCCs of 0.95, 0.87, 0.88, and 0.89, respectively. 338

Moderately low to low correlations are found for standard deviation (PCC= 0.44), ELR_E5 339

(PCC= -0.18), and E5 (ERA5-land’s grid elevation) (PCC= -0.26). Nonetheless, given our 340

emphasis on finer resolution and higher precision, keeping those inputs appears to be very 341

appropriate as long as they are not very close to null (under 0.05 for instance). 342
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Figure 7. Correlation matrix results. PCC value of each two variables is shown in the boxes corre-
sponding to their "coordinates". ELR_E5, Std and E5 being the hourly ELR issued from Ta_5, the
daily standard deviation, and ERA5-land grids elevation respectively.

The correlation matrix also shows that the daily mean of Ta_5 have almost perfect 343

correlation with both the daily minimum and maximum values, with correlation coefficients 344

of 0.97 and 0.99 respectively. Additionally, among the three, the daily mean showed the 345

best correlation to the targeted variable Ta_5_ref (correlation coefficient of 0.89), thus only 346

the mean was kept. The final set of retained input variables for predicting Ta_5_ref values 347

(i.e., correcting Ta_5) consisted of five variables: Ta_5, Ta_5’s daily mean and standard 348

deviation, hourly ELR_E5 and E5 (ERA5-land’s grid elevation). It is worth noting that 349

while elevation remains constant over time, it varies from one ERA5-Land grid to the next, 350

hence its inclusion was entirely justified. 351

• Machine learning outcome 352

The three scatterplots of figure 8 compare the predictions of temperature made by the tested 353

machine learning algorithms, MLR, SVR, and Xgboost, with the reference Ta_5_ref. Overall, 354

the results show a good level of agreement between the predictions of the three models 355

and the targeted reference Ta_5_ref. 356
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Figure 8. Comparison of Machine Learning predictions for Ta_5_ref temperature

The MLR-based model had a RMSE of 1.34 °C, a R² of 0.97, and a quasi-null MBE. The 357

fitting parameters of the MLR model are the coefficients of the regression equation used to 358

predict the reference Ta_5_ref. They represent the contribution of each input feature in the 359

linear equation. The specific values found for these fitting parameters are as follows: 0.507 360

for hourly Ta_5, 0.477 for daily mean, -3.17×10−3 for ERA5-Land grids elevation, -186.71 361

for hourly ELR_E5, -0.329 for daily standard deviation, and 6.27 for the intercept. 362

The SVR model used the Radial Basis Function (RBF) kernel which is known to provide 363

good general performance as reported in previous studies such as Zaidi (2015) and Parveen 364

et al. (2016). The grid search methodology along with 5-fold cross validation was utilized 365

to find the best values for the SVR model parameters, such as C, ϵ, and γ. A wide range 366

of permutations were tried and tested, such as C [2−2 ,212], γ [2−12, 22] and ϵ [2−12, 24]. 367

The statistical evaluation mean parameters for the best fitted SVR model were found to be 368

RMSE = 1.20 °C, R² = 0.97, and MBE=0 °C using the Python package scikit-learn and the 369

rules of "Lesser is better" for the RMSE and MBE and "Greater is better" for R². The best 370

parameters found were C = 1, γ = ’scale’ and ϵ= 0.02. 371

The grid search methodology was also applied to the Xgboost algorithm to find the best 372

evaluation metrics (lowest RMSE and MBE and highest R2). An analysis of Aarshay’s (2016) 373

work was used as a reference to determine typical values of learning rate, maximum depth, 374

minimum child weight, gamma, subsample, and colsample by tree, such as: [0.01,0.2], 375

[3,10], [1,6], [0.1,0.2], [0.5,0.9], and [0.5,0.9]. The best fit was found when the following 376

settings were used: learning rate= 0.4, maximum depth= 6, minimum child weight= 1, 377

subsample= 1, colsample by tree= 1, and a "number of estimators" of 2000. The results 378

from the Xgboost model were superior to those from the SVR model and MLR model, 379

with an RMSE of 0.83 °C, R² of 0.99 and MBE of 0 °C respectively. Table 3 displays the 380

specific outcomes for the three scoring parameters from the various cross-validation folds. 381

Overall, we see a consistent pattern of model behavior throughout each fold change process, 382

indicating that the models are well calibrated and are not overfitting. 383
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Table 3. Detailed corss-validation results.

