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Abstract: In this paper we describe a motion planner for a mobile robot on

a natural terrain. This planner takes into account placement constraints of the

robot on the terrain and landmark visibility. It is based on a two-step approach:

during the �rst step, a global graph of subgoals is generated in order to guide

the robot through the landmark visibility regions; the second step consists in

planning local trajectories between the subgoals, satisfying the robot placement

constraints.

1. Introduction

Autonomous navigation on natural terrains is a complex and challenging prob-

lem with potential applications ranging from intervention robots in hazardous

environments to planetary exploration. Mobility in outdoors environments has

been demonstrated in several systems [16, 7, 8, 3].

The adaptive navigation approach currently developped at LAAS within

the framework of the EDEN experiment [3] demonstrates fully autonomous

navigation in a natural environment, gradually discovered by the robot. The

approach combines various navigation modes (reex, 2d and 3d) in order to

adapt the robot behaviour to the complexity of the environment. The selection

of the adequate mode is performed by a speci�c planning level, the navigation

planner [11] which reasons on a global qualitative representation of the terrain

built from the data acquired by the robot's sensors.

In this paper, we concentrate on the motion planning algorithms required

for the 3D navigation mode [13], selected by the navigation planner when very

rugged terrain has to be crossed by the robot. On uneven or highly cluttered

areas, the obstacle notion is closely linked with the constraints on the robot

attitude, and therefore contrains the robot heading position. Planning a tra-

jectory on such areas requires a detailed modeling of the terrain and also of the

robot's locomotion system.

Several contributions recently addressed motion planning for a vehicle

moving on a terrain [15, 9, 4, 2, 6]. In particular, the geometric planner we

proposed in [15, 6] is based on a discrete search technique operating in the

(x; y; �) con�guration space of the robot, and on the evaluation of elementary



Figure 1. Placement of an articulated chassis

feasible paths between two con�gurations. The overall e�ciency of the ap-

proach was made possible by the use of fast algorithms for placing the robot

onto the terrain (Figure 1) and checking the validity of such placements.

In the navigation experiments previously conducted with a real robot [13],

motion control was limited to executing the paths returned by this planner

by relying on odometry and inertial data. The unpredictable and cumulative

errors generated by these sensors, especially signi�cant on uneven and slip-

pery areas, often caused important deviations leading to a lack of robustness

at execution. To overcome this problem, the robot has to be equipped with

environment sensors (eg. cameras) that can provide additionnal information

by identifying appropriate features of the terrain, and allow to use sensor-based

motion commands. Such primitives are more tolerant to errors than classical

position-controlled primitives, but their feasability has to be checked in term

of visibility of the landmarks along the trajectory.

The contribution of this paper is to propose a motion planning approach

which considers a set of given landmarks (eg. terrain peaks [5]) in the terrain

model, and computes a partitionning of the terrain into regions where particular

landmarks are visible. The approach allows to produce trajectories that remain,

whenever possible, inside these visibility regions where the robot can navigate

with respect to the given landmarks using closed-loop primitives relying onto

the sensor's data.

2. The Motion Planning Approach

2.1. Problem statement

We consider a geometric model of an articulated robot illustrated by Figure

1. The robot is composed of several axles linked by passive joints allowing to

adapt its shape to the terrain relief. The terrain is described by surface patches

de�ned from an elevation map in z associated with a regular grid in (x; y). The

terrain model also contains a set of point landmarks corresponding to major

terrain features that the robot should be able to track at execution. The robot

motions are constrainted by:



� validity constraints related to the feasibility of the motion (eg. stability

of the vehicle, collision avoidance with the terrain, mechanical constraints).

� visibility constraints which traduce the ability of the robot to detect

one or a set of landmarks from a given con�guration.

While the �rst constraints need to be veri�ed to guarantee the safeness

of the motion, it would be too restrictive to only consider solutions satisfying

the visibility constraint all along the path. Therefore, the planning approach

should generate solutions alternating large portions verifying the visibility of

the landmarks (sensor-based mode), and subpaths where the landmarks cannot

be used at execution (position-controlled mode).

