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Modeling dissolution processes in discrete fracture networks (DFNs) is a challenging task. 25 Challenges are related to the highly nonlinear coupling between flow, mass transport, and 26 reactive processes associated with fracture aperture evolution by dissolution. Further, 27 advection-dominated transport due to fast fluid flow in fractures renders the problem more 28 complex from a computational point of view, as traditional numerical methods may introduce 29 unphysical oscillations or excessive numerical diffusion. The Discontinuous Galerkin (DG) 30 method is known to be suitable for the simulation of advection-dominated transport. In this 31 work, an advanced DG model is developed to model transport with dissolution in DFNs. We 32 propose an upwind formulation to deal with the upstream concentration at the intersection of 33 several fractures. The upstream concentration at an intersection node is calculated based on 34 the average nodal concentrations of all the fractures having an inflow at that node, weighted 35 by the volumetric fluxes of these fractures. The dispersion term is discretized with the Mixed 36 Finite Element (MFE) method, which ensures the continuity of the dispersive flux at the 37 intersection of fractures with different apertures. The obtained nonlinear coupled flow-38 transport-dissolution equations are discretized in time with a high-order scheme via the 39 method of lines (MOL). Numerical examples and comparisons with standard finite element 40 (FE) and finite volume (FV) solutions are performed to investigate the correctness and 41 efficiency of the developed model. Results show that the new DG-DFN model avoids 42 unphysical oscillations encountered with the standard FE method and strongly reduces the 43 numerical diffusion observed with the upwind FV scheme. The DG-DFN model is then used 44 to investigate the effect of the dissolution rate on the flow, transport, and aperture evolution 45 processes for a single fracture and for a DFN. A quasi-linear evolution of the fracture aperture 46 is observed for low dissolution rates. For high dissolution rates, a funnel-shaped enlargement 47 is observed with a significant widening for the fractures near the inlet and minor effects for 48 those away from the injection location.

49 50

Introduction 53

The flow of water in fractured rocks is usually associated with dissolution processes and 54 transport of the dissolved species (Liu et al., 2020). Naturally existing fractures as well as coupled flow and mass transport processes in fractured porous media with no reactive 103 processes and with constant fracture aperture. To the best of our knowledge, the DG method 104 has never been used for modeling coupled flow, mass transport and reactive dissolution 105 processes in a discrete fracture network.

106

The objective of this paper is to develop an advanced numerical model based on the DG 107 method for the simulation of dissolution processes in DFNs, and to take advantage of this 108 model for investigating the effects of geochemical dissolution rate on fracture evolution, flow 109 and transport processes. The upwind P1-DG scheme developed by Younes et al. (2009) is 110 adopted to simulate the advection processes in the network of 1D fractures. With this scheme, 111 the degrees of freedom are the mean concentration on elements and the concentration 112 gradient. The Riemann solver is then used to evaluate the concentration at the nodes. The The flow process in a fracture with a variable aperture   bL is governed by the fluid mass 145 conservation equation:

146     .0 q b b t       (1)
and the Darcy law:

147 2 00 12 q g gb HH           (2)
where,   HL is the hydraulic head,   tT is the time and 1 .

LT    q is the Darcy velocity,   bL 148 is the local fracture aperture,     is the porosity, 2 . g L T    is the gravity acceleration, (Witherspoon et al., 1980;Graf and Therrien, 2007;He et al., 151 2021).

152

Under isothermal conditions and no precipitation processes, the mass conservation of a 153 contaminant species through a fracture, taking into account the dissolution process, is ruled by 154 the advection-dispersion-reaction equation (Detwiler and Rajaram, 2007):

155       . . ( ) 
qD bC b C b C R C t          (3)
where, 

LT   

D

is the velocity-dependent dispersion tensor for a fracture filled 157 by a porous medium.
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The transport Eq. (3) writes

159       . . . ( ) q q D b C b C b b C b C R C tt                  (4) 
which, using Eq. ( 1), simplifies to

160   . . ( ) qD C b b C b C R C t          (5)
In the case of one-dimensional fracture, D is given by:

161 Lm DD     q (6)
where,

 

L L  is the longitudinal dispersivity in the fracture and 

166

In this work, under the assumption of no precipitation processes, the reaction term   RC 167 representing the dissoulution processes is modeled using a first-order approximation with a 168 constant reaction rate (Hanna and Rajaram, 1998;Detwiler and Rajaram, 2007;Steefel and 169 Lasaga, 1994;[START_REF] Steefel | Multicomponent reactive transport in discrete fractures[END_REF]:

    CS R C K C C  (8)
where, 

The numerical model 173

To solve the set of equations (1-8) for flow, transport, and aperture evolution, we selected 174 numerical methods that provide accurate and consistent solutions for each kind of equation.

