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Abstract 

FAO-56 dual crop coefficient (FAO-2Kc) based model are increasingly applied at large scale 

for agricultural water monitoring, requiring field-scale data over the spatial extent of interest. 

Given the lack of in-situ measurements, satellite products can be used to estimate indirectly 

the parameters through calibration. However, a lack of knowledge about model sensitivity 

can lead to suboptimal use of satellite data. This study aims to analyze the sensitivity of 

SAMIR, a FAO-2Kc-based model using satellite data. The Sobol method was applied for 

evapotranspiration (ET) and deep percolation (DP) simulations on 37 contrasted agricultural 

seasons. Results indicate that SAMIR’s sensitivity mainly depends on the modeled water 

stress. We proposed a proxy for the model sensitivity which can determine 84% (73%) of the 

ET (DP) among the agricultural seasons. An interaction analysis allowed reducing the 

calibration problem to the adjustment of only two parameters (a_Kcb and Zr_max), 

accounting for most of the sensitivity. 

 

Keywords 

FAO-56 model; Sobol sensitivity analysis; Evapotranspiration; Deep percolation; Remote 
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1. Introduction 

Irrigation is the most water-intensive anthropogenic activity in the world. The resources 

available for it are already under pressure in some regions and will be even more so in the 

future (FAO, 2011). To face these challenges, crop water balance models are widely used 

with the aim of optimizing agricultural water use (Pereira et al., 2020; Constantin et al., 

2015). Such models seek to estimate the crop water consumption and irrigation needs by 

simulating all the terms of the crop water balance, including evapotranspiration (ET, 

corresponding to crop consumption) and deep percolation (DP, being an indicator of water 

loss for crops). 

The dual crop coefficient version (FAO-2Kc) of the FAO-56 method (Allen et al., 1998) is 

based on the estimation of actual ET coupled to a soil water balance. The FAO-2Kc method 

has been widely used in both operational and academic contexts for its efficiency and 

parsimony (more than 30,000 citations of the FAO-56 method (Pereira et al., 2021)). From 

the same basic FAO-2Kc formulation, many models have been developed with their own 

specificities, like the representation of additional processes (e.g., runoff, capillary rise), a 

more detailed description of specific processes (e.g. DP, root development, soil evaporation), 

or the use of satellite data (Helman et al. 2019; Olivera-Guerra et al., 2018; Han et al., 2018; 

Bellvert et al. 2018; Campos et al., 2017; Yang et al., 2012; Rosa et al, 2012a, b; Raes et al., 

2009; Lollato et al., 2016; Sheikh et al., 2009). In the same vein, the SAMIR (Satellite 

Monitoring for IRrigation, Simonneaux et al., 2009) model, which is used in this work, is a 

FAO-2Kc-based model integrating remotely sensed Normalized Difference Vegetation Index 

(NDVI) to constrain the vegetative growth. It includes 12 parameters related to soil and crop 

type characteristics. 

The FAO-2Kc method can simulate ET and DP at the plot or at the pixel scale, which when 

aggregated can provide simulations of both fluxes at integrated spatial scales (irrigation 

district or catchment) using mapped input data (Kharrou et al., 2021; Garrido-Rubio et al., 

2020; Bretreger et al., 2019). The FAO-2Kc requires i) maps of meteorological forcings, ii) 

maps of irrigation forcings, iii) maps of crop type to derive crop parameters, and iv) maps of 

soil texture to derive soil parameters. Those maps are becoming increasingly available and 

accurate thanks to the development of i) reanalysis meteorological data sets at enhanced 

resolutions (e.g. ERA5 (Hersbach et al., 2020), SAFRAN (Vidal et al., 2010)), ii) maps of 

actual irrigation type, volume, and timing derived from satellite observations (Massari et al., 
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2021), iii) crop type maps whether they come from field observations or classifications based 

on satellite observations (Foerster et al., 2012; Inglada et al., 2015), and iv) soil texture maps 

(e.g. SoilGrids (Hengl et al., 2017), GlobalSoilMap (Arrouays et al., 2017)). However, such 

data sets still have significant uncertainties due to intrinsic errors in the mapped data, and to 

additional errors associated with their conversion to directly usable input parameters (e.g., 

hydrodynamical soil properties are usually derived from soil texture maps) (Poggio et al., 

2021, Folberth et al., 2016, Loosvelt et al., 2012). It is thus often necessary to calibrate the 

model input parameters using external data. Such a calibration strategy can be implemented 

at the field scale using in-situ measurements (Kharrou et al., 2021; Saadi et al., 2015; Paredes 

et al., 2014; Er-Raki et al., 2007; Zhang et al., 2013), or over extended areas using remotely 

sensed soil moisture or ET data (Amazirh et al., 2022; Ouaadi et al., 2021; Er-Raki et al., 

2008). 

To reduce uncertainties in spatially distributed model input parameters, many works have 

dealt with the assimilation of remotely sensed soil moisture (Brocca et al., 2014; Azimi et al., 

2020; Zaussinger et al., 2019) and ET (Wu et al., 2015; Droogers et al., 2010) products. By 

minimizing sequentially and recursively the gap between simulations and observations, it is 

possible to indirectly retrieve optimal values of a set of input parameters or at least to reduce 

their a priori uncertainty. However, this approach may face difficulties in terms of practical 

implementation due to its extensive requirement in terms of computational resources. 

Calibrating an agro-hydrological model over large areas may indeed require a large number 

of simulations. This is especially true when models have a considerable number of input 

parameters (from a dozen (Simonneaux et al., 2009) to several dozen (Neitsch et al., 2011)) 

and when they are spatialized over several thousands of pixels or fields. In addition, the 

calibration of many parameters from limited observations raises the issue of equifinality. An 

equifinality occurs when several parameter sets lead to a result considered as optimal. This 

can be problematic because each of these parameter sets does not necessarily have any 

likelihood with the physical reality of the parameters—physical reality of which we can have 

prior knowledge (Beven et al., 2001, 2006). 

A solution to the above concerns is to analyze the sensitivity of the studied model in order to 

identify and calibrate the parameters having the most influence on the outputs. Indeed, 

focusing only on the most sensitive parameters may significantly reduce the required 

computer resources, in addition to limiting the compensation issues between parameters. 
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Even though models based on the FAO-2Kc method are widely used, the study of their 

sensitivity to input parameters is not or almost not present in the scientific literature. Olivera-

Guerra et al. (2020) analyzed the sensitivity of three soil parameters (soil moisture at field 

capacity, at wilting point, and the maximum roots depth (Zr_max)) of SAMIR using a local 

sensitivity analysis method, i.e., by varying independently each of the parameters and looking 

at their impact on an objective function. However, for a comprehensive analysis—and this is 

especially required when the number of analyzed parameters is larger—global sensitivity 

analysis methods are strongly recommended (Saltelli and Annoni, 2010; Song et al., 2015). 

