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Simulation of coupled hydro-mechanical (HM) processes in fractured porous media requires specific numerical schemes to deal with nonlinearity, computational burden, and domains heterogeneity. The mixed hybrid finite element method (MHFEM) is superior to the standard finite element method in simulating flow in fractured domains.

However, the mixed finite element formulation cannot be efficiently used for the discretization of the mechanical equations. The extended finite element method (XFEM) has significant advantages in modeling mechanical processes in cracked domains. Thus, the main goal of this paper is to extend the application of the MHFEM to HM processes in fractured domains by combining it with XFEM. MHFEM is applied to the flow equations, while XFEM is used to discretize the mechanical equations. This coupling allows for an efficient extending of the hybrid dimensional approach to deal with coupled HM processes. This approach is usually used for representing fractures in flow models, as it allows for a significant reduction in computational requirements. The mass lumping technique, usually used for improving the stability of the MHFEM is generalized to fracture domains and mechanical processes. We show how this technique can be implemented with the fixed stress split scheme in order to improve the performance of the numerical scheme. The newly developed scheme (MHFEM-XFEM) is validated against analytical and numerical solutions. Comparison against the standard finite element method shows that the new scheme significantly reduces the computational overhead while providing a high accuracy. The gain in CPU time is more significant in highly fractured domains.

Introduction

Coupled hydro-mechanical (HM) processes in fractured porous media occur frequently and have a significant influence on a number of important engineering applications, such as groundwater management, salt domes, CO2 sequestration, tunnels and dams stability, waste storage, geothermal oil and gas reservoirs, and so on [START_REF] Bai | Coupled hydro-mechanical analysis of seasonal underground hydrogen storage in a saline aquifer[END_REF]Li et al., 2020;[START_REF] Zhou | Hydro-mechanical interaction analysis of high pressure hydraulic tunnel[END_REF]. These processes are rather complex not only for coupling fluid flow and solid deformation but also for involving inflation and deformation of fractures [START_REF] Hu | A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures[END_REF][START_REF] Stefansson | A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media[END_REF]. Numerical modelling is an effective approach to study the coupled HM problems but remains a challenging task (Kolditz et al., 2018). On one hand, the challenges are related to the large scales in time and space, the nonlinear interaction between the different physical processes, and the heterogeneous and anisotropic nature of the domains. On the other hand, the challenges are also linked with the mathematical properties of the governing equations and the limited capacities of existing numerical methods in producing efficient solutions while maintaining a high accuracy. Many efforts have been devoted to the development of advanced numerical schemes for the simulation of HM processes in fractured porous media, but this topic is still open in order to improve model realism, accuracy, and performance [START_REF] Miller | Numerical simulation of water resources problems: Models, methods, and trends[END_REF].

The presence of fractures in porous domains renders the simulation of HM processes more challenging as the topology of the fractures can be affected by the geo-mechanical processes and vice versa. Fractures in porous media can be modeled through two common approaches [START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF]: the equivalent continuum model (ECM) and the discrete fracture model (DFM). The first approach (i.e., ECM) proceeds by representing the domain with equivalent hydraulic properties. This allows for improving the computational efficiency, but it has several drawbacks regarding the realism and applicability [START_REF] Pouya | Effective permeability of cracked unsaturated porous materials[END_REF] because it is not easy to represent two different domains with the same equivalent parameters. The dual-porosity model is an improvement of the ECM, in which the fractured domains are represented with dual interactive continua for fractures and porous matrix, respectively [START_REF] Fahs | An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media[END_REF].

DFM is more realistic than ECM because the fractures are considered explicitly (Li et al., 2020), which is more suitable in real applications as it allows for simulating preferential flows [START_REF] Cey | Simulation of groundwater recharge dynamics in partially saturated fractured soils incorporating spatially variable fracture apertures: SIMULATION OF RECHARGE IN FRACTURED SOILS[END_REF]. Despite that DFMs are computationally expensive, there is an increasing interest in these models due to their reliability. The hybriddimensional technique [START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]Li et al., 2020), in which the fractures are considered as the element interfaces of the computational mesh, is widely used to improve the efficiency of numerical codes based on the DFM. This increasing interest in DFM has motivated extensive research on the development of appropriate numerical schemes in multiple applications [START_REF] Berre | Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches[END_REF][START_REF] Nordbotten | Unified approach to discretization of flow in fractured porous media[END_REF].

A variety of numerical methods have been used to solve the equations governing HM processes in unfractured domains, such as finite element method (FEM) [START_REF] Aguilar | Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation[END_REF][START_REF] Rodrigo | Stability and monotonicity 55 for some discretizations of the Biot's consolidation model[END_REF], finite volume method (FVM) [START_REF] Asadi | Finite volume coupling strategies for the solution of a Biot consolidation model[END_REF]Asadi andAtaie-Ashtiani, 2015,2021), discontinuous Galerkin finite element method [START_REF] Xia | Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations[END_REF], and mixed finite element method [START_REF] Kadeethum | A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media[END_REF]. Combination of FEM and FVM is suggested in [START_REF] Wan | Stabilized Finite Element Methods for Coupled Geomechanics -Reservoir Flow Simulations[END_REF] where the FEM is used to solve the solid mechanics equations and the FVM is used for modeling fluid flow. [START_REF] Wei | A Naturally Stabilized Semi-Lagrangian Meshfree Formulation for Multiphase Porous Media with Application to Landslide Modeling[END_REF] developed a semi-Lagrangian meshfree numerical scheme for landslide modeling. Several works developed specific numerical methods such as element free Galerkin method [START_REF] Samimi | Three-dimensional simulation of fully coupled hydromechanical behavior of saturated porous media using Element Free Galerkin (EFG) method[END_REF]) and material point method [START_REF] Yamaguchi | Solid-liquid coupled material point method for simulation of ground collapse with fluidization[END_REF].

