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Estimating the water decit index of a
Mediterranean holm oak forest from Landsat

optical/thermal data: a phenomenological correction
for trees casting shadow effects

Victor Penot, Olivier Merlin

Abstract—The water stress level of forests, as a measure of
how trees react to heat waves and droughts, provides crucial
information for forest management and climate change mitigation
policies. Thermal remote sensing data can be used to derive the
water stress of ecosystems. Especially the contextual evapotran-
spiration models, which rely on spatial correlations between land
surface temperature (Ts) and vegetation index data, have strong
potential for operational applications. However, very few studies
have tested such remote sensing methods over Mediterranean
forests. One difculty is related to the impact of trees casting
shadows on the remotely sensed Ts, which potentially hide the
water stress signature. Until now, there has been no method
to correct for this effect at the spatial resolution of current
(Landsat) thermal sensors. To ll the gap, this study investigates
the impact of the solar zenith angle as a proxy of trees casting
shadows on the satellite-retrieved water decit index (WDI).
The WDI method is implemented using Landsat-7 and Landsat-
8 data over a 21 km2 area partially covered by a holm oak
forest in South-eastern France. The study period extends from
May to September for 7 successive years from 2015 to 2021
and the results are evaluated using the evaporative fraction
(EF) measured in situ at the Puechabon site. As a rst step,
a correction method of WDI for shadow effects is developed at
the Puechabon site by correlating the WDI error (WDI minus in
situ 1-EF) with the solar zenith angle. The correction signicantly
improves the correlation between satellite WDI and in situ 1-EF
from 0.32 to 0.62 and increases the slope of the linear regression
from 0.21 to 0.63. As a second step, a calibration approach of
the correction method is proposed without relying on in situ
measurements, by evaluating the linear relationship (on a pixel-
by-pixel basis) between remotely sensed WDI and the solar zenith
angle in dry conditions. The spatially-corrected WDI still shows
a signicant improvement compared to the non-corrected WDI
with a correlation with in situ 1-EF increasing from 0.32 to 0.57
and a slope of the linear regression increasing from 0.21 to 0.50.
This approach offers a nonparametric while efcient technique
to account for trees casting shadow effects on the remotely sensed
stress indices of forests.

Index Terms—thermal data, hydric stress, forest, evapotran-
spiration, Mediterranean ecosystems

I. INTRODUCTION

MEDITERRANEAN forests have dealt with high levels
of hydric stress for long periods [1], [2]. However,

global warming is a threat to most of forests all around
the world [3]–[5] and particularly in the Mediterranean area,
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which is bound to be affected by increasingly frequent and se-
vere droughts [6], [7]. Therefore, monitoring the hydric stress
of Mediterranean forests is important in the context of climate
change. It provides useful information for decision makers and
landscape managers to develop long-term forest/agricultural
policies like the choice of species adapted to warmer and/or
dryer conditions and mitigation management strategies [8],
and also for reghters to assess locally the short-term water
dynamics of fuels [9], [10].
Remote sensing (RS) technology offers a good cost-benet

trade-off to derive the evapotranspiration (ET) and water
stress of ecosystems over wide areas on a daily/weekly basis.
Different ET remote sensing methods have been developed
for this purpose and are generally based on optical/thermal
data. There exists two broad categories: the energy balance
methods and the contextual methods. The former are based
on solving the physically-based energy balance equations
[11], [12]. They are generally more complicated to put into
operational practice, due to their ne parametrization and
their possibly large number of input parameters [13], [14].
The latter are based on semi-empirical interpretations of the
observed spatial correlations between land surface temperature
(Ts) and fractional green vegetation cover (fvg) [15]–[17]
and/or albedo [18], [19] data. They may perform similarly
to energy balance methods given a good calibration whereas
they are more parsimonious and hence simpler to apply over
large areas [20], [21].
Under the assumptions of large gradients of surface hydric

and vegetation cover states at the pixel scale and uniform
meteorological conditions over the study area, the scatter
plot of Ts versus fvg , often called Ts-fvgspace, has the
shape of a triangle or a trapezoid [15], [16]. The triangle
method has, for instance, been used to assess the ability of
Ts and fvgto discriminate the vegetation moisture content of
a Mediterranean forest in Spain [22]. The Water Decit Index
(WDI), a proxy of surface water stress, is notably determined
from the relative position of a point in the Ts-fvg space [15],
from a dry edge (fully dry pixels from bare soil to full canopy
coverage) and a wet edge (well-watered pixels from bare soil
to full canopy coverage). WDI has been widely used to assess
the water stress of crops, and has shown good agreement
with eld measurements [15], [23]–[25]. However, to date,
thermal remote sensing methods have seldom been tested over
Mediterranean forests. In an early study, [26] used WDI as an
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index to predict the re area/occurrence during the summer of
1990 in Southern France. However, the lack of site ux data
in that study did not allow a quantitative assessment of the
accuracy of the retrieved forest WDI.

Whatever thermal-based method is used to estimate the
water stress, cast shadows within the canopy and on the
ground have a strong inuence on the measured Ts [27].
However, it is difcult to model and evaluate accurately the
cast shadows impact in complex ecosystems [27]. The use of
radiative transfer and/or geometric projection models supports
these results, if a mock-up can be designed. [28]–[31] used
these tools to study directional effects in oak woodlands or
crops. They especially showed the strong impact of surface
component fractions within the satellite eld of view on Ts
retrievals, and particularly through the contribution of shaded
and sunlit soil.