Global sensitivity analysis methods can calculate the influence of input parameters over their 

entire range of variation and are appropriate for all types of models (non-linear and non-

monotonic). The Sobol variance-based method (Sobol, 1993, 2001; Saltelli et al., 2008, 2010) 

is a popular global sensitivity analysis method that has been used in many recent articles 

because of its robustness and of its ability to analyze interactions between parameters 

(Nossent et al., 2011; Baroni and Tarantola, 2014; Tang et al., 2007; Zhang et al., 2013). The 

principle of the Sobol method is to decompose the total variance of a model's output and to 

look at how each uncertain parameter contributes to it, whether this contribution is caused 

only by a single parameter or by the interaction of two or more parameters. 

In this context, the objective of this paper is to perform a Sobol sensitivity analysis of the 

FAO-2Kc-based SAMIR model, for both output fluxes ET and DP. To ensure the analysis 

results are representative of the field conditions where the FAO-2Kc method is generally 

implemented, ten fields and a total of 37 agricultural seasons were selected based on their 

contrasted meteorological, pedological, and agricultural characteristics. 

The paper is organized as follows. The SAMIR model, data sets, and the Sobol method are 

first described (Section 2). Then the results of the Sobol sensitivity analysis are discussed for 

both ET and DP (Section 3), with the overall goal of identifying the most influential 

parameters depending on actual field conditions. Finally, the conclusions and perspectives are 

presented (Section 4). 

 

2. Material and methods 

The overall methodology to assess the sensitivity of the SAMIR model to its input parameters 

is presented in the flowchart of Figure 1. First, SAMIR is presented together with its 12 input 

Jo
urn

al 
Pre-

pro
of



5 

 

parameters (section 2.1). Then the input data composed of forcing (precipitation, irrigation, 

NDVI), crop type, and soil properties are described (section 2.2). The next three subsections 

describe the main steps of the sensitivity analysis approach that are: calculating the Sobol 

indices for each of the parameters and each target variable ET and DP (section 2.3), sampling 

the SAMIR parameters with normal distributions defined for each agricultural season (section 

2.4), and running SAMIR on the generated samples and computing performance metrics 

(section 2.5). Finally, a proxy for the sensitivity of SAMIR ET and DP simulations is 

investigated from the variability of Sobol indices (section 2.6). 
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Figure 1: Flowchart of the methodology to assess the sensitivity of the SAMIR model to its 

input parameters. 

 

2.1. Satellite Monitoring for IRrigation (SAMIR) model 

The SAMIR (Simonneaux et al., 2009) model used in this study is based on the FAO-2Kc 

method. While a detailed description of the FAO-2Kc method is provided in Allen et al. 

(1998), only the main components are briefly reminded below as well as the main differences 
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between this method and the SAMIR model. For a more detailed overview of the SAMIR 

model, readers are encouraged to refer to Saadi et al. (2015). 

The principle of the FAO-2Kc method is the calculation of crop water balance components 

for daily ET estimation, taking into account the plants and the soil water status. It uses i) 

meteorological forcing variables to calculate the reference ET (called ET0), ii) precipitation 

and irrigation amounts resulting in water available for ET or for soil reservoir recharge, iii) 

crop and soil parameters to compute soil reservoir properties as well as plant and soil 

resistance to water stress, and iv) the initial soil water content at the start date of model 

simulations. In addition to these variables and parameters, the SAMIR model incorporates 

remotely sensed NDVI time series to drive the development of the modeled vegetation. 

The daily water balance equation simulated by SAMIR is: 

𝑃 + 𝐼 = 𝐸𝑇 + 𝐷𝑃 + ∆𝑆𝑊  (1) 

with P being the precipitation, I the irrigation, ET the actual evapotranspiration, ∆SW the 

variation of soil water content from the previous day, and DP the deep percolation being the 

water exceeding the maximum soil storage capacity. 

The ET calculation is done by applying crop coefficients to ET0 as follow: 

𝐸𝑇 = 𝐸𝑇0(𝐾𝑐𝑏 ⋅ 𝐾𝑠 + 𝐾𝑒)  (2) 

where ET0⋅Kcb⋅Ks is the water transpired by plants (T) and ET0⋅Ke is the soil evaporation 

(E). In equation (2), ET0 is calculated according to the FAO Penman-Monteith equation 

(Allen et al., 1998), Kcb is the basal crop coefficient following a linear relationship with 

NDVI, Ks is the water stress coefficient being a reduction factor of T, and Ke is the soil 

evaporative coefficient being related to vegetation fraction cover (Fc), surface soil moisture 

and soil properties. Similarly to Kcb, Fc follows a linear relationship with NDVI. 

In addition to the use of NDVI time series, SAMIR incorporates two additional modifications 

from the classical FAO-2Kc method: 

i) The Kr evaporation reduction coefficient, accounting for soil evaporation resistance as a 

function of surface soil moisture, is calculated with the method proposed by Merlin et al. 

(2016). This method, instead of using an a priori parameterization, uses a pedotransfer 

function based on clay and sand fractions (fclay and fsand) which was derived and evaluated 
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over a variety of sites and soil textures (Merlin et al., 2016; Lehmann et al., 2018; Amazirh et 

al., 2021). 

ii) The soil moisture values at field capacity and at wilting point are calculated using fclay and 

fsand from the pedotransfer function proposed by Román Dobarco et al. (2019). 

SAMIR uses a total of 12 user-defined parameters: six parameters related to the plants 

phenological stage and T capabilities (that we named the PHENO parameters), five 

parameters related to soil reservoir properties and plant resistances to stress (that we named 

the STRESS parameters), and one parameter used to set the soil water content at the start date 

of model simulations. A detailed description of the parameters is provided in Table 1, with 

their definition and the processes in which they are involved. 

Parameter Definition Process involved Type of 

parameter 

a_Fc (-) Linear relationship between 

Fc and NDVI 

(Fc=a_Fc⋅NDVI+b_Fc) 

E/T partitioning, roots 

development 

PHENO 

b_Fc (-) PHENO 

a_Kcb (-) Linear relationship between 

Kcb and NDVI 

(Kcb=a_Kcb⋅NDVI+b_Kcb) 

Vegetation development, T 

demand 

PHENO 

b_Kcb (-) PHENO 

Zr_max 

(mm) 

Maximum root depth Root reservoir size, 

triggering of T reduction due 

to water stress 

STRESS 

p (-) Stress threshold coefficient 

(plant resistance to water 

stress) 

Triggering of T reduction due 

to water stress 

STRESS 

fclay (-) Clay fraction in the soil 

column 

Soil reservoir water holding 

capacity, triggering of T and 

E reduction due to water 

limitation 

STRESS 

fsand (-) Sand fraction in the soil 

column 

STRESS 
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Ze (mm) Surface soil layer depth E STRESS 

Kcb_max (-) 

(not 

analyzed) 

Maximum Kcb value Maximum plant T demand PHENO 

Kc_max (-) 

(not 

analyzed) 

Maximum value of Kcb+Ke Maximum ET demand PHENO 

Init_hum (-) 

(not 

analyzed) 

Soil water content at the first 

day of the model simulation 

Crop water budget - 

Table 1: List of the SAMIR parameters and physical processes in which they are involved. 