In fractured domains and with the DFM, to the best of our knowledge, most of the existing numerical solutions are based on the standard FEM [START_REF] Bertrand | A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery[END_REF][START_REF] White | Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients[END_REF]. Several existing commercial and academic softwares have been developed with the FEM (i.e., OPENGEOSYS, COMSOL, FEFLOW). However, the classical FEM has several limitations in terms of accuracy and efficiency [START_REF] Miller | Numerical simulation of water resources problems: Models, methods, and trends[END_REF]. De [START_REF] De Borst | A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium[END_REF] and [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] developed an appropriate finite element formulation for saturated porous media that can handle discontinuities. [START_REF] Réthoré | A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks[END_REF] generalized their previous approach to unsaturated domains.

Similar approach has been used in [START_REF] Irzal | A large deformation formulation for fluid flow in a progressively fracturing porous material[END_REF] for modeling progressively fracturing porous domains. Mohammadnejad and [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] applied the extended finite element method (XFEM) for modeling fracture propagation in deformable porous media. [START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF] used XFEM technique for modeling crack growth in the discretization of both fluid and mechanics equations.

When solving the fluid flow in porous media, the FEM-based approaches yield discontinuous fluid fluxes across interfaces between adjacent elements and induce inaccurate velocities in a heterogeneous permeability field. The FVM-based approaches may generate errors when applied to unstructured grids or in the presence of full-tensor coefficients [START_REF] Younes | Mixed finite elements for solving 2-D diffusion-type equations[END_REF]. The mixed hybrid finite element method (MHFEM) is an alternative method to solve the fluid flow equations combining the advantages of FEM and FVM [START_REF] Younes | Mixed finite elements for solving 2-D diffusion-type equations[END_REF]. It is widely applied to simulate ground water flow in porous media for both saturated flow [START_REF] Moortgat | Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media[END_REF][START_REF] Moortgat | Higher-order compositional modeling of threephase flow in 3D fractured porous media based on cross-flow equilibrium[END_REF][START_REF] Zidane | An efficient numerical model for multicomponent compressible flow in fractured porous media[END_REF] and variably saturated flow [START_REF] Belfort | An Efficient Lumped Mixed Hybrid Finite Element Formulation for Variably Saturated Groundwater Flow[END_REF][START_REF] Fahs | An easy and efficient combination of the Mixed Finite Element Method and the Method of Lines for the resolution of Richards[END_REF][START_REF] Farthing | Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow[END_REF][START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF]. The hybridization technique in the MHFEM leads to a final system based on the mass balance at the interfaces of the elements of the computational mesh. This renders it highly suitable for modeling flow in fractured domains with the DFM [START_REF] Chen | Adaptive mixed finite element methods for Darcy flow in fractured porous media: DARCY FLOW IN FRACTURED POROUS MEDIA[END_REF][START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF][START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF][START_REF] Zidane | Reservoir simulation of fractured media in compressible single-phase flow in 2D, 2.5D and 3D unstructured gridding[END_REF] .Despite its advantages, the MHFEM has never been used for simulating coupled HM processes in fractured domains. Few works used it for HM processes in unfractured domains and showed that, in this case, the MHFE formulation involves a large number of degree of freedom [START_REF] Arnold | Mixed finite elements for elasticity[END_REF].

Since it was proposed by [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF], extended finite element method (XFEM), thanks to its several benefits, has been widely used in solid mechanics to solve problems involving discontinuities. With XFEM, the deformation discontinuity and stress concentration in a cracked solid medium can be accurately approximated using appropriate enrichment functions. XFEM is superior to the standard FEM as it requires a coarser mesh to obtain the same accuracy and allows for using a continuous grid mesh to model discontinuity. These properties improve computational efficiency greatly and make XFEM a promising approach for solving complex problems with fractures at reasonable computing costs. Recently, XFEM has been increasingly applied to the simulation of HM processes in fractured domains [START_REF] Khoei | Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique[END_REF][START_REF] Lamb | A fracture mapping and extended finite element scheme for coupled deformation and fluid flow in fractured porous media[END_REF][START_REF] Liu | An Extended Finite Element Model for Fluid Flow in Fractured Porous Media[END_REF]Shao et al., 2014;Shao et al., 2014a;[START_REF] Yan | An efficient hydromechanical model for coupled multi-porosity and discrete fracture porous media[END_REF][START_REF] Zeng | Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method[END_REF][START_REF] Zheng | Hydro-mechanical modeling of impermeable discontinuity in rock by extended finite element method[END_REF]. In several previous studies, XFEM has been used for solving the mechanical equations, combined with the FVM for fluid flow. But, XFEM formulations have also been used for both flow and mechanical processes in fractured domains in [START_REF] De Borst | A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium[END_REF][START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF][START_REF] Réthoré | A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks[END_REF][START_REF] Irzal | A large deformation formulation for fluid flow in a progressively fracturing porous material[END_REF][START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF][START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF]. This brief survey shows the superiority of the MHFEM over other methods in simulating fluid flow in fractured porous media. It also confirms that XFEM is welladapted for solving solid mechanics equations in fractured domains. It also shows that the MHFEM cannot be easily extended to mechanical processes because it leads to a large number of degree of freedom for which the numerical solution becomes impractical. Thus, the main objective of this work is to extend the use of the MHFEM to HM processes in fractured domain by coupling it with XFEM.