2.2. A two-step approach

In order to separate the integration of the two kinds of constraints, we propose

a motion planner based on the following two-step approach:

� In the �rst step, subgoals are generated in order to guide the robot through

landmark visibility regions computed from the terrain model and the land-

mark set. These subgoals and the start/�nal con�gurations are connected

into a network of possible paths which minimize a cost reecting the

traversability of the terrain.

� In the second step, a motion planner based on [6] is used to transform the

possible paths into feasible ones verifying the validity constraints.

The �nal trajectory is a sequence of trajectories from a subgoal to another one,

alternately in and out of the visibility regions. We describe below the two steps

of the approach respectively called global planner and local planner.

3. The Global Planner

3.1. Landmark visibility

The landmarks de�ne a partition of the terrain into regions, called the visibil-

ity regions, where particular landmarks are visible. Consider a robot equipped

with an omnidirectional sensor. A landmark L

i

can be seen if the following

constraints are respected:

� L

i

is not hidden by a part of the terrain.

� the distance from the sensor to L

i

is within some limit values.

For the �rst constraint, we use a hierarchical model of the terrain (see [15])

that allows an e�cient collision checking: if the segment connecting the sensor

center to the landmark does not collide with the terrain, then the landmark can

be seen from this position. The test is performed for every position respecting

the second constraint and the set of points obtained is the visibility region of

the landmark.

For a given landmarkL

i

, note that the visibility region may content several

components. Each one is considered as a particular visibility region R

ij

.

3.2. Visibility graph

The visibility regions are then connected into a visibility graph. As illus-

trated by Figure 2, the graph has two type of edges. Some edges represent the

possibility of a direct connection between two adjacent regions (ie. without



crossing another region). These edges are �rst computed by a numerical prop-

agation technique described in the next section. This propagation, issued from

the boundary of the visibility regions, allows to associate to the edges a path

minimizing a cost evaluated from the terrain shape. The endpoints of these

paths de�ne the nodes of the graph. They correspond to a set of subgoals lo-

cated onto the boundary of the visibility regions. The graph is then completed

by additionnal edges connecting the di�erent subgoals generated in the same

visibility region. The paths associated to these edges are also computed by a

numerical propagation performed inside the visibility regions.
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Figure 2. visibility regions and associated graph

3.3. The propagation algorithm

Let us now describe the propagation algorithm used to compute the visibility

graph introduced in the previous section.

A cost bitmap is �rst computed by evaluating for each point of the

terrain model, the slope and the roughness of a circular domain centered at

this position, with a radius related to the size of the robot. It represents the

di�culty for the robot to cross the domain.

The propagation consists in a wavefront expansion of a numerical potential

obtained by integrating the cost across the bitmap, starting from each visibility

region. The pixels belonging to the boundary of these regions are initialized

to a null potential. At each iteration, the smallest potential pixel is expanded

using an 8-neighbours propagation. Therefore, waves of increasing potential

propagate from each region.

Whenever the waves issued from two regions meet together, an edge is

created and the associated path is easily obtained by chaining back the pixels up

to the associated region boundaries. The edge cost is the sum of the potentials

computed at the meeting point. The propagation stops when all pixels have

been expanded.

Path determination can take into account uncertainty growing outside the

visibility regions by evaluating the maximum cost on a circular domain around

the robot position, proportional to the uncertainty. This leads to a modi�cation

of the path that improve the robustness of the execution.



4. The Local Planner

The global planning step provides a sequence of subgoals between the initial and

the goal con�guration. The local planner is based on the algorithms described

in [6]. Its role is to generate trajectories between the subgoals, while respecting

the validity constraints (stability, non-collision, mechanical constraints).

The placement p = (q; r(q)) of the articulated robot (Figure 1) is de-

�ned by a con�guration vector q = (x; y; �) specifying the horizontal posi-

tion/heading, and by a vector r(q) of the joint parameters (the roll and pitch

angles of the axles). For a given q, the values of r(q) depend on the contact re-

lations between the wheels and the terrain. Computing the robot placement is

required for the evaluation of the validity constraints considered by the planner.

Planning is performed in two steps: a preprocessing step to compute robot

placements on the terrain, and the planning step itself.