 

2.2. Sites and data description 

Data of 37 agricultural seasons from ten different crop fields around the world were used. 

They were obtained from national and international databases, or from specific intensive field 

campaigns. The agricultural seasons cover a wide variety of agro-pedo-climatic conditions 

that reflect the contexts of use of SAMIR, i.e., different crop types mainly located in dry 

areas where water-related agricultural issues are important, but also and to a lesser extent, in 

temperate areas where ET estimation may also be key for a good water management. The 

data set involves 13 crop types including summer and winter cereals, vegetables, and fruit 

trees; 10 soil textures ranging from clay to silty loam; 4 irrigation types (flood irrigation, 

sprinkler, drip irrigation, no irrigation); and 2 different climates (semi-arid and temperate). 

Table 2 reports the characteristics of each agricultural season. 

The data used for running SAMIR are composed of i) meteorological variables obtained from 

local weather stations for precipitation and ET0 calculation (air temperature, wind speed, 

solar radiation, and relative air humidity), ii) irrigation dates and amounts obtained from 

water meters, iii) crop types, iv) soil texture (fclay and fsand), and v) NDVI time series obtained 

from Sentinel-2A and 2B and Landsat 7 and 8. The Sentinel-2 constellation provides a 10-

meter resolution pixel with a temporal resolution of 10 days from 2015 and 5 days since 

2017, in clear sky conditions. Landsat 7 provides 30-meter resolution pixels with a 16-day 
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time resolution since 1999. Landsat 8 has the same characteristics but has been available 

since 2013, and its overpass is offset by 8 days with respect to Landsat 7. 

It is important to note that for all agricultural seasons, the periods studied ranged from the 

beginning of the vegetation development to the end of the senescence period. Periods 

between successive agricultural seasons with bare soil or low evaporative demand were not 

considered herein because this study only assessed the sensitivity of ET and DP when the 

major part of crop’s water consumption occurs. 

Agricultural season 

label 

Country Climate (P; 

ET0, in 

mm) 

Irrigation 

type 

fclay 

(-) 

fsand 

(-) 

Reference 

AUR_Sunflower_07 France Temperate 

(640; 1020) 

None 0.32 0.20 Béziat et al. 

(2009) 
AUR_Wheat_06 

AUR_Wheat_08 

AUR_Wheat_10 

CAT_Apple_20 Spain Semi-arid 

(420; 1000) 

Drip 0.24 0.36 Domínguez-

Niño et al. 

(2019) 

 

CAT_Apple_21 

CAT_Maize1_21 Spain Sprinkler 0.36 0.20 This study 

CAT_Maize2_21 0.29 0.16 

CAT_Wine_20 Spain Drip 0.55 0.10 Bellvert et al. 

(2020) 
CAT_Wine_21 

LAM_Maize_06 France Temperate 

(640; 1020) 

Sprinkler 0.54 0.12 Béziat et al. 

(2009) 
LAM_Maize_08 

LAM_Maize_10 
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LAM_Maize_12 

LAM_Maize_14 

LAM_Maize_19 

LAM_Wheat_07 None 

LAM_Wheat_09 

LAM_Wheat_11 

BOUR_Wheat_16 Morocco Semi-arid 

(220; 1500) 

None 0.41 0.18 Merlin et al. 

(2018) 
BOUR_Wheat_17 

BOUR_Wheat_18 

CHI_Wheat_16 Morocco Drip 0.33 0.38 Rafi et al. 

(2019) 

MAR_Wheat1_02 Morocco Flood 0.47 0.19 Er-Raki et al. 

(2007) 
MAR_Wheat2_02 

MAR_Wheat3_02 

MAR_Wheat4_15 

MAR_Wheat5_15 Drip 

MEX_Bean_08 Mexico Semi-arid 

(250; 2050) 

Drip 0.44 0.36 Chirouze et 

al. (2014) 
MEX_Chilli_08 

 

MEX_Chickpeas_08 Flood 

MEX_Broccoli_08 

MEX_Potatoes_08 
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MEX_Sorghum_08 

MEX_Wheat1_08 

MEX_Wheat2_08 

TUN_Barley_12 Tunisia Semi-arid 

(270; 1310) 

Flood 0.33 0.33 Saadi (2018) 

TUN_Wheat1_12 

TUN_Wheat2_12 None 

Table 2: Agricultural seasons included in the sensitivity analysis and their main 

characteristics. 

 

2.3. Sobol sensitivity analysis 

2.3.1. Sobol indices 

A general overview of the Sobol method is presented here, while more detailed descriptions 

can be found in Saltelli et al. (2008, 2010), or Khorashadi Zadeh et al. (2017). 

Consider a model Y=f(X)=f(X1,…,Xk) with k parameters, where Y is the model output (e.g., 

a performance metric such as the root mean square difference), and X=(X1,…,Xk) the 

parameter set, which can be decomposed into 2k terms representing different order of 

interaction between parameters: 

𝑓(𝑋1, . . . , 𝑋𝑘) = 𝑓0 + ∑ 𝑓𝑖(𝑋𝑖)𝑘
𝑖=1 + ∑ ∑ 𝑓𝑖𝑗(𝑋𝑖 , 𝑋𝑗)+. . . +𝑓1,...,𝑘(𝑋1, . . . , 𝑋𝑘)𝑘

𝑗=𝑖+1
𝑘
𝑖=1    (3) 

The total output variance of the model V(Y) can be decomposed into corresponding partial 

variances: 

𝑉(𝑌) = ∑ 𝑉𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑉𝑖𝑗

𝑘
𝑗=𝑖+1 +. . . +𝑉1,...,𝑘

𝑘−1
𝑖=1   (4) 

The first-order index Si, also called main effect, is the ratio between Vi in equation (4) and 

the total output variance V(Y). Si can be written as follows: 

𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
=

𝑉𝑋𝑖
(𝐸𝑋~𝑖

[𝑌|𝑋𝑖])

𝑉(𝑌)
  (5) 

Jo
urn

al 
Pre-

pro
of



13 

 

The total index STi represents the sum of Xi's main effect with all its higher-order interactions 

up to order k. V~i is the variance resulting from the contribution of all parameters except Xi. It 

can be written as follows: 

𝑆𝑇𝑖 = 1 −
𝑉~𝑖

𝑉(𝑌)
=

𝐸𝑿~𝑖
[𝑉𝑋𝑖

 (𝑌|𝑋~𝑖)]

𝑉(𝑌)
  (6) 

STi index is the one we used in this study to evaluate the sensitivity of SAMIR parameters. 