To derive ET or water stress proxies in non-homogeneous
canopies, [32], [33] suggested the use of data collected at
very high resolution to explicitly take shadow effects into
account. Three different methods have been developed from
ground-based [33]–[36] or aircraft/UAV-based [32], [37]–[39]
thermal camera. One solution consists in removing in the Ts
image, the pixels corresponding to shaded soil/leaves to isolate
sunlit leaves [32], [37]–[39]. It relies on the assumption that
sunlit leaves are more likely to be stressed than shaded ones
[40] and that they may provide meaningful information about
the vegetation water status/ux. Separating shaded from sunlit
soil/leaves requires a very high-resolution (centimetric) sensor.
Such a classication can be done manually [35], [37], [39]
or by automatic detection using supervised classication [39],
[41], density based methods [34], [36], [42], clustering (K-
means) and post-classication [38], high resolution elevation
thresholds [37] or vegetation index thresholds [32]. However,
due to the geometric misregistration of visible/near-infrared
and thermal images at such a ne resolution, soil and shaded
leaves background may contaminate the thermal data of an
area identied as sunny and vegetated [38], [42]. In addition,
these methods rely mainly on a priori sunlit leaf properties,
which are either physically determined or manually selected
from images to build a training database. Therefore, the pres-
ence of mixed pixels or sunlit reectances outside the training
database may decrease the accuracy of the segmentation [41].

Another method to take shadow effects into account, con-
sists in simply setting a ground-based camera in a position that
avoids as much as possible shaded leaves/soil in the eld of
view of the thermal radiometer. The camera is hence generally
set in a nadir/solar noon position so that only the sunlit part of
the tree is observed without soil background [33], [34]. Note
that this method strongly depends on the solar zenith angle
and on the remaining ground and shaded leaves contamination
[33], [34].

Rather than extracting sunlit leaves temperature from the
thermal image or avoiding shadow effect in the sensor eld of
view, [31] suggested a third option, that is to correct the WDI
method to take into account directional effects. This correction
involved redening the wet and dry edges of the Ts-fvgspace
by using a 3D model that was run in each solar and observation
angle. However this method uses realistic and efcient 3D

representation of every plant present within the study area. It
requires both extensive and exhaustive ground measurements
and a relatively small study area due to the high computation
cost.
The above literature review indicates that until now no

operational solution has been proposed to correct the remotely
sensed water stress proxies for the cast shadow/directional
effects at the scale of current (Landsat and MODIS/Sentinel-3)
spaceborne thermal sensors. This is also true for near-future
thermal missions which will provide Ts data at 57 m and 50
m spatial resolution from 2025 and 2028 for TRISHNA and
LSTM respectively. In this context, the objective of this study
is to propose an operational method for correcting the satellite-
derived WDI for trees casting shadow effects, by relying on
the solar zenith angle (θS). Specically, this paper aims at
(i) quantitatively assessing the impact of θS on WDI and (ii)
developing a self-calibration correction of cast shadow effects.
To reach these goals, the study focuses on a common holm

oak forest at Puechabon site, in Southern France, where in
situ ux measurements are available between 2015 and 2021.
Section II describes the study area, the in situ and Landsat
data used and the new method to correct the Landsat-derived
WDI for cast shadow effects. Section III presents the results
obtained by calibrating the correction method using in situ data
(site calibration) or satellite data solely (self-calibration) and
discusses them in the prospect of future regional applications.

II. MATERIAL AND METHODS

A. Puechabon site and in situ data

1) Puechabon site: The Puechabon site
(43◦44’29”N;3◦35’46”E, 270m a.s.l.) is located in Southern
France, 35 km northwest of Montpellier [43]. This site is
representative of Mediterranean evergreen broadleaf forests
with dense coppice. The holm oak (Quercus Ilex L.) is the
dominant tree specie, with a mean tree height of 5.5 m. The
understory is composed of sparse shrubs of 2-m height [2].
The site was built in 1984 to study Mediterranean ecosystems
and specially the holm oaks response to climate change and
to severe droughts [1], [43].
The mean annual temperature over the 2008-2021 period

is 14.5 ◦c. The mean annual precipitation (2008-2021) is 877
mm with strong intra annual variations. Summer is dry and hot,
while heavy precipitations occur primarily in fall but also in
spring. For illustration, Figure 1 plots the monthly cumulative
rain and the monthly mean air temperature between 2015 and
2021 at the Puechabon site. This region is subject to a cool
and dry north-west wind, known as ”Mistral”.
Table I summarizes intra- and inter-annual differences of cu-

mulative rain and air temperature during the 2015-2021 study
period. Three particular groups of years can be highlighted.
2015 was a particularly wet year during summer: it observed
267 mm cumulative rain between June and September, and
166 mm cumulative rain between July and August. 2017 was
a particularly dry and hot year with only 74 mm cumulative
rain between June and September, and 13 mm cumulative rain
between July and August with 5 days over 35◦c between June
and September. 2016 also experienced a very dry summer
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Fig. 1. Monthly cumulative rain and monthly mean temperature between 2015 and 2021 at the site of Puechabon.

TABLE I
SEASONAL CUMULATIVE RAIN AND THERMAL ANOMALIES FOR EACH YEAR SEPARATELY.

Year
Cumulative rain
February-May

(mm)

Cumulative rain
June-September

(mm)

Cumulative rain
July-August

(mm)

Mean Tair
June-September

(◦c)

Cumulative
number of days
Tair> 30◦c

June-September

Cumulative
number of days
Tair> 35◦c

June-September
2015 177 267 166 21.8 32 2
2016 363 271 17 22 34 0
2017 290 74 13 21.7 34 3
2018 588 98 62 22.8 38 5
2019 169 142 63 22.6 51 3
2020 256 211 79 22 41 1
2021 291 190 83 21.7 22 1

(17 mm cumulative rain between July and August), while
2018, 2019 and 2020 were hot years as regards the number
of days above 30◦c between June and September (38, 51, 41
respectively) and/or the number of days above 35◦c between
June and September (5, 3, 1 respectively). It is important to
note that in 2016, 2018, and 2019, the month of October was
the rainiest of the year, suggesting that cloud cover during that
month is likely to weaken the use of optical remote sensing.

The soil at Puechabon site is silty claim loam with a rock
and stone volumetric content of 75% in the rst 50 cm and
90% in the whole prole [44]. It is poorly developed and does
not store water well [2]. However, it was shown that Quercus
Illex was able to extract water deeper than 4 m during drought
[44], [45].

