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Abstract 

Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before 

release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their 

monitoring is crucial due to the considerable risk they represent for mAb stability, integrity and 

efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) 

commonly used for global HCP monitoring present limitations in terms of identification and 

quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-

MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic 

range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we 

investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) 

separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-

MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for 

a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been 

successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP 

landscape with the identification and quantification of a few tens of HCPs with sensitivity down to 

the sub-ng/mg of mAb level.  

 

 

 

 

 

 

 



 

Significance statement 

Host cell protein (HCP) impurities monitoring in biotherapeutics is a critical concern because of their 

potential adverse actions. In this study, we developed innovative mass spectrometry (MS)-based 

approaches on a tribrid instrument to overcome the limitations of standard methods for the 

characterisation of trace level HCP impurities in drug products. We demonstrate the benefits of 

implementing a High-Field Asymmetric Ion Mobility Spectrometry (FAIMS) separation step in the 

workflow as well as of the use of Data Independent Acquisition (DIA) combined with a Gas-Phase 

Fractionation approach to address the challenges of accurate and precise quantification of very low-

level HCPs in samples presenting an extreme dynamic range. Major improvements towards robust 

quantification of trace-level HCPs in Drug Products have been demonstrated both on the standard 

NIST mAb Reference Material and two FDA/EMA approved drug products, down to the sub-ppm 

level. 

 

 

 

 

 

 

 

 

 



 

 

1 Introduction 

Since the approval of the first monoclonal antibody (mAb) in 1986 [1], the Muromonab-CD3, an 

immunoglobulin reducing acute rejection in patients with organ transplants, interest for this class of 

biopharmaceutical products has been growing fast [2,3]. Today, the United States Food and Drug 

Administration (FDA) and/or the European Medicines Agency (EMA) have accepted more than 125 

mAbs and about twenty are currently under review by these regulatory agencies [4,5]. Production of 

recombinant therapeutic proteins using expression cell lines technology results in the presence of 

bioprocess-related host cell protein (HCP) impurities in addition to the desired mAb. During the 

downstream process (i.e. Protein A affinity chromatography, ion exchange chromatography, 

hydrophobic interaction chromatography and multiple filtration steps), the total amount of HCPs and 

the mixture complexity are drastically reduced [6,7]. However, low levels of HCPs may co-purify with 

the therapeutic protein and thus remain in the drug products (DPs). Some of these residual HCPs may 

degrade the drug or excipients in the DP, potentially leading to reduced stability or inactivation of the 

mAb [8-11], while other impurities may endanger patients’ safety by causing an unexpected and 

damaging immune response weakening the therapeutic protein efficiency [10,12-14]. The potential risks 

associated with HCPs have conducted the regulatory agencies to consider them as a critical quality 

attribute (CQA) in DPs, and their total amount should be minimized to trace levels and monitored by 

highly sensitive analytical methods during downstream process [15-17]. Even if general guidelines 

indicate that there is no strict limit on the HCPs level in DPs, many biopharmaceutical companies 

consider that their global amount should not exceed 100 ppm (100 ng/mg of mAb) in the DP [18-20]. 

Besides, it cannot be excluded that the presence of a specific HCP, even at a very low level, could 

jeopardize the action of the therapeutic protein [21]. Currently, enzyme-linked immunosorbent assays 

(ELISA) are commonly used for HCP impurities analysis for their easy-of-use and high precision [22-24]. 



However, ELISA has some limitations: certain HCP species are not targeted by the assay and thus 

cannot be detected and only global quantification is possible, with neither individual HCP 

identification nor quantification possible [7,22,25]. In addition, the development of fit for purpose 

product-specific immunoassays to measure HCPs in DP is a long, expensive and fastidious process, as 

they must satisfy numerous criteria (accuracy, precision, range, linearity, etc.) to be validated[26]. 

Therefore, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has emerged 

as a promising orthogonal and complementary method to characterize HCP impurities over the 

bioprocess and ultimately in DPs [27-29]. Multiple studies point out LC-MS/MS benefits for HCP 

monitoring, using targeted approaches (selected reaction monitoring (SRM) and parallel reaction 

monitoring (PRM)) [30-34], data-dependent acquisition (DDA) [35-37] and data-independent acquisition 

(DIA) [33,38,39]. DIA presents the advantage of allowing the extraction of quantitative information on all 

detectable species through MS2 data [40]. Until recently, the use of spectral-libraries and so-called 