Cross-validation (years)
MLR SVR Xgboost

RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE

2016 1.3878 0.9500 0.3740 1.2213 0.9690 0.2622 0.8411 0.9877 0.0240
2017 1.3542 0.9584 -0.1944 1.2456 0.9654 -0.2187 0.8232 0.9874 -0.0123
2018 1.2935 0.9670 -0.0129 1.1828 0.9733 -0.0112 0.7891 0.9870 -0.0116
2019 1.3310 0.9654 0.1079 1.2174 0.9696 0.1109 0.8260 0.9872 -0.0031
2020 1.3234 0.9660 -0.2734 1.1789 0.9750 -0.1608 0.8139 0.9871 -0.0104

Mean 1.34 0.97 0.002 1.21 0.97 -0.004 0.83 0.99 -0.003

To sum up, exceptional Ta_5 correction performance of the Xgboost model in predicting 384

the reference Ta_5_ref was observed. The high R² value and low RMSE and MBE values 385

indicate a better fit compared to the MLR and SVR models. Additionally, the Xgboost 386

model stands out for its combination of both speed and accuracy which is a significant 387

advantage. 388

3.2. Ta_5_corr downscaling 389

In this section, we present the results of our study on downscaling the 9-km ERA5- 390

land’s Ta_5 using three different scenarios. As a reminder, the three scenarios explored 391

are our own method, the machine learning-based method, and a comparison to classic 392

downscaling approaches, the MicroMet model, as well as the often-used constant ELR 393

method (ELR_cst). As previously stated, the machine learning method was used to correct 394

the Ta_5 values, and new values for ELR were calculated from the corrected Ta_5_corr 395

values. These ELR_corr values are then used for the downscaling of the latter temperature. 396

The results of each scenario will be discussed in detail, and the comparison between them 397

will be highlighted. 398

Figure 9 highlight improvements made on ELR_corr estimations posterior to Ta_5 399

correction. The first subplot is a scatterplot of the ELR issued from non-corrected Ta_5 400

against the measured ELR_st from AWSs. The second subplot is a scatterplot of the machine 401

learning-based corrected ELR_corr against the measured ELR_st from AWSs (we are only 402

showcasing the ELR-corr based on Ta_5_corr corrections made using Xgboost model, as it 403

had the most favorable outcome). 404

Figure 9. Comparison of non-corrected and corrected Ta_5 resulting ELRs.

The scatterplots show that there is a significant improvement in the agreement with 405

the measured ELR_st when using the machine learning-based approach ELR_corr. The 406

R² value for the ELR_corr is 0.78, which is significantly higher than the R² value of 0.41 407

for the non-corrected ELR_E5. This indicates that the ELR_corr model has a better ability 408

to accurately predict the measured ELR_st values from the AWSs. Constant ELR_cst and 409

Micromet model’s monthly values ELR_month were not compared as we would only 410
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get horizontal lines given the fact that they are constant and the measured value ELR_st 411

exhibits huge spatial temporal variability. 412

The results presented in Figure 10 show the performance of the three followed ap- 413

proaches for downscaling temperatures at 30-m resolution. The scatterplots compare the 414

downscaled temperatures from each approach to the measured validation temperatures 415

(Ta_st) from the four AWSs Imeskerbour, Aremd, Neltner, and Oukaimden. The AWSs are 416

displayed in columns, while the rows indicate the approach followed. 417

Figure 10. Performance evaluation of machine learning-based ERA5-Land’s temperature downscaling
against traditional Methods using In-Situ measurements.

The first approach, using ELR_cst the constant elevation-based lapse rate and Ta_5 the 418

original ERA5-land’s temperature data, performed poorly, as expected, yielding a RMSE of 419

3.11 °C, a coefficient of determination R² of 0.81, and a MBE of -0.55 °C. Using the MicroMet 420

model, the second approach did not improve the predictions either although it outperforms 421

the constant lapse rate model, with overall performance estimates of 2.71 °C, 0.85, and -0.40 422

°C for RMSE, R², and MBE, respectively. 423

The new machine learning based approach, which corrects Ta_5 temperature and lapse 424

rate data prior to downscaling (Ta_5_corr and ELR_corr), showed a satisfying improvement 425

in the match between downscaled and measured temperatures. The intercomparison of 426

the three machine learning models (Xgboost, SVR, and MLR) revealed that the Xgboost 427

model had the best performance, with a RMSE of 1.61 °C, a R² of 0.97, and a MBE of 0 °C. 428

The SVR model had a slightly worse performance with an RMSE of 1.75 °C, a R² of 0.96 429

and a MBE of 0 °C, but it took significantly more time to compute. The MLR model had 430

the lowest performance with a RMSE=1.8 °C, R² =0.96, and MBE=0 °C, but still presents a 431
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satisfying improvement compared to constant elevation-based lapse rate and MicroMet 432

models. The next table (table 4), provides further details on the downscaling performance 433

metrics by station and approach. The table shows that overall, the constant lapse rate 434

elevation-based approach and the MicroMet model present consistent RMSE for all the 435

stations, however, the MBEs differ. These differences in relation to the measurements can 436

be considered quite important, especially if the downscaled product is intended to be used 437

as input for fine-scale models. 438

Table 4. Downscaling performance metrics by station and approach.