Indeed, STi, unlike Si, integrates all the influence a parameter has on a model output, which 

is of interest to determine the most sensitive parameters. Si is used to calculate the 

interactions a parameter has with the others, by calculating the difference between STi and Si. 

If the sum of the Si is equal to 1, it means that the model is linear and that there is no 

interaction between the parameters. On the contrary, if the sum of the Si is smaller than 1, the 

model is non-linear. The lower the sum of the Si, the more the parameters of the model 

interact with each other. 

The SAFE Toolbox (Pianosi et al., 2015) was used in this study in order to perform the Sobol 

indices calculation and generate the samples. 

 

2.3.2. Convergence analysis 

For each agricultural season, a convergence analysis of Si and STi was done in order to verify 

that the number of simulations is sufficient to ensure their stability. Results (not shown) 

indicated that N=n(k+2)=33,000 (with n=3,000 and k=9 parameters) is sufficient for all the 

37 agricultural seasons. 

 

2.3.3. Bootstrapping 

In order to optimally take into account the uncertainties (related to the distribution of the 

model outputs) in the STi and Si values we used, a bootstrapping technique was applied 

(Efron and Tibshirani, 1994). This technique consists of randomly resampling the 33,000 

model outputs 1,000 times and recalculating the Sobol indices for each resampled data set. 

Then, the average of Si and STi is derived from the 1,000 resamples and can be kept for the 

sensitivity analysis. 
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2.3.4. Dummy parameter 

A dummy parameter, a parameter added to the analysis that we know has no influence on the 

model output, was introduced in this sensitivity analysis. For further explanation on the 

calculation of the dummy parameter, readers are encouraged to refer to Khorashadi Zadeh et 

al. (2017). The STi calculated for the dummy parameters were used herein as thresholds to 

identify sensitive parameters from insensitive parameters. They were also used to ease the 

readability of the STi values, by normalizing them for each agricultural season between the 

dummy parameter’s STi and the sum of all parameters’ STi. It is then called STinorm and is 

expressed as a percentage. 

 

2.4. Parameters sampling 

2.4.1. Latin hypercube sampling 

Despite its popularity, the Sobol sensitivity analysis method can be challenging to implement 

due to its high computational cost. It requires a total of N=n(k+2) samples, with n a baseline 

sample size that can vary between 1,000 to more than 10,000, and k the number of analyzed 

parameters. To optimize the sampling efficiency, the Latin hypercube sampling method 

(LHS) was used. LHS is a Monte Carlo-based method using a stratified sampling approach 

where the distribution of each parameter is divided into P ranges, each with a probability of 

occurrence of 1/P. Parameter values are randomly generated so that each range gets sampled 

only once. The same step is repeated for each of the k parameters to generate a matrix of size 

P⋅k with random sample combinations of the different parameters. The LHS method has been 

used in many studies, e.g., Campolongo et al. (2011), Saltelli and Annoni (2010), Zhang et al. 

(2013), Tang et al. (2007) and Song et al. (2015). 

 

2.4.2. Parameters’ mean and standard deviation 

Nine parameters were sampled and analyzed out of the 12 included in SAMIR. Of these, 

three parameters were fixed: Kcb_max, Kc_max, and Init_hum (see Table 1). For Kcb_max 

and Kc_max, a previous analysis (not shown) performed on six contrasted agricultural 

Jo
urn

al 
Pre-

pro
of



15 

 

seasons indicated that their sensitivity is negligible. The main explanation lies in the way the 

Kcb-NDVI relationships are constructed (using minimum and maximum NDVI values from 

satellite observations), limiting the number of days when these parameters can influence ET. 

Regarding Init_hum, we considered it as a forcing data and set it to its median value (0.5), 

because soil moisture measurements at the beginning of agricultural seasons were not 

available for all sites. 

The parameters analyzed were sampled according to a normal distribution using mean and 

standard deviation values. To make the link with the LHS method mentioned in section 2.4.1, 

the normal distributions obtained for each parameter were divided into P intervals of equal 

probability—intervals being then more or less narrow depending on the parameter’s 

distribution. The mean values of the nine parameters were defined for each agricultural 

season from: i) field analyses for fclay and fsand, ii) literature references for Zr_max, p, and Ze, 

and iii) satellite observations for NDVI-related parameters (a_Fc, b_Fc, a_Kcb, and b_Kcb). 

The standard deviation of crop-related parameters (Zr_max, p, a_Fc, b_Fc, a_Kcb, and 

b_Kcb) vary according to the crop type. It allows us to represent the uncertainty of a given 

parameter as a function of the mean value of this parameter, and therefore according to the 

crop type. For example, Zr_max of broccoli crops (having a mean Zr_max of 500 mm) has a 

smaller uncertainty—and therefore a smaller standard deviation—than Zr_max of maize 

crops having a mean value of 1050 mm. Since maize has been extensively investigated, the 

standard deviations of its parameters were chosen as a reference. Therefore, the ratios 

between the standard deviation and the mean obtained for each of the maize parameters was 

applied to the mean values of the corresponding parameters of the 12 other crop types to 

derive their standard deviation. Regarding the soil-related parameters, the mean and standard 

deviation of Ze were fixed for all the 37 agricultural seasons, as well as the standard 

deviations of fclay and fsand. Table 3 summarizes the mean and standard deviation values used 

to generate samples for the nine analyzed parameters. 

Parameters Range of 

mean 

values 

[MIN; 

MAX] 

References for mean values Standard 

deviation 

values 

[MIN; 

MAX] 

References for 

standard deviation 

values 
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a_Fc (-) [1.33; 

1.72] 

Linear relationship  

Fc=a_Fc⋅NDVI+b_Fc, 

built for each crop type 

with satellite observation 

(NDVI observed at bare 

soil and at full vegetation) 

[0.09; 0.12] Ratio between 

standard deviation 

and mean of maize 

(7%) applied to all 

crop types 

b_Fc (-) [-0.20; -

0.36] 

[0.05; 0.09] Ratio between 

standard deviation 

and mean of maize 

(25%) applied to all 

crop types 

a_Kcb (-) [1.33; 

1.72] 

Linear relationship 

Kcb=a_Kcb⋅NDVI+b_Kcb, 

built as for a_Fc and b_Fc 

[0.09; 0.12] Ratio between 

standard deviation 

and mean of maize 

(7%) applied to all 

crop types 

b_Kcb (-) [-0.20; -

0.36] 

[0.05; 0.09] Ratio between 

standard deviation 

and mean of maize 

(25%) applied to all 

crop types 

Zr_max 

(mm) 

[500; 

1500] 

Allen et al. (1998); Pereira 

et al. (2021); Rallo et al. 

