
HAL Id: hal-04296440
https://hal.science/hal-04296440

Preprint submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Neural Networks for Tiny Machine Learning: A
Comprehensive Review

Minh Tri Lê, Pierre Wolinski, Julyan Arbel

To cite this version:
Minh Tri Lê, Pierre Wolinski, Julyan Arbel. Efficient Neural Networks for Tiny Machine Learning: A
Comprehensive Review. 2023. �hal-04296440�

https://hal.science/hal-04296440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Neural Networks for Tiny Machine Learning:

A Comprehensive Review

Minh Tri Lê1, Pierre Wolinski1, Julyan Arbel1,⋆
1Centre Inria de l’Université Grenoble Alpes, France

⋆Corresponding author: julyan.arbel@inria.fr

Abstract

The field of Tiny Machine Learning (TinyML) has gained significant attention due to its po-
tential to enable intelligent applications on resource-constrained devices. This review provides
an in-depth analysis of the advancements in efficient neural networks and the deployment of deep
learning models on ultra-low power microcontrollers (MCUs) for TinyML applications. It begins by
introducing neural networks and discussing their architectures and resource requirements. It then
explores MEMS-based applications on ultra-low power MCUs, highlighting their potential for en-
abling TinyML on resource-constrained devices. The core of the review centres on efficient neural
networks for TinyML. It covers techniques such as model compression, quantization, and low-
rank factorization, which optimize neural network architectures for minimal resource utilization
on MCUs. The paper then delves into the deployment of deep learning models on ultra-low power
MCUs, addressing challenges such as limited computational capabilities and memory resources.
Techniques like model pruning, hardware acceleration, and algorithm-architecture co-design are
discussed as strategies to enable efficient deployment. Lastly, the review provides an overview of
current limitations in the field, including the trade-off between model complexity and resource con-
straints. Overall, this review paper presents a comprehensive analysis of efficient neural networks
and deployment strategies for TinyML on ultra-low-power MCUs. It identifies future research
directions for unlocking the full potential of TinyML applications on resource-constrained devices.

Keywords: Deep learning; Efficient Neural Networks; Tiny Machine Learning; Deployment
Strategies

1

julyan.arbel@inria.fr

Contents

1 Introduction 3

2 Neural networks 4
2.1 Feedforward neural networks . 4
2.2 Properties . 5
2.3 Modern deep learning architectures . 6
2.4 From large deep learning models to TinyML . 9

3 MEMS-based applications on ultra-low power microcontrollers 10
3.1 Overview . 10
3.2 Scope of applications . 11
3.3 Challenges of ultra-low power hardware . 12

4 Efficient neural networks for TinyML 13
4.1 Knowledge distillation . 14
4.2 Model pruning . 15
4.3 Quantization . 18
4.4 Weight-sharing . 21
4.5 Low-rank matrix and tensor decompositions . 21
4.6 Summary . 21

5 Deploying deep learning models on ultra-low power MCUs 22
5.1 Challenges for TinyML tools . 22
5.2 TinyML tools solutions . 23

5.2.1 Low-level library . 23
5.2.2 TinyML frameworks . 23

6 Limitations of TinyML 24

7 Conclusion and discussion 25

2

1 Introduction

Artificial intelligence. Over the last decade, artificial intelligence (AI) has revolutionized our daily
experiences and technological advancements, empowering machines to perform tasks that traditionally
require human-like intelligence, such as recognizing objects or speech or playing advanced games like
Go.
Machine learning (ML) is the most prominent AI approach, which trains computers to learn patterns
and representations from data without explicit programming.
Deep learning (DL) is an advanced subset of machine learning inspired by the organization of the
brain, using artificial neural networks (NNs) to model and solve complex problems in a wide variety
of fields, including language processing, protein generation, or automation.

Sensors and microcontrollers. Simultaneously, there has been an increase in the adoption and
development of the Internet of Things (IoT), bringing new devices and applications into our daily
lives. Micro-Electro-Mechanical Systems (MEMS) and Micro-Controller Units (MCUs) are essential
hardware components of IoT, which allows hardware devices to collect and process information (move-
ment, voice, temperature, pressure...) directly at the source, in their local environment, excluding
the need for additional resources or external communication. Local and autonomous data processing
optimizes the flow of information but inherently poses power constraints. Some applications also re-
quire continuous data processing, which puts additional power constraints. MEMS and MCUs serve
as the interface to sense information between the analog and the digital world. These devices are
found in a wide range of applications, including mobiles, cars, wearables, environmental monitoring,
and healthcare systems. Their consumer market scales to several billion in annual sales, so a slight
deviation in power constraints can result in significant costs.

Ar
tifi

cia
l I
nt
ell
ige

nc
e

M
ac
hin

e L
ea
rn
ing

De
ep

Le
arn

ing

TinyML

M
EM

S, M
CUs

Internet of Things

Figure 1: TinyML as the intersection between artificial intelligence and embedded systems.

TinyML. The convergence of machine learning and IoT has sparked significant interest in research
and industry because it enables embedded hardware to process local data and interact with their
environment in an automated and intelligent way. This intersection led to the emerging field of
TinyML, a denomination first coined in 2019 by Han and Siebert (2022); see Figure 1. TinyML
focuses on developing efficient neural network models and deployment techniques tailored for low-
power, resource-constrained devices. Some examples of TinyML applications are detecting or counting
events, gesture recognition, predictive maintenance, or keyword spotting, commonly found in home
appliances, remote control devices, smartphones, smart watches, or augmented reality glasses.
However, the exponential growth of deep learning is closely linked to the development of powerful

3

hardware, such as graphical processing units (GPUs), capable of supporting its large computation
requirements. Therefore, deep learning has yet to reach the same growth and support on low-power
devices, such as microcontrollers, to enable deep learning to run at the edge. Indeed, the power
footprint of deep learning, as well as the vast landscape of embedded devices, pose new challenges but
exciting opportunities that must be addressed by researchers and industrials.

Outline. The review begins with a general introduction to neural networks in Section 2, outlining
their fundamental principles and architectures. It explores the evolution of neural networks and their
applications in various domains, highlighting their computational requirements and the challenges they
pose for resource-limited devices.

Then Section 3 presents a comprehensive overview of MEMS-based applications on ultra-low power
Micro-Controller Units (MCUs). It discusses the advancements in Micro-Electro-Mechanical Systems
(MEMS) technology and its integration with MCUs, enabling the development of power-efficient sens-
ing and actuation systems. The potential of MEMS-based applications in enabling TinyML on resource-
constrained devices is emphasized.

The core of the review, Section 4, focuses on efficient neural networks for TinyML. This section
examines various techniques and methodologies that aim to optimize neural network architectures and
reduce their computational and memory requirements. It explores model compression, quantization,
and low-rank factorization techniques, among others, showcasing their effectiveness in achieving high-
performance inference on MCUs while maintaining minimal resource utilization.

Following the discussion on efficient neural networks, Section 5 delves into the deployment of deep
learning models on ultra-low power MCUs. It investigates the challenges associated with porting
complex models onto MCUs with limited computational capabilities and memory resources. The
section explores techniques such as model pruning, hardware acceleration, and co-design of algorithms
and architectures, shedding light on strategies to enable efficient deployment of deep learning models
for TinyML applications.

An overview of the current limitations in the field of TinyML is presented in Section 6. This section
discusses the challenges faced by researchers and practitioners, including the trade-off between model
complexity and resource constraints, the need for benchmark datasets and evaluation metrics specific
to TinyML, and the exploration of novel hardware architectures optimized for TinyML workloads.
Finally, Section 7 concludes and provides open challenges as well as insights into emerging trends and
technologies that may impact the field of TinyML.

Overall, this review paper provides a comprehensive analysis of the advancements in efficient neural
networks and deployment strategies for TinyML on ultra-low power MCUs. It highlights the current
state of the field and identifies future research directions necessary to unlock the full potential of
TinyML applications on resource-constrained devices.

2 Neural networks

We introduce neural networks (Section 2.1), then we motivate how their theoretical properties (Section
2.2) and modern architectures (Section 2.3) are of interests in TinyML, and finally explain their
implications for our work (Section 2.4).

2.1 Feedforward neural networks

The concept of artificial neural networks was introduced by McCulloch and Pitts (1943) as a mathe-
matical model to simulate the human biological neural system but was limited in its ability to learn.
This laid the foundation for the perceptron model, which was the first neural model capable of learning
and classifying linearly separable data (Rosenblatt, 1958, Sakib et al., 2018). In turn, the backpropa-
gation (Rumelhart et al., 1986) and gradient descent algorithms (Baldi, 1995, Lecun et al., 1998) were

4

developed to allow efficient training of multi-layer perceptron (MLP) that is capable of classifying non-
linear inputs. The MLP is a type of feedforward neural network that consists of alternatively stacking
multiple layers L of neurons and non-linear functions ϕ (Rumelhart et al., 1986, Huang, 2009) as rep-
resented in Figure 2. These layers include an input layer, one or more hidden layers, and an output
layer. Stochastic gradient descent (SGD) and backpropagation algorithms, and progress in hardware
computation have enabled the revolution in the field of neural networks, leading to the modern era
of deep learning algorithms (LeCun et al., 2015), for example capable of achieving state-of-the-art
performance on ImageNet (Krizhevsky et al., 2012).

Formally, a neural network can be defined as a function f and a directed, weighted graph composed
of nodes (neurons) and edges (connections between neurons) with associated weight parameters W ,
bias B, where inputs x are propagated forward in the graph to produce an output y. The objective of
the neural network f defined as

y = f(x) = h(L)

h(l) = ϕ(l)
(
W (l)h(l−1) + B(l)

)
for l = 1, . . . , L

h(0) = x,

(1)

is to approximate some function f∗ mapping an input vector x to an output vector y by learning
weights matrix W (Goodfellow et al., 2016).

...
...

...

...

...
...

...

Input Layer h(1)
h(l) h(L−1) Output Layer

Figure 2: Feedforward neural network.

Neural networks have interesting theoretical and practical properties, as we will see in the next
sections.

2.2 Properties

Neural networks possess powerful theoretical properties that stand out from standard machine learning
approaches, making them of great interest for a wide range of applications.

Expressiveness. Neural networks are universal approximators. Cybenko (1989), Hornik et al. (1989)
have theorized that a sufficiently wide hidden layer is able to approximate any continuous function
on a compact set to an arbitrary level of precision. More recent work by Lin and Jegelka (2018) has
extended the universal approximation theorem to residual neural networks (ResNets) (He et al., 2015),
proving that a sufficiently deep neural network with one-neuron hidden layers with residual connections
has enough expressive power to approximate any continuous function.

The direct implication is that feature extraction can be done automatically without domain knowl-
edge, unlike standard machine learning. Thus, this allows for a uniform algorithm design process across
a wide range of applications, facilitating the creation of algorithms from a set of labelled data, and
their use in the industry and research fields.

Although these theorems prove that neural networks are able to learn “by heart” any function,
given enough input samples, they do not tell anything about how to reach generalization ability to
new samples.

5

Generalization. Neural network models have shown that it is possible to generalize to new data with
fewer examples than parameters with very large models (Li and Liang, 2018, Kawaguchi and Huang,
2019), and are even capable of labelling random data (Zhang et al., 2021a). This overparameterization
results in a highly-dimensional non-convex space and redundancy, but results in higher quality and
quantity of local minima (Choromańska et al., 2014). This implies that the optimization function has
a higher chance of not getting stuck in a bad local minimum compared to small-size networks. These
results differentiate neural networks from standard ML models where overparameterization is usually
detrimental to generalization, especially if there are more parameters than needed. Thus, the learnable
capacity of neural networks makes them of great interest for performing various tasks in TinyML, using
a uniform approach.

After this brief overview of the theoretical properties of deep learning, we will now explore which
modern deep learning architectures are commonly used in practice and why.

2.3 Modern deep learning architectures

Although in the modern deep learning era, the hardware progress can allow supporting the given high
volume of computation and data, the design of the architecture is critical to the final performance and
depends on the applications.

Developing and finding new neural network architectures is of great interest in research to surpass
the state-of-the-art. Most of these state-of-the-art architectures are variations and combinations of the
ones we present below. Table 1 provides a summary of standard architectures used in modern deep
learning, and their strengths and weaknesses.

Fully-connected layers. Fully-connected (FC) layers, also known as dense layers were the first
type of layers used in neural networks, specifically in MLP as presented in Section 2.1 and depicted
in Figure 2. Fully-connected connect each neuron of a layer to all the neurons in the next layer and
process each input independently by applying a non-linear transformation. They are often used toward
the end of the model to aggregate the higher-level features from the previous layers and make the final
predictions. The simplest form of a fully-connected layer is a weighted sum, which makes them very
general and not specialized to any particular application. Thus, they are building blocks of modern
deep learning architectures. However, they are prone to overfitting, and may poorly perform on spatial
or temporal data.