A mass lumping technique for the MHFEM, developed by [START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF], is utilized to avoid oscillations related to the presence of fractures. The work provides a generalization of this technique to coupled HM processes. The pressure field obtained from the MHFEM is adapted to be used with the XFEM in discretizing the mechanical equations. The deformation field obtained by the XFEM is also adapted to be used for the evaluation of the porosity in the flow equation. The hybrid-dimensional approach is used to represent fractures for flow and mechanical equations. This approach is widely used with the MHFEM to reduce the computational requirements when simulating fluid flow in fractured domains [START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF], but it has been rarely used for coupled HM processes, especially when the impact of deformation on the fracture aperture is considered. The combination of the MHFEM and XFEM allows for an efficient extension of this technique to mechanical processes in a compatible way without any specific treatment. Indeed, contrary to standard finite element method, XFEM allows for considering the fractures as 1D lines. To simulate fracture opening or closing, we assume variable aperture of the fractures, which is represented as onedimensional (1D) elements in the two-dimensional (2D) domain. The fracture aperture is updated using the displacement vector. The fixed stress split method is applied to improve the stability of the new scheme, in which geo-mechanics equations are calculated after fluid equations and a fixed mean stress is assumed when solving fluid equations [START_REF] Mikelić | Numerical convergence study of iterative coupling for coupled flow and geomechanics[END_REF]. This work shows how the fixed stress split method can be coupled with the mass lumping technique. The newly developed model is validated by comparison against an analytical solution and a standard FEM solution obtained using COMSOL Multiphysics. Several numerical examples are considered to highlight the advantages of the newly developed scheme in terms of efficiency and accuracy. The stress intensity factors (SIFs) which characterize the stress concentration around the crack tip, are calculated using the interaction integral method with the consideration of pore pressure and fracture surface load.

The paper is organized as follows. Section 2 presents governing equations for fluid flow and solid deformation in fractured porous media. Section 3 describes the space discretization of flux and displacement using the MHFEM and XFEM, respectively, and the solution procedure with time discretization is introduced briefly. In Section 4, several typical examples are simulated and compared with analytical solutions as well as traditional FEM solutions to test the validity of the proposed numerical scheme. And the mesh convergence is investigated in this section. In Section 5, the advantages of this new developed method are highlighted by some challenging numerical cases and analyses. Finally, the conclusion remarks are drawn in Section 6.

Mathematical formulation

Governing equations for fluid flow

A general HM system is depicted in Fig. 1. The fracture is represented by a discontinuity in the saturated porous media domain  . This porous domain is subjected to both hydraulic and mechanical boundary conditions, that are, the fixed fluid pressure p on the boundary p  , the fixed flow rate q on q  , the fixed displacement u on u  , and the prescribed traction  on   . Under these conditions, a flow flux exchange existing between the fracture and the porous matrix, is denoted by f Q . And thus, the fluid pressure within the fracture varies with time, which in turn affects the traction on the fracture faces such that:

on on t f f f t f f f p p            σ n n σ n n (1)
where t σ is the stress tensor, f p is the fluid pressure within the fracture, n and f n represent the outward unit vector normal to the boundary and the upward unit vector normal to the fracture surface, respectively, and f   and f   denote the mutually opposite sides of the fracture.

Aperture , m p  f   f   , u u  , p p  , q q  ,    f n f Q f p
Fig. 1 A HM system: the fractured porous domain and corresponding boundary conditions.

To describe the fluid flow in this fractured porous media, Darcy's law and the continuity equation of fluid are applied as follows:

k p     q (2)     s Q t         q (3)
where q is the Darcy's velocity, k is the permeability, p is the fluid pressure in porous media,  is the fluid viscosity,  is the fluid density,  is the porosity of the domain, t represents the time, and s Q is the source or sink term.

In deformable porous media, the porosity varies with the fluid pressure and deformation of the porous matrix, which can be written by the following expression [START_REF] Florez | Domain Decomposition Methods Applied to Coupled Flow-Geomechanics Reservoir Simulation[END_REF]:
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where 0  is the initial porosity of un-deformed porous media and 0 p is the initial fluid pressure. Substituting Eq. ( 4) into Eq. ( 3) and eliminating  , the continuity equation takes the form as follows:

  v b p s p S S Q tt             q (5) where f S p        with 1 f p      
being the fluid compressibility.

Combining Darcy's law Eq. ( 2) with Eq. ( 5), the final flux governing equation is written by:

v b s pk S p Q tt                  (6) 
where

p S S S  
is defined as the storage coefficient.

Notably, the permeability of the fracture is different from that of the porous matrix. It depends on the fracture aperture, which changes with the fracture opening or closing induced by mechanical deformation of the domain. This varying permeability of fractures can be described using the cubic law as follows: As the fracture is considered as 1D segments embedded into the 2D matrix herein, the first term corresponding the volumetric strain of solids in Eq. ( 6) is vanished in the fracture zone. Taking into account the flux exchange between the fracture and the porous matrix, f Q , the flow governing equation within the fracture is written by:

  f f f f s f p S k p Q Q t          (8)
Where f S is the storage coefficient in the fracture, f p is the fluid pressure within the fracture, s Q is the source term within the fracture, and f Q is the flux exchange between the fracture and the porous matrix,

Governing equations for solid deformation

In the HM system, the deformation of porous media is governed by the following mechanical equilibrium equation:

  , in tm p      σ u f 0 (9)
where f is the body force and t σ is the total stress tensor depending on the elastic deformation of the porous matrix and the pore pressure m p , which is assumed equal to the fluid pressure of the saturated porous matrix, p . Based on the classical Biot's poroelasticity theory, the total stress tensor t σ is written as:

  , t m b m pp   σ u σ I ( 10 
)
where σ is the stress tensor resulting from the elastic deformation of the porous material, and I represents the unit matrix. Assuming that the porous material has isotropic and linear elastic mechanical properties that obey Hooke's law, the elastic deformation-induced stresses can be represented by:

:  σ D ε ( 11 
)
where D is the stiffness tensor of the porous material, s  εu is the strain tensor, and s  is the symmetric part of the gradient operator.