(2021) 

[125; 208] Ratio between 

standard deviation 

and mean of maize 

(16%, Allen et al., 

1998) applied to all 

crop types 

p (-) [0.30; 

0.65] 

Allen et al. (1998); Pereira 

et al. (2021); Rallo et al. 

(2021) 

[0.05; 0.09] Ratio between 

standard deviation 

and mean of maize 

(16%, Allen et al., 

1998) applied to all 
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crop types 

fclay (-) 

 

 

[0.24; 

0.55] 

Soil analysis 0.075 Order of magnitude 

of uncertainties 

reported in the 

SoilGrids product 

(Hengl et al., 2017) 
fsand (-) [0.10; 

0.375] 

0.075 

Ze (mm) 125 Allen et al. (1998) 11 Allen et al. (1998) 

Table 3: Mean and standard deviation values used to generate samples for the nine analyzed 

parameters. 

 

2.5. Outputs for Sobol indices computation: Root-Mean-Square Deviation 

The Root-Mean-Square Deviation (RMSD) performance metric was used to calculate the 

Sobol indices. For each of the 37 agricultural seasons, 33,000 RMSD were calculated for 

both ET and DP, corresponding to the 33,000 parameters samples used for SAMIR 

simulations. The RMSD formula is written as follows: 

𝑅𝑀𝑆𝐷 = √
∑ (ŷ𝑖−𝑦𝑖)2𝑗

𝑖=1

𝑗
  (7) 

where j is the number of days in the simulated time series, i is one day of the time series, ŷi is 

a simulated variable time series, and yi is a reference variable time series. In this study, the 

reference variable time series yi were obtained for each agricultural season by averaging the 

33,000 simulated time series. 

 

2.6. Deriving a FAO-2Kc Sensitivity Proxy (SPFAO-2Kc) from field conditions 

Once the Sobol indices were obtained for the nine parameters, a correlation was sought 

between them and the soil-vegetation-atmosphere characteristics of the 37 agricultural 

seasons. The idea was to confront the Sobol indices with different criteria (soil texture, crop 
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type, cumulative rainfall, mean ET0, mean NDVI, modeled crop water stress level, etc.) until 

a satisfactory correlation was observed. From this correlation, a proxy of the sensitivity of the 

SAMIR parameters (SPFAO-2Kc) has been proposed. 

 

3. Results and discussion 

The results of the Sobol sensitivity analysis of SAMIR are presented and discussed in this 

section. Sections 3.1-3.3 focus on the model sensitivity for ET simulations, while section 3.4 

is about the DP simulations. First, the parameter sensitivity obtained for the 37 agricultural 

seasons are investigated (section 3.1). Then, a FAO-2Kc Sensitivity Proxy (SPFAO-2Kc) is 

proposed to explain and predict the SAMIR’s parameter sensitivity from the on-site 

characteristics solely (section 3.2). Next, the interactions between parameters are studied to 

better assess their sensitivity, and to be able to select a minimum parameter set for calibration 

(section 3.3). Finally, for DP, the similarities and differences with the ET case are discussed, 

and the main results are presented (section 3.4). 

 

3.1. Parameters sensitivity for ET simulations 

Each group of PHENO (a_Fc, b_Fc, a_Kcb, b_Kcb) and STRESS (Zr_max, p, fclay, fsand, Ze) 

parameters is involved in distinct and clearly identified processes as explained in section 2.1. 

This leads us to hypothesize that these two groups will have significant differences in terms 

of STinorm values. For each PHENO and STRESS group we summed the STinorm of their 

parameters and named these sums PHENO-STinorm and STRESS-STinorm. 

Table 4 reports the STi, Si, and STinorm values obtained for three selected agricultural seasons, 

which were found to reflect well the different sensitivity types. LAM_Wheat_11 is a stress-

sensitive agricultural season, CAT_Maize2_21 a phenology-sensitive one, and 

MEX_Chilli_08 has a balanced sensitivity. A stress-sensitive (phenology-sensitive) 

agricultural season is characterized by a STRESS-STinorm (PHENO-STinorm) greater than 

66%, respectively. Similarly, a balanced agricultural season has a PHENO-STinorm (and a 

STRESS-STinorm) between 33% and 66%. In Table 4, the first column corresponding to 

LAM_Wheat_11 shows a STRESS-STinorm equal to 81%. It means that for this agricultural 

season, the five STRESS parameters account for 81% of the RMSD variation and thus for 

Jo
urn

al 
Pre-

pro
of



19 

 

81% of the total sensitivity of the SAMIR’s parameters. Among these parameters, Zr_max, p, 

and fclay showed to be the most sensitive, having higher STinorm. Ze, which has a STi value 

equal to the one of the dummy parameter, ends up with a STinorm equal to 0. PHENO-STinorm 

of CAT_Maize2_21 is equal to 100%, indicating that it corresponds to a phenology-sensitive 

site. The PHENO-STinorm of MEX_Chilli_08 is equal to 64% reflecting a balanced sensitivity. 

Parameters 

LAM_Wheat_11 CAT_Maize2_21 MEX_Chilli_08 

STi Si STinorm STi Si STinorm STi Si STinorm 

a_Fc (-) 0,02 0,04 1% 0,21 0,30 16% 0,38 -0,02 13% 

b_Fc (-) 0,02 0,03 1% 0,10 0,06 9% 0,51 0,01 20% 

a_Kcb (-) 0,13 0,07 9% 0,73 0,34 47% 0,39 0,01 14% 

b_Kcb (-) 0,13 0,01 8% 0,41 0,16 28% 0,44 
0,07 

17% 

Zr_max (mm) 0,44 0,18 29% 0,05 0,05 0 0,33 0,09 10% 

p (-) 0,36 0,31 23% 0,05 0,06 0 0,23 0,01 3% 

fclay (-) 0,31 0,02 20% 0,05 0,05 0 0,39 0,01 13% 

fsand (-) 0,15 0,03 9% 0,05 0,05 0 0,30 0,01 8% 

Ze (mm) 0,00 0,02 0 0,05 0,05 0 0,21 -0,02 2% 

Dummy (-) 0,00 0,02 0 0,05 0,05 0 0,18 -0,05 0 

PHENO group 

(a_Fc, b_Fc, 

a_Kcb, b_Kcb) 

- - 19% - - 100% - - 64% 

STRESS group 

(Zr_max, p, fclay, 

fsand, Ze) 

- - 81% - - 0 - - 36% 

Table 4: Example of Si, STi, and STinorm values obtained for three contrasted agricultural 

seasons. 
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Figure 2: Boxplots of the STinorm of a) the nine parameters analyzed separately, and of b) the 

PHENO and STRESS parameter groups. Results are for ET simulations for all the 37 

agricultural seasons. 