175

Thereby, the spatial discretization is based on the combination of the MFE method for flow and dispersion, the upwind DG method for advection, and the FV method for reaction. We summarize the main steps of the spatial discretization that allows for obtaining a system of 178 coupled ordinary differential equations. This system is then solved with the DASPK time The flow in the fracture network is discretized with the MFE method. Thus, for a fracture k 187 of length k and width k b , the velocity is approximated with linear test functions as follows:

188 2 1 k k k jj j q q w    (9)
where, k q is the velocity inside the fracture k, 1 191

The continuity Eq. ( 1) is integrated over the fracture k yielding the following mass 192 conservation equation:

193 12 0 k k k k k b qq t       (10)
The variational formulation of Darcy's law Eq. ( 2) using k i w as a test function gives:

194   2 2 0 1 00 12 kk k k k k k j i j i j gb q w w Hw         (11)
Integration by part leads to:

195     2 2 0 0 1 00 12 kk k k x k k k k k j i j i i x j gb q w w H w Hw                  (12) 
Using the trapezoidal rule for the evaluation of the left integral yields:

196     2 0 2 12 k k k k k i i k gb b q TH NH      (13) 
Eq. ( 13)is then substituted into Eq. ( 10) to obtain:

197     3 0 12 20 6 k k k k k k k k gb b NH NH TH t           (14)
To close system (14), mass conservation is written at each node of fracture intersection. At the 198 node i surrounded by n fractures, we have:

199 n* ii n qQ   (15)
where * i Q is the pumped/injected quantity at the intersection node i. For a given fracture network, the flow system is formed by writing Eq. ( 14) for all the 

Spatial discretization of the transport 207

The DG method, which is well adapted for transport with sharp interface fronts, is employed 208 for the discretization of the advection equation. With this method, we assume a linear 209 discontinuous approximation of the concentration:

210       12 k k k k k kx C x,t | x TC x C      (18)
where k C is the concentration at the fracture k , which has two degrees of freedom: 

213     12 1, kk k x x x x     (19)
where k

x is the center of the fracture k .

214

The weak formulation of the transport Eq. ( 5) writes:

215       0 0 0 0 0 0 q q q D k k k k k k k k k k k i i i i i i C b b . C b C . b C . b C R C t                          (20) 
In the following, we develop the calculation of the second term, for which a specific treatment 216 is developed to solve the Riemann problem, and the fifth dispersive term, which is calculated fractures.

219

The second term is transformed into a boundary integral where the Riemann problem is 220 solved at the interface as follows:

221     1 1 2 2 0 0 q k k k k k k , * k k , * i i i xx b . C b q C q C         (21) 
The upstream concentration fractures n sharing the node j and having a positive flux n j q as follows:

228 0 n j nn j j ,in k n j ,out n j n q q NC NC q     (24)
Thus, the second integral in Eq. ( 20) can be written in the following form:

          1 1 2 2 12 12 0 1 1 1 1 2 2 2 2 12 11 11 q k k k k k kk ,in ,in k k k k k i k k k k k k k k kk ,out ,out NC NC b . C b q b q NC NC                                                    (25)
where

k j  is such that 1 k j   if 0 k j q  , else 0 k j   .