Numerical solution: coupling MHFEM and XFEM

To solve the above-mentioned equations that govern the coupled HM behavior of porous media, a 1D/2D DFM model is constructed, where 2D unstructured triangular elements are used to discretize the gross bulk domain of porous media, and the fracture is modeled by a 1D line embedded in the triangular meshes (see Figs. 2a-2c). This hybrid dimensional approach gets rid of the local refinement of mesh within fractures.

It allows for a significant reduction in the complexity of the computational mesh and thus improves the computational efficiency. Based on this 1D/2D DFM model, MHFEM and XFEM are applied to the discretization of pressure field and displacement field in the domain simultaneously. 
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Discretization of flow equations with the MHFEM

A finite volume treatment is applied to the continuity equation (Eq. ( 6)) on each element of the computational mesh. By integrating this equation over each triangular element E , we obtain the weak form of the flow equation for the porous matrix:

d d d d v bs E E E E pk E S E p E Q E tt                      (12)
MHFEM is used for space discretization of flow flux in the matrix as shown in Fig. 2a.

The total flow flux associated with the element E is referred to as E Q , which can be approximated using the flux across the element edge

i E  : 3 1 ii EE E i Q     QW (13) 
Where Applying Eq. ( 13) to Eq. ( 2), we obtain the flux across edge i E  in case of the stationary problem without the sink/source term:
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Where M is a matrix related to the shape function and permeability of element

E such that   1 , j i E E E E ij E k      M W W (16) 
Using the mass-lumping method proposed by [START_REF] Younes | A new mass lumping scheme for the mixed hybrid finite element method[END_REF], the real flux across the edges of the element E is approximated as:
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Where E S Q and E S are the sink/source term and the storage coefficient of the element E , respectively.

Similarly, the weak form of flow equation for the fracture is derived by integrating the continuity equation (Eq. ( 8)) over each line element G on the fracture (Fig. 2c):
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Using the 1D form of the flux approximation, the above equation can be written as: Additionally, the final system, involving both the 2D elements in the porous matrix and the 1D elements in the fracture, should satisfy the continuous condition between neighbor elements for non-fracture edge and fracture edge (Fig. 2c):
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The final system is established for each edge of 2D element and each node of fracture element, leading to It is noted that the global matrix obtained by MHFEM is symmetric and positive definite but it is not a strictly M-matrix, which requires a nonsingular matrix with

0 ii m  and 0 ij m  ( ij m is an element in matrix M, ij  ).
Herein, we adopt a massing lumping technique proposed by [START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF] to satisfy the M-matrix condition so as to remove unphysical oscillations and ensure a stable solution. 20

Displacement discretization by XFEM

Substituting constitutive relations Eqs. (10-11) into the mechanical equilibrium equation Eq. ( 9), applying related boundary conditions (BCs), and using the virtual work principle, the weak form of the mechanical governing equations can be formulated as follows:
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where   + u u u with + u and  u denoting the displacements of opposite fracture faces at the same coordinate.

In order to solve this discontinuity problem within fractured media numerically, XFEM [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] is used to discretize Eq. ( 22). In the classical FEM framework, the unknown displacement field in Eq. ( 22) is usually approximated using the nodal displacements as

ii iI     uu , where i u is the displacement on node i , i  represents the shape function, and I is the set involving all the nodes inside the domain. However, this approximation is unable to capture the displacement discontinuity on the fracture surfaces and the stress concentration on the fracture tips. In the XFEM framework, additional degrees of freedom ( b and c ) are added to describe these discontinuities introduced by fractures as follows:
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)
where J and K are the sets of nodes on the fracture surface and around the fracture tips, respectively (see Fig. 2b). Considering the displacement discontinuity on the fracture surface, the corresponding nodes are enriched by a jump function ()

H x : 1 () 1 f f for H for           x ( 24 
)
As shown in Fig. 3a, we denote the fracture surface in consistence with on the basis of the fracture tip (see Fig. 3a):

( , ) sin , cos , sin sin , cos sin 2 2 2 2 l F r r r r r               (25) 
Empirically, the value of e r is taken to be larger than two or three times of the mesh size and smaller than half of the fracture length. By applying the above-mentioned enrichment functions, we can calculate the deformation of fractured media using a hybrid dimensional mesh without any other special treatment, which is in good compatibility with the mesh used in MHFEM. As a result, the fracture pressure obtained from MHFEM solution can be adapted to the XFEM discretization conveniently. And the deformation calculated by XFEM can also be applied to Cubic law in deducing updated fracture permeability for each fracture element and applied to constitutive relation in calculating volumetric strain for each matrix element.

1 q  0 q  1 x 1 y A f   f   f p f n (a) f   f   e r
Substituting the displacement approximation Eq. ( 23) into Eq. ( 22) yields the discretization form of the mechanical governing equation as below:

 KU F ( 26 
)
where U is the unknown vector 1 1 2 2 , , , , , 
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) 28 
where N represents the shape function matrix for displacements, including 
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D

, where Y is

Young's modulus of the porous material and  is Poisson's ratio. The information of matrix N and B is detailed in the Appendix. A. After solving Eq. ( 26), the displacement field of the fractured porous domain is obtained.

Stress intensity factor

Stress intensity factor (SIF) was introduced by Irwin (1957) as a measure of the singularity of elastic stress fields around the fracture tip and widely used for quantified validation of fracture simulations. The interaction integral method proposed by [START_REF] Sih | On cracks in rectilinearity anisotropic bodies[END_REF] is commonly used to calculated SIF in numerical simulations [START_REF] Duflot | The extended finite element method in thermoelastic fracture mechanics[END_REF][START_REF] Shao | Joule heating effect on thermal stress for a bi-material interface crack[END_REF], where an auxiliary mode  

(2) (2) (2)
,,

ij ij i u 
was assumed associated to the real mode  

(1) (1)

,,

ij ij i u 
. Thermal stress term was taken into account in the interaction integral by [START_REF] Wilson | The use of the J-integral in thermal stress crack problems[END_REF], and then a parameter q was created to transfer path integration to area integration by [START_REF] Li | A comparison of methods for calculating energy release rates[END_REF], as shown in Fig. 3b.