“peptide centric” approaches was the most efficient way to interpret DIA data, while time and 

sample consuming due to the necessity to generate the most comprehensive spectral library possible 

in DDA prior to DIA analysis [41,42]. Today, “spectrum centric” approaches are growing in interest, 

thanks to continuous improvements of acquisition strategies [43-46] and the development of innovative 

tailored tools, allowing identification and precise quantification without spectral libraries [47-50] or 

using artificial intelligence (AI) in silico-predicted libraries [51-53]. While the dynamic range achievable 

by latest generation LC-MS/MS couplings reaches 3 to 4 orders of magnitude, quantifying ppm-level 

HCP in DPs by definition requests 6 orders of dynamics. To achieve this, a few studies have focused 

on optimizing sample preparation via mAb depletion using native digestion [54] or reversely via HCPs 

enrichment using several approaches: molecular weight cutoff enrichment [55], protein A affinity 

chromatography [56,57] or hydrophilic interaction chromatography (HILIC) [58]. Other studies relied on 

improvements of the LC-MS/MS part including, among others, the multiple chromatography 

separations [31,37,59,60] or implementing an ion mobility separation step [30,61,62]. 



In this study, we focused on the most challenging samples, namely DPs. We have evaluated several 

LC-MS/MS settings for their potential to identify the most exhaustive list of HCPs but also to reliably 

quantify the largest possible fraction of them.  First, we analyzed the NIST mAb standard reference 

material using DDA and DIA acquisition methods, leading to the identification of hundreds of HCP 

impurities and the accurate quantification of tens of them. Then, the high field asymmetric ion 

mobility spectrometry (FAIMS) device allowing gas-phase separation of co-eluting peptides through 

fast internal compensation voltages (CV) switching, was implemented in front of the mass 

spectrometer to evaluate its benefits in terms of depth and coverage of HCP impurities detection. In 

parallel, a gas-phase fractionation DIA strategy was evaluated. Both workflows were benchmarked 

against results described in the literature. Finally, we applied our methods to monitor HCPs in two  

FDA/EMA approved mAbs with a very high medical benefits in oncology, trastuzumab and 

nivolumab, enabling the identification and quantification of several tens of HCPs and demonstrating 

that these approaches can be used to routinely analyze DPs in a rapid and accurate way. 

 

 

 

 

 

 

 

 

 

 



 

 

2 Materials and methods 

2.1 Materials 

The NIST mAb standard reference material RM8671, dithiothreitol (DTT) and Tris-HCl were purchased 

from Merck. Commercially available mAbs, trastuzumab and nivolumab, were obtained as European 

Union pharmaceutical-grade drug products from the Pierre Fabre Immunologic Center (CIPF, Saint-

Julien-en-Genevois, France). HCP-PROFILER standard peptides were acquired from Anaquant 

(Villeurbanne, France). Mass spectrometry grade trypsin/Lys-C enzymes were obtained from 

Promega (Madison, WI, USA).  

2.2 Sample preparation 

The digestion protocol was adapted from Huang et al. [54]. Briefly, a 100 µL aliquot of 10 µg/µL mAb 

was supplemented with 90 µL of ultrapure H2O and 5 µL of 1 M Tris-HCl, pH 8. Proteins were digested 

overnight at 37°C using a solution of Trypsin/Lys C enzymes at a 1:400 enzyme/protein ratio. Digests 

were reduced with 1.5 µL of 303 mM DTT for 10 min at 90°C and centrifuged at 13 000g for 2 min. 

Supernatant was finally acidified with 0.5 µL of formic acid (FA). Then, after vacuum drying, peptides 

were solubilized in 2% acetonitrile (ACN) and 0.1% FA to obtain a final protein concentration of 1 

µg/µL. For gas-phase fractionation (GPF) chromatogram library generation, technical replicates were 

pooled together. One HCP-PROFILER bead was dissolved in 150 µL of 5% ACN and 0.1% FA, to obtain 

standard peptides in a concentration range from 0.5 to 250 fmol/µL. Retention time iRT standards 

(Biognosys, Schlieren, Switzerland) and 2 µL of HCP-PROFILER solution were mixed to 1 or 2 µL of 

FDA/EMA approved mAb or NIST mAb Reference Material, respectively, before injection.  