 

Figure 2.a shows boxplots of the STinorm of the nine parameters analyzed separately, and 

Figure 2.b shows the boxplots of the STinorm of the parameter groups (PHENO-STinorm and 

STRESS-STinorm), obtained for the 37 agricultural seasons. Two elements stand out in this 

figure: i) a_Kcb, b_Kcb, and Zr_max have in most cases a larger STinorm than the other 

parameters, with however a large dispersion (first quartile Q1 is 0.1 for a_Kcb, b_Kcb, and 

Zr_max, and third quartile Q3 is 0.28 for a_Kcb and b_Kcb, and 0.37 for Zr_max), ii) 

PHENO-STinorm and STRESS-STinorm (Figure 2.b) are nearly identical with a large dispersion 

for both parameter groups (Q1 and Q3 are 0.23 and 0.78 respectively). This large dispersion 

indicates that from one agricultural season to another, and therefore from one agro-pedo-

climatic context to another, the parameter sensitivity can vary significantly. 

In Figure 3, results are presented grouped by the three types of sensitivity found within the 

agricultural seasons: stress-sensitive, phenology-sensitive, and balanced. Figure 3.a shows 

that for the majority of the 12 phenology-sensitive agricultural seasons, a_Kcb and b_Kcb 

have the largest STinorm. Figure 3.c shows that for the 15 stress-sensitive agricultural seasons 

Zr_max has the largest STinorm with a mean value of 36%. For these agricultural seasons, fclay 

also shows a certain level of sensitivity (mean STinorm is 18%). In Figure 3.e showing the 10 
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balanced agricultural seasons, the three parameters a_Kcb, b_Kcb, and Zr_max, already 

identified as the most sensitive, stand out. 
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Figure 3: Boxplots of the STinorm of the nine analyzed parameters separately (left) and the 

parameters summed by PHENO and STRESS parameter group (right) for the 12 phenology-

sensitive (top), the 15 stress-sensitive (middle), and the 10 balanced (bottom) agricultural 

seasons. These results are for ET simulations. 

 

The fact that very contrasting or even opposite types of sensitivity were identified between 

the 12 phenology-sensitive and the 15 stress-sensitive agricultural seasons confirms the 

relevance of gathering the parameters into PHENO and STRESS groups. Figures 2 and 3 

highlight distinct sensitivity types being well represented among the 37 agricultural seasons. 

They also indicate which parameters are the most sensitive depending on the type of 

agricultural season: a_Kcb and b_Kcb for the phenology-sensitive ones (dominated by the 

PHENO parameter group), Zr_max for the stress-sensitive ones (dominated by the STRESS 

group), and a_Kcb, b_Kcb, and Zr_max for the balanced ones. 

 

3.2. Searching for SPFAO-2Kc for ET simulations 

As a step further, we tried to find a proxy for SAMIR sensitivity (SPFAO-2Kc) based on the 

agro-pedo-climatic characteristics of agricultural seasons. Different criteria were tested and 

confronted with the STInorm of the parameter groups (PHENO-STinorm and STRESS-STInorm) 

for all agricultural seasons. Through trial and error, a good correlation emerged (r²=0.84) 

between the modeled stress intensity in the root zone, calculated with an average set of 

parameters, and the STinorm of the parameter groups (Figure 4). Formally, SPFAO-2Kc is written 

as follows: 

𝑆𝑃𝐹𝐴𝑂−2𝐾𝑐 =
∑ 𝐾𝑠𝑖

𝑑
𝑖=1

𝑑
,     𝑖𝑓  𝐾𝑠𝑖 < 1  𝑎𝑛𝑑  

𝐾𝑐𝑏𝑖

𝐾𝑐𝑏𝑚𝑎𝑥
> 0.2  (8) 

with d being the number of days of the simulated time series when the crop is stressed (Ks 

lower than 1) and when the crop coefficient (Kcb) is larger than 20% of its maximum value, i 

being a specific day meeting this condition, Ksi being a daily value of Ks, and Kcbi being a 

daily value of Kcb. To simplify the interpretation of SPFAO-2Kc, we normalized it between the 

minimum (0.41) and the maximum (0.93) of the SPFAO-2Kc values obtained among the 37 

agricultural seasons. 
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Figure 4: Correlation between SPFAO-2Kc and PHENO-STinorm for ET simulations over the 37 

agricultural seasons. 

 

SPFAO-2Kc can be understood as follows: the more an average set of parameters of an 

agricultural season generates intense crop water stress levels (related to Ks values lower than 

1) at times when potential T is significant, the more the parameters belonging to the STRESS 

group will weigh in the model sensitivity. To figure out why this indice emerged rather than 

another, we must seek to better understand how SAMIR works and how the different 

modeled processes influence the RMSD of simulated ET. Figure 5 shows the mean time 

series of four SAMIR outputs for LAM_Wheat_11 and CAT_Maize2_21, and their associated 

uncertainties (represented with Q1 and Q3). LAM_Wheat_11 is a non-irrigated winter wheat 

crop, with significant precipitation in winter and spring until April/May, followed by a 

decrease in rainfall resulting in water stress from April. It is a stress-sensitive agricultural 

season (STRESS-STinorm is 81%). CAT_Maize2_21 is a heavily irrigated summer maize crop 

with no water stress (Ks=1) throughout the season. It is a phenology-sensitive agricultural 

season with a PHENO-STinorm equal to 100%. 
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Figure 5: Daily time series of Ks, Kcb, T, and E for LAM_Wheat_11 (top) and 

CAT_Maize2_21 (bottom) obtained from 33,000 simulations, with their mean (lines) and 

uncertainties represented with Q1 and Q3 (shaded areas) respectively. 

 

Simulated time series of LAM_Wheat_11 and CAT_Maize2_21 illustrated in Figure 5, and 

the STinorm values shown in Table 4, provide keys to understand the relevance of SPFAO-2Kc 

(equation 8): 

i) In Figure 5 we see that there are more uncertainties associated with T than with E. This 

explains why a_Kcb, b_Kcb, and Zr_max stand out to be more sensitive (Table 4), as they are 

related to T process. It also explains why the parameters fclay, fsand, Ze, and even a_Fc and 

b_Fc are less sensitive, as they are partly or entirely associated with E process. Such 

differences in the level of uncertainties between T and E can be explained by the fact that i) 

the simulated time series of the 37 agricultural seasons include few bare soil periods (fraction 
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cover higher than 0.75 most of the time), and ii) the formalism for E simulation generates less 

uncertainty than the formalism related to T simulation. 

ii) The uncertainties in T and E related to a_Kcb and b_Kcb are practically constant during 

the whole simulated period (an uncertainty associated to Kcb is always present on each 

simulated day) but are considerably less important than the uncertainties in T associated to 

water stress (i.e., when Ks is lower than 1). 

iii) During the simulated periods when Ks is lower than 1, the uncertainties associated with T 

can be very large. If the water stress lasts long enough, while Ks is decreasing, the STRESS 

parameters (and thus mostly Zr_max) become more sensitive than the PHENO parameters, as 

is the case for LAM_Wheat_11. 

iv) When there is no water stress (Ks equal to 1) as for CAT_Maize2_21, the uncertainties 

associated with T are entirely related to the PHENO parameters, and thus essentially to 

a_Kcb and b_Kcb. 