Furthermore, the SIFs of complex circumstances including fracture surface traction and thermal stress were studied and calculated by [START_REF] Shih | Energy release rate along a threedimensional crack front in a thermally stressed body[END_REF]. Herein, the pore pressure is considered similar as a thermal term, thus an analogical method can be used to calculate SIF in fractured porous media. The interaction integration, (1,2) I , is calculated over an area A (see Fig. 3b), leading to:
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where , 1, 2 ij  and the summation convention over repeated indices holds;

q is a smooth function defined over the integral domain A and takes a value of unit at the fracture tip and zero on the contour; W is the strain energy density defined by both the real stress mode and the auxiliary stress mode as well as the pore pressure in the matrix:

  (1,2) (1) (2) (2) (1) (2) 1 2 ij ij ij ij b ii m Wp          (30) 
The interaction integral is related to the mode I and mode II states of the SIFs ( I K and II K ) as follows:

  (1,2) (1) (2) (1) (2) * 2 I I II II I K K K K Y  (31)
where

  * 2 /1 YY  
for the plane strain case. When a pure mode I is chosen as the auxiliary mode (i.e., (2) 1

I K  and (2) 0 II K  ), ( 1 
)
I K is obtained. Similarly, when a pure mode II is chosen as the auxiliary mode (i.e., (2) 0

I K  and (2) 1 II K  ), ( 1 
)
II K is calculated.

Coupling scheme and time discretization

A sequential iterative approach is used to solve the fluid flow and solid mechanics equations. At each time step, three tasks are repeated until reaching the convergence to the scheme used for time discretization.

Task 1: The fluid flow equation Eq. (1-2) is solved using the MHFEM. An implicit Euler scheme is used for the time discretization. The term related to the impact of porous media deformation on porosity (the last term in Eq. ( 17)) is considered as a part of source/sink term. It is evaluated using the value of the volumetric strain at the previous time step and its initial guess value at the current time step. However, the fact that the term of volumetric strain is included as a source term may lead to numerical instability [START_REF] Mikelić | Numerical convergence study of iterative coupling for coupled flow and geomechanics[END_REF]). To overcome this numerical issue, we use the fixed stress split technique developed in [START_REF] Mikelić | Numerical convergence study of iterative coupling for coupled flow and geomechanics[END_REF]. The main idea of this technique is to assume a constant mean total stress when solving the flow equation. With this stabilization technique, the discretized form of Eq. ( 17) can be rewritten as follows:
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where the superscripts n and l represent the time step and the iteration level, respectively, and

2 bd K  
is a parameter used to achieve an optimal convergence rate for the fixed stress iterative scheme.

Task 2: The solid mechanics equation Eq. ( 9) is solved with the XFEM. The pressure field obtained in task 1 is used to solve the solid mechanical equation in task 2. The pore pressure in the matrix, m p , and the fluid pressure applied on the fracture faces, f p , contribute respectively to the first term and the forth term in the assembled force matrix F in Eq. ( 28).

Task 3: The fracture aperture is updated using the new displacement field from the difference in displacements of opposite fracture faces ( 0 ()

f ee     u u n ), from
which the updated fracture permeability , nl f k calculated by Eq. ( 7) is to be obtained for the next iteration. The volumetric strain for the next iteration ( ,

nl v
 ) is obtained from the displacement field for each element.

After these tasks, the newly computed pressure is compared with its previous values at last iteration to ensure the convergence of the iterative procedure. The same procedure is repeated for the next time steps until reaching the final duration. A flowchart of the coupling scheme is given in Fig. 4. 
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Verifications: comparisons against analytical and finite element solutions

The new developed numerical scheme, MHFEM-XFEM model, based on the combination of MHFEM and XFEM, was implemented in a FORTRAN code. This section aims at checking the correctness of the newly developed code. The first verifications have been performed against the analytical solutions. To the best of our knowledge, no analytical solution exists for the coupled HM processes under variable fracture aperture. Thus, for verification purposes, we use the analytical solutions developed by [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] and [START_REF] Choo | Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method[END_REF]. These solutions deal with variable fracture aperture, but they do not consider fluid flow. They are used here to evaluate the correctness of the code related to XFEM under variable fracture aperture.

Moreover, in order to evaluate the correctness of the coupling between the MHFEM and XFEM, we compared the newly developed model to a standard finite element solution obtained with COMSOL Multiphysics. As variable aperture does not exist in COMSOL, we consider a test case dealing with the coupled flow and deformation processes, but we assume constant fracture aperture.

Comparison against an analytical solution

We consider the analytical solutions developed by [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] and [START_REF] Choo | Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method[END_REF] to validate the feasibility of the code in fractured problems. In this part, test cases are simulated using the newly developed model based on the combination of the MHFEM and XFEM, while the hydraulic boundaries are set zero so that there is no influence of fluid flow. Two examples are checked individually by considering only uniform tensile stress boundaries and fracture pressure boundaries. The same configuration is used for both cases. Considering a plate 10m×10m with a centered fracture of 1m length (see Fig. 5). As the fracture length is small in comparison to the plate dimensions, the numerical solution of SIFs can be compared to the analytical solution for an infinite plate. [START_REF] Moës | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF]. The comparison between numerical and analytical solutions is given in Fig. 6a. This figure depicts the variation of SIFs as the crack angle changes. And an excellent agreement between the results (SIFs) of the newly developed model and the analytical solution for the entire range of  is found.