AWS

RMSE R2 MBE

Cst
ELR MicroMet ML Models Cst

ELR MicroMet ML Models Cst
ELR MicroMet ML Models

MLR SVR Xgboost MLR SVR Xgboost MLR SVR Xgboost

Imskerbour 2.45 2.71 1.82 1.86 1.75 0.90 0.88 0.95 0.94 0.95 -0.43 0.28 0.34 0.42 0.34
Aremd 3.09 2.47 2.05 1.95 1.77 0.84 0.9 0.93 0.94 0.95 -2.14 -0.70 -0.50 -0.45 -0.49
Neltner 3.29 3.00 1.61 1.55 1.41 0.76 0.81 0.94 0.95 0.95 -0.49 -0.67 0.10 0.02 0.08

Oukaimden 3.47 2.67 1.68 1.62 1.47 0.75 0.82 0.94 0.94 0.95 0.86 -0.54 0.10 0.00 0.08

On the other hand, it is noted that all metrics are improved for all stations when using 439

machine learning approaches. Additionally, it can be observed that the metrics for higher 440

elevations (Oukaimden and Neltner) are better than those in lower elevations (Imskerbour 441

and Aremd). This could be explained by several factors such as the larger differences 442

in temperature between the high and low elevations, or a better alignment to regression 443

lines, and hence better corrected Ta_5_corr values. It could also be due to the fact that the 444

machine learning models are able to capture the complex interactions between temperature 445

and ERA5-land grids elevation in these regions more effectively. 446

In conclusion, the results of this study indicate that the present machine learning-based 447

downscaling technique has great potential for disaggregating ERA5-Land Ta_5 coarse 9-km 448

resolution to the DEM’s 30-meter resolution, particularly in harsh and difficult-to-access 449

mountainous regions. The use of machine learning models improved the performance 450

of the downscaling process and the match between predicted and measured Ta. This 451

approach outperforms the traditional constant elevation-based lapse rate and MicroMet 452

model. Additionally, the Xgboost model was found to be the best option for reproducing 453

this methodological approach as it performed better and faster than the other two models 454

(MLR and SVR). 455

The illustration presented in the next figure (figure 11) depicts an example of mapping 456

across the study region and summarizes the strategy followed to create a high-resolution 457

downscaled air temperature based on 9-km ERA5-Land’s Ta_5 maps once the models are 458

calibrated. 459

Figure 11. High resolution temperature mapping of mountainous regions using machine learning-
based downscaling of ERA5-Land’s T2m data. Example showing Xgboost in action across the Rheraya
basin on October 10, 2021, at 11 a.m., after the initial calibration of the model.
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4. Discussion 460

The correction of ERA5-Land Ta_5 data through the application of machine learning 461

techniques resulted in an enhanced spatial distribution of downscaled Ta estimates. The 462

improvement was demonstrated through comparison with two classical downscaling 463

methods: the annual average and the MicroMet model. To summarize, the process began 464

with the creation of Ta_5_ref temperatures calculated for each ERA5-Land grid points 465

elevation to match the observed local temperature-elevation relationship. In simpler 466

terms, Ta_5_ref is a 9-km adjusted version of the ERA5-Land Ta_5 and a more accurate 467

representation of the actual measurements of Ta_st and ELR_st. Hence, Ta_5_ref served as 468

the desired outcome for the correction of Ta_5. 469

The gap between Ta_5 and Ta_5_ref values was filled through machine learning. 470

Three different machine learning techniques, MLR (simple), SVR (relatively complex), and 471

Xgboost (recent), were selected to make the prediction of Ta_5_ref. A correlation analysis 472

was performed to determine the input variables that could be correlated to Ta_5_ref. These 473

candidate input variables were all derived from the ERA5-Land data, meaning that once 474

the models were calibrated, the Ta_5 temperature was corrected using its own data to align 475

with the observed local temperature-elevation relationship before downscaling. The results 476

of the correlation analysis showed that the set of input variables is includes in addition 477

to hourly Ta_5: hourly ELR_E5, the mean and standard deviation of daily Ta_5, and the 478

elevation of the ERA5-Land grid points. The predicted/corrected values at 9-km spatial 479

resolution, referred to as Ta_5_corr, were validated against Ta_5_ref and showed significant 480

improvement. The original gap between Ta_5 and Ta_5_ref was quantified as having a 481

RMSE of 2.51°C, R² of 0.88, and MBE of -0.48°C. The MLR-based model showed a correction 482

with a RMSE of 1.34°C, R² of 0.97, and a near-zero MBE. The best fit SVR model had a 483