 

The above four points help understand why SPFAO-2Kc, based on the modeled crop water stress 

intensity, emerged as an efficient proxy for the model sensitivity. Indeed, when there is little 

water stress (Ks close to 1) the uncertainties generated by the STRESS parameters are low. 

This is explained by the fact that Ks is a bounded variable whose maximum value is fixed at 

1, resulting in limiting the uncertainties caused by the STRESS parameters when Ks is close 

to 1. By contrast, when there are more intense stress episodes, the soil moisture content of the 

root reservoir (and thus the Ks value) takes time to decrease, generating a longer period with 

larger uncertainties associated with T. Consequently, the longer and more intense the stress 

episode is, the more T simulations will be affected by the STRESS parameters, and the more 

they will weigh in the final sensitivity of the agricultural season. 

Note that, although the correlation between SPFAO-2Kc and PHENO-STinorm is close to 1, the 

relationship shows a significant variability when PHENO-STinorm is below 30%. This is 

because SPFAO-2Kc is less effective for agricultural seasons dominated by the stress parameters 

(with low PHENO-STinorm). 

 

3.3. Interactions between parameters 
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Figure 6 shows boxplots with the total interactions of the nine analyzed parameters for the 37 

agricultural seasons for ET simulations. The total interactions of a parameter (calculated by 

subtracting Si to STi) reflect how this parameter indirectly affects the sensitivity of all the 

other parameters when its value is changed. The knowledge of the total interactions, coupled 

with a certain knowledge of the SAMIR model, gives enough information to select the 

minimum parameter set to be calibrated among the parameters being the most sensitive. The 

knowledge of SAMIR that is of interest here is that the PHENO and the STRESS parameter 

groups are involved in very different processes and have little relationship with each other.  

As mentioned in section 2.3.1, for a given agricultural season, the lower the sum of its Si the 

higher the general level of interaction between its parameters. Here, the 37 agricultural 

seasons have globally important levels of interactions since the sum of their Si is on average 

relatively low (0.48), with a minimum of 0.17 and a maximum of 0.68. In Figure 6 we can 

see that among the PHENO group, a_Kcb and b_Kcb concentrate most of the total 

interactions. This makes sense since they are part of the same linear relationship linking Kcb 

to NDVI. This means that when a_Kcb is modified for calibration, it greatly affects the 

b_Kcb sensitivity, and conversely. Therefore, calibrating only one of these two parameters is 

somehow equivalent to calibrating the Kcb-NDVI relationship, in addition to avoiding 

compensation effects between them. Herein, we chose to calibrate a_Kcb rather than b_Kcb, 

because a_Kcb has a greater influence on the vegetation growth, being a time when the T 

demand is generally high. Regarding the STRESS group, almost all the total interactions are 

shared between Zr_max, fclay and fsand. These three parameters interact strongly with each 

other as they are all involved in the size of the root reservoir, which is the key element 

governing the occurrence and intensity of water stress. Therefore, as with a_Kcb and b_Kcb, 

calibration of only one of these three parameters can be sufficient to indirectly calibrate the 

root reservoir. We recommend calibrating Zr_max rather than fclay and fsand because Zr_max 

appeared to be the most sensitive, and because no validated maximum root depth maps are 

currently available, as opposed to soil texture maps. 

From this parameter interactions analysis, it appears that out of the nine parameters, only two, 

a_Kcb and Zr_max, can explain most of the model sensitivity. These parameters can be 

calibrated either together or individually depending on the value of SPFAO-2Kc and the 

available computer resources. 
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Figure 6: Boxplots of the total interactions for ET simulations of the nine analyzed 

parameters for the 37 agricultural seasons. 

 

3.4. Parameters sensitivity for DP simulations and relationship with agricultural season 

characteristics 

This section deals with the sensitivity of the RMSD calculated for DP simulation. It goes into 

less detail than for ET simulation and focuses on the similarities and differences between DP 

and ET cases. Herein, only 31 of the 37 agricultural seasons were analyzed because six had 

no DP event. As for the ET case, the parameters were gathered into STRESS and PHENO 

groups, and the most sensitive ones were a_Kcb, b_Kcb, Zr_max, and to a lesser extent fclay 

and fsand (not shown). 
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Figure 7: Correlation between SPFAO-2Kc_DP and PHENO-STinorm for DP simulations for 31 

agricultural seasons. 

 

The sensitivity proxy for DP simulations (SPFAO-2Kc_DP) is similar to the one proposed for ET 

(SPFAO-2Kc), with the only difference being that the period used to calculate it excludes the 

days following the last DP event. Indeed, the days following the last DP event, and their 

associated agro-climatic conditions, do not count in the generation of any DP event. 

Figure 7 shows the relationship between SPFAO-2Kc_DP and PHENO-STInorm for DP 

simulations. A determination coefficient of 0.73 was obtained. The lower correlation obtained 

for DP than for ET (r²=0.84) can be explained by the higher complexity of the parameters 

sensitivity for DP simulations. Indeed, in SAMIR, the DP events are punctual, and each of 

them has its own sensitivity according to what occurred during the period just before. The 

final sensitivity of the parameters can thus be seen as the product of several STinorm obtained 

for each DP event. Also, especially for agricultural seasons with few DP events, the period 

prior to the last DP events may have involved a significant portion of bare soil, which would 

potentially lead to a higher sensitivity of the evaporation-related parameters. This lower 

correlation may also be related to the fact that the 31 agricultural seasons are less 

homogeneously distributed between phenology-sensitive and stress-sensitive agricultural 

seasons, with 21 agricultural seasons being phenology-sensitive and only four being stress-

sensitive. 
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3.5. Overall results in brief 

The Sobol sensitivity analysis for both ET and DP simulations, as well as the sensitivity 

proxy SPFAO-2Kc and the total interaction analysis, revealed several guidelines for the 

calibration of the FAO-2Kc-based model SAMIR: 

i) for SPFAO-2Kc greater than 0.66 (phenology-sensitive agricultural season): a_Kcb should be 

selected for calibration. 

ii) for SPFAO-2Kc lower than 0.33 (stress-sensitive agricultural season): it should be Zr_max. 

iii) for SPFAO-2Kc between 0.33 and 0.66 (balanced agricultural season): it should be both 

a_Kcb and Zr_max. 