4.1. Preprocessing step

The preprocessing step is aimed at reducing the computational cost of the robot

placement. It consists in slicing the orientation parameter, and in computing

for each slice, two surfaces that characterize the evolution of the roll angle and

elevation of a single axle, in function of its position onto the terrain. This step

has only to be performed once, before the �rst call of the local planner.

4.2. Graph search

The planning step uses an approach similar to [1] in order to incrementally build

a graph of discrete con�gurations that can be reached from the initial position

by applying sequences of discrete controls during a short time interval. The

arcs of the graph correspond to feasible portions of trajectory, computed for a

given control. Only the arcs verifying the validity constraints are considered

during the search.

The heuristic function used to e�ciently guide the search is based on the

potential bitmap computed by the global planner. It also allows to follow,

whenever possible, the paths computed at the global level.

5. Results and Discussion

The motion planning approach has been implemented in C on a Silicon graphics

indigo workstation with an R4000 processor. We describe below some simu-

lation results.For these examples, the terrain is represented by a 114 � 179

elevation map (see Fig 3).

Several steps of the global planner are shown on Figure 4: the cost bitmap

and potential bitmap computed from the terrain model and three landmarks

(Fig. 4-a), and the obtained visibility graph (Fig 4-b). The landmarks visibility

regions and the connecting paths are represented in dark on the �gure.
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Figure 3. The terrain model, the selected landmarks and the initial/�nal con�gura-

tions

Figure 4. The global planning step. a- the cost and potential bitmaps and b- the

computed visibility graph.

The �nal trajectory computed by the local planning step is displayed in

Figure 5. One may note that a solution crossing the visibility regions computed

for landmarks 3 and 1 would have been preferable for the visibility constraint.

However, trajectories connecting the initial con�guration to region 3 do not

satisfy the validity constraints and the global planner had therefore to choose

another path in the visiblity graph, leading to the �nal trajectory shown on



Figure 5. The �nal trajectory

time (sec.)

Preprocessing cost bitmap 3.260

quadtree 1.540

slices 13.850

Global planning visibility regions 0.500

potential bitmap 2.470

visibility graph 0.930

Local planning graph searchs 2.000

Table 1. Some computation times

the �gure.

Computation times are reported in the following table. In the preprocessing

step, data structures are computed from the terrain and the robot models: the

cost bitmap, the hierarchical terrain model (quadtree) used by the collision

checker and the orientation slices used by the local planner.

In the next example, only one landmark has been selected (Fig 6). The

�rst trajectory represents planning without landmarks [6]. The interest of the

landmark-based approach is to allow the robot localisation in the landmark

visibility region. Computation times are similar to the previous example.

The last example shows the inuence of uncertainty on path determination.

Figure 7 represents cost bitmap for di�erent uncertainty values. In Figure

8, taking into account uncertainty modi�es the path by moving away from

hazardous regions.

In the presented approach, the planned trajectories pass through the land-

mark visibility regions allowing robot localisation. Integrating uncertainty in

cost bitmap is a �rst step toward planning with uncertainty. This should be

completed in a future work.



Figure 6. a-initial and goal con�gurations b-trajectory without landmark c-

trajectory with landmark

6. Experiment

We are currently working on the integration of the presented motion planner

in the EDEN experimental testbed. Experiments will be performed with the



Figure 7. Cost bitmap with di�erent uncertainty values

Figure 8. Path modi�cation with uncertainty

LAMA Marsokhod (Figure 9) equipped with a range �nder and a stereovision

system for terrain modelling and landmark recognition. The purpose is to

demonstrate autonomous navigation of a robot on rough terrain.

The robot is given a global goal in an unknown environement and perceives

incrementaly the natural environment. At each step, a perception of a portion

of the environment is done. This sensor information allows terrain modeling

[13] and landmark extraction [5].

To use the landmark-based motion planner approach it is necessary to

de�ne a goal in the current perception. The goal position is chosen in order to

ensure a good matching between the di�erent perceptions.

At this level the landmark-basedmotion planner is called with this goal and

landmark position. During the excution, landmark visual servoing is used inside

the visibility regions, and classical odometry method outside these regions.

After the path execution, a new step is done as far as the global goal is not

reached.



Figure 9. The mobile robot Lama
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