Convolutional neural networks. Convolutional neural networks (CNNs) are commonly used as
feature extractors, showing their strength in processing spatial structures, such as images (Krizhevsky
et al., 2012), videos (Simonyan and Zisserman, 2014), or signal processing (Alnaim and Abbod, 2019,
Gong and Poellabauer, 2018). As the name suggests, they consist of applying convolutional operations
using filters, also called kernels on the input in 1D, 2D or 3D, and are shared across the spatial
dimensions. They are often stacked all together with max-pooling, to summarize a group of values by
their maximum (Krizhevsky et al., 2012), batchnorm to normalize activations and facilitate training
(Ioffe and Szegedy, 2015), and ReLU activation function. Compared to FC layers, this design allows
CNNs to efficiently learn spatial hierarchical structures and detect local to global patterns, such as
edges, shapes, and textures. In addition, the weight-sharing aspect reduces the number of parameters
and makes them more robust to spatial translations and distortions. Some classic CNN architectures
are AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2015), or GoogleLeNet
(Szegedy et al., 2015), each using increasing network depths, thereby large model size.

Thus, in modern deep learning architectures, CNNs are often found in the early stages of the
network serving as powerful feature extractors, but they have shown limitations in learning with
sequential data structure or modeling long-range dependencies (Shorten and Khoshgoftaar, 2019, Liu
et al., 2020).

6

Recurrent neural network. Recurrent neural networks (RNNs) are specialized layers for modeling
sequential data (Rumelhart et al., 1986, Elman, 1990), such as signals (Graves and Jaitly, 2014,
Alnaim and Abbod, 2019), speech (Zhang et al., 2018) or text (Bahdanau et al., 2015). Compared to
CNNs, they are able to model longer temporal contexts by keeping a description of previous contexts
because each output directly depends on previous inputs. This is of particular interest for sensor-based
applications that inherently deal with sequential data.

The building block of an RNN can be defined as follows (Elman, 1990):

ht = ϕh(Wh[ht−1, xt] + bh),

yt = ϕy(Wyht + by),
(2)

where xt is the input, ht is a shared internal state, serving as a memory at time t, bh and by are
bias terms, and ϕh, ϕb are activation functions. However, they are difficult to train because of the
effects of the vanishing or exploding gradient when the sequence is long (Bengio et al., 1994). Then
long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997, Gers et al., 1999, 2003) and
gated-recurrent units (GRU) (Chung et al., 2014) layers were designed to alleviate the limitations of
the simple RNN.

They are based on two forms of memory updates:

• “Leak” memory update: Progressive update of the current memory: ht+1 = ht + ϕ(ht, xt),

• “Gate” memory update: Context-dependent updates of the memory: ht+1 = αht+(1−α)ϕ(ht, xt),

where α can be a scalar or the output of a gated function g(ht, xt) ∈ [0, 1] as in GRU or LSTM.
Note that the “gated” mechanism is a specific form of the attention mechanism (Vaswani et al., 2017),
allowing it to focus its attention on specific inputs depending on the context.

In particular, LSTM has three gates (input, forget, and output) and has two hidden temporal
streams, one corresponding to the RNN stream of Equation (2), and another auxiliary stream used to
compute α, thus controlling the number of updates.

GRU is a simplified version of LSTM (update and forget) as well as one hidden temporal stream
ht, which has shown performance close to LSTM with a lower power footprint (Cahuantzi et al., 2021).

However, RNNs are limited in handling spatially structured data and processing sequences in
parallel. This is because RNNs process input one time step at a time, Equation (2).

Residual neural networks. Residual neural networks (ResNets) were introduced in He et al. (2015).
They provide each layer with direct feedback from distant previous layers to minimize the loss of
gradient information during the backpropagation in deep networks. Although ResNets has shown
state-of-the-art performance in computer vision (Khan et al., 2020), they are typically on the scale of
millions of parameters (Menghani, 2023) and are more commonly applied on deep networks, which is
not suitable for TinyML hardware.

Transformers. Transformers are attention-based models introduced in Vaswani et al. (2017) that
surpass state-of-the-art performance on large-scale natural language processing tasks or computer
vision tasks (Lin et al., 2022). They allow the models to focus their attention on each token of the
input sequence (local) with respect to other tokens (global). This design addresses the limitations of
CNNs and RNNs as stated previously because Transformers can process long-term dependencies and
sequences in parallel. Although they have encountered great success and interest, they require a large
amount of data, and a power footprint for both training and inference, even more than ResNets, which
makes them bad candidates for TinyML.

Activation functions. Activation functions in deep learning introduce non-linearity to the model,
enabling deep learning models to achieve higher levels of expressiveness and create more complex
decision boundaries. This non-linearity is essential for processing real-world data, characterized by

7

Table 1: Summary of standard architectures used in modern deep learning.

Layer & Definition Strength Weakness

FC : Connects all neurons in-between layers High-level aggregations Overfitting, not specialized
CNN : Conv. operations with shared parameters Local and global spatial patterns Struggles with sequences
RNN : Processes sequences with a hidden state Temporal dependencies Struggles with spatial patterns
ResNets: Deep nets with residual connections Eases training deep networks Large model size, expensive
Transformers: Self-attention for input relationships Long-term local and global patterns Large training data and power footprint

Table 2: Reference table of standard activation functions.

Name Definition Notes

ReLU f(x) =

{
x, if x ≥ 0

0, otherwise
Returns identity if positive, else 0

Leaky ReLU f(x) =

{
x, if x ≥ 0

αx, otherwise
Allows small negative values

PReLU f(x) =

{
x, if x ≥ 0

αix, otherwise
Per-neuron learnable αi values

Tanh f(x) = ex−e−x

ex+e−x Returns value in range (−1, 1)

Sigmoid f(x) = 1
1+e−x Returns value in range (0, 1)

Softmax f(xi) = exi∑K
j=1 exj

Returns class probabilities

diverse and often non-linear features, effectively capturing intricate relationships within the data.
Table 2 references standard activations used in modern deep learning.

Regularization. In Section 2.2, we have seen that neural networks possess interesting generalization
properties. We will now explore popular regularization choices that help with generalization in practice.

As in standard machine learning, regularization can help neural networks to generalize better to
unseen data, and make them less complex. Regularization techniques can either be of two forms, based
on whether or not they directly alter the objective function:

• Explicit regularization:

– L1 penalizes the absolute values of the weights, encouraging sparsity, and thus simpler
models,

– L2 penalizes the squared values of the weights, constraining their magnitude, and thus
encourages smoother and simpler models.

• Implicit regularization:

– Dropout (Srivastava et al., 2014a) as an average of probabilistic architectures where each
dropout-realization results in a different sub-network (Gal and Ghahramani, 2016),

– Batch normalization limits the range of values and adds noise to the activation, preventing
the model from memorizing the training data too well (Ioffe and Szegedy, 2015, Bjorck
et al., 2018),

– Early-stopping prevents the model from becoming too specialized during training (Sjöberg
and Ljung, 1992, Bishop, 1995),

– Data augmentation increases the size and diversity of the training set, which helps the model
learn more robust features (Shorten and Khoshgoftaar, 2019),

8

– Random noise injected into the input (also a form of data augmentation) (Goodfellow et al.,
2016),

– Noise introduced by SGD optimization (Poggio et al., 2020a,b).

Most of these regularization methods add negligible computation costs and help with generalization
performance.

In this section, we provided a brief overview of the layers used in modern deep learning and discussed
which have the most potential for low-power hardware applications.

2.4 From large deep learning models to TinyML

In this section, we give an overview of the recent trends of deep learning model sizes, then we explicit
the challenges of TinyML based on the neural network theory (Section 2.2) and practices (Section 2.3),
and motivate our interest to apply them for TinyML.

Trend in deep learning models. Since the first AlexNet model was trained on a graphic processor
unit (GPU) (Krizhevsky et al., 2012), we entered the modern era of deep learning where the limits
of the state-of-the-art are regularly pushed on numerous complex tasks. Meanwhile, deep learning
models are geared towards exponential increases in model size. As of 2023, the GPT4 model (OpenAI,
2023) is said to be even larger than the GPT3 model with 175 billion parameters (≈ 800GB) (Brown
et al., 2020), being about 2800 times larger than AlexNet size in just over 8 years.

Although model performance can benefit from overparameterization, large neural networks have
been shown to have high redundancy (Han et al., 2016, Frankle and Carbin, 2018). Denil et al. (2013)
estimated that in some cases only about 5% of the total parameters are critical to the final output
decision. Thus, we can see that these models fail in terms of algorithm efficiency, where the objective
is to achieve a task with minimal effort.

This raises questions on how to train more efficient models and also suggests the existence of smaller
but viable models.

Trend in efficient deep learning models. A new wave of efficient deep learning models emerged,
such as SqueezeNet (Iandola et al., 2016), MobileNet V1, V2, and V3 (Howard et al., 2017, Sandler
et al., 2018, Howard et al., 2019), or EfficientNet (Tan and Le, 2019), ranging in one to five million
parameters, entering the scale of the feasibility on mobile devices. These new models can achieve up
to a 510-time model size reduction compared to AlexNet (Tan and Le, 2019) with equal performance.
In general cases, model sizes are in the order of at least 106.

Trend in ultra-low power deep learning models. Although mobile-sized models show a great
shift toward efficient deep learning architectures, they are still too large for deployment on microcon-
trollers (Liberis and Lane, 2020, Lin et al., 2020, Banbury et al., 2021b). Deep learning on microcon-
trollers (Unlu, 2020) is an alternative paradigm that is still at an earlier stage compared to mobile-size
research, where the term TinyML has been first appearing in 2019 (Han and Siebert, 2022). However,
there has been a success in the deployment of neural networks on MCUs on audio classification tasks
(Zhang et al., 2018, Lin et al., 2020, Fedorov et al., 2020) by using efficient CNNs, RNNs, or NAS
(Banbury et al., 2021b). In Lin et al. (2020), they succeeded in deploying a person detection model
with less than 1MB memory. In general cases, model sizes must be in the order of less than 106 and
less than 1MB. These models reach a memory size of under 512 kB or even 256 kB, entering the scale
of microcontroller hardware. The high resource limitations of MCUs present unique requirements and
need the design of dedicated workflow and tools to enable end-to-end deep learning pipelines. Table 3
provides a summary of example model sizes for each platform we reviewed.

9

Table 3: Comparison of representative deep learning model sizes across cloud, mobile, and MCU plat-
forms.

Platform Model Parameters Model size

Cloud Inception-v3 > 107 > 100MB
Mobile MobileNet-v3 106 > 1MB
MCU MCUNet < 106 < 1MB

Motivations. Neural networks are powerful algorithms that can operate with a uniform approach in
terms of algorithm design: labelled data, automated feature extraction and modeling, and deployment,
for a wide range of applications. This makes them a great class of algorithm candidates for MEMS-
based applications relying on signal processing. Unfortunately, the expressiveness and generalization
ability of neural networks are dependent on their size, which makes them inherently complex and
“black box” functions that are analytically difficult to interpret and design. However, they are mostly
composed of very primitive operations, see Equation (1): multiplications and additions, which are ac-
cessible to any microcontrollers. Concerning the non-linear activations, some are very straightforward,
such as ReLU (Fukushima, 1975, Nair and Hinton, 2010) or LeakyReLU (Maas et al., 2013), while
other activations like tanh or sigmoid pose more challenges due to their computational complexity.

Moreover, prior literature has shown that it is possible, albeit challenging, to design and deploy
small enough neural networks on resource-constrained microcontrollers. Therefore, following the trend
of efficient deep learning models to reduce their inherent power footprint, we are interested in pushing
the state-of-the-art of low-power footprint models to make them viable to microcontrollers, without
degrading performance. Additionally, deep learning models in practice are commonly overparameter-
ized (Denil et al., 2013), so the field of deep learning will benefit from more contributions to designing
and deploying more efficient and accessible neural networks.

To summarize, we provided background on neural network theory and practices, their limitations
and challenges, and why they are of great research interest for MEMS-based applications running in
ultra-low power settings.

Next, we explore the literature on specialized methods to design efficient deep learning models for
TinyML in Section 4, but we must first provide the necessary background on embedded hardware,
which we will reference throughout our work in Section 3.

3 MEMS-based applications on ultra-low power microcontrollers

We provide a brief overview of MEMS and MCU hardware technology (Section 3.1) to understand the
scope of applications (Section 3.2) and their intrinsic challenges for deep learning (Section 3.3).

3.1 Overview

MEMS and MCUs. MEMS are miniaturized (microscale dimensions) sensors and actuators om-
nipresent in a wide range of electronic devices, as they convert physical and analog information into
digital inputs about their local environment (Lammel, 2015, Zhu et al., 2020), that can be processed
by MCUs in real-time. Some examples of MEMS are accelerometers, microphones, or pressure sensors.
Table 5 provides examples of different sensor types and their applications. Thus, they provide an
interface to sense real-world information from hardware to software.

MCUs are miniaturized computers that are non-invasive (∼ 1 mm2 silicon area), cheap (∼ 1$),
low-power (≤ 0.5 W), and are dedicated to performing one task for months or even years within a
device (Banbury et al., 2021b, Garbay et al., 2022). MCUs are composed of connectors, input/output
interface, on-chip storage (ROM), volatile memory (SRAM) for intermediate data, and a CPU with a

10

Table 4: Comparison of hardware for Cloud, Mobile, and TinyML platforms (Banbury et al., 2021b,
Saha et al., 2022). The three architectures studied in Section 6 are highlighted in blue.