RMSE of 1.20°C, R² of 0.97, and MBE of 0°C. The Xgboost model performed even better, 484

with an RMSE of 0.83°C, R² of 0.99, and MBE of 0°C, surpassing the results from the SVR 485

and MLR models. The Ta_5_corr values at 9-km spatial resolution, more aligned with local 486

measurements than the original Ta_5, were then used to calculate ELR_corr values. The 487

resulting ELR_corr values were plotted against measurements and showed a R² of 0.78 and 488

a RMSE of 0.001°C/km. The final product, the disaggregated Ta_5_disagg, was obtained 489

by using Ta_5_corr and ELR_corr in conjunction with a 30-m DEM. 490

The downscaling results showed a satisfying improvement in the match between 491

downscaled Ta_5_disagg and measured Ta_st. The intercomparison of the three machine 492

learning models (Xgboost, SVR, and MLR) revealed that the Xgboost model had the best 493

performance, with a RMSE of 1.61 °C, a R² of 0.97, and a MBE of 0 °C. The SVR model 494

had a slightly worse performance with an RMSE of 1.75 °C, a R² of 0.96 and a MBE of 495

0 °C, but it took significantly more time to compute. The MLR model had the lowest 496

performance with a RMSE=1.8 °C, R² =0.96, and MBE=0 °C, but still presents a satisfying 497

improvement compared to constant elevation-based lapse rate and MicroMet models. These 498

differences in relation to the measurements can be considered quite important, especially if 499

the downscaled product is intended to be used as input for fine-scale models. 500

The limitation of this method is that it needs a starting point, i.e., the machine learning 501

models must be first calibrated accordingly to the reference temperature Ta_5_ref that 502

is calculated through in-situ measurements and ERA5-Land grid points elevations. The 503

primary benefit, however, is that this is one of the few works that successfully down- 504

scales ERA5-Land Ta_5 to an hourly time-step, is applicable throughout all seasons, and 505

captures both diurnal and regional temperature fluctuations. Moreover, once the models 506

are calibrated over a specific area, they can be used independently of any knowledge of 507

in-situ measurements as wa previously mentioned, the inputs consist solely of ERA5-Land 508

Ta_5, its derived products (hourly ELR, daily mean and standard deviation), in addition to 509

ERA5-land grids points elevations. 510



Version February 7, 2023 submitted to Atmosphere 18 of 22

5. Conclusions 511

The ERA5-Land Ta_5 data has been improved through the use of machine learning 512

techniques in downscaling. The correction process started with the creation of Ta_5_ref, 513

which is a 9-km adjusted version of the ERA5-Land Ta_5, better representing the actual 514

temperature measurements. The gap between Ta_5 and Ta_5_ref was filled through ma- 515

chine learning using three models: MLR, SVR, and Xgboost. The results showed that the 516

Xgboost model performed the best, surpassing the SVR and MLR models. The downscaled 517

product showed significant improvement compared to the one obtained through classic 518

downscaling approachs (constant ELR and MicroMet model). The primary benefit of this 519

method is that it can accurately downscale to an hourly time-step, is applicable throughout 520

all seasons, and captures diurnal and regional temperature fluctuations. However, the 521

models must be calibrated for a specific area before use. Overall, this method presents a 522

promising solution for improving the accuracy of temperature data downscaling and can 523

be used for other climate studies. 524

In perspective, assessment of the added value of this novel machine learning based 525

method for hydrological applications is considered (e.g., reference evapotranspiration over 526

mountains). Another avenue would be the extension of the use of machine learning models 527

to downscale other meteorological variables (e.g., wind speed, relative humidity...). Finally, 528

although the time-window would be more restrained, we can also consider the use of 529

machine learning based methods on ERA5-Land’s Land Surface Temperature (LST) to 530

reproduce high resolution satellite product such as thermal based Landsat-8 LST. 531
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ELR Environmental Lapse Rate.
DEM Digital Elevation Model.
AWS Automatic Weather Station.
MLR Multiple Linear Regression.
SVR Support Vector Regression.
Xgboost Extreme Gradient Boosting.
Ta Air temperature
Ta_5 ERA5-land’s air temperature
Ta_st Mesaured air temperature
Ta_5_ref Reference air temperature based on ERA5-land’s grid points elevation
Ta_5_corr Machine learning based corrected ERA5-land’s air temperature
ELR_cst Constant ELR of a value of -6.5 °C/km
ELR_E5 Corresponding ERA5-Land ELR
ELR_st Measured ELR
ELR_corr Corrected ELR based on ERA5-Land corrected air temperature
Ta_disagg_cst Downscaled ERA5-Land air temperaure based on constant ELR
Ta_disagg_MM Downscaled ERA5-Land air temperaure based on MicorMet model
Ta_disagg_ML Downscaled ERA5-Land air temperaure based on Machine learning models
MBE Mean Bias Error.
RMSE Root Mean Squared Error.
PCC Pearson Correlation Coefficient.
E5 ERA5-Land grid point elevation.
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