2) Flux and meteorological data: The station of Puechabon
is equipped with an eddy covariance ux measurement system
that measures meteorological data and energy uxes. The ux
tower is 10-m height and equipped with a Sonic anemometer
(Solent R3A Gill) and an infra red gas analyser (IRGA, LI-
6262,Li-COR) for latent and sensible heat ux measurements.
The sampling is done at a rate of 21 Hz and recorded every 30
minutes. [45] studied the measurement footprint and its inu-
ence on the ux data in all weather conditions. It was shown
that the measured uxes come from a dense Quercus Illex
coppice, surrounded by a less dense Quercus Illex dominated
vegetation and that there is no seasonal pattern of footprint

location. A temperature and humidity transmitter (MP100,
Rotronic) is used for air temperature and rainfall measurement
[45], [46]. Records are done every 30 minutes. Flux and
meteorological data from 2015 to 2021 were downloaded from
the European Fluxes Database Cluster.
Regarding the monitoring and modelling of evapotranspi-

ration/hydric stress from thermal data, few studies have been
undertaken at the Puechabon site. [47]–[49] evaluated the 1-
km resolution 8-day ET MODIS product. More recently, [2]
developed an ET model driven by the MODIS EVI (enhanced
vegetation index) for assessing the groundwater resource in
the surrounding karst watershed.
3) Evaporative Fraction: The evaporative fraction (EF) is

dened as the ratio of latent heat to the available energy [16]:

EF =
LE

Rn− G
(1)

with LE being the latent heat (W/m2), Rn the net radiation
(W/m2) and G the ground conduction (W/m2). G is not
available at Puechabon site. So, under the assumption of
energy balance closure, EF is expressed as:

EF =
LE

LE+ H
(2)

with H being the sensible heat (W/m2). [45] showed that the
energy closure (77%) at this site is reasonable and consistent
with other similar sites.
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The property of EF to remain constant during daytime hours
[17], [50], [51] allows to check the quality of instantaneous
EF estimates by means of the Bowen Ratio β. The Bowen
Ratio is the ratio of the sum of H from 8 a.m. to 3 p.m. by
the sum of LE from 8 a.m. to 3 p.m. [17]. Hence the daytime
EF (EFd) can be estimated by means of the Bowen Ratio :

EFd =
1

1 + β
(3)

A statistical analysis during the study period shows a good
agreement between instantaneous EF at 10:30 a.m. and the
daily EFd (R2 = 0.89, slope=0.97). Hence the instantaneous
EF is kept as a reference to evaluate the satellite-derived WDI.
In practice, due to the inverse change direction of EF and WDI,
the reference in situ hydric stress is estimated as 1-EF.

B. Remote sensing data and study area extent

1) Remote sensing data: Landsat Enhanced Thematic Map-
per Landsat-7 (ETM+) and Landsat-8 Operational Land Im-
ager (OLI) and Thermal Infrared (TIR) both provide re-
ectance and Ts data with a 16-day revisit period, with an
8-day shift between Landsat-7 and Landsat-8. Landsat data
for Path/Row 197/030 were downloaded from USGS Earth
Explorer platform/Landsat Collection 2 Level-2 Science Prod-
ucts from 2015 to 2021. Shortwave optical data were corrected
to be bottom of atmosphere reectances and provided at their
native resolution of 30 m. Landsat-7 data were processed
with the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) algorithm (Version 3.4.0) [52] and Landsat-
8 data with the Land Surface Reectance Code (LaSRC)
algorithm (Version 1.5.0) [53].

After 2017, Landsat-7’s orbit drifted from its original sched-
ule to an earlier overpass time. Changes in reectance and
thermal data are limited until 2020 [54]. To ensure consistency
between Landsat-7 and Landsat-8 data, we chose to keep only
Landsat-7 acquisitions after 10:00 a.m. in the data set.

fvg is estimated using the expression of [55] :

fvg =


NDVI− NDVImin

NDVImax − NDVImin

2

(4)

with NDVI being the Normalized Difference Vegetation Index
dened as the difference of near-infrared and red reectances
divided by their sum. NDVImin = 0.19 (bare soil) corresponds
to the quantile 0.01 of NDVI over time (2015-2021) and space
in the study area, and NDVImax = 0.81 (fully green vegetation
cover) corresponds to the quantile 0.97 of NDVI over time
(2015-2021) and space in the study area.

Landsat-7 and Landsat-8 thermal data have a native res-
olution of 60 m and 100 m respectively. Both data sets
were downsampled at 30 m resolution and provided over the
same 30 m resolution grid of Landsat reectances. They were
processed with the Landsat surface temperature algorithm
(Version 1.3.0) to procude Ts maps from raw thermal radiances
[56], [57].

2) Study area extent and description: Contextual ET meth-
ods based on the Ts-fvg space require the largest gradients of
vegetation coverage and hydric state [58], [59]. Meteorological

conditions must also be relatively homogeneous within the
study area [14]. Thus the study area extent is dened to
include the Puechabon site and to observe the largest gradient
of fraction cover, from bare soil (quarry and vineyard) to
fully covering forests, and also the largest gradient of hydric
state (from the Herault river banks to bare dry soils), while
minimizing the gradient of elevation. The 21 km2 selected
area is presented in Figure 2. On its northern part, it is
delimited by the narrow Herault river and a plateau mainly
covered by closed deciduous forests, were the ux site is set.
Note that according to the data provider denition (Institut
Géographique National, IGN), a closed canopy forest is cov-
ered by more than 40% of trees that reach a height of 5 m
and more. Vineyards and some orchards (olive trees) occupy
most of the Southern area. No town or major built area is
included. The northern plateau and southern agricultural area
are delimited by a topographic break (see Figure 2 a and b).
The minimum elevation of 40 m is reached in the southern
part while the maximum elevation of 441 m is located in the
northern part (see Figure 2 b). Landsat remote sensing data
were thus extracted over this area for the whole time series.