 

Note that the above recommendations only apply in the case where the number of parameters 

to be calibrated should be minimized at maximum, because of computer resources limitation 

or equifinality issues. If there are no such issues, it is possible to calibrate both a_Kcb and 

Zr_max in every case. Also, by focusing either on a_Kcb or Zr_max, only certain aspects of 

the simulated time series would be considered in the calibration. For example, if only a_Kcb 

is calibrated for a phenology-sensitive agricultural season with a SPFAO-2Kc equal to 0.70 (thus 

having some water stress periods), the days when ET or DP are impacted by crop water stress 

would not be considered in the calibration, because a_Kcb only affects the T demand. In 

contrast, if only Zr_max is calibrated for a stress-sensitive agricultural season having a SPFAO-

2Kc equal to 0.30, the focus is only given to the periods when the amount of T is reduced by 

water stress, neglecting the days without water stress in the calibration process. 

In summary, depending notably on the computer capacities available, we recommend that the 

user calibrate both Zr_max and a_Kcb together, or choose between the two based on the 

SPFAO-2Kc calculated for the studied agricultural season (see Table 5). 

Moreover, by choosing to calibrate only a_Kcb and/or Zr_max, and thus only T-related 

parameters, the days with bare soil or very little vegetation are not or poorly taken into 

account in the calibration. We found that under the conditions of the studied agricultural 

seasons the parameters related to E appear to be much less sensitive than the parameters 

Jo
urn

al 
Pre-

pro
of



30 

 

associated with T (as shown and explained in section 3.1). However, it is worth mentioning 

that the parameters related to E may be important to consider on specific agricultural seasons 

(not included in this study) with long and wetted bare soil periods. 

 

SAMIR sensitivity 

type 

Definition Parameter(s) to 

calibrate 

Phenology-sensitive PHENO-STinorm > 66% and STRESS-

STinorm < 33% 

a_Kcb (if SPFAO-2Kc > 

0.66) 

Stress-sensitive STRESS-STinorm > 66% and PHENO-

STinorm <33% 

Zr_max (if SPFAO-2Kc 

< 0.33) 

Balanced 33% <= PHENO-STinorm <= 66% and 

33% <= STRESS-STinorm <= 66% 

a_Kcb and Zr_max (if 

0.33 >= SPFAO-2Kc >= 

0.66) 

Table 5: Three types of SAMIR sensitivity depending on the range of PHENO-STinorm and 

STRESS-STinorm, with the recommended parameters to be calibrated according to SPFAO-2Kc 

(in case where the number of parameters to be calibrated must be optimized). 

 

4. Conclusion 

FAO-2Kc-based models are increasingly applied in a spatialized way to simulate the inward 

and outward water fluxes over extended agricultural areas (e.g., irrigation district). It requires 

knowing the sensitivity of the uncertain input parameters in order to be able to calibrate them 

spatially and optimally, and to face computational and equifinality issues. However, although 

these models have been widely used, no proper sensitivity analysis has yet been done. 

To fill the gap, this paper investigated the sensitivity of the FAO-2Kc-based crop water 

balance model SAMIR for the simulation of ET and DP, considering the potential influence 

of different site characteristics. For this purpose, we applied the Sobol sensitivity analysis 

method on 10 instrumented sites and a total of 37 agricultural seasons, being diverse in terms 

of climate, pedology, and agricultural practices. Sobol sensitivity indices were calculated for 
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nine SAMIR parameters, and a correlation between them and the agricultural season's 

conditions was sought. 

Sobol's sensitivity indices indicate that three (among the nine) parameters stand out, weighing 

on average 63% in the sensitivity of SAMIR ET: a_Kcb and b_Kcb related to phenology, and 

Zr_max related to crop water stress. It also appears that the importance of the PHENO and 

STRESS parameter groups in the SAMIR sensitivity varies greatly from one agricultural 

season to another depending on the modeled crop water stress intensity. A proxy for the 

sensitivity of SAMIR (SPFAO-2Kc) has thus been proposed as the average of the crop stress 

coefficient (Ks) on the days when there is crop water stress (Ks lower than 1) and when the 

crop coefficient (Kcb) is larger than 20% of its maximum value (Kcb>0.2⋅Kcb_max). SPFAO-

2Kc is able to determine 84% of the variability in SAMIR ET sensitivity (73% for the DP case) 

among all agricultural seasons considered.  

The total interactions analysis coupled to our knowledge of the SAMIR model revealed a 

strong interaction between a_Kcb and b_Kcb, as well as between Zr_max, fclay and fsand. This 

further highlights the importance of the sensitivity of a_Kcb, b_Kcb, and Zr_max, and led us 

to retain only a_Kcb and Zr_max for calibration. If the user has no limitation in terms of 

computing capacity, he can calibrate both a_Kcb and Zr_max. If he is faced with such 

constraints and needs to optimize the number of parameters to be calibrated, he can use 

SPFAO-2Kc value (computed from a simulation performed with an average parameter set). 

When SPFAO-2Kc is lower than 0.33, we recommend calibrating Zr_max, when it is higher than 

0.66, a_Kcb, and when it is between 0.33 and 0.66, both a_Kcb and Zr_max. 

These results represent a solid basis for spatializing FAO-2Kc-based models using remotely 

sensed data through notably the distributed calibration of their input parameters. Such a 

calibration strategy could rely on the soil moisture products derived from SMOS, SMAP 

(e.g., Ojha et al., 2019; Paolini et al., 2021), or Sentinel-1 (e.g., El Hajj et al., 2017), and on 

ET products derived from Landsat 8 (Senay et al., 2016) or Sentinel-2 and Sentinel-3 (e.g., 

Guzinski et al., 2020) ongoing missions. In addition, new satellite missions will be launched 

in the coming years, such as TRISHNA (Lagouarde et al., 2018) and LSTM (Koetz et al., 

2018), which will provide field-scale ET estimates at an unprecedented frequency. 
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SAMIR is an open-source software and is available at the following address: 

https://gitlab.cesbio.omp.eu/modelisation/modspa/. Documentation can be found by visiting 

this link. The code is implemented in Python 3 language. Contact information: 

vincent.rivalland@cesbio.cnes.fr. 
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Highlights 

• The sensitivity of a FAO-2Kc-based crop water balance model is analyzed. 

• Evapotranspiration and deep percolation are analyzed over contrasted crop sites. 

• Two parameters are found to be the most sensitive (a_Kcb and Zr_max). 

• A proxy for the model’s sensitivity is derived from the modeled crop water stress. 

• The proxy explains 73-84% of the variability in the model output sensitivity. 
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