II Ka      (
For the second example, a one-unit normal surface pressure is applied on the crack surface when the fracture is at an inclination of 0   , and force boundaries at top and bottom are removed. The fracture thickness or crack opening distribution (COD) is calculated analytically in [START_REF] Choo | Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method[END_REF]. The analytical expression is given by:

2 22 0 4 (1 ) pv w a x Y   (33) 
The analytical and numerical results (MHFEM-XFEM) are shown in Fig. 6b, and they are indistinguishable along the fracture range. 

Comparison against a standard finite element solution

To verify the effectiveness of the newly developed model (MHFEM-XFEM) in the case of coupled HM processes, we consider the test case suggested by [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] and [START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF]. This test case is illustrated in Fig. 7. It deals with a fracture of 2m length located in the center of a square plate of 10m×10m, at an inclination of 30   . The top surface is a free boundary, while the other boundaries are constrained in the normal direction. A normal fluid flux q =10 -4 m/s is imposed at the bottom, the top boundary has a prescribed fluid pressure of zero, and the other surfaces are impermeable. No analytical solution exists for this case. Thus, we compare the results of the MHFEM-XFEM model against a standard finite element solution. This test case deals with a constant fracture aperture. A finite element solution can be obtained with the finite element package COMSOL. We compared the results of the MHFEM-XFEM model against COMSOL. The COMSOL model has been built using the "Poroelasticity" branch from the "Structural Mechanics" module. This branch couples the "Darcy's law" interface to the "Solid Mechanics" one. The hybrid-dimensional approach is implemented in COMSOL in the "Darcy's law" interface. The "Solid Mechanics" is not supported with this approach. Thus, it is not possible to use the hybrid-dimensional approach in the simulations with COMSOL. Instead, we considered the fracture as an extremely narrow rectangle zone with very weak mechanical properties so that the discontinuous displacement can be approximated. The comparison between the MHFEM-XFEM model and COMSOL model will allow not only for verifying the correctness of the newly developed code, but also the validity of the hybrid-dimensional approach for the simulation of coupled HM processes. Free triangular meshes are used in this work. The meshes used in the simulations with the MHFEM-XFEM model and COMSOL have been generated with the mesh generator in COMSOL, using the same level of refinement. However, in the simulation with COMSOL, local refinement is imposed around the fractures because these fractures are considered as 2D domain. The physical and hydraulic parameters used in the simulation are listed in Table 1 and a plane strain condition is considered. Time step is set to be 0.1s and 100 steps are calculated in total. Table 1. Material properties of the case of inclined fracture [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF][START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF] Parameter Value 8a). As expected, this indicates a flow parallel to the y-axis. Around the fracture, the piezo-metric lines are parallel to the fracture direction. This indicates that the flow in this zone has two components parallel to the x and y-axis, respectively. This is related to the high velocity within the fracture. Fig. 8b shows that, as expected, the displacement increases when going away from the wall of inlet flow toward the free boundary. This figure clearly shows the impact of the fracture on the displacement field. High velocity within the fracture creates highpressure gradient, which can create significant stresses. This explains why higher level of deformation can be observed around the fracture. Figs. 8a and8b show an excellent agreement between the MHFEM-XFEM and COMSOL model. For further verifications under different time steps, we checked some results at some local points.

Permeability of rocks

A, B, C, D are four sampling points located near the inlet flow, the inlet of the fracture, the outlet of the fracture and the outlet of the domain (Fig. 7), The time variations of the local pressure and vertical displacement at these points are given in Fig. 8c and8d.

The results of the MHFEM-XFEM and COMSOL models are indistinguishable. Fig. 8 shows the correctness of the newly developed MHFEM-XFEM model. It also confirms the validity of the hybrid-dimensional approach in simulating coupled HM processes.

We also compared the results of the MHFEM-XFEM model with that published in [START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF]. The results of this comparison are illustrated in Fig. 9, that depicts the time variation of the ratio of the output to input fluxes. This figure shows perfect agreement with [START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF] and gives more confidence to the correctness of the MHFEM-XFEM model. Fig. 9 Comparison between the results of the MHFEM-XFEM model and that of [START_REF] Khoei | A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique[END_REF].

This test case is used to perform a mesh convergence analysis of the MHFEM_XFEM numerical scheme. To do so, we perform several simulations with different mesh levels and we evaluate the variation of the numerical errors versus the mesh size. We consider three errors, corresponding to the pressure and the components of the displacement field.

The numerical errors are calculated based on the average values of the pressure and displacement field components in the domain. Reference values of these metrics have been obtained with a very fine mesh involving almost 26k elements. The meshes are generated with COMSOL by modifying the maximum mesh size from 0.1 to 0.5. The results of this mesh convergence analysis are given in Fig. 10 that depicts the variation of the three errors (pressure and displacement field components) versus the maximum mesh size. The results show that all variables have the same convergence behavior with a slope of about 1.5. 

Advantages of the MHFEM-XFEM model

A new numerical scheme based on the combination of the MHFEM, XFEM and the hybrid-dimensional approach is suggested in this work. The main goal of this section is to investigate the advantages of this new numerical scheme by comparing it against standard numerical techniques

the mass lumping technique with the MHFEM

The MHFEM can suffer from unphysical oscillations when the time step size used is small, as it is common for methods based on the finite element formulation. When dealing with nonlinear problems (such as in coupled HM processes), small time steps should be used to insure the convergence of the nonlinear solver, particularly at the beginning of the simulations. In this case, the spurious oscillations and instability encountered with the MHFEM can lead to convergence issues and unphysical results [START_REF] Younes | Mixed finite elements for solving 2-D diffusion-type equations[END_REF]. The mass lumping technique has been widely used to overcome this issue and to obtain monotonic solutions [START_REF] Fahs | An easy and efficient combination of the Mixed Finite Element Method and the Method of Lines for the resolution of Richards[END_REF][START_REF] Younes | Mixed finite elements for solving 2-D diffusion-type equations[END_REF].