C. WDI method and image selection

The methodology to set the dry and wet edges of the Ts-
fvgspace (II-C1 and II-C2) and to estimate the WDI (II-C3)
is rst presented. Then, a quality control of the input data is
undertaken to automatically lter out the dates when meteo-
rological conditions weaken the WDI application (II-C4).
1) Dry edge estimation: Dry conditions are generally en-

countered in the study area, due to the climatic context during
late spring, summer and early autumn. Therefore, the dry edge
is dened as the linear regression of the 99% quantiles of Ts
evaluated in equal-length fvg bins against fvg as in [25] (see
Figure 3).
2) Wet edge estimation: Wet conditions are seldom met in

the study area due to its climatic context. Hence, a physically
based assumption must be set to solve this situation. The
wet edge corresponds to pixels where LE is maximal and
H minimal whatever fvg . Thus when LE is maximal, H is
negligible and can be set equal to 0 [17]. According to [60],
Ts is approximatively equal to aerodynamic temperature, so
H is as a rst guess proportional to the difference between Ts
and air temperature (Tair) [15]. Following this reasoning, the
wet edge in this study is set constant according to the equation
Ts=Tair(10:30) at the satellite overpass hour, i.e. 10:30 a.m.
(see Figure 3). This assumption has been successfully assessed
in other previous studies undertaken in semi-arid environments
[19], [61], [62].
3) WDI calculation: Figure 3 illustrates how WDI is com-

puted in the Ts-fvgspace from dry edge and wet edge distances
[15] :

WDI =
BC

AB
(5)

with C being the point of interest, A the point in the dry edge
line of same abscissa and B the point of the wet edge line of
same abscissa. By denition, WDI is the complement in 1 of
EF, i.e., WDI = 1− EF.
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Fig. 2. Land use and land cover map a) and elevation map b) over the study area (Source : BDtopo and BDAlti of IGN).

Fig. 3. Ts-fvg space and dry and wet edges plotted for Landsat-7 data
collected over the study area on the 20th, August 2015.

4) Date selection: First, the use of thermal remote sensing
to evaluate hydric stress requires water-limited conditions
meaning that Ts is driven mainly by water availability rather
than by the energy available at the surface [14], [59]. Hence,
the study period is dened to include the hottest months from
May to September for each year from 2015 to 2021.

Second, the presence of clouds, cloud shadows or recent
rainfalls is likely to decrease Ts under the wet edge, dened
as Tair(10:30), as previously mentioned. Moreover, unsta-
ble/changing meteorological conditions may result in hetero-
geneous solar radiation, wind speed and Tair(10:30) within the
area, which do not allow the use of contextual ET methods
[14]. Therefore, an approach is proposed to automatically
remove such dates. Only the pixels qualied as clear in the
quality masks provided with Landsat-7/8 reectance products
are used during this ltering step. [61] suggests that pixels
with a Ts lower than Tair(10:30) are contaminated by clouds
or located over a water body. Accordingly, a date is removed

from the dataset if min(Ts) ≥ Tair(10:30)−1, considering that
the image is contaminated by clouds. In addition, a minimum
number of pixels within the image must be valid (qualied
as clear in Landsat-7/8 masks) to get a representative view of
all the required conditions in the study area. A threshold of
85% of clear pixels within the study area is chosen to lter
out cloudy conditions. This limit quanties the clear or low
cloudy conditions that are commonly used in the reference
previous studies [15], [19], [63], [64].

D. Correction method of WDI for solar zenith angle

1) General approach: The correction method proposed
in this paper relies on the assumption that cast shadows
effects are strongly linked to solar zenith angle (θS) through
cast shadow geometries, although this link is not explicit in
complex geometries such as tree canopies. For clarity, the
framework of the correction strategies is summarized in the
Figure 4.
Once the WDI is classically estimated (as described in

section II-C3, see Figure 4 upper part), a relation is built
between WDI and θS :

∆WDI = a(θS − b) (6)

with ∆WDI being the error on WDI attributed to cast shadows
and a and b two empirical parameters. Two approaches are
then proposed to calibrate a and b:
1) if ux data are available, (asite, bsite) is determined

from the linear regression of ∆WDI = WDI − EF + 1
with θS in particularly dry conditions. This correction
strategy is called site-calibrated correction (see Figure 4
left part);

2) if ux data are unavailable, which is the case in most
operational situations, aself can be estimated by inter-
preting the regression of WDI with θS in particularly dry
conditions, and bself is set to the minimum of θS in the
May-September period, namely θS,Min. This correction
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Fig. 4. Schematic diagram of the overall methodology to correct WDI
for solar zenith angle effects, to calibrate this correction from in situ (site
calibration, left) or from remote sensing (self-calibration, right) data solely
and to evaluate the correction efciency at the Puechabon site (bottom).

strategy is called self-calibrated correction (see Figure 4
right part).

For both correction strategies, ∆WDI is subtracted from WDI.
Finally, the corrected WDI (WDIc) is compared to in situ
1-EF (see Figure 4 lower part) to evaluate the correction
performance. Each component of the correction method is
described below.

2) Identication of dry and very dry conditions: Hydric
stress and shadow effects are generally mixed, and the main
challenge herein is to disentangle both effects from WDI and
θS data solely. Especially, the shadow effects on WDI may
overwhelm the signature of hydric stress. During droughts,
or during long periods without signicant rains and high Tair,
hydric stress grows to its maximum value, as long as trees and
shrubs sustain the lack of water. In such extreme situations,
the variations over time of WDI are assigned to variations of
cast shadows geometry, which are mainly linked to θS . Hence,
to disentangle cast shadow effects from hydric stress, only the
driest dates of a time series should be used. We dene the
Very Dry dataset, as the dates of our dataset whose 15-day
cumulative rain (P15d) is under the rst quartile of the 15-
day cumulative rain of all days during the 2015-2021 study
period (q0.25(P15d) = 7mm). This dataset will be used for
both site and self calibration strategies (see section II-D3 and
II-D4). The 15-day time depth is chosen on the basis of the
regression quality of site calibration. We also dene the Dry
dataset (Wet dataset), as the dates of our dataset whose 15-day
cumulative rain (P15d) is under (over) the median of the 15-
day cumulative rain of all days during the 2015-2021 study
period (q0.5(P15d) = 23mm). These datasets will be used for
evaluation purposes (see section II-D5). The whole dataset is
called All dataset.