230

Using the MFE approximation for the dispersive flux q D C    , the fifth dispersive integral 231 in Eq. ( 20) writes:

232       12 12 0 0 0 0 k k k kk kk i i i k qq qq . bD C . bq                    (26)
where, k j q is the dispersive flux at the node j of the fracture k , calculated in a similar 233 manner to the Darcy flux Eq. ( 13):

234 2 k j kk jk k TC NC q b D   (27) 
where j NC is the concentration at the node j . which yields:

238 n n n n n j n n n n b D TC NC b D    (29)
Thus, Eq. ( 27) becomes:

2 n n kn n k n jk n k n n n b D TC b q D TC b D          (30)
If the fracture k is filled by a porous medium, the dispersion coefficient is approximated by:

240 k k L k m D q D   (31) 
where, k L  is the longitudinal dispersivity through the fracture k and

  21 2 kk k k qq q b  
is the 241 mean Darcy velocity in k .
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Finally, the calculation of all integrals of the transport Eq. ( 20) gives
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where the terms of the  

22  local matrices are 1 0 k k k k k ,ij i j Mb      and 244   2 1 2 00 kk k k k k k k k ,ij i j j i M q q b           q , the expressions of 1 k ,in NC and 1 k ,out
NC are given by 245

Eq. ( 23) and Eq. ( 24) and the dispersive fluxes 1 k q and 2 k q are given by Eq. ( 30).

246

If dissolution is considered, the aperture of the fracture can evolve with time, as ruled by Eq. 247 (7). The integration of this equation on the fracture k gives

248   0 k k k k r b R TC t     (33) 
Plugging Eq. ( 8) into Eq. ( 33) yields

  0 k k r C S b K C TC t       (34)
The final coupled nonlinear flow-transport-dissolution system to solve is formed by: (i) the 250 flow Eq. ( 14) in which we substitute Eq. ( 17) yielding the hydraulic head at the fracture cells 251 of the DFN, (ii) the transport Eqs. ( 23), ( 24), ( 30) and ( 32), which yield the mean and the 252 variation of the concentration in each fracture and the (iii) the dissolution Eq. ( 34), which

253

gives the aperture for each fracture.

254

The obtained nonlinear system is discretized in time, via the method of lines. The main idea 255 of this method is to keep the time derivative in its continuous form and to discretize the space 256 derivatives. This results in a system of ODEs. The ODE system is solved using the DASPK 257 solver which is based on a higher time integration scheme (Backward differentiation formula

258
or Adams method). The resulting nonlinear system is solved using the Newton-Raphson 

0 H  0 0 H  0 0 H  Reaction rate       5 10 C K   m/s Initial concentration 0 0 C  0 0 C  0 0.1768 C  mol/m 3 Inlet concentration 35 inj C  g/l 35 inj C  g/l 0 inj C  300
The distribution of dimensionless concentration in the fracture network after 14 hours with 301 DG and FE models are shown in Figures 3a and3b, respectively. The dimensionless 302 concentration is calculated as the ratio of the concentration to the concentration of injected Table 1.

317

A mesh sensitivity analysis is performed with the DG, FV and FE methods. It is observed that 318 with the DG scheme, a mesh-independent solution is obtained with a relatively coarse mesh

319

(272 nodes). The time variation of concentration at the observation point O2 obtained with DG 320 using a coarse mesh formed by 272 nodes is compared to the solution of FE and FV using two that time, all the fracture enlarges (Figure 11c) and the equivalent permeability of the fracture 471 strongly increases, yielding a highly increasing velocity (Figure 11b). As a consequence, the 

Conclusion

Modeling dissolution processes in a DFN is a computationally challenging problem because 587 of the nonlinear coupling between flow, transport and reactive processes, introduced by the 588 impact of dissolution on the fracture aperture. The challenge is accentuated by the fact that in 589 the fractures, the transport is advection dominated. In such a case, standard FE formulations 

113

  main challenge in applying this technique for a DFN is the evaluation of the concentration at 114 nodes of intersection of several fractures. A new formulation is developed in this work where 115 the upstream concentration at a fracture intersection node is calculated using the average of 116 the concentrations of all fractures providing flow to that node, weighted by the flow rate in the 117 corresponding fractures. 118 Darcy's law combined with the cubic law is used to simulate flow within the fractures. The 119 flow equations are discretized with the hybrid formulation of the Mixed Finite Element 120 (MFE) method (Younes et al., 2009). The mass lumping technique developed by Koohbor et 121 al. (2020) is employed to avoid over-and under-shoots observed in transient flow simulations 122 with small time steps. The MFE method is also used for the discretization of the dispersion 123 term to ensure the continuity of the dispersive flux at nodes where several fractures with 124 different apertures intersect. The highly nonlinear coupled equations of fluid flow, advection-125 dispersion transport and aperture evolution due to dissolution are solved simultaneously in 126 order to avoid operator-splitting errors. The time discretization is performed using a high

  is the density of the rock and     is a stoichiometric coefficient that 165 represents the mass of mineral entering solution for a unit mass of dissolved rock.