2.3 Nano LC-MS/MS analysis  



Data-dependent acquisition (DDA) and data-independent acquisition (DIA) analyses were performed 

on a Dionex UltiMate 3000 RSLC nano system (Thermo Scientific) coupled to an Orbitrap Eclipse™ 

Tribrid™ (Thermo Scientific) mass spectrometer, equipped with a FAIMS Pro interface (Thermo 

Scientific). Mobile phase A contained 0.1% FA in water and mobile phase B contained 0.1% FA in 80% 

ACN/20% water. Peptides were loaded onto an Acclaim PepMap 100 C18 20 mm x 0.1 mm, 5 µm 

diameter particles precolumn (Thermo Scientific) for 3 min at 10 µL/min, and eluted on an Aurora 

Series C18 UHPLC (250 mm x 75µm, 1.6 µm diameter particles, IonOpticks) at a 300 nL/min flow rate 

following a linear gradient: 2.5% B at 0 min, 43.8% B at 95 min and 98% B from 96 to 101 min. The 

column was finally re-equilibrated in 2.5% B for 15 min. 

For DDA analyses, full-scan MS spectra were acquired over a 375-1,500 m/z range at a resolution of 

60,000 (at 200 m/z), with an automatic gain control (AGC) target of 1.106 and a maximum injection 

time of 60 ms. The top 10 most intense precursor ions with an intensity exceeding 5.103 ions per 

second and charge states between 2 and 6 were automatically selected from each MS spectrum for 

higher-energy collisional dissociation (HCD) fragmentation at 30% normalized collision energy. 

MS/MS spectra were collected from 120-1200 m/z in the ion trap in Rapid mode, with an AGC target 

of 1.104 and a maximum injection time set to Automatic. Experiments with the FAIMS Pro interface 

were conducted as described in Hebert et al. [62]. Briefly, FAIMS carrier gas flow was 4.7 L/min N2, the 

FAIMS electrodes were set to 100°C, entrance plate voltage was 250 V, asymmetric waveform divert 

voltage  was – 5000 V, compensation voltage (CV) settling time was 25 ms and CVs values of -50, -65 

and -85 V were applied successively in the same run. 

For DIA analyses, full-scan MS was acquired over a 375-1250 m/z range at a resolution of 60,000 (at 

200 m/z) with an AGC target of 1.106 and a maximum injection time of 60 ms. Fragment analysis 

(MS/MS) was subdivided into 42 windows of variable widths, described in Supporting Table S1. A 

resolution of 15,000 (at 200 m/z), an AGC target of 1.106 and a maximum injection time of 22 ms 

were used for a total cycle time of 1.5 s. HCD fragmentation normalized collision energy was set to 



30%. For DIA-GPF, 6 individual injections were performed, covering the 380-980 m/z mass range. A 

100 m/z full-scan MS was acquired with the parameters described above for DIA, and the MS/MS 

analysis was divided into 25 windows of 4 m/z using a 30,000 (at 200 m/z) resolution, an AGC target 

of 1.106 and  maximum injection time of 60 ms.  

2.4 DDA data analysis 

DDA data analysis was performed with Proteome Discoverer v. 2.5 (Thermo Fisher Scientific) using 

Sequest HT (Thermo Fisher Scientific) against a database containing all Mus musculus entries (17,050 

entries, TaxID=10090,  2021/05/26) extracted from UniProtKB/SwissProt for NIST mAb samples and a 

database containing all Cricetulus Griseus entries (78,366 entries, Tax ID=10029, 2022/03/15) 

extracted from UniProtKB/TrEMBL for trastuzumab and nivolumab samples. Each fasta file included 

common contaminants, iRT retention time standards, HCP-PROFILER standard sequences and mAbs 

heavy and light chain sequences. Trypsin/P was used as digestion enzyme and one missed cleavage 

was allowed. Methionine oxidation and protein N-term acetylation were set as variable 

modifications. Mass tolerance was set to 5 ppm for precursor ion masses and 0.5 Da for fragment ion 

masses analyzed in the ion trap.  The false discovery rate (FDR) was calculated using the Percolator 

node set to 1% at PSM, peptide and protein levels. XIC-MS1 quantification was performed using 

unique peptides only and the chromatographic alignment was set to 10 min and 10 ppm between the 

3 technical replicates.   

2.5 DIA data analysis 

DIA data analysis was performed with Spectronaut v. 15.7 (Biognosys) using the fasta files described 

above and the following settings. Briefly, trypsin/P was set as digestion enzyme, methionine 

oxidation and protein N-term acetylation were set as variable modifications and one missed cleavage 

was allowed. Data was extracted using dynamic mass tolerances and a 10 min XIC RT extraction 

window. Identification was performed using 0.01 precursor and protein Qvalue cutoffs. 