3) Site-calibrated correction: When and where ux data
are available, the difference between WDI and 1-EF regressed
over θS can be used to correct the WDI (see Equation 6).
Only the Very Dry dataset is used for this regression. On such
dates, the evolution of∆WDI may be attributed to cast shadow
effects rather than to hydric stress. This regression is useful to
quantitatively assess the impact of θS on WDI at Puechabon
site and to verify the underlying assumption of the correction

methodology. The site-calibrated correction equation is :

WDIc,site = WDI− asite(θS − bsite) (7)

4) Self-calibrated correction: In practice, ux data are
rarely available and in general, they cannot be used for calibra-
tion purposes of Equation 6 due to the strong heterogeneity
of land surfaces. Therefore, a self-calibration method must
be imagined to operationally apply our proposed correction
method, i.e. rst by calibrating the slope a of Equation 6 and
then by setting the value of b.
A two-step procedure is proposed to isolate the dates when

the WDI evolution is strongly inuenced by cast shadow
effects and to calibrate the slope a = aself of Equation 6.
First, only the Very Dry dataset is used, i.e. rainfall conditions
when WDI is likely to be close to 1. Note that selecting the
driest dates using the cumulative rain (instead of using large
WDI values directly) allows for ltering out the dates when
WDI is much affected by cast shadow effects. Then, WDI is
plotted against θS and the upper edge of this space is linearly
interpolated. The points located on the upper edge correspond
to the pixels with an actual hydric stress index close to 1, so
their WDI evolution with θS is assumed to be the result of cast
shadow effects only. Hence the slope of the linear regression,
called aself quantitatively expresses the evolution of WDI with
θS during droughts or very dry periods. While θS increases,
cast shadow effect increases, so we expect that aself < 0.
The intercept bself = b is set to the minimum of θS

(θS,Min) reached in late June at the site/pixel location. For
a given canopy geometry, the impact of shaded areas at this
time should be minimal when the Landsat viewing angle is
near nadir [28], [29], which is the case in the Puechabon
study area (< 1.5◦). Finally, we assume that the effect of
θS on WDI is negligible when θS = θS,Min and that it can
only decrease WDI when θS increases. Therefore, the self-
calibrated correction equation is :

WDIc,self = WDI− aself (θS − θS,Min) (8)

5) Evaluation of calibration and correction strategies:
To assess the quality and the improvements brought by both
(site- and self-calibrated) corrections, the corrected WDI is
evaluated against the site measurements of 1-EF for All
dataset, Wet dataset or Dry dataset separately. In each case,
the Root Mean Squared error (RMSE), Mean Absolute Error
(MAE), coefcient of correlation (R), slope and bias of the
linear relationship between satellite WDI and in situ 1-EF are
calculated as metrics of quality and accuracy.

III. RESULTS AND DISCUSSION

To assess the impact of θS on WDI, section III-A focuses
on the results of the site-calibrated correction. In section
III-B, the results the self-calibrated correction are presented
and discussed to assess the correction method in an opera-
tional context. In section III-C, a spatial analysis of the self-
calibrated correction method is proposed.
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TABLE II
STATISTICAL RESULTS IN TERMS OF MAE, RMSE, R, SLOPE AND BIAS

OF THE LINEAR REGRESSION BETWEEN SATELLITE WDI AND in situ 1-EF
FOR DIFFERENT CORRECTION AND CALIBRATION STRATEGIES. THE ALL

DATASET IS USED FOR EVALUATION.

Correction
method

Calibration
dataset MAE RMSE R Slope Bias

None All 0.14 0.17 0.32 0.21 -0.10
Site All 0.10 0.12 0.57 0.50 0.00
Site Very Dry 0.10 0.12 0.62 0.63 0.02
Self All 0.13 0.15 0.44 0.31 -0.07
Self Very Dry 0.11 0.12 0.57 0.50 -0.02

A. Site-calibrated correction of WDI for solar zenith angle

1) Site calibration: As mentioned previously, Equation 1
is calibrated with the Very Dry data set (including the 25%
driest dates) with the objective of identifying the dates when
θS signicantly drives the error ∆WDI = (WDI − EF + 1).
To assess the usefulness of this assumption, Figures 5 a and b
plot the error ∆WDI versus θS for All dataset and Very Dry
dataset respectively. Table II summarizes the quality statistics
of site-calibrated WDI when All dataset and Very Dry dataset
is used for calibration separately. Figures 6 a and b plot the
non-corrected and site-calibrated corrected WDI (using Very
Dry dataset for calibration) versus 1-EF respectively.

Both site calibration strategies improve the quality of the
corrected WDI compared to the non-corrected WDI (see
Table II and Figures 6 a and b). The slope and correlation
coefcient increases from 0.21 and 0.32 (no correction) to
0.50 and 0.57 for the All dataset and 0.63 and 0.62 for the
Very Dry dataset used for calibration, respectively. The bias
and RMSE also signicantly decrease from bias=-0.10 and
RMSE=0.17 (no correction) to bias=0.00 and RMSE=0.12,
and bias=0.02 and RMSE=0.12 for the All dataset and Very
Dry dataset-based calibration corrections, respectively. Note
that the RMSE remains in the standards of other studies in
similar context [64]–[66].

Even if the calibration regression using All dataset is signif-
icant (determination coefcient R2 = 0.25 and pvalue< 5%),
its quality is clearly improved when only the Very Dry dataset
is used for calibration (R2 = 0.59 and pvalue< 5%, see
Figures 5 a and b). These results suggest that θS signicantly
drives the evolution of ∆WDI when only Very Dry conditions
are encountered. i.e. when cast shadow effect is the main driver
of WDI. In fact, when the actual hydric stress index is close
to 1 and when the contrast between sunny and shaded areas is
large, the impact of hydric stress on Ts is expected to be small
compared to cast shadow effects. Based on the above analysis,
the Very Dry dataset is henceforth used for calibrating the
correction method.