Despite that the MHFEM has been widely used for fractured domains, the mass lumping technique has been mainly applied to unfractured domains. In [START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF] a new mass lumping technique has been suggested for unsaturated flow in fractured domains. This technique has been adapted here to simulate coupled HM processes, as explained above. This section aims at showing the advantages of the masslumping technique. Thus, we compare the results of the MHFEM-XFEM model to that of COMSOL model, under a small-time step. COMSOL is based on the finite element method that also suffers from unphysical oscillations with small time steps. The comparison is based on a numerical experiment of a test case dealing only with flow in saturated porous media. Variable fracture aperture is not available in COMSOL. Thus, in this test case, we assume it constant. This is done by dropping the part that updates the fracture aperture from the displacement field in the numerical model (i.e. task 3 in section 3.4 and evaluation of , nl f k in Fig. 4). The domain is a square of size 1m. 

The hybrid-dimensional approach

One of the advantages of the combination of the MHFEM and XFEM is that it allows for easily extending the hybrid-dimensional approach for fracture representation to deformation processes. This section aims at highlighting the advantages of the hybriddimensional approach in simulating coupled HM processes in fractured domains. To do of fractures in the 2D/2D meshes. It increases form 9200 elements in the case of 2 fractures to around 34000 elements in the case of 8 fractures. It is clear that the number of elements in the 2D/2D meshes is much larger than that for 1D/2D. The difference between number of elements of the computational meshes increase significantly when the number of fractures is increased.

The simulations are performed at a time step of 0.1s and the results comparison of both models at the final state (30s) are shown in Fig. 14. The results of pore pressure ( p ), vertical normal stress ( y  ), and vertical displacement ( v ) at 30s are plotted for 1D/2D and 2D/2D models. The results show good agreement between both models.

This confirms again that the hybrid-dimensional approach is valid for coupled HM processes. For adequate comparison of the computational requirements of both models, we run them on the same computer and using the same numerical parameters and solvers. The computer system used for all the simulations (in this section and other sections) is an Intel® Xeon® Gold 5118 CPU at 2.30GHz and 2.29 GHz dual processor with 64 GB of installed memory (RAM). Fig. 15 gives the variation of the CPU time for both models versus the number of fractures. With 2 fractures in the porous media, the CPU time for 1D/2D and 2D/2D models are 495s and 942s, respectively. As the number of fractures is increased, the CPU time for 1D/2D model has a slightly increase.

However, the 2D/2D model shows a sharp rise. The CPU time for 2D/2D model in the case of 8 fractures reaches 2073s and that of 1D/2D model is only 904s. These results demonstrate the computational efficiency of the hybrid-dimensional approach implemented in the MHFEM-XFEM model. 

Enrichment functions

XFEM is more efficient than the standard finite element method in simulating deformation processes in discontinuous domains as in fractured porous media. By using two enrichment functions ( ( , )

l Fr  and () H x ) to approximate the behavior of the fractured field, XFEM can simulate the characteristic deformation discontinuity and stress concentration of fractures at the same precision with standard FEM but adopting a coarser mesh level. This is an important advantage in particularly when using the hybrid-dimensional approach that exclude any local refinement around fractures. () H x , known as Heaviside function, takes discontinuous values at the different sides of a fracture, which means the solution of the additional degrees of freedom will result in different displacements at the neighboring elements. This is exactly the discontinuous deformation behavior of an opening fracture. As for the fracture tip field, four enrichment functions, ( , ) l Fr , which can fully express the asymptotic displacement field, have been defined in the polar coordinate system. Using the two enrichment functions, fractures are simulated with the same continuous finite element mesh and additional fractures elements are avoided.

Conclusion

Simulation of hydro-mechanical process in porous media is a challenging problem.

Fractured domains bring further challenges related to the preferential flows, discontinuity of the permeability field and the change of fracture aperture due to deformation. An efficient numerical scheme is developed in this study based on the combination of the XFEM and MHFEM. These methods have shown significant advantages in separately simulating mechanical and flow processes, but never applied to coupled processes. The newly developed numerical scheme is based on a sequential iterative approach. Flow is solved with the MHFEM, pressure is updated and used for solving the mechanical equation with the XFEM, porosity and fracture aperture are updated based on the displacement field, and the procedure is repeated till convergence.

DFM is used to achieve the compatibility of the two discretization methods and an efficient hybrid dimensional coupling HM model is established. Several validations show good agreements with the results from COMSOL Multiphysics and some analytical solutions. Finally, the advantages of the new model are discussed in detail by some persuasive simulations. The new developed MHFEM-XFEM model shows

Appendix. A

For each node, if the node is not enriched, the matrix N and B take the standard forms. The shape function matrix and its derivation related to the node are: If the node is enriched by ( , ) l Fr function, The shape function matrix N and its 50 derivation B related to the node are: 
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The related degrees of freedom are 

  is the aperture or thickness of fracture that depends on the initial aperture 0 e and the difference in displacements of opposite fracture faces, i.e.,  u and  u .

Fig. 2

 2 Fig. 2 The 1D/2D mesh of the fractured porous domain: (a) The 2D triangular element of porous matrix, where

W

  test functions are used in this work. The test functions i E are defined in the Raviart-Thomas vectorial basis (Younes et al., 2023) as follows: E is the area of the element E and i x and i y are the coordinates of the node in front of the edge i E  .