179Figure 1 .

 1 Figure 1. Flow and transport notations in a fracture k .

  using Eq. (17). This system is solved for 204 the head traces k TH at all mesh edges. Hence, the flow system has the number of fracture 205 cells as degrees of freedom (DOF).

  206

  average value of concentration in the fracture k and k x C is the concentration 212 variation along the fracture direction. The corresponding interpolation functions are:

235 jNC

 235 is calculated by imposing the continuity of the dispersive flux of all the fractures 236 (including k ) sharing the node j . For a node j shared by

  259method. The linear system arising at each time step is solved with the preconditioned Krylov 260 iterative method. The solver adapts both the time step size and the order of the time 261 integration scheme in order to reach the prescribed accuracy. Time step and order of 262 integration are updated based on error control. In this work the accuracy is prescribed with a 263 relative tolerance of 10 -6 . Details of the MOL and the use of DASPK for nonlinear coupled 264 flow transport systems are given inYounes et al. (2011;[START_REF] Viswanathan | From Fluid Flow to Coupled Processes in Fractured Rock: 769 Recent Advances and New Frontiers[END_REF].

265 4 .

 4 Accuracy of the DG-DFN model 266 This section aims at verifying the correctness of the developed DG-DFN model and 267 evaluating its performance for the simulation of advection dominant transport with dissolution 268 in a fracture network. To this aim, the results of the DG-DFN model are compared to the 269 results of COMSOL Multiphysics, which is based on the standard FE method, and to an in-270 house upwind FV model. Three examples are investigated. The two first examples deal third example deals with coupled flow, transport, and aperture fracture evolution due to 273 dissolution in a single fracture with high diffusion.

  with high dispersion in a DFN (example 1) 275 Analytical solutions are often of great interest for the verification of numerical codes. For 276 coupled flow, transport and dissolution processes, some analytical and reference solutions 277 were developed under simplified conditions (Hayek et al., 2012; Suk 2016). However, these 278 solutions cannot deal with fractured domains. Verification in fractured domains cannot be 279 performed against analytical solution. Therefore, to verify our newly developed code, we use 280 a standard FE numerical model developed in COMSOL Multiphysics software and an in-281 house model based on the upwind FV method. The generation of the stochastic network is 282 performed with the "Discrete Fracture Network Add-In" which is available in the recent 283 versions of COMSOL. This Add-In creates a randomized distribution of position, size, 284 orientation and aperture for the fracture network. We used power law stochastic rule to create 285 the network as in Barton and Zoback (1992) and Hooker et al., (2009). The network of 286 fracture for the Example 1 is shown in Figure 2a. A constant head gradient is imposed on the 287 network from left to right. The horizontal domain is initially free of contaminant. The left 288 inlet boundary of the domain has a fixed concentration. An outflow boundary condition is 289 considered for the right side of the domain. Impermeable boundary conditions are considered 290 on the top and bottom boundaries. The parameters for Example 1 are given in Table 1. This 291 first example involves high values of dispersion and diffusion to avoid unphysical 292 oscillations.293The results of the numerical models are compared on two observation points (O1 and O2) and 294 for a monitoring fracture (F1) which is highlighted in Figure2b.

Figure 2 .

 2 Figure 2. Problem description: (a) fracture network and boundary conditions, (b)

Figure 3 .

 3 Figure 3. Results for Example 1: distributions of the dimensionless concentration with

  at investigating the advantages of the developed DG-DFN model in the 314 case where the transport is advection dominated because of the fast fluid flow inside the 315 fractures. The example is similar to Example 1, but we assume very little diffusion and no 316 dispersion. The input parameters for Example 2 are given in

Figure 4 .