The slope asite in Figure 5 is negative, which is consistent
with the fact that the cast shadow effect on WDI increases
with θS (initial assumption). The site calibration provides
a correction slope asite = −0.020 (see Figure 5 b) that
quanties the underestimation of 1-EF by WDI with the
increase of θS across the seasons. It also provides an intercept
bsite = 25.6◦ (see Figure 5 b) that is near the minimum solar
zenith angle (θS,Min = 25.7◦) reached in late June at the

Puechabon site. This value implies that ∆WDI is negligible
when θS is minimum and that ∆WDI becomes more and more
negative when θS increases. This is consistent with a minimum
cast shadow effect on Ts and hence on WDI in late June,
while the Landsat viewing angle is near nadir (< 1.5◦) at the
Puechabon site [28], [29].
In brief, the site calibration provides an equation that

efciently corrects for the cast shadow effects over the full θS
range (from May to September). The value of the correction
is null when θS is minimum in late June, it linearly increases
with θS and reaches its maximum value in late September
when θS is maximum.
2) Evaluation of the site-calibrated correction: Table III

summarizes the statistics obtained for different calibration
strategies and evaluation datasets. The site-calibrated corrected
WDI outperforms the non-corrected WDI when evaluated on
the Dry dataset (37 dates). When evaluated on the Dry dataset,
the correction improves the slope of the linear regression
(and correlation coefcient) from 0.07 to 0.84 (from 0.08
to 0.59) for the non-corrected and site-calibrated corrected
WDI, respectively. In parallel the bias decreases from -0.15
to 0.00 for non-corrected and site-calibrated corrected WDI
respectively. The good performance of the correction method
for the Dry dataset is explained by strong cast shadow effects
when the contrast between sunny areas and shaded areas is
maximum.
However, the site-calibrated correction is not so successful

when it is evaluated on the Wet dataset (20 dates). Even
if R and slope still increase from R=0.21/slope=0.14 (no
correction) to R=0.36/slope=0.37 (site calibrated correction),
the bias signicantly increases from bias=-0.02 (no correction)
to bias=0.08 (site-calibrated correction) (see Table III). These
results support the fact that wet dates/areas are less likely
to be affected by shadow effects. Consequently, a correction
equation that is calibrated over Very Dry dataset tends to over-
correct WDI for the Wet dataset.
Note that the land-atmosphere feedback on air temperature

[67] was neglected in this study. Especially, due to the general
absence of wet conditions in the study area, the wet edge
was set to a constant value based on the equation Ts=Tair
(measured at Puechabon site at 10:30 a.m.), regardless of
the stress level of the underlying surface. This strategy is
likely to overestimate the temperature of the wet edge and
hence to underestimate the satellite-derived stress index in dry
conditions. Disentangling both (feedback on air temperature
and trees casting shadow) effects on the satellite-derived stress
index should be investigated in the future.
3) Yearly analysis of site-calibrated correction results:

Figures 7 (a and b) plots non-corrected and site-calibrated
corrected WDI versus 1-EF per year. The correction not only
improves the 1-EF estimation over the whole study period but
also for almost every year separately (2016, 2017, 2018, 2019,
2020, 2021) but 2015.
2015 is a particularly wet year that illustrates the limitation

of the correction methods: the proposed correction for trees
casting shadow effects does not bring any improvement to
the classical WDI without correction (see Figures 7 a and b).
The slope decreases from 0.30 to 0.23 and the correlation
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Fig. 5. Scatter plot from May to September during the years 2015-2021 of a) (θS ,WDI-EF+1) for the All dataset and the linear regression b) (θS ,WDI-EF+1)
for the Very Dry dataset and the linear regression ; c) (θS ,WDI-EF+1) for All dataset and the linear upper hull d) (θS ,WDI) for the Very Dry dataset and the
linear upper hull.

Fig. 6. Scatter plot of a) non-corrected WDI vs 1-EF ; b) WDIc,site vs 1-EF; c) WDIc,self vs 1-EF. The Very Dry dataset is used for both site and
self-calibration cases.

coefcient from 0.53 to 0.28 for non-corrected WDI and
site-calibrated corrected WDI respectively. Particularly, the
correction for the Wet dataset tends to over-correct WDI. This
year is the rainiest of the 7 studied years during summer,

with 267 mm cumulative rain between June and September,
after the driest beginning of year (177 mm of cumulative rain
between February and May). Locally, [1] actually measured
in 2015 the maximum of minimum pre-dawn summer water
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TABLE III
STATISTICAL RESULTS IN TERMS OF MAE, RMSE, R, SLOPE AND BIAS

OF THE LINEAR REGRESSION BETWEEN SATELLITE WDI AND in situ 1-EF
FOR DIFFERENT CORRECTION AND EVALUATION STRATEGIES.

Correction
method

Evaluation
dataset MAE RMSE R Slope Bias

None Wet 0.09 0.11 0.21 0.14 -0.02
Site Wet 0.10 0.14 0.36 0.37 0.08
Self Wet 0.10 0.12 0.35 0.29 0.04
None Dry 0.17 0.20 0.08 0.07 -0.15
Site Dry 0.10 0.11 0.59 0.84 0.00
Self Dry 0.11 0.12 0.48 0.59 -0.05

potentials – a proxy of plant and soil water limitation [44]
– and the rainiest summer (June-August) over the 2003-2017
summers.

These results suggest that when water is available, cast
shadows is not the main driver of WDI variations. However,
the relatively small number (6-12) of observations available
for each year separately, does not allow a deeper evaluation
of the correction method on an inter-annual basis.

B. Self-calibrated correction of WDI for solar zenith angle

1) Self-calibration equation: For operational needs, a self-
calibrated correction method is developed by plotting WDI
versus θS , without relying on ux data. The calibration of
the slope aself of Equation 6 is undertaken using both the
All dataset and the Very Dry dataset separately to assess
the performance of each calibration strategy. As for the site
calibration case, selecting the Very Dry dataset allows to better
identify the impact of cast shadow effects. Therefore, the
calibration of aself using the Very Dry dataset provides a
more efcient correction than when it is calibrated with the
All dataset. In Table II we see that with the All dataset,
the slope (and R) only increases from slope=0.21 (0.32) to
0.31 (0.44) for the non-corrected and self-calibrated corrected
WDI, respectively. In contrast, using the Very Dry dataset
the slope (and R) signicantly increases from 0.21 (0.32) to
0.50 (0.57) for the non-corrected and self-calibrated corrected
WDI, respectively. In parallel the bias decreases (in absolute
value) from -0.10 (no correction) to -0.07 (All dataset-based
calibration correction) and to -0.02 (Very Dry dataset-based
calibration correction). These results suggest that isolating
particularly dry conditions during the calibration step allows
to get a more efcient correction on WDI (see Figures 5 c
and d), and are consistent with the same analysis undertaken
for the site calibration. We now consider the WDI correction
results obtained from the calibration of aself using the Very
Dry dataset only.