  Where superscript G indicates a line element on the fracture, G e and G l are the thickness and length of the fracture element G , and i G Q  represents the flux across the element edge i G  , which is the node in a 1D line element.

  number of all 2D element edges apart from Dirichlet boundaries and d n denotes the number of nodes on 1D fracture elements. For more details about the MHFEM discretization on flow equations, please refer to[START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF] and[START_REF] Koohbor | An advanced discrete fracture model for variably saturated flow in fractured porous media[END_REF].

  all the nodes around the fracture tips within a radius e r are enriched by a series of asymptotic functions defined in the local polar coordinates ( , ) r 

Fracture

  

  Fig. 3 (a) Local polar coordinates on the fracture tip; (b) Schematic diagram of interaction integral method for J-integral.

  B is the partial derivative matrix of the shape functions, m is {1,1,0} T , and D is the constitutive relation matrix of the porous material. In this paper,

Fig. 4

 4 Fig. 4 The flowchart of the coupling technique used in the MHFEM-XFEM model.

Fig. 5

 5 Fig. 5 Model description of the analytical solution: Geometry and boundary conditions.

Fig. 6 .

 6 Fig. 6. Comparison between the newly developed model (MHFEM-XFEM) and analytical solutions: (a) SIF comparison at different crack angles, and (b) COD distribution.

Fig. 7

 7 Fig. 7 Model illustration and boundary conditions: the case of Réthoré et al. (2007) and Khoei et al. (2014).

  COMSOL and MHFEM_XFEM results are shown in Figs. 8a and 8b for pressure and vertical displacement fields at t=10s. The piezo-metric lines are almost horizontal except around the fractures (Fig.

Fig. 8

 8 Fig. 8 Results comparison of COMSOL and MHFEM_XFEM model: In (a) and (b) results of COMSOL are depicted by flood and that of MHFEM_XFEM are depicted by lines.

Fig. 10

 10 Fig. 10 Mesh sensitivity analysis for the MHFEM-XFEM scheme

  Pressures of 10 4 and 0 Pa are applied on the left and right boundaries, respectively. The top and bottom boundaries are both impervious. Eight fractures with a length of 0.9m are distributed evenly and mutually perpendicular inside the domain at the distance of 0.27 m. The domain and boundary conditions are illustrated in Fig.11. Hydraulic properties of this test case are listed in Table2. This test case is steady state, but we simulate it during the transient time. The simulations with the MHFEM-XFEM and COMSOL model are performed with the same time step and based on the same mesh.The time step used in the simulation is set to be 6 10  s. Fig.12shows the result comparison of pore pressure between the two models and the pressure field of the model in the final state after one time step. Some negative values emerge in the COMSOL result around the fractures and in the domains between fractures. But the result from MHFEM code shows a stable solution free from oscillations. This numerical experiment confirms that the mass lumping technique can eliminate spurious oscillations and lead to stable solution even with small time steps.

Fig. 11 Fig. 12

 1112 Fig. 11 Model illustration and boundary conditions for the test case of flow in saturated porous media.

Fig. 13 Fig. 14

 1314 Fig. 13 Different configuration of fractures and corresponding computational meshes

Fig. 15

 15 Fig. 15 Comparison of the CPU time for MHFEM-XFEM-1D/2D and MHFEM-FEM-2D/2D models at different configurations with increasing number of fractures.

  is enriched by Heaviside function, The shape function matrix N and its derivation B related to the node are:
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so we compared the results of the MHFEM-XFEM model to another model based on the same numerical model but without the hybrid-dimensional approach. In this section, we denote the MHFEM-XFEM model based on the hybrid-dimensional approach by MHFEM-XFEM-1D/2D, as rock matrix is considered in 2D and fractures in 1D. In the model without the hybrid-dimensional approach, both fractures and matrix are considered as 2D domains. The computational mesh includes triangular elements within the fractures. This model is referred as MHFEM-FEM-2D/2D. The comparison between these models is performed using the test case described in the previous sections (Fig. 7). The same hydraulic parameters are used as the test case in Fig. 7 (see Table 1).

However, several configurations with increasing number of fractures are investigated as shown in Fig. 13. Three test cases are simulated with respectively 2, 4 and 8 fractures.

All the fractures are 2m long, and with different inclinations. The non-zero inclinations are denoted in the figure. The computational grids have been created using the mesh generator in COMSOL. For an adequate comparison, the same mesh level (i.e., maximum element size) is used in both 2D/2D code and 1D/2D code. The computational meshes used in both models (1D/2D and 2D/2D) as well as the corresponding number of elements are given in Fig. 13. It is observed that, the number of elements in the 1D/2D meshes is slightly sensitive to the number of fractures. It increases from 6600 elements for the case of 2 fractures to 6800 elements in the case of 8 fractures. Quite the contrary, number of elements is highly sensitive to the number advantages in three main aspects: 1). It avoids unphysical oscillations at small steps and improves the robustness of solution when solving flow equation in fractured domains.

2). It exceeds the standard FEM in efficiency and reduces computational consumption greatly when dealing with simulations with increasing number of fractures by using less elements with hybrid dimensional mesh.

3). It realizes the accurate simulation of mechanical characteristic around fractures by XFEM and the preferential flow in fractures by MHFEM. Besides, it shows good compatibility between MHFEM and XFEM, which are respectively the notable methods for solving flow equation and fractured mechanics equation.

The MHFE formulation cannot be efficiently generalized to mechanical processes []. This work suggests an efficient numerical scheme for extending the MHFEM to coupled hydro-mechanical processes, by combining it with XFEM. However, the developed numerical scheme does not handle fracture propagation. One of the perspectives of this work could be the extension of the numerical scheme to fracture propagation. The steady state assumption is used for the mechanical processes and time integration is based on a standard implicit Euler scheme. Further extensions of this work could be including transient mechanical processes and implementing advanced time integration techniques to deal with the multiscale processes.