Platform Architecture Memory Storage Frequency Power FLOPS Price

Cloud GPU HBM SSD/Disk
Nvidia V100S NVIDIA Volta 32GB TB∼ PB 1.2−1.3GHz 250W ∼16.4G 14500$

Mobile CPU DRAM Flash
Galaxy Note 20 Kryo 585 8GB 128GB 1.8−3.1GHz ∼8W 1.2T 550$

TinyML MCU SRAM eFlash/ROM

SAME70Q21B Cortex-M7 384kB 2048kB 300MHz 0.3W ∼432M 5$
SAMG55J19 Cortex-M4 160kB 512kB 120MHz 0.1W ∼180M 3$

Newport Cortex-M0+ 8kB 16kB 6.14MHz 70µW N/A 1$
Newport eDMPv1 4kB 16kB 6.14MHz 66µW N/A 1$

frequency usually below the 103 MHz range (Banbury et al., 2021b). With over 250 billion MCUs al-
ready in use, forecasts predict a volume of 38.2 billion in 2023 alone (Lin et al., 2020). In this context,
we emphasize that even a small difference in the power footprint between low-power hardware targets
can translate to several billions of dollars in savings for the consumer market. This is exemplified
by the 2$ difference observed between the low-end of MCUs in Table 4. Even between MCUs, there
are several orders of magnitude in terms of low power (Table 4). For example, the Cortex-M4 only
consumes 0.1W, yet it still represents a target that is 1500 times more power-hungry and 20 times more
memory (SRAM) capacity compared to the Cortex-M0+. Additionally, it is three times more costly
for consumers. Consequently, it is important to highlight the strong industrial incentive to target the
low-cost and low-power consumer market as much as possible with tiny hardware targets. By focusing
on the power scale between these targets, we can realize billions in cost savings and other benefits that
low-power MCUs offer for the consumer market.

Applicability. Sensing data at the edge allows for offline operations, as opposed to using online
cloud computing, always-on and real-time processing, no network latency, limited energy overhead,
and inherent privacy. MCUs are ubiquitous in modern electronic devices, including cars, mobiles,
TVs, and cameras. Their high volume in the consumer market and wide applicability reinforce the
significance of research and industry efforts in TinyML applications.

In this work, we target the most extreme low-end range of MCUs, with less than 8kB of RAM
and 10MHz processing speed for extreme low-power deep learning inference. Therefore, we aim to
push the hardware limit that is currently not considered in the state-of-the-art for embedded deep
learning. In particular, we focus on the common ARM Cortex-M series microcontrollers (Yiu, 2019),
and particularly the Cortex-M0+ and M4 (Table 4), or the eDMPv1 depending on the application.

3.2 Scope of applications

As previously stated, the ability to embed neural networks at the edge can already benefit a wide
variety of applications and can potentially lead to completely new types of products (Kanjo, 2022).

Common applications are image detection, gesture recognition, such as human activity recognition
(HAR), or keyword spotting. Note that these are all wireless applications, that must operate in real-
time and are always-on. In this context, the device returns a decision at all times, so it is expected
to provide a seamless user experience (e.g., not missing any user intention (false negatives) or over-
triggering (false positives)). Their sensor types and target devices are specified in Table 5.

11

Table 5: Example of sensor applications and their target MCU devices.

Sensor types Applications Target devices

Accelerometer,
Gyroscope,
Magnetometer

Human activity recognition,
gesture recognition, motion detection,
voice detection, predictive maintenance

Arm Cortex-M0+

Pressure Fingerprint detection Arm Cortex-M0+ , Cortex-M4

Microphone Sound classification, keyword spotting Arm Cortex-M4 , Cortex-M7

Cortex-A

L1 (46kB)

L2 (4MB)

DRAM (4GB)

Flash (64GB)

On-chip

Cortex-M

Cache (16kB)

SRAM eFlash
(384kB) (2MB)

On-chip

(a) Mobile processor (b) Arm Cortex-M7 microcontroller

Figure 3: Illustration of memory hierarchies for (a) a mobile processor and (b) an Arm Cortex-M7
microcontroller (right). The microcontrollers process all computation and data transfer on-chip.

3.3 Challenges of ultra-low power hardware

Compared to mobile devices, the all-on-chip design, as shown in Figure 3, allows the processing of
data at the closest location to the source, resulting in lower communication latency and lower power
consumption. Thus, this is ideal for real-time and low-power constraints. However, it also makes them
inherently constrained because additional memory cannot be extended with an SD card for example.

Moreover, Table 4 highlights that the Cortex-M0+ and M4 are among the most resource-constrained
devices, with the Cortex-M0+ lacking support for floating-point operations. Consequently, we restrict
to fixed-point (in contrast to floating point) values (Figure 4) and arithmetic which approximates
real-values and computations (Menard et al., 2006), to comply with the inherent hardware and energy
constraints of MCUs. Floating-point to fixed-point conversion requires a scaling factor of a power of
two, which can be inferred as a simple bit shift and rounding as follows:

Q(F, n) = ⌊F ∗ 2n⌉
F (Q,n) = Q ∗ 2−n

(3)

where Q and F are the fixed point and floating point numbers, respectively, and n is the number
of bits. In practice, this means that we are limited to integer-only operations. Thus, only primitive
operations like bit-manipulation, boolean operators, and basic additions or multiplications are sup-
ported in contrast to computationally intensive operations, such as explicit division or exponentiation.
Additionally, the memory is typically the first bottleneck, so we seek lower-bit precision parameters
than 32-bits, but this may increase the risk of overflow, or numerical precision loss and thus erroneous
inference. From a hardware point-of-view, restricting to integer-only inference removes the need for
a floating-point unit, which saves silicon area for each embedded chip, and thus billions of dollars of
annual savings.

12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign (1-bit) exponent (8-bits) significand (23-bits)

(a) Single precision floating-point 32-bit representation from IEEE754 (IEEE, 2019).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

integer part (m-bits) fractional part (n-bits)

(b) Fixed-point Q16.16 (Qm.n) on 32-bit representation.

Figure 4: Floating-point and fixed-point 32-bit representations. Floating-point (b) allows a dy-
namic range (minimal to maximal possible value) of roughly [−1038, 1038], compared to fixed-point
(a) [−2m−1, 2m−1 − 2−n] ≈ [−215, 216], which is approximately a 1033 smaller range (Novac et al.,
2021). The smallest resolution (step between each consecutive representable value) of floating-point is
≈ 10−38 while it is [2−n] ≈ 10−5 for n = 16 for fixed-point.

After a comprehensive review of the literature, the Cortex-M0+ and eDMPv1 appear to be one of
the most resource-constrained platforms on which successful implementation of state-of-the-art deep
learning has been reported (Zhang et al., 2018, Banbury et al., 2021b, Saha et al., 2022). Zhang et al.
(2018) deployed a 70kB keyword spotting application on an Arm Cortex M7, while Banbury et al.
(2021b) deployed the same application on an Arm Cortex-M4 with a higher accuracy.

Furthermore, embedded hardware has a very heterogeneous ecosystem because specifications may
differ from one manufacturer to another, and even between new series of the same brand, making it
challenging to find common tools and approaches that are widely supported.

Therefore, the ultra-low power hardware context presents a unique set of challenges due to their
inherent resource limitations. Addressing these challenges poses high research and industry potential
value and can lead to transformative advancements in real-time and low-power applications across
numerous domains.

To summarize, in Section 2 and Section 3 we provided background on neural networks, and low-
power sensors and motivated the challenges and objectives of our work. We will now examine the
literature on methods (Section 4) and tools (Section 5) to design and deploy efficient neural networks
for MEMS-based applications.

4 Efficient neural networks for TinyML

Building upon the concepts and motivations surrounding neural networks and embedded systems
introduced in the previous sections, we now turn our attention to their intersection: TinyML.

This emerging field aims to combine the powerful benefits of neural networks with the cost-
effectiveness of ultra-low power devices with limited power, memory, and processing capabilities. Given
the constraints of TinyML, developing efficient neural network architectures and algorithms is essential.
In light of the growing efforts in this area, there is an increasing need for methods that can effectively
scale to the most challenging embedded hardware, particularly in the context of MEMS-based appli-
cations.

In this section, we explore the methods available to train and design efficient neural networks for
deployment on MCUs, enabling the deployment of intelligent applications on low-cost devices.

Efficient RNNs. Sensor applications mainly process time-related data continuously, so we are nat-
urally interested in standard RNN layers, such as RNN (Rumelhart et al., 1986, Elman, 1990), GRU
(Chung et al., 2014), LSTM (Hochreiter and Schmidhuber, 1997). Arık et al. (2017), Bhardwaj et al.
(2022), Lu et al. (2022) have used convolutional recurrent neural networks (CRNNs) with a GRU or

13

LSTM as the recurrent layer for keyword spotting or motion recognition applications for low-power and
real-time inference, which matches our target applications and environment. The CRNN architecture
offers strengths both in feature extraction, and time sequence processing, as well as compatible size
for our target hardware (Bhardwaj et al., 2022).

In particular, Arık et al. (2017) empirically showed that GRU layers offer better size-performance
tradeoff over LSTM in keyword spotting applications, which is our most demanding use case.

Moreover, there have been research efforts to find efficient alternatives to standard RNNs, such as
minimal RNN (Chen, 2018), minimal gated unit (MGU) (Zhou et al., 2016), MGU1, MGU2, MGU3
(Heck and Salem, 2017). The MGUs differ from GRUs by reusing the gates, removing the bias term
or the weight matrix completely, or a combination, detailed as follows:

MGU1: ft = ϕ (Ufht−1 + bf)

MGU2: ft = ϕ (Ufht−1)

MGU3: ft = ϕ (bf) ,

(4)

where ft is the unique gate of the recurrent unit with weight parameters Uf , bias bf , and ht−1 the
previous hidden state.

We notice that the MGU1, MGU2, and MGU3 variants do not directly gate the current input xt,
but instead, they indirectly gate the previous input xt−1 by gating the previous state ht−1, that has
processed the previous input xt−1.

Zhou et al. (2016), Heck and Salem (2017) suggest that these alternatives are competitive with GRU
in terms of accuracy with a smaller parameter budget and thus should be more low-power friendly.

Next, we explore the methods that apply directly to models in order to reduce their power footprints.

Model compression techniques. Model compression is a set of methods aiming to address the
growing power footprint and costs associated with the deployment of neural networks in terms of size
and computation on resource-constrained devices (Neill, 2020, Hoefler et al., 2021), such as MCUs.
In the following sections, we will provide an overview of the most commonly used techniques, which
essentially encompass five methods: knowledge distillation, pruning, quantization, weight-sharing, and
low-rank matrix decomposition (Neill, 2020).

4.1 Knowledge distillation

Knowledge distillation is a high-level approach to model compression, first explored in Buciluǎ et al.
(2006) to reduce the model size by learning a small (student) model from an ensemble of models
(teacher). Then Hinton et al. (2015) popularized knowledge distillation for neural networks where a
small model (student) is trained from the supervision of a larger and overparameterized trained model
(teacher) that has learned “dark knowledge”. The idea is to leverage the latent knowledge the large
teacher has captured and transfer it to the student during the training process. The loss encompasses
both the original student loss (e.g., cross-entropy) and the difference between the teacher and student
distribution, expressed as follows:

LKD(x, y) = αLS(x, y) + (1 − α)DKL

(
softmax

(
T (x, y)

temp

)
, softmax

(
S(x, y)

temp

))
, (5)

where LS is the student loss function, S(x, y) is the output of the student model, T (x, y) is the output
of the teacher model, DKL is the Kullback–Leibler (KL) divergence, α ∈ [0, 1] is a hyperparameter
that controls the amount of distillation given by the teacher to the student, and temp is another
hyperparameter that softens the probability distributions of the output models.

In practice, we must choose and train one teacher and one student architecture. Hinton et al.
(2015) showed promising results across general computer vision tasks and sequential data. However,
the disadvantages are that it requires empirical knowledge to find good teacher and student models,

14

as well as additional computations to train the teacher and the forward pass of the teacher during the
student’s training. Although the design of the teacher would consist of training an overparameterized
model, which works well in practice, the student should be the size of our target model. Moreover, we
can bypass the additional forward pass of the teacher by storing its output along with the training set.

Therefore, the general framework design of knowledge distillation is flexible for our case and has
proven promising performance in a wide range of applications.

4.2 Model pruning

While knowledge distillation involves training a new smaller model, pruning focuses on removing less
important parts of a model. From a neuroscience perspective, the human brain has a pruning mech-
anism that removes redundant connections or irrelevant information from past experiences (Walsh,
2013, Neill, 2020). In the case of deep learning models, they are notoriously overparameterized (Sec-
tion 2.2), which provides them with a large degree of freedom. In fact, it has been found that only a
small fraction of the total parameters are critical (Denil et al., 2013). Model pruning is a very active
research area at the intersection of promoting efficient deep learning and understanding neural network
training and generalization ability, where new methods emerge continuously (Alqahtani et al., 2021,
Hoefler et al., 2021, Freire et al., 2023).

Han et al. (2016), Ullrich et al. (2016) made a major breakthrough for model compression in the
modern deep learning era, where they combined pruning, quantization (Section 4.3) and Huffman
encoding (Huffman, 2006) to reduce a CNN model by 49 times its size with less than 0.5% accuracy
loss on the ImageNet dataset.

Seminal work by Frankle and Carbin (2018), Liu et al. (2018a) provided more theoretical under-
standing; the lottery ticket hypothesis (LTH) states that there exists a sparse subnetwork (winning
ticket) that can be trained from scratch with the same initialized weights and reach the performance
of the original network (10 times larger). In this view, a large model has a greater chance of containing
a good subnetwork. They suggest that the network architecture itself is more critical than keeping the
values of the weights in the original trained network. In practice, Frankle and Carbin (2018) requires
iterative pruning trials of subnetworks to find the winning ticket, which is computationally expensive.
Further work extended the LTH, showing that universal tickets could be reused across other appli-
cations (Burkholz et al., 2022, Fischer and Burkholz, 2022). In particular, Ramanujan et al. (2020)
generalized the LTH to the strong lottery ticket hypothesis (SLTH) where the subnetwork performs well
with the randomly initialized parameters and thus does not require retraining. Additionally, Burkholz
et al. (2022) demonstrates that SLTH can also yield universal tickets across other applications. Con-
sequently, the SLTH promises that training deep learning models could be replaced by efficient neural
network pruning (Fischer and Burkholz, 2022). Alternatively, pruning can be seen as a form of neural
architecture search (NAS) (Elsken et al., 2019), aiming to find Pareto-optimal architectures (Liu et al.,
2018a). Moreover, it is also a form of regularization because it reduces the complexity of the model,
similar to dropout, but the effect remains permanent.

There are essentially two types of pruning: unstructured and structured pruning, referring to how
the pruning is performed in a weight matrix of a model, as illustrated in Figure 5.

Figure 5: Unstructured pruning (left panel) versus structured pruning (middle and right panels).

15

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Pruning rate over epochs with a polynomial schedule function (Zhu and Gupta, 2017) with
sf = 0.8, s0 = 0, t0 = 0, n = 13260, ∆t = 100 (Equation (6)).

Unstructured pruning. Unstructured pruning refers to the removal of fine-grained weights in con-
trast to a group of weights. It is the simplest and most sparsity-inducing type of pruning because
trained neural networks are less sensitive to one weight than a specific block.

The most intuitive pruning scheme is to remove weights based on their absolute values, which is
the simplest form of magnitude-based pruning, so it does not require any data. This simple approach
has been studied early (Hagiwara, 1993) and is very effective (Han et al., 2016, Zhu and Gupta, 2017,
Gale et al., 2019, Hoefler et al., 2021). In general, it involves re-training to adapt the model to its new
architecture.

While there are a plethora of pruning algorithms, Gale et al. (2019) suggested that magnitude-based
pruning provides state-of-the-art or comparable performance to other pruning methods (Thakker et al.,
2020, Louizos et al., 2018b).

In particular, Zhu and Gupta (2017) introduced a gradual sparsity technique using a polynomial
during the training schedule as follows

st = sf + (s0 − sf)

(
1 − t− t0

n∆t

)3

, for t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, (6)

where st and t are the current sparsity and step, sf is the target sparsity, s0 and t0 are the initial
sparsity and training step (usually 0), n is the number of pruning steps, and ∆t is the pruning step
frequency. In other words, at every ∆t, a gradual number of weights is set to zero based on their
magnitude until we reach the desired sparsity level. The objective of the polynomial schedule is to
prune quickly and early when there is the most redundancy, and then slow down the pruning rate as
there is little remaining redundancy (Zhu and Gupta, 2017).

Noting that pruning is a form of regularization, Golatkar et al. (2019) found that the early regu-
larization phase is the most critical to performance and that late regularization can even worsen the
results, thus supporting the effectiveness of polynomial schedule.

The advantage of magnitude-based pruning is that it is model- and task-agnostic, can seamlessly
incorporate within training, and is easy to implement. Moreover, progressive pruning (Zhu and Gupta,
2017) is natively supported by the TensorFlow framework (Abadi et al., 2016). Additionally, they
demonstrate a 90% sparsity rate with acceptable accuracy loss and found that their approach on
large-sparse networks performs better than their smaller-dense counterpart. An explanation of this is
that larger models are easier to prune because the magnitude of single weights becomes smaller as the
model grows larger when the model has converged (Neill, 2020). However, the biggest disadvantage is
that unstructured pruning results in sporadically induced weights, which may be difficult to efficiently
leverage on embedded hardware, but previous work demonstrated that it is possible to leverage high
sparsity with practical encoding (Han et al., 2016).

16

Structured pruning. Structured pruning alters the architecture of the neural network in blocks,
such as neurons, filters, or an entire row or column of a weight matrix. Structured pruning can be
induced by using a systematic criterion based on redundancy, as in Srinivas and Babu (2015), where
neurons were removed in neural networks by identifying duplicate pairs of neurons, performing a
recovery step to compensate for removal. Another common approach is to use regularization penalty
to encourage pruning at the channel level in CNN models (He et al., 2017, Liu et al., 2017), by neurons
(Alvarez and Salzmann, 2016), or layers (Wen et al., 2016), resulting in models with 60% sparsity
without significant loss. The clear advantage of structured pruning is that it is hardware efficient
because it may allow skipping entire filters or rows during a matrix multiplication, as suggested in
Figure 5. However, block-based pruning techniques have strict compression rules that make them more
difficult to achieve without degrading performance and require a certain amount of block sparsity to
obtain a faster run time than baseline (Thakker et al., 2020). However, recent research suggests
that wider and sparser networks generalize better than their smaller dense counterparts designed by
structured pruning (Zhu and Gupta, 2017, Li et al., 2020, Golubeva et al., 2021, Timpl et al., 2022,
Ballas, 2022).

Pruning based on Bayesian methods. Among all, Bayesian inference can be used to promote
sparsity in the model. Bayesian methods provide the posterior distribution over the parameters of the
model, given the dataset and a prior distribution. As a result, this posterior distribution encompasses
more information than a simple vector of optimal parameters: variance of the parameters, thickness
of their tails, etc. Besides, by tuning the prior distribution, the user can impose some structure to the
posterior distribution, which can be used to encourage sparsity in the model.

A popular and intuitive prior is the spike-and-slab prior, introduced by Mitchell and Beauchamp
(1988) and used in neural networks by Srinivas et al. (2017), Jantre et al. (2023), for instance. This prior
is a mixture between a Dirac at 0 (the spike) and a distribution with a continuous density (the slab),
e.g., a zero-mean Gaussian distribution. That way, the spike-and-slab prior pushes the parameters
towards 0. More complex, the Horseshoe prior (Carvalho et al., 2009, Ghosh et al., 2019) has been
designed to have an infinite density at 0 and Cauchy-like tails. Thus, the horseshoe prior encourages
the parameters to be exactly 0 while allowing extreme values. Another regularization technique, the
drop-out (Srivastava et al., 2014b), has led to the development of the log-uniform prior by Neklyudov
et al. (2017). Although improper, this prior is designed to be agnostic about the order of magnitude of
the parameters. As a result, its density tends to infinity at 0, so small values are encouraged. However,
to make the log-uniform prior proper, it is common to set its density to 0 outside an interval spanning
several orders of magnitude, as described below:

Spike-and-slab: p(x) = p0δ(x) + (1 − p0)
1√

2πσ2
0

exp

(
− x2

2σ2
0

)
, p0 ∈ (0, 1), σ0 > 0,

Horseshoe: Xi |λi, τ ∼ N (0, λ2
i τ

2); λi ∼ C+(0, a); τ ∼ C+(0, b), a > 0, b > 0, (7)

Proper log-uniform: p(x) =
1

2|x| log(b/a)
1[a,b](|x|), 0 < a < b,

where C+(0, a) is the half-Cauchy distribution with scale parameter a. These densities are illustrated
in Figure 7.

Beyond the choice of the prior, one should pay attention to the choice of the approximate Bayesian
method and the search space of the approximate posterior. In fact, it is usually too costly to compute
the exact posterior distribution of the parameters of large models, such as neural networks. Therefore,
one has to choose an approximate Bayesian method and a search space of the posterior distribution.
For instance, it is common to use variational inference (Graves, 2011) and look for an approximate
posterior consisting of independent Gaussian distributions over the set of parameters (where their
mean and variance are trained). In Srinivas et al. (2017), the candidate posterior distributions for one
parameter θ are the mixtures between the Dirac at 0 and N (µ, σ2), with mixture parameter g: the

17

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

x

D
en

si
ty

Spike−and−slab
Horseshoe
Log−uniform

Figure 7: Prior densities promoting sparsity as described in Equation (7), illustrated with the following
hyperparameters: Spike-and-slab with p0 = 0.2 and σ0 = 1; Horseshoe with a = b = 1; Proper log-
uniform with a = 10−5 and b = 2.

trained parameters are then g, µ, σ. In that case, the value of g is directly related to the sparsity: if
g = 0, then θ = 0, so θ can be pruned.

Summary. In summary, pruning has strong theoretical and practical incentives that make it a high-
potential and relevant choice. Unstructured pruning approaches are more flexible across diverse archi-
tectures and yield the highest sparsity rate, while structured pruning approaches are more hardware
efficient.

Moreover, multiple works have shown that combining pruning with other model compression meth-
ods, such as quantization, can produce a high compression rate without significant performance loss
(Han et al., 2016, Van Baalen et al., 2020, Zhang et al., 2021b).

4.3 Quantization

A different perspective on model compression is quantization. It is a method that maps input values
from a larger set (often continuous) to a smaller set (often discrete) (Gholami et al., 2022) to find
lossless approximations of numerical input values, and can be seen in related work dating back to the
1800s in the foundations of calculus (e.g., least-squares, approximation of integrals) (Gray and Neuhoff,
1998, Gholami et al., 2022).

In particular, fixed-point attempts to represent continuous values (larger set) with a fixed amount of
precision (smaller set); thus, quantization is a mandatory method to meet the low-power requirements
of fixed-point arithmetic inference on MCUs, as stated in Section 3.3.

Recent work on neural network quantization builds upon prior work but presents unique challenges
due to the high power footprint and overparameterized nature of deep learning models. The inherent
redundancy in deep learning models allows for some leniency in quantization errors, limiting accuracy
loss (Guo, 2018, Gholami et al., 2022). Consequently, very small models, that can be found in TinyML,
should be more sensitive to quantization.

Minimizing quantization performance loss can be seen as an optimization problem, where the
objective is to find a discrete distribution (quantized weights) that is closest to the original distribution
(real weights, activation, or data). In practice, this translates by rounding or truncating the model’s
parameters (weights, activations) and data from floating points (e.g., 32-bits) to integer values (e.g., 8-
bits).

18

Compared to pruning, quantization often results in less accuracy loss because weights lose precision
but are not removed, hence a lower level of information loss (Saha et al., 2022).

Quantization approaches can be characterized by several factors: the stage of the quantization
process as quantization-aware training (QAT) or post-training quantization (PTQ), the type of quan-
tization steps as uniform or non-uniform, and the arrangement of quantization levels around the
zero-point Z as symmetric or asymmetric (Equation (8)).

Quantization-aware training (QAT). QAT involves integrating quantization into the training
process or fine-tuning the model by simulating the effects of quantization during the forward or back-
ward pass. However, the quantized function is not differentiable (Equation (8)) and can result in
zero-gradients in low bit-precisions, making it difficult to train the model. Prior works have quantized
values in the forward pass and used real values during the backward pass such as the straight-through
estimator (STE) (Bengio et al., 2013, Courbariaux et al., 2015, Jacob et al., 2018), or other approxi-
mations (Yin et al., 2018, Louizos et al., 2018a). In addition, Choi et al. (2018) learns to optimize the
range of activation clipping values and then linearly quantize both weights and activations to 4-bits,
while Bhalgat et al. (2020) uses a gradient estimate to learn scaling factors of weights and activations.
Alternatively, Darabi et al. (2018) employ regularization to force the weights to converge to binary
values during training, which is generalized in Lê et al. (2023) to any bit-precision and using a schedule
for progressive quantization during training. The objective of QAT is to obtain a stabilized quantized
model by the end of training. These methods enable below 8-bit quantization and even down to 1-
bit weights or activations (Courbariaux et al., 2015, Rastegari et al., 2016, Hubara et al., 2016, Liu
et al., 2018b, Qin et al., 2020) with competitive results compared to full precision networks and PTQ.
Additionally, AskariHemmat et al. (2022) found that quantization is a form of regularization, where
the induced quantization noise can help improve generalization, and particularly to 8-bits on several
computer vision tasks. However, QAT often requires a lot of tuning, additional computation, and
access to the dataset to re-train the model, especially for low-bit quantization.

Post-training quantization (PTQ). PTQ is the simplest and fastest approach, where quantization
can be applied to any trained model without re-training or access to the dataset (Han et al., 2016,
Choukroun et al., 2019, Banner et al., 2019, Cai et al., 2020, Fang et al., 2020). Previous work corrected
the mean and variance of quantized weights (Banner et al., 2019, Gholami et al., 2022), or minimized
the mean squared error between the quantized and full-precision distributions (Choukroun et al.,
2019), allowing 4-bit quantization with acceptable performance. Another approach used piecewise
linear functions to partition the quantization range into non-overlapping regions for each weight in
order to minimize the quantization error (Fang et al., 2020).

The most widely used quantization method for MCUs is uniform affine PTQ to int8 because it
is straightforward and supported by MCUs (Krishnamoorthi, 2018, Gholami et al., 2022, Saha et al.,
2022). Moreover, uniform PTQ with int8 provides sufficient performance compared to the original full-
precision 32-bit (FP32) model for a wide variety of NNs (Krishnamoorthi, 2018, Lee et al., 2018, Fang
et al., 2020). However, PTQ may lead to a more significant loss in accuracy, especially for quantization
below 8 bits (Banner et al., 2019, Gholami et al., 2022).

(Non-)uniform quantization. In uniform quantization, the quantization steps are evenly spaced,
so it is the most straightforward type of quantization while being natively supported in all embedded
hardware (Saha et al., 2022).

In contrast, non-uniform quantization may better capture the original distribution, thus yielding
higher accuracy (Gholami et al., 2022). For example, Miyashita et al. (2016), Zhou et al. (2017) uses
a logarithmic distribution with exponential quantized steps instead of linear steps. Alternatively, Fu
et al. (2020) quantize activations and gradients by finding optimal quantization points that fit their
full-precision distributions based on their Weibull prior properties (Vladimirova et al., 2019, 2021),

19

and obtained competitive results compared to the full precision training using less bits than their
uniform-based counterpart (Fu et al., 2020).

However, non-uniform quantization schemes are challenging to deploy on embedded hardware be-
cause they require a custom implementation to efficiently exploit their specific distribution, in contrast
to uniform quantization which is deployable out of the box. Therefore, we restrict the scope of our
review to uniform quantization schemes for a wide hardware support.

(A-)symmetric quantization. In symmetric quantization, the lower and upper bounds of the
quantization range are equidistant from the zero-point, and Z = 0, which simplifies as follows

Q(r) = int(r/S) − Z, (8)

where Q is the quantization function, r the value to quantize, S a scaling factor, Z represents the zero-
point value in the integer discrete space, α, β denote the lower and upper bounds (α < β), respectively,
of the clipping range where we constrain r, and b is the bit-width.

The scaling factor for symmetric and asymmetric quantization is computed as follows:

Ssym =
max(|α|, |β|)

2b−1 − 1

Sasym =
max(|α|, |β|)
(2b − 1) /2

,

(9)

Asymmetric quantization schemes consider the full range of quantized values, e.g., [−128,+127],
in contrast to [−127,+127]. This provides a slightly larger range to minimize quantization error but
is a more complicated implementation due to the zero point Z ̸= 0 in Equation (8), and may lead to
more computational overhead (Wu et al., 2020).

Quantization based on Bayesian methods. Similarly to the case of pruning, Bayesian inference
can be used to reduce the number of bits necessary to encode a continuous parameter. For instance,
Van Baalen et al. (2020) have proposed a method in the variational inference framework (Graves,
2011): each parameter of a neural network is decomposed as a sum of gated residuals:

x = z2(x2 + z4(ϵ4 + z8(ϵ8 + z16(ϵ16 + z32ϵ32)))),

where x2 is the basic 2-bits approximation of x, the ϵn are the n-bits residuals of x, and the zi are
the corresponding gates. In this example, x is allowed to be pruned or approximated on 2n-bits for
n ∈ {1, 2, 3, 4, 5}. The (zi)i are dependent Bernoulli random variables whose parameters are trained:
if all zi tend to become 0, then x can be pruned; if z2 tend to be always 1 and the others 0, then x
can be efficiently approximated by its 2-bits part; if all zi tend to be always 1, then x should remain
coded on 32 bits. In this setup, the optimal level of quantization (in a Bayesian sense) is discovered
progressively during training and can be heterogeneous across the parameters. Moreover, the allowed
quantization levels span a large interval, from the usual 32-bits quantization to pruning.

Also, the entire posterior distribution provided by Bayesian inference can be used to improve
quantization methods. For instance, Yang et al. (2020) have developed a quantization method that
can be applied to a model for which a posterior distribution is already known for each of its parameters.
In this work, the posterior distribution of each parameter is transformed by a function, which is the
CDF of the prior distribution. Then, the mode of the resulting function is quantized with precision
depending on its width: if the mode has a large width, then a few bits are necessary to encode it. With
this setup, the partition used for quantization is, at least, adapted to the prior distribution, and leads
to a more efficient quantization when applied to posterior distributions. Finally, Meng et al. (2020)
trains binary neural networks using the Bayesian learning rule Khan and Rue (2023), an algorithm
inspired by the Bayesian paradigm. This approach enables uncertainty quantification while providing
state-of-the-art results.

20

Summary. In summary, quantization methods have a long history and exist in many flavours to
achieve lossless approximations in the most constrained settings. QAT emerges as a superior option
in below 8-bit settings, but is more complex and requires more computations than PTQ.

However, uniform PTQ with lower bit quantization is more sensitive due to the distributional
properties of weight, which are clustered around zero (Gaussian or Laplacian) (Han et al., 2016,
Lin et al., 2016), and few of them are in a long tail (Sub-Weibull) (Vladimirova et al., 2019, 2021).
Consequently, uniform quantization maps too few quantization levels to small weights and too many
to large ones, leading to performance loss (Fang et al., 2020). However, overparameterized models
are less sensitive to PTQ due to having more degrees of freedom (Neill, 2020) in contrast to smaller
models.

Thus, we would favour uniform 8-bit PTQ due to its simplicity and acceptable results until we
need lower-bit precision for more power footprint reduction.

4.4 Weight-sharing

Weight-sharing is the simplest form of model compression, involving sharing weights values in different
parts of the model, so it imposes a model architecture prior to training (Neill, 2020). We could set
the amount and location of weight-sharing in a strategic way in the model, such as in rows or columns
of the weight matrix, for efficient inference. However, manual weight-sharing design may be difficult
because we cannot predict the final performance, even if redundancy is part of the design of deep
learning models.

Prior works have used an automated approach, such as clustering weights with K-means that shares
the centroid value among weight clusters with re-training (Wu et al., 2018), where they compressed
a CNN model by a factor of three without significant loss, or by using a penalty term to encourage
grouping weight (Nowlan and Hinton, 1992, Ullrich et al., 2016).

In particular, quantization is a form of weight-sharing because lowering the bit-precision of param-
eters forces them to be aggregated into a common set of values.

4.5 Low-rank matrix and tensor decompositions

Since neural network weight parameters are essentially matrix or tensors, we can apply approximation
methods from linear algebra such as single value decomposition (SVD) or its generalization to tensor
decomposition (TD) (Neill, 2020). The weight matrix is then replaced by a product of two lower-rank
matrices (Xue et al., 2013, Sainath et al., 2013, Novikov et al., 2015, Alvarez and Salzmann, 2017). In
particular, Alvarez and Salzmann (2017) obtained a compression rate of up to 96% compared to the
original model.

However, these methods require additional hyperparameter tuning (Lebedev et al., 2015), as well
as trial and error to find the optimal rank, which may not generalize between applications. Further-
more, for MCUs, it is crucial to consider that the incorporation of additional products from the lower
rank matrix may not always lead to increased efficiency and reduced power consumption, so further
evaluation of the device is required.

4.6 Summary

In summary, we have provided a comprehensive overview of the key methods to design and train
efficient TinyML models, accompanied by their related theoretical concepts and practical implications.
These methods have generated growing interest, as they bridge the gap between deep learning theory
and the deployment of efficient neural networks.

Specifically, model pruning, knowledge distillation, and quantization have demonstrated very promis-
ing compression rates, particularly in larger-scaled networks (Mobile or Cloud size) that are more robust
to model adjustments. Furthermore, some model compression methods are also forms of regularization

21

Dataset
design

Model design,
training, selection

Hardware
deployment

Evaluation,
monitoring

Figure 8: TinyMLOps pipeline.

that can even help the model to generalize better. Thus, these approaches show high potential to meet
the ultra-low-power requirements MCUs.

In practice, since TinyML is at an early stage, tools and processes are not mature enough yet to
evaluate and truly leverage the high compression rate of existing methods for ultra-low power MCUs,
so we will review practical TinyML tools and aspects of the deployment of compressed neural networks
in the next section.

5 Deploying deep learning models on ultra-low power MCUs

In this section, we define and review existing tools for the end-to-end deployment of efficient neural
networks on ultra-low power MCUs.

TinyMLOps. The first framework for training deep learning models was developed in 2008 (Al-Rfou
et al., 2016), with TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) following suit
in 2015 and 2016, respectively. These frameworks enabled the large-scale development and deploy-
ment of deep learning models, which in turn led to the emergence of Machine Learning Operations
(MLOps) (Kreuzberger et al., 2022). MLOps consolidates best practices and outlines steps for mitigat-
ing technical debt (Sculley et al., 2015) during the development and deployment of machine learning
systems.

In contrast, the earliest known publication on TinyML dates back to 2019 (Han and Siebert, 2022),
and the first dedicated deep learning framework for microcontrollers, TensorFlow Lite for Microcon-
trollers (TFLM), was also released in 2019 (Warden and Situnayake, 2020, David et al., 2021). As
TinyML gained traction in the industry, MLOps naturally expanded to include TinyMLOps as a subset
(Sah et al., 2022, Leroux et al., 2022, Lê and Arbel, 2023), focusing on refining the process of deploying
machine learning on embedded devices, as depicted in Figure 8. In the context of TinyML, deployment
refers to the process of taking a trained model and enabling it to run on an embedded system, such as
compiling the model, firmware integration, and verification of the solution on the target device.

Consequently, the TinyMLOps ecosystem is still in an earlier stage than MLOps, with challenges
yet to be fully addressed. We detail here the challenges faced by TinyMLOps tools, as well as existing
solutions.

5.1 Challenges for TinyML tools

The fundamental characteristic of TinyML is the tight dependency between software and hardware
components. In fact, failure to adapt the delivered machine learning software to the constraints of
particular hardware renders it unusable, resulting in wasted efforts in previous TinyMLOps steps.
Additionally, the diverse landscape of embedded hardware further complicates the task of developing a
versatile software base capable of supporting a wide range of embedded hardware platforms (Sah et al.,
2022, Leroux et al., 2022), resulting in a manual and iterative approach to the design of new models.
As a result, designing new models that work on different hardware remains a manual and iterative
approach (different firmware, debugging interfaces...). The challenge of TinyMLOps is to improve the
entire pipeline, from design to deployment, from data to computation.

Even though TinyML shares some tools with traditional ML (e.g., TensorFlow, PyTorch, Tensor-
board), its more recent emergence means that specialized tools are not yet created or are less mature in

22

providing comprehensive solutions. As the TinyML community continues to grow, greater awareness
and adoption of tools will lead to faster innovation and the development of comprehensive solutions.

5.2 TinyML tools solutions

We restrict TinyML frameworks to the one that supports TensorFlow models as input due to its wide
adoption in the industry and that also targets Arm Cortex-M MCUs for inference.

We essentially consider these two common approaches to TinyML frameworks (Sipola et al., 2022):

1. Using a runtime that loads the model from read-only device memory at runtime (e.g., TensorFlow
Lite Micro),

2. Using a transcompiler that converts and compiles models to C or C++ code that then can be
built within a project (NNoM, Edge Impulse, µTVM).

5.2.1 Low-level library

CMSIS-NN. CMSIS-NN (Cortex Microcontroller Software Interface Standard for Neural Networks)
is a low-level library specifically developed by Arm (Lai et al., 2018) for the Cortex-M microcontroller
ecosystem (Table 4). It provides a collection of efficient neural network core functions for low-level
acceleration. These functions include optimized operations for common neural network operations,
such as fully-connected (FC) layers, convolutions, and activation functions (ReLU, sigmoid, tanh...).
CMSIS-NN has been shown to provide a 4.6x speedup and 4.9x energy savings over non-optimized
convolutional models (Lai et al., 2018, Saha et al., 2022).

5.2.2 TinyML frameworks

TensorFlow Lite Micro (TFLM). This framework is an extension of the TensorFlow ecosystem,
specifically designed for deploying neural networks on low-power MCUs such as ARM Cortex-M (David
et al., 2021, Warden and Situnayake, 2020). (Sipola et al., 2022, Ray, 2022, Saha et al., 2022).
TFLM emphasizes portability by discarding uncommon features, data types, and operations and avoids
reliance on specialized libraries or operating systems, thereby achieving memory efficiency and support
for a wide range of hardware. It converts and quantizes a 32-bit floating-point TensorFlow model to a
compressed flat buffer file (.tflite) using 8-bit integers for weights and 32-bit integers for activations and
data. TFLM uses an interpreter-based approach to process the neural network graph at runtime and
consists of three primary components: operator resolver, memory stack pre-allocation, and interpreter
(Sponner et al., 2021, Schizas et al., 2022). The operator resolver links only essential operations to the
model binary file, and the memory stack is used for initialization and storing runtime variables. The
interpreter resolves the network graph at runtime, allocates the memory stack, and performs runtime
calculations. More technical details are provided in David et al. (2021), Schizas et al. (2022).

However, TFLM has limitations, such as missing support of some layers or operations (GRU,
Conv1D, some important activation functions...), arbitrary bit-widths of weights, and activations.
Moreover, TFLM lacks target-specific optimizations during compilation because it relies on a graph-
level representation that does not include device-specific function kernels and execution details (Spon-
ner et al., 2021, Schizas et al., 2022), and can result in larger memory usage, so it may not meet our
extreme memory requirements. Moreover, it does not provide built-in tools to measure power footprint
metrics such as inference time or memory usage. Moreover, the interpreter-based approach at runtime
makes it difficult to debug and extend, compared to standard compiled code, which hinders research
efforts. Despite these limitations, TFLM remains the most popular choice for microcontroller-based
deep learning applications.

23

Neural Network on Microcontroller (NNoM). This open-source framework (Ma, 2020) relies
on a C code generation approach with a set of function calls. It is flexible, easy to debug, and supports
a wide range of MCUs, but only supports models created using TensorFlow. The project includes
a compiler that converts and quantizes a TensorFlow model to plain C code with 8-bit weights and
32-bit activations and data. Additionally, the NNoM compiler supports the CMSIS-NN to generate
optimized code for ARM Cortex-M processors (Sipola et al., 2022). It does support all RNN layers
including GRU, in contrast to TensorFlow. However, it does not support lower bit-width quantization
and has a smaller community and adoption compared to TFLM, so this hinders the development of
new features.

Edge Impulse. Lastly, Edge Impulse (Janapa Reddi et al., 2023) is a closed-source cloud service
that develops TinyML machine learning models for edge devices and supports AutoML for mobile
and microcontrollers (Saha et al., 2022, Ray, 2022). Edge Impulse provides a complete end-to-end
model deployment solution, including data collection, feature extraction, training, and deployment
(Saha et al., 2022), with an intuitive graphical interface and a friendly no-code approach. The training
is carried out in the cloud and the learned model can be exported to an edge device using a data-
forwarding capable connection (Schizas et al., 2022).

For model deployment, Edge Impulse uses an interpreter-less edge-optimized neural compiler, which
directly compiles the model into C++ source code. This approach eliminates the need to store unused
ML operators, resulting in reduced memory requirements at the expense of portability compared to
TFLM. Studies have shown that the EON compiler can run the same model with 25%–55% less SRAM
and 35% less flash memory than TFLM (Saha et al., 2022).

In conclusion, TinyML brings together the embedded systems and machine learning communities,
which have traditionally operated independently. Both academia and industry have developed sev-
eral software frameworks for TinyML to streamline the deployment of machine learning models on
microcontrollers. In particular, we are interested in TFLM because it integrates with TensorFlow and
provides a complete toolchain for deploying low-power models MCUs. We are also interested in NNoM
because it provides a flexible and simple approach to quantizing and deploying models from plain C
code and CMSIS-NN support for Arm Cortex-M MCUs. Moreover, these two frameworks are open-
source, which makes them accessible as well as potentially extendable. However, these frameworks are
still in the early stages of development, with some missing features and functionality. Despite their
limitations, the current first generation of TinyML tools can transition the state-of-the-art machine
learning models to ultra-low power environments.

6 Limitations of TinyML

In this section, we systematically assess the limitations of current TinyML models when applied to
standard datasets, with a specific focus on their memory size. Our primary objective is to identify
the most efficient models that strike the optimal balance between performance and memory usage. By
doing so, we aim to offer valuable insights to researchers and industry professionals, shedding light on
the scale of TinyML models. Furthermore, our analysis aims to pinpoint the most suitable models
among widely adopted options and various hardware platforms for their respective applications.

We focus here on the most common datasets found in TinyML model benchmarks for the following
three tasks, see Figure 9 presenting accuracy against (flash) model size:

• Image Classification: MNIST is a basic dataset for image classification of handwritten digits.
We also use ImageNet, a more challenging image classification dataset than MNIST due to its
larger and more diverse images and labels, thus requiring more complex models.

• Image Recognition: Visual Wake Word is focused on the visual presence recognition of a
person or an object in images.

24

• Speech Recognition: Google Speech Commands v2-12 consists of short audio clips of spoken
word commands with 12 classes to recognize.

MNIST. For MNIST, we find that µNAS (Liberis et al., 2021) clearly offers the best size-accuracy
tradeoff and is below the Cortex M0+ memory limitation. The large LeNet (Han et al., 2016) has
slightly better accuracy but is over the memory threshold. Then, the two versions of Sparse CNN
(Fedorov et al., 2019) are both below the extreme low-power threshold, but their accuracies are still
lower than µNAS. However, ProtoNN (Gupta et al., 2017) and Bonsai (Kumar et al., 2017) display
the least favorable tradeoff, but ProtoNN is below the Cortex M0+ threshold.

ImageNet. We observe that ImageNet models require the largest models of all studied here, mostly
above the ultra-low power microcontrollers (Cortex M4 and M7) threshold. In particular, the large
MCUNet (Lin et al., 2020) has the best accuracy tradeoff and is right below the Cortex M7 memory
threshold. Both versions of SqueezeNet (Iandola et al., 2016) and MNasNet (Tan et al., 2019) have
low accuracy, so they are unsuitable for practical application.

Visual Wake Word (VWW). We notice that no models are below the Cortex M0+ memory
threshold, but the size of the RaScaNet models (Yoo et al., 2021) shows that it would be reachable
with further research. In the ultra-low power range, MSNet (Cheng et al., 2019) clearly provides
the optimal size-performance tradeoff, but one could deploy the large RaScaNet for even lower power
and acceptable accuracy. In comparison, the performance of MNasNet is less favorable. We also see
that MobileNetV1 (Howard et al., 2017, Banbury et al., 2021b) and MicroNet (Banbury et al., 2021b)
display the worst size-performance tradeoff.

Google Speech Commands v2-12. In the extremely low-power range, we note that FastGRNN
(Kusupati et al., 2018) offers the best tradeoff, while in the ultra-low power range, µNAS displays once
again the best tradeoff. ConvGRU 4-bits (Lê et al., 2023), ShallowRNN (Dennis et al., 2019), Hello
Edge DS-CNN (Zhang et al., 2018), TinySpeech-Z (Wong et al., 2020), LSTM-KP (Thakker et al.,
2021), LMU-4 (Blouw et al., 2020), FastRNN (Kusupati et al., 2018), DS-CNN (Banbury et al., 2021a)
and all have acceptable performance, but are still less favorable than µNAS. In contrast, all versions
of MicroNet present the least optimal performance once more, where the large MicroNet is even above
the Cortex M4 threshold.

Summary. Among the standard datasets, TinyML models are able to comply with extreme-low
power constraints as low as 8 kB for a speech recognition task and a simple image classification
dataset, with a given tradeoff on accuracy. In this regard, further research efforts are required for an
image recognition task and a more complex image classification problem. Otherwise, Cortex M4 is
sufficient to run most models for all tasks with the best accuracy.

The industrial cost of exceeding a hardware memory threshold is high. Emphasizing the successful
deployment of models on the most constrained microcontrollers is crucial, given the substantial eco-
nomic impact. Even though microcontroller power classes (extreme low-power and ultra-low power)
have minor price differences (ranging from 1 to 3 dollars) and are inexpensive, the price significance
magnifies when considering the billions of annual unit market sales, resulting itself in billions of yearly
savings. Thus, designing efficient models is critical for the TinyML industry, and inherently comes
with a price tradeoff.

7 Conclusion and discussion

Summary. In Section 2 we presented the state of neural networks and motivated our interest in
them for our applications, then we provided an overview of MEMS-based applications, emphasized

25

0 100 200 300 400 500

Model size (kB)

96.5

97.0

97.5

98.0

98.5

99.0

A
cc

u
ra

cy

S
A

M
G

55
J1

9
(C

or
te

x-
M

0+
)

N
ew

p
or

t
(C

or
te

x-
M

4)

Model

Sparse CNN

LeNet

µNAS

ProtoNN

Bonsai

1000 2000 3000 4000 5000

Model size (kB)

58

60

62

64

66

68

70

72

A
cc

u
ra

cy

N
ew

p
or

t
(C

or
te

x-
M

4)

N
ew

p
or

t
(C

or
te

x-
M

7)

Model

MCUNet

SqueezeNet

MNasNet

(a) MNIST (b) ImageNet

0 250 500 750 1000 1250 1500 1750 2000

Model size (kB)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

A
cc

u
ra

cy

S
A

M
G

55
J1

9
(C

or
te

x-
M

0+
)

N
ew

p
or

t
(C

or
te

x-
M

4)

N
ew

p
or

t
(C

or
te

x-
M

7)

Model

MicroNet

RaScaNet

MNasNet

MobileNetV1

MSNet

0 100 200 300 400 500

Model size (kB)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

A
cc

u
ra

cy

S
A

M
G

55
J1

9
(C

or
te

x-
M

0+
)

N
ew

p
or

t
(C

or
te

x-
M

4)

Model

MicroNet

DS-CNN

µNAS

ConvGRU 4-bits

FastRNN

FastGRNN

ShallowRNN

Hello Edge DS-CNN

TinySpeech-Z

LMU-4

LSTM-KP

(c) Visual Wake Word (d) Google Speech Commands v2-12

Figure 9: Flash model size versus accuracy on the four considered datasets. Vertical grey dashed lines
indicate hardware storage limits for Cortex-M0+, Cortex-M4 and Cortex-M7 (see Table 4).

the opportunities and challenges of our extremely low-power constraints, that reinforce the need for
more TinyML research efforts in Section 3. Then in Section 4, we presented the existing methods to
design efficient neural networks on ultra-low power MCUs, and provided an overview of existing tools
to deploy neural networks to enable for TinyML applications in Section 5. Finally, we examined the
current limitations in the field of TinyML in Section 6.

Open challenges. TinyML is faced with a number of open challenges. Ensuring the robustness of
TinyML models against adversarial attacks remains a significant challenge. Adversarial attacks can
manipulate input data to mislead the model, posing security risks in critical applications. Research
is needed to develop robust TinyML models that can withstand various forms of adversarial attacks.
This includes exploring techniques such as adversarial training, input perturbation defences, and un-
derstanding the trade-offs between model complexity and robustness. Additionally, many edge devices
in TinyML applications operate in dynamic environments with fluctuating resource availability. Man-
aging resources such as power, memory, and bandwidth dynamically to adapt to changing conditions
is a complex challenge. Further investigation of adaptive resource management strategies for TinyML
models will be required in the future, considering real-time changes in resource availability. This in-
cludes exploring techniques for dynamic model adaptation, on-the-fly optimization, and resource-aware
scheduling to ensure optimal performance under varying conditions. Addressing these challenges would
not only enhance the robustness and adaptability of TinyML models but also contribute to the broader

26

applicability of TinyML in diverse and dynamic edge computing environments.

Emerging trends and technologies. Several trends and technologies may impact the field of
TinyML in the coming years. Edge AI and Edge Computing : the integration of TinyML with edge
computing is a prominent trend, enabling the processing of machine learning models closer to the data
source. This approach reduces latency, addresses bandwidth constraints, and optimizes TinyML models
for resource-constrained edge devices. Quantum Computing : quantum computing holds the potential
to revolutionize the field of TinyML by accelerating model training and optimization processes. As
quantum computing technologies mature, researchers may explore their application to enhance the
efficiency and performance of TinyML models. Custom Hardware Accelerators: the development of
custom hardware accelerators designed for efficient execution of TinyML models on edge devices is a
key trend. Specialized hardware architectures aim to improve both performance and energy efficiency,
contributing to the widespread deployment of TinyML in diverse applications.

These trends collectively signify a shift towards more efficient, decentralized, and specialized com-
puting approaches, paving the way for advancements in the deployment and optimization of TinyML
models on resource-constrained devices at the edge. They suggest a dynamic landscape for the future
of TinyML, with innovations in hardware, communication, and algorithmic approaches contributing
to the continued evolution of this field. Researchers and practitioners in TinyML should stay informed
about these trends to harness their potential benefits and address new challenges.

27

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016).
TensorFlow: Large-scale machine learning on heterogeneous systems.

Al-Rfou, R., Alain, G., Almahairi, A., Angermüller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer,
J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V., Snyder, J. B.,
Bouchard, N., Boulanger-Lewandowski, N., Bouthillier, X., de Brébisson, A., Breuleux, O., Carrier,
P. L., Cho, K., Chorowski, J., Christiano, P. F., Cooijmans, T., Côté, M.-A., Côté, M., Courville,
A. C., Dauphin, Y. N., Delalleau, O., Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Ducoffe,
M., Dumoulin, V., Kahou, S. E., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow,
I. J., Graham, M., Gülçehre, Ç., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S., Jain,
A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent,
C., Lee, S., Lefrançois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A., Lorenz, C., Lowin,
J., Ma, Q., Manzagol, P.-A., Mastropietro, O., McGibbon, R., Memisevic, R., van Merriënboer, B.,
Michalski, V., Mirza, M., Orlandi, A., Pal, C. J., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D.,
Rocklin, M., Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schulman, J.,
Schwartz, G., Serban, I. V., Serdyuk, D., Shabanian, S., Simon, É., Spieckermann, S., Subramanyam,
S. R., Sygnowski, J., Tanguay, J., van Tulder, G., Turian, J. P., Urban, S., Vincent, P., Visin, F.,
de Vries, H., Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S., and
Zhang, Y. (2016). Theano: A Python framework for fast computation of mathematical expressions.
arXiv, abs/1605.02688.

Alnaim, N. and Abbod, M. F. (2019). Mini gesture detection using neural networks algorithms. In
International Conference on Machine Vision.

Alqahtani, A., Xie, X., and Jones, M. W. (2021). Literature review of deep network compression.
Informatics, 8(4).

Alvarez, J. M. and Salzmann, M. (2016). Learning the Number of Neurons in Deep Networks. In
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

Alvarez, J. M. and Salzmann, M. (2017). Compression-aware Training of Deep Networks. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Arık, S. Ö., Kliegl, M., Child, R., Hestness, J., Gibiansky, A., Prenger, R., and Coates, A.
(2017). Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting. arXiv,
abs/1703.05390.

AskariHemmat, M., Hemmat, R. A., Hoffman, A., Lazarevich, I., Saboori, E., Mastropietro, O., Sah,
S., Savaria, Y., and David, J.-P. (2022). QReg: On Regularization Effects of Quantization.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to
align and translate. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Baldi, P. (1995). Gradient descent learning algorithm overview: A general dynamical systems perspec-
tive. IEEE Transactions on Neural Networks, 6(1):182–195.

Ballas, C. (2022). Inducing Sparsity in Deep Neural Networks through Unstructured Pruning for Lower
Computational Footprint. PhD thesis, Dublin City University.

28

Banbury, C., Reddi, V. J., Torelli, P., Holleman, J., Jeffries, N., Kiraly, C., Montino, P., Kanter, D.,
Ahmed, S., Pau, D., et al. (2021a). MLPerf tiny benchmark. Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks.

Banbury, C., Zhou, C., Fedorov, I., Navarro, R. M., Thakker, U., Gope, D., Reddi, V. J., Mattina, M.,
and Whatmough, P. N. (2021b). MicroNets: Neural Network Architectures for Deploying TinyML
Applications on Commodity Microcontrollers.

Banner, R., Nahshan, Y., and Soudry, D. (2019). Post training 4-bit quantization of convolutional
networks for rapid-deployment. Advances in Neural Information Processing Systems, 32.

Bengio, Y., Léonard, N., and Courville, A. C. (2013). Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv, abs/1308.3432.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and Kwak, N. (2020). LSQ+: Improving low-bit
quantization through learnable offsets and better initialization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 696–697.

Bhardwaj, K., Aryan, and Yadav, R. (2022). Single input-based CNN-LSTM and CNN-GRU based
HAR using wearable sensors. In Advancement in Electronics & Communication Engineering.

Bishop, C. (1995). Regularization and complexity control in feed-forward networks. In Proceedings
International Conference on Artificial Neural Networks ICANN’95, volume 1, pages 141–148. EC2
et Cie.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. (2018). Understanding batch normaliza-
tion. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Blouw, P., Malik, G., Morcos, B., Voelker, A., and Eliasmith, C. (2020). Hardware aware training for
efficient keyword spotting on general purpose and specialized hardware. In Research Symposium on
Tiny Machine Learning.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).
Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD
’06, page 535, Philadelphia, PA, USA. ACM Press.

Burkholz, R., Laha, N., Mukherjee, R., and Gotovos, A. (2022). On the existence of universal lottery
tickets. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022.

Cahuantzi, R., Chen, X., and Güttel, S. (2021). A comparison of LSTM and GRU networks for learning
symbolic sequences.

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M. W., and Keutzer, K. (2020). ZeroQ: A novel
zero shot quantization framework. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13166–13175.

29

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). Handling sparsity via the horseshoe. In
Artificial intelligence and statistics, pages 73–80. PMLR.

Chen, M. (2018). MinimalRNN: Toward More Interpretable and Trainable Recurrent Neural Networks.
arXiv, abs/1711.06788.

Cheng, H.-P., Zhang, T., Yang, Y., Yan, F., Teague, H., Chen, Y., and Li, H. (2019). MSNet:
Structural wired neural architecture search for internet of things. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pages 2033–2036.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., and Gopalakrishnan, K. (2018).
PACT: Parameterized clipping activation for quantized neural networks. arXiv, abs/1805.06085.

Choromańska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2014). The loss surfaces of
multilayer networks. In International Conference on Artificial Intelligence and Statistics.

Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P. (2019). Low-bit Quantization of Neural
Networks for Efficient Inference. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pages 3009–3018.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). BinaryConnect: Training deep neural networks
with binary weights during propagations. In Advances in Neural Information Processing Systems,
volume 28.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314.

Darabi, S., Belbahri, M., Courbariaux, M., and Nia, V. P. (2018). Regularized Binary Network
Training. arXiv, abs/1812.11800.

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier, I., Natraj,
M., Wang, T., et al. (2021). TensorFlow Lite Micro: Embedded Machine Learning on TinyML
Systems. Proceedings of Machine Learning and Systems, 3:800–811.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and de Freitas, N. (2013). Predicting parameters in
deep learning. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors,
Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.

Dennis, D., Acar, D. A. E., Mandikal, V., Sadasivan, V. S., Saligrama, V., Simhadri, H. V., and
Jain, P. (2019). Shallow rnn: Accurate time-series classification on resource constrained devices. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search. In Hutter, F., Kotthoff,
L., and Vanschoren, J., editors, Automated Machine Learning: Methods, Systems, Challenges, pages
63–77. Springer International Publishing, Cham.

Fang, J., Shafiee, A., Abdel-Aziz, H., Thorsley, D., Georgiadis, G., and Hassoun, J. H. (2020). Post-
training Piecewise Linear Quantization for Deep Neural Networks. In Vedaldi, A., Bischof, H., Brox,
T., and Frahm, J.-M., editors, Computer Vision – ECCV 2020, volume 12347, pages 69–86. Springer
International Publishing, Cham.

30

Fedorov, I., Adams, R. P., Mattina, M., and Whatmough, P. (2019). Sparse: Sparse architecture
search for cnns on resource-constrained microcontrollers. Advances in Neural Information Processing
Systems, 32.

Fedorov, I., Stamenovic, M., Jensen, C., Yang, L.-C., Mandell, A., Gan, Y., Mattina, M., and What-
mough, P. N. (2020). TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. In
Interspeech 2020, pages 4054–4058. ISCA.

Fischer, J. and Burkholz, R. (2022). Plant ’n’ seek: Can you find the winning ticket? In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022.

Frankle, J. and Carbin, M. (2018). The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. In International Conference on Learning Representations.

Freire, P. J., Napoli, A., Ron, D. A., Spinnler, B., Anderson, M., Schairer, W., Bex, T., Costa, N.,
Turitsyn, S. K., and Prilepsky, J. E. (2023). Reducing computational complexity of neural networks
in optical channel equalization: From concepts to implementation. Journal of Lightwave Technology,
pages 1–26.

Fu, F., Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and Cui, B. (2020). Don’t waste your bits!
squeeze activations and gradients for deep neural networks via tinyscript. In International Conference
on Machine Learning, pages 3304–3314. PMLR.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernet-
ics, 20(3):121–136.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 1050–1059, New York, NY, USA.
JMLR.org.

Gale, T., Elsen, E., and Hooker, S. (2019). The State of Sparsity in Deep Neural Networks. arXiv,
abs/1902.09574 [cs, stat].

Garbay, T., Hachicha, K., Dobias, P., Dron, W., Lusich, P., Khalis, I., Pinna, A., and Granado, B.
(2022). Accurate estimation of the CNN inference cost for TinyML devices. In 2022 IEEE 35th
International System-on-Chip Conference (SOCC), pages 1–6.

Gers, F., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with
LSTM. In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf.
Publ. No. 470), volume 2, pages 850–855 vol.2.

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning precise timing with lstm
recurrent networks. Journal of Machine Learning Research, 3:115–143.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K. (2022). A Survey of
Quantization Methods for Efficient Neural Network Inference. In Low-Power Computer Vision,
pages 291–326. Chapman and Hall/CRC.

Ghosh, S., Yao, J., and Doshi-Velez, F. (2019). Model selection in bayesian neural networks via
horseshoe priors. J. Mach. Learn. Res., 20(182):1–46.

Golatkar, A. S., Achille, A., and Soatto, S. (2019). Time Matters in Regularizing Deep Networks:
Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Con-
vergence. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc.

31

Golubeva, A., Gur-Ari, G., and Neyshabur, B. (2021). Are wider nets better given the same number
of parameters? In International Conference on Learning Representations.

Gong, Y. and Poellabauer, C. (2018). Impact of aliasing on deep CNN-Based end-to-end acoustic
models. In Proc. Interspeech 2018, pages 2698–2702.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA,
USA.

Graves, A. (2011). Practical variational inference for neural networks. In Shawe-Taylor, J., Zemel, R.,
Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing
Systems, volume 24. Curran Associates, Inc.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural net-
works. In Xing, E. P. and Jebara, T., editors, Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1764–1772,
Bejing, China. PMLR.

Gray, R. and Neuhoff, D. (1998). Quantization. IEEE Transactions on Information Theory,
44(6):2325–2383.

Guo, Y. (2018). A Survey on Methods and Theories of Quantized Neural Networks. arXiv,
abs/1808.04752.

Gupta, C., Suggala, A. S., Goyal, A., Simhadri, H. V., Paranjape, B., Kumar, A., Goyal, S., Udupa,
R., Varma, M., and Jain, P. (2017). ProtoNN: Compressed and accurate kNN for resource-scarce
devices. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1331–1340.
PMLR.

Hagiwara, M. (1993). Removal of hidden units and weights for back propagation networks. In Proceed-
ings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 1,
pages 351–354 vol.1.

Han, H. and Siebert, J. (2022). TinyML: A Systematic Review and Synthesis of Existing Research.
In 2022 International Conference on Artificial Intelligence in Information and Communication
(ICAIIC), pages 269–274.

Han, S., Mao, H., and Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition.

He, Y., Zhang, X., and Sun, J. (2017). Channel pruning for accelerating very deep neural networks.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 1398–1406.

Heck, J. C. and Salem, F. M. (2017). Simplified minimal gated unit variations for recurrent neural net-
works. In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
pages 1593–1596, Boston, MA, USA. IEEE.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv,
abs/1503.02531 [cs, stat].

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–
1780.

32

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2021). Sparsity in Deep Learning:
Pruning and growth for efficient inference and training in neural networks. The Journal of Machine
Learning Research, 22(1):10882–11005.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R.,
Vasudevan, V., Le, Q. V., and Adam, H. (2019). Searching for MobileNetV3.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions.

Huang, Y. (2009). Advances in artificial neural networks – methodological development and applica-
tion. Algorithms, 2(3):973–1007.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized neural
networks. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, pages 4114–4122, Red Hook, NY, USA. Curran Associates Inc.

Huffman, D. A. (2006). A method for the construction of minimum-redundancy codes. Resonance,
11(2):91–99.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., and Keutzer, K. (2016).
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv,
abs/1602.07360.

IEEE (2019). IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008), pages 1–84.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pages 448–456, Lille, France. JMLR.org.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and Kalenichenko,
D. (2018). Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only
Inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2704–2713.

Janapa Reddi, V., Elium, A., Hymel, S., Tischler, D., Situnayake, D., Ward, C., Moreau, L., Plunkett,
J., Kelcey, M., Baaijens, M., et al. (2023). Edge impulse: An MLOps platform for tiny machine
learning. Proceedings of Machine Learning and Systems.

Jantre, S., Bhattacharya, S., and Maiti, T. (2023). A comprehensive study of spike and slab shrinkage
priors for structurally sparse Bayesian neural networks. arXiv, abs/2308.09104.

Kanjo, E. (2022). Sensing on the edge: Smartening up sensors. In 2022 Seventh International Con-
ference on Fog and Mobile Edge Computing (FMEC), pages 1–1.

Kawaguchi, K. and Huang, J. (2019). Gradient descent finds global minima for generalizable deep
neural networks of practical sizes. In 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 92–99.

Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2020). A survey of the recent architectures of
deep convolutional neural networks. Artificial Intelligence Review, 53(8):5455–5516.

33

Khan, M. E. and Rue, H. (2023). The Bayesian Learning Rule. Journal of Machine Learning Research,
1(4):5.

Kreuzberger, D., Kühl, N., and Hirschl, S. (2022). Machine Learning Operations (MLOps): Overview,
Definition, and Architecture. IEEE Access, page 13.

Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient inference: A whitepa-
per. arXiv, abs/1806.08342 [cs, stat].

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolu-
tional Neural Networks. In Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc.

Kumar, A., Goyal, S., and Varma, M. (2017). Resource-efficient machine learning in 2 KB RAM for
the internet of things. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1935–1944. PMLR.

Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., and Varma, M. (2018). Fastgrnn: A fast,
accurate, stable and tiny kilobyte sized gated recurrent neural network. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, page 9031–9042, Red
Hook, NY, USA. Curran Associates Inc.

Lai, L., Suda, N., and Chandra, V. (2018). CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-M CPUs. arXiv, abs/1801.06601 [cs].

Lammel, G. (2015). The future of MEMS sensors in our connected world. In 2015 28th IEEE Inter-
national Conference on Micro Electro Mechanical Systems (MEMS), pages 61–64.

Lê, M. T. and Arbel, J. (2023). TinyMLOps for real-time ultra-low power MCUs applied to frame-
based event classification. In EuroMLSys ’23: Proceedings of the 3rd European Workshop on Machine
Learning and Systems, Rome, Italy, May 08-12, 2023. ACM, New York, NY.

Lê, M. T., de Foras, E., and Arbel, J. (2023). Regularization for Hybrid N -bit Weight Quantization
of Neural Networks on Ultra-Low Power Microcontrollers. In Iliadis, L., Papaleonidas, A., Angelov,
P., and Jayne, C., editors, Artificial Neural Networks and Machine Learning – ICANN 2023, Cham.
Springer Nature Switzerland.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I. V., and Lempitsky, V. S. (2015). Speeding-up
convolutional neural networks using fine-tuned CP-Decomposition. In Bengio, Y. and LeCun, Y.,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J. H., Ha, S., Choi, S., Lee, W.-J., and Lee, S. (2018). Quantization for rapid deployment of deep
neural networks. arXiv, abs/1810.05488.

Leroux, S., Simoens, P., Lootus, M., Thakore, K., and Sharma, A. (2022). Tinymlops: Operational
challenges for widespread edge ai adoption. In 2022 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1003–1010. IEEE.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient de-
scent on structured data. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pages 8168–8177, Red Hook, NY, USA. Curran Associates Inc.

34

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., and Gonzalez, J. (2020). Train big, then
compress: Rethinking model size for efficient training and inference of transformers. In International
Conference on Machine Learning, pages 5958–5968. PMLR.

Liberis, E., Dudziak, L., and Lane, N. D. (2021). µNAS: Constrained Neural Architecture Search for
Microcontrollers. In Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys
’21, pages 70–79, New York, NY, USA. Association for Computing Machinery.

Liberis, E. and Lane, N. D. (2020). Neural networks on microcontrollers: Saving memory at inference
via operator reordering. arXiv, abs/1910.05110.

Lin, D. D., Talathi, S. S., and Annapureddy, V. S. (2016). Fixed point quantization of deep convolu-
tional networks. In Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, pages 2849–2858, New York, NY, USA. JMLR.org.

Lin, H. and Jegelka, S. (2018). ResNet with one-neuron hidden layers is a universal approximator.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 6172–6181, Red Hook, NY, USA. Curran Associates Inc.

Lin, J., Chen, W.-M., Lin, Y., cohn, j., Gan, C., and Han, S. (2020). MCUNet: Tiny Deep Learning on
IoT Devices. In Advances in Neural Information Processing Systems, volume 33, pages 11711–11722.
Curran Associates, Inc.

Lin, T., Wang, Y., Liu, X., and Qiu, X. (2022). A survey of transformers. AI Open, 3:111–132.

Liu, Y., Che, W., Qin, B., and Liu, T. (2020). Exploring segment representations for neural semi-
markov conditional random fields. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 28:813–824.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). Learning efficient convolutional
networks through network slimming. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2755–2763, Los Alamitos, CA, USA. IEEE Computer Society.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018a). Rethinking the Value of Network
Pruning. In International Conference on Learning Representations.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng, K.-T. (2018b). Bi-real net: Enhancing
the performance of 1-Bit CNNs with improved representational capability and advanced training
algorithm. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision –
ECCV 2018, pages 747–763, Cham. Springer International Publishing.

Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., and Welling, M. (2018a). Relaxed Quantization
for Discretized Neural Networks. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Louizos, C., Welling, M., and Kingma, D. P. (2018b). Learning sparse neural networks through L0 reg-
ularization. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

Lu, L., Zhang, C., Cao, K., Deng, T., and Yang, Q. (2022). A multichannel CNN-GRU model for
human activity recognition. IEEE access : practical innovations, open solutions, 10:66797–66810.

Ma, J. (2020). A higher-level neural network library on microcontrollers (NNoM). Zenodo.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network
acoustic models. In International Conference on Machine Learning, volume 30, page 3. Atlanta,
GA.

35

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133.

Menard, D., Chillet, D., and Sentieys, O. (2006). Floating-to-Fixed-Point Conversion for Digital Signal
Processors. EURASIP Journal on Advances in Signal Processing, 2006(1):096421.

Meng, X., Bachmann, R., and Khan, M. E. (2020). Training binary neural networks using the Bayesian
learning rule. In International Conference on Machine Learning, pages 6852–6861. PMLR.

Menghani, G. (2023). Efficient deep learning: A survey on making deep learning models smaller, faster,
and better. Acm Computing Surveys, 55(12).

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal
of the american statistical association, 83(404):1023–1032.

Miyashita, D., Lee, E. H., and Murmann, B. (2016). Convolutional neural networks using logarithmic
data representation. arXiv, abs/1603.01025.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on International Conference on Machine Learning,
ICML’10, pages 807–814, Madison, WI, USA. Omnipress.

Neill, J. O. (2020). An Overview of Neural Network Compression. arXiv, abs/2006.03669 [cs, stat].

Neklyudov, K., Molchanov, D., Ashukha, A., and Vetrov, D. P. (2017). Structured bayesian pruning
via log-normal multiplicative noise. Advances in Neural Information Processing Systems, 30.

Novac, P.-E., Boukli Hacene, G., Pegatoquet, A., Miramond, B., and Gripon, V. (2021). Quantization
and Deployment of Deep Neural Networks on Microcontrollers. Sensors, 21(9):2984.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015). Tensorizing neural networks.
Advances in neural information processing systems, 28.

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing. Neural
Computation, 4(4):473–493.

OpenAI (2023). GPT-4 technical report. arXiv, abs/2303.08774.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Poggio, T., Banburski, A., and Qianli Liao (2020a). Theoretical issues in deep networks. Proceedings
of the National Academy of Sciences, 117(48):30039–30045.

Poggio, T., Liao, Q., and Banburski, A. (2020b). Complexity control by gradient descent in deep
networks. Nature Communications, 11(1):1027.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). Binary neural networks: A survey.
Pattern Recognition, 105:107281.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., and Rastegari, M. (2020). What’s hidden
in a randomly weighted neural network? In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11890–11899.

36

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). XNOR-Net: ImageNet classification
using binary convolutional neural networks. In Leibe, B., Matas, J., Sebe, N., and Welling, M.,
editors, Computer Vision – ECCV 2016, pages 525–542, Cham. Springer International Publishing.

Ray, P. P. (2022). A review on TinyML: State-of-the-art and prospects. Journal of King Saud Uni-
versity - Computer and Information Sciences, 34(4):1595–1623.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Sah, A., Chatterjee, S., and Vaidheeswaran, A. (2022). TinyMLOps: Overview, Challenges and Im-
plementation. TinyML Summit.

Saha, S. S., Sandha, S. S., and Srivastava, M. (2022). Machine learning for microcontroller-class
hardware: A review. IEEE Sensors Journal, 22(22):21362–21390.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and Ramabhadran, B. (2013). Low-rank
matrix factorization for Deep Neural Network training with high-dimensional output targets. In
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6655–6659.

Sakib, S., Ahmed, N., Kabir, A. J., and Ahmed, H. (2018). An overview of convolutional neural
network: Its architecture and applications. Preprints.org, 2018(2018110546).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4510–4520.

Schizas, N., Karras, A., Karras, C., and Sioutas, S. (2022). TinyML for ultra-low power AI and large
scale IoT deployments: A systematic review. Future Internet, 14(12).

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M.,
Crespo, J.-F., and Dennison, D. (2015). Hidden technical debt in machine learning systems. In
Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning.
Journal of Big Data, 6(1):60.

Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action recognition
in videos. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’14, pages 568–576, Cambridge, MA, USA. MIT Press.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Sipola, T., Alatalo, J., Kokkonen, T., and Rantonen, M. (2022). Artificial intelligence in the IoT era: A
review of edge AI hardware and software. In 2022 31st Conference of Open Innovations Association
(FRUCT), pages 320–331.

Sjöberg, J. and Ljung, L. (1992). Overtraining, regularization, and searching for minimum in neural
networks. IFAC Proceedings Volumes, 25(14):73–78.

Sponner, M., Waschneck, B., and Kumar, A. (2021). Compiler Toolchains for Deep Learning Workloads
on Embedded Platforms.

37

Srinivas, S. and Babu, R. V. (2015). Data-free parameter pruning for deep neural networks. In British
Machine Vision Conference (BMVC).

Srinivas, S., Subramanya, A., and Venkatesh Babu, R. (2017). Training sparse neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages
138–145.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014a). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014b). Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019). Mnasnet:
Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pages 6105–6114. PMLR.

Thakker, U., Beu, J., Gope, D., Dasika, G., and Mattina, M. (2020). Rank and run-time aware
compression of NLP applications. In Moosavi, N. S., Fan, A., Shwartz, V., Glavaš, G., Joty, S.,
Wang, A., and Wolf, T., editors, Proceedings of SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, pages 8–18. Association for Computational Linguistics.

Thakker, U., Fedorov, I., Zhou, C., Gope, D., Mattina, M., Dasika, G., and Beu, J. (2021). Compressing
rnns to kilobyte budget for iot devices using kronecker products. J. Emerg. Technol. Comput. Syst.,
17(4).

Timpl, L., Entezari, R., Sedghi, H., Neyshabur, B., and Saukh, O. (2022). Understanding the effect
of sparsity on neural networks robustness.

Ullrich, K., Meeds, E., and Welling, M. (2016). Soft weight-sharing for neural network compression.
In International Conference on Learning Representations.

Unlu, H. (2020). Efficient Neural Network Deployment for Microcontroller. arXiv, abs/2007.01348
[cs].

Van Baalen, M., Louizos, C., Nagel, M., Amjad, R. A., Wang, Y., Blankevoort, T., and Welling, M.
(2020). Bayesian bits: Unifying quantization and pruning. Advances in neural information processing
systems, 33:5741–5752.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems,
30.

Vladimirova, M., Arbel, J., and Girard, S. (2021). Bayesian neural network unit priors and generalized
Weibull-tail property. In Balasubramanian, V. N. and Tsang, I. W., editors, Asian Conference on
Machine Learning, ACML 2021, 17-19 November 2021, Virtual Event, volume 157 of Proceedings
of Machine Learning Research, pages 1397–1412. PMLR.

38

Vladimirova, M., Verbeek, J., Mesejo, P., and Arbel, J. (2019). Understanding priors in bayesian
neural networks at the unit level. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 6458–6467. PMLR.

Walsh, C. A. (2013). Peter Huttenlocher (1931–2013). Nature, 502(7470):172–172.

Warden, P. and Situnayake, D. (2020). TinyML: Machine Learning with TensorFlow Lite on Arduino
and Ultra-Low-Power Microcontrollers. O’Reilly.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning structured sparsity in deep neural
networks. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, pages 2082–2090, Red Hook, NY, USA. Curran Associates Inc.

Wong, A., Famouri, M., Pavlova, M., and Surana, S. (2020). Tinyspeech: Attention condensers for
deep speech recognition neural networks on edge devices. arXiv, abs/2008.04245.

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020). Integer quantization for deep
learning inference: Principles and empirical evaluation. arXiv, abs/2004.09602.

Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A., and Lin, Y. (2018). Deep k-Means: Re-
Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolu-
tions. In International Conference on Machine Learning, pages 5363–5372. PMLR.

Xue, J., Li, J., and Gong, Y. (2013). Restructuring of deep neural network acoustic models with
singular value decomposition. In Interspeech.

Yang, Y., Bamler, R., and Mandt, S. (2020). Variational bayesian quantization. In International
Conference on Machine Learning, pages 10670–10680. PMLR.

Yin, P., Zhang, S., Lyu, J., Osher, S. J., Qi, Y., and Xin, J. (2018). BinaryRelax: A relaxation approach
for training deep neural networks with quantized weights. SIAM J. Imaging Sci., 11(4):2205–2223.

Yiu, J. (2019). Cortex-M resources - processor documentation.

Yoo, J., Lee, D., Son, C., Jung, S., Yoo, B., Choi, C., Han, J.-J., and Han, B. (2021). Rascanet:
Learning tiny models by raster-scanning images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 13673–13682.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021a). Understanding deep learning
(still) requires rethinking generalization. Communications of The Acm, 64(3):107–115.

Zhang, X., Colbert, I., Kreutz-Delgado, K., and Das, S. (2021b). Training deep neural networks with
joint quantization and pruning of weights and activations. arXiv, abs/2110.08271.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. (2018). Hello Edge: Keyword Spotting on Microcon-
trollers. arXiv, abs/1710.01878 [cs, eess].

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. (2017). Incremental network quantization: Towards
lossless CNNs with low-precision weights. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

Zhou, G.-B., Wu, J., Zhang, C.-L., and Zhou, Z.-H. (2016). Minimal Gated Unit for Recurrent Neural
Networks. International Journal of Automation and Computing, 13(3):226–234.

Zhu, J., Liu, X., Shi, Q., He, T., Sun, Z., Guo, X., Liu, W., Sulaiman, O. B., Dong, B., and Lee, C.
(2020). Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines,
11(1).

Zhu, M. and Gupta, S. (2017). To prune, or not to prune: Exploring the efficacy of pruning for model
compression. arXiv, abs/1710.01878 [cs, stat].

39

	Introduction
	Neural networks
	Feedforward neural networks
	Properties
	Modern deep learning architectures
	From large deep learning models to TinyML

	MEMS-based applications on ultra-low power microcontrollers
	Overview
	Scope of applications
	Challenges of ultra-low power hardware

	Efficient neural networks for TinyML
	Knowledge distillation
	Model pruning
	Quantization
	Weight-sharing
	Low-rank matrix and tensor decompositions
	Summary

	Deploying deep learning models on ultra-low power MCUs
	Challenges for TinyML tools
	TinyML tools solutions
	Low-level library
	TinyML frameworks

	Limitations of TinyML
	Conclusion and discussion