The negative value of the slope aself = −0.013 is consistent
with the increase of cast shadow effects with θS , as already
mentioned for the site-calibrated correction case (see Figures
5 b and d). Even if aself is lower (in absolute value) than
asite, the previous discussion in section III-A1 remains valid.
Only 7 years of data have been used for the self-calibration,

meaning that the calibration strategy is likely to be sensitive
to outliers. Even if this dataset covers a wide range of
meteorological conditions, including particularly wet (2015)

and dry (2017) years, a longer calibration period is likely to
provide more statistically signicant results. In fact, the upper
edge of the WDI-θS space is strongly inuenced by extreme
points that may be encountered during dry and hot years. In
other words, drier conditions might change the calibrated value
of the self-calibration slope aself .
To dene the nal calibration Equation 8, the intercept

is set to the minimum θS between May and September –
bself = θS,Min = 25.7◦ – which is close to the site-
calibrated bsite = 25.6◦. It is suggested that cast shadow
effects are negligible in mid-June, when the difference between
the viewing zenith angle of Landsat (near nadir) and θS is
minimum. Despite the good agreement between bsite and
θS,Min at the Puechabon site, further researches should be
conducted to assess the variability of b parameter in time and
space
2) Evaluation of the self-calibrated correction : Results

presented in Figure 6 and Table III indicate that the self-
calibrated corrected WDI outperforms the non-corrected WDI
when evaluated on the Dry dataset. In particular, the self-
calibrated correction improves the slope and correlation co-
efcient (see Table III), which increase from 0.07 to 0.59 and
from 0.08 to 0.48 respectively. In parallel the bias decreases
in absolute value from -0.15 to -0.05 for non-corrected and
self-calibrated corrected WDI respectively. However, the self-
calibrated corrected WDI is not so successful when evaluated
on the Wet dataset. Even though both R and slope are slightly
improved from 0.21 to 0.35 and from 0.14 to 0.29 respectively,
the absolute bias increases from -0.02 (no correction) to 0.04
(site-calibrated correction) (see Table III).
These results are fully consistent with those obtained for

the site-calibrated correction case discussed previously. The
behaviour of the self-calibrated corrected WDI is very similar
to that of the site-calibrated corrected WDI as illustrated in the
per year analysis of Figures 7 a and c. Because asite < aself ,
the self-calibrated correction is slightly less effective to cor-
rect WDI for Dry dataset, and consequently limits the over-
correction of WDI for Wet dataset. The self- and site-calibrated
corrections are generally of equivalent quality. This result
conrms that the slope of the linear upper edge of the WDI-
θS space in particularly dry conditions (Very Dry dataset) is
a good approximation of the asite parameter in Equation 8.

C. Spatial analysis of the self-calibrated correction

The self-calibrated correction of WDI for solar zenith angle
has been assessed in terms of WDI accuracy at the Puechabon
site. It is also interesting to investigate the spatial behaviour
of the corrected WDI and the correction parameters (aself )
at the pixel scale within the study area. The study area (see
Figure 2 a) is characterized by a large variability of land
use and land covers from bare soil, organized vineyards and
orchards in the south, to wild Mediterranean evergreen forests
in the north. To assess spatially the self-calibrated correction
in such media, the method is applied at the 30-m resolution
over the entire study area and during the entire study period
(2015-2021). The satellite-derived WDI is smoothed with a
5x5 pixels split window to take into account the actual spatial
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Fig. 7. Per year scatter scatter plot of a) non-corrected WDI vs 1-EF ; b) WDIc,site vs 1-EF; c) WDIc,self vs 1-EF.

resolution of thermal Landsat data (60 m and 100 m for
Landsat-7 and Landsat-8, respectively). θS is supposed to be
uniform withinover the whole study area on each Landsat
overpass. Note that for few pixels, the retrieved correction
slope aself is positive; in this case it is set to 0. The minimum
θS is set to 25.7◦ at each pixel of the study area. The self-
calibrated correction equation can nally be applied to correct
WDI for cast shadow effects over the entire study area.

Figure 8 shows maps and density histograms of WDI and
WDIc,self respectively, for data on the 22th, July 2016. The
summer 2016 is particularly dry and hot at the Puechabon Site.
Cumulative rainfall during the 15 previous days is only 0.2
mm. The measured 1-EF at the ux site is 0.88, site- calibrated

corrected WDIc,self is 0.81 while non-corrected WDI is 0.67.
It corresponds to an error reduction of 77% by correcting the
WDI for trees casting shadow effects.

In Figure 8 a, the non-corrected WDI ranges from 0.2 to
1. In fact, the difference between the minimum Ts (299.7K)
and Tair at 10:30 a.m. (297.7K, wet edge value) is 2 K, which
implies strictly positive WDI values. The spatial distribution
of WDI generally reects the variability in land cover/use. On
the one hand, the southern part of the study area is covered
with vines and orchards, and shows a mean WDI of 0.84.
This is consistent with both large bare soil areas of intercrop
(the intercrop herbaceous species are senescent at this time)
and the relatively large size (compared to the interrow spacing
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Fig. 8. Maps and density histograms per dominant land cover class of a) and c) non corrected WDI, and b) and d) self-calibrated corrected WDIc,self for
Landsat-7 data on the 22th July, 2016.

Fig. 9. a) Map of the slope aself of the self-calibrated correction equation over the study area and b) density histograms of aself per land use/cover classe.

of vineyard for instance) of a Landsat-7/8 thermal pixels. On
the other hand, the northern part of the study area is mainly
covered by holm oak dominated forest with a mean WDI of
0.66. As holm oak is able to efciently deal with low levels
of soil water availability, a lower value of WDI lower than in
vineyard/orchards would be expected [1]. Further north, the
slope along the Herault river witnesses particularly low values
of WDI.