Quantification was performed using interference correction and at least three fragments per 



precursor, without imputation. Quantity is based on MS² XIC peak areas. Non-identified precursors in 

rows with at least one q-value below 0.01 were selected for iRT profiling, by enabling carrying over 

the average template peak position.  

For GPF data, a chromatogram library was generated in Spectronaut (v. 15.7). The six raw files were 

processed altogether with the Pulsar search engine with similar parameters than the ones used for 

DIA analysis: trypsin/P as digestion enzyme, methionine oxidation and protein N-term acetylation 

were as variable modifications, one missed cleavage authorized. Additional filters were applied for 

library generation, including a 1% FDR threshold at PSM, peptide and protein levels and a number of 

fragments between 3 and 8 per precursor. Then, data acquired in DIA were searched against the 

chromatogram library with the same parameters as for library-free DIA data analysis described 

above. 

 

2.6 HCP quantification 

Validation filters described in Pythoud et al.[39] were applied prior to HCP quantification. Briefly, 

oxidized and acetylated precursors and their counterparts were removed and only host organism or 

standard protein precursors with charge states of two or three were kept. For DDA analysis, shared 

and not quantified precursors as well as precursors with rank > 1 and with |RT Sequest – RT Top 

Apex| >4 min were removed. One missing value and/or one by matching value at maximum were 

authorized over the three replicates and a CV on the triplicate precursor intensity values below 20% 

must be achieved to consider the precursor for quantification. Finally, a sequence homology filter 

was applied to remove HCP peptides that can potentially arise from unspecific cleavage or mAb 

degradation. 

After filtering, peptide intensity was obtained by summing all precursor ion intensities and protein 

intensity by summing the three most intense peptides, based on the Top3 strategy described by Silva 

et al. [63]. Protein mole quantities were estimated using the equation of the HCP Profiler calibration 



curve. Individual HCP ng/mg mAb (ppm) amounts were estimated using the molecular weight and 

injected mAb quantities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

3 Results and discussion 

3.1 LC-MS/MS methods to precisely and reliably monitor trace-level HCPs 

Three technical replicates of NIST mAb reference material were prepared and analyzed in DDA mode 

on a nanoLC-Orbitrap Tribrid coupling, with fragment detection (MS2) performed in the ion trap. 

These analyses led to the detection and identification of 325 peptides originating from 133 distinct 

HCP protein groups (Figure 1.A). We compared the list of protein impurities identified in our study to 

the lists of HCPs identified and/or quantified in recently published papers from literature, applying 

comparable sample preparation (based on Huang native digestion protocol) and DDA LC-MS/MS 

acquisition methods [36,54,64]. The results obtained point out a fairly good overlap between the studies, 

with 43 proteins (32 % of the proteins detected in our study) identified in common in all four studies, 

and 21 additional HCPs (16% of the proteins detected in our study) shared by at least two papers and 

our results (Figure 1.B). Overall, this demonstrates the reproducibility of the native digestion 

protocol, independently of the LC-MS/MS system used and the location of experiments. This is a 

critical point regarding the perspective of transferring this protocol in a biopharmaceutical 

environment. Additionally, Figure 1.B also highlights that we have uniquely identified 54 HCPs thus 

slightly outperforming the other methods. Then, quantification of these trace-level proteins was 

performed on the precursor ion intensities extracted at MS1 level. To ensure accurate and robust 

quantification of the impurities detected, stringent filters based on the signal quality and 

repeatability were applied as described in Pythoud et al. [39]. Briefly, only 2+ and 3+ precursors were 



kept, shared peptides, peptides without any quantification value and modified peptides (i.e. carrying 

a methionine oxidation or acetylation) were removed, as well as precursors with a difference 

between their apex RT and their elution RT higher than 4 min.  Then, peptides with missing values in 

more than one of the three replicates and peptides identified using match between run in more than 

one over three replicates were removed. Finally, a last filter on the signal repeatability was applied, 

based on the removal of peptides with a coefficient of variation higher than 20% on measured 

intensities over the three replicates. Ultimately, to prevent any misidentification of the remaining 

peptides, a sequence homology filter was applied to remove any peptides that could potentially 

originate from unspecific mAb cleavage or degradation. Altogether, these stringent filters reduced 

the number of peptides by 63% (from 325 identified to 121 quantified) and protein groups by 49% 

(from 133 identified to 68 quantified), as illustrated in Figure 1.A. This decrease between identified 

and quantified features demonstrates that a major part of the identified HCPs is detected at trace-

levels, between the detection and quantification limits.  The good overlap between our 68 quantified 

HCPs and previously cited papers with