 4 Figure 4. Comparison between DG, FE and FV for Example 2: (a) Time variation of the

359 Figure 5 ..

 3595 Figure 5. Conceptual model for dissolution in a single fracture.

Figure 6 .

 6 Figure 6. Example 3: Comparison between the FE, FV and DG results for dissolution in a

  new DG model to 397 assess the effect of the dissolution rate on the fracture aperture evolution. The problem is

Figure 7 .

 7 Figure 7. Fracture aperture evolution: (a) for low (

Figure 8 .

 8 Figure 8. Dimesnionless concentration (a), aperture (b) and velocity (c) along the fracture at

Figure 9 .Figure 10 .

 910 Figure 9. Time evolution of the dimensionless concentration (a), velocity (b) and aperture (c)

Figure 11 .

 11 Figure 11. Time evolution of dimensionless concentration (a), velocity (b) and aperture (c) at

  470

  fracture (Figure11a) strongly reduces after * t due to the high advection 473 flux of freshwater arriving from the left boundary.

4744. 2

 2 Effect of the dissolution rate in the case of a DFN475This section extends the discussion of the previous section to a DFN. We consider a network 476 of connected horizontal and vertical fractures, as in Figure12.

Figure 12 .

 12 Figure 12. Conceptual model for flow, dissolution and transport in a network of fractures.

Figure 14 .

 14 Figure 13. Results for the low dissolution rate (

  Figure15shows the concentration, aperture and velocity distribution in the case of high

Figure 15 :

 15 Figure 15: Results for the high dissolution rate (

  575

  16e). However, contrarily to the low dissolution case, the flow rate in the two fractures shows 576 a non-monotonic evolution with time (Figures16c and 16e). Indeed, the flow rate in the 577 a decrease until around 5 months and an increase after that, whereas the 578 flow rate in the fracture B depicts the opposite behavior, thus the sum of the two flow rates 579 remains constant. This parabolic evolution of the flow rate is probably related to the change of 580 the permeability distribution during the simulation due to dissolution in the DFN.

Figure 16 :

 16 Figure 16: Aperture (a), velocity (b) and flowrate (c) evolutions in the fracture A and aperture

590

  introduce unphysical oscillations that can lead to convergence issues. The upwind FV 591 formulation give stable results but introduces a large amount of numerical diffusion. In this 592 work, we developed a new model based on advanced numerical schemes to simulate 593 dissolution processes in DFNs. The model is based on coupling the MFE method for flow 594 with the DG scheme for transport. The DG method is known to be suitable for advection-595 dominated problems, as it avoids unphysical oscillations and reduces numerical diffusion. A 596 new formulation of the DG was proposed for the Riemann solver at the intersection of 597 fractures. The newly developed scheme calculates the upstream concentration based on the 598 average of the nodal concentration of all fractures having an inflow at the intersection node, 599 weighted by the water fluxes through these fractures. The dispersion term is calculated with 600 the MFE method which allows to ensure the continuity of the dispersive flux at the 601 intersection of several fractures having different apertures. The time integration of the 602 obtained nonlinear coupled flow-transport-dissolution equations is improved by using an 603 advanced solver of ODEs via the MOL. 604 The developed DG model is first verified for linear transport in a DFN by comparison against 605 a standard FE solution obtained with COMSOL Multiphysics and an upwind FV model. Good 606 agreement is obtained between the three models in the case of high diffusion. For advection-607 dominated transport configurations, often encountered because of the rapid flow in fractures, 608 the DG-DFN model avoids the unphysical oscillations observed with FE results and allows 609 for capturing sharp concentration fronts with a relatively coarse mesh. The upwind FV

deformable rock fracture, Water Resour.Res. 16 (1980Res. 16 ( ) 1016Res. 16 ( -1024. . 
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638

The model considered in this study is limited to dissolution processes, but the numerical 639 scheme can be generalized to dissolution/precipitation processes. Precipitation processes may 640 occur and could be important under non isothermal conditions. Thus, a future extension of 641 this work could be including precipitation and thermal processes. 
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