Figure 8 b presents the self-calibrated corrected WDI.
Vineyards and orchards are not particularly affected by the
correction – the (mean WDIc,self is 0.87 – due to the near-
zero slope correction aself (see next paragraph). In contrast,
WDIc,self is particularly contrasted and enhanced in the forest
area. The mean WDIc,self now reaches 0.74 (increase of 12%),
and very few values are below 0.4. This is particularly true
in the denser part of the forested area and along the Herault
river.

The correction slope aself is mapped in Figure 9 a and
density histograms of aself values per dominant land use/cover
class are provided in Figure 9 b. Values of aself are strongly
related to the land cover map (see Figure 2 a) and to the
elevation map (Figure 2 b). In the southern part of the study
area, vineyards and orchards (olive trees) show close to zero
correction, with a mean slope correction of -0.003 (see Figures
9 a and b). These land covers are characterized by large
intercrops including bare soil areas or fast drying herbaceous
species. Note that on the southern part, along the Herault river,
quarries provide hight value of aself . On the northern plateau
where the ux tower is located, the Quercus Illex dominated
forest is less open and witnesses more complex landscapes
than orchards/vineyards, which implies a signicant decrease
in the mean aself equal to -0.008 (see Figure 9 a and b). The
northern valley along the Herault river is characterized by very
low aself values, consistent with topographic effects. Note that
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Landsat-7 artefacts (strips) are clearly visible. This is due to
the impact of a key date (in particularly dry conditions) of the
Landsat-7 time series used in the calibration of aself .

IV. CONCLUSION

Until now, no method has allowed to correct satellite-
derived WDI for trees casting shadow effects over large areas.
To ll the gap, this study is based on solar zenith angle (θS)
to predict in time the effect of cast shadows on WDI.
The objectives are (i) to quantitatively assess the impact of
θS on WDI during dry periods (high values of hydric stress),
(ii) to build a self-calibration method that corrects WDI on a
pixel basis from θS and satellite data solely for operational
use and (iii) to evaluate calibration strategies against in situ 1-
EF used as ground truth. The classical WDI method (without
correction from cast shadow effects) is used as benchmark to
evaluate the improvement of the corrections. The approach is
tested using in situ data collected between 2015 and 2021 at
the Puechabon site located in a holm-oak forest in Southern-
east of France.
As a rst assessment of the effect of θS on WDI, the error
in WDI at the Puechabon site (WDI - (1-EF)) is correlated
to θS (R2 = 0.59). By applying the site calibrated correction
of WDI for cast shadow, the slope of the linear regression
between remotely sensed WDI and in situ 1-EF is much closer
to 1 : it increases from 0.21 to 0.63. In addition, the RMSE
decreases from 0.17 to 0.12 and the correlation coefcient (R)
increases from 0.32 to 0.62 for non-corrected and corrected
WDI respectively.
As a further step, a self-calibrated correction method is de-
veloped at the pixel scale, without relying on in situ data,
by correlating high WDI values to θS on particularly dry
dates. This correction method still succeeds in improving WDI
estimates : the R, the slope of the linear regression and the
RMSE are 0.57 (0.32), 0.50 (0.21) and 0.12 (0.17) for the
corrected (non-corrected) WDI respectively. Therefore, the
self-calibrated method provides an operational workow for
practical use.
When comparing the correction results in dry and wet condi-
tions, relatively low values of correlation (0.36 and 0.35) and
slope of the linear regression (0.37 and 0.29) between satellite
WDI and in situ 1-EF are obtained for the Wet dataset for self-
and site-calibrated corrected WDI respectively. In fact, the
calibration strategy that relies on dry dates is not suitable for
wet conditions, as the Ts contrast between sunny and shaded
areas decreases in cool/wet conditions. It is also assumed that
other physical factors than θS can affect the thermal behaviour
of forests, especially when the hydric stress is relatively low
(e.g. thermal inertia [68], [69]).
Although quite promising results were obtained at the Puech-
abon site using our simple θS-based correction method, the
approach should be tested to other sites including a variety
of tree species and landscapes. In particular, we used the
cumulative rain with a 15-day time depth to extract the Very
Dry dataset for calibration purposes. The genericity of such an
assumption should be assessed at other sites as this value might
be linked to both soil water availability and tree physiological

functioning. In addition, we set the intercept bself to the
minimum of θS , while Landsat viewing zenith is near nadir
in the Puechabon site area. Note that it is not general as the
Landsat-8 viewing angle can reach 8◦, which suggests non-
negligible directional effects at the edges of the swath.
Several of the limitations mentioned above could be removed
by implementing a physically-based 3D radiative transfer
model like DART [70]. However, this would require the
combined used of energy balance models to precisely solve the
temperature of soil and vegetation components [71], [72]. Last
but not least, this would also require a precise and exhaustive
3D digital mock-up of the study area, which remains challeng-
ing due to both the lack of detailed knowledge of complex
land surfaces and the constraints associated with calculation
times. The TRISHNA mission, to be launched in 2025, will
provide thermal data at high spatio-temporal resolution. The
high temporal frequency of TRISHNA data is related to the
relatively large swath width of the instrument, which will
imply signicant viewing angle directional effects [73], [74].
Thus correcting for directional effects is especially relevant
for the future operational use of these valuable data.
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la Riva, and F. Pérez, “Combining ndvi and surface temperature for
the estimation of live fuel moisture content in forest re danger
rating,” Remote Sensing of Environment, vol. 92, no. 3, pp. 322–331,
2004, forest Fire Prevention and Assessment. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425704001531

[23] C. Collins, S. McElroy, M. Moran, R. Bryant, T. Miura, and W. Em-
merich, “Temporal and spatial changes in grassland transpiration de-
tected using landsat tm and etm + imagery,” Canadian Journal of Remote
Sensing, vol. 29, 04 2003.

[24] E. S. Koksal, “Irrigation water management with water decit index
calculated based on oblique viewed surface temperature,” Irrigation
Science, vol. 27, pp. 41–56, 11 2008.

[25] N. Virlet, V. Lebourgeois, S. Martinez, E. Costes, S. Labbé, and J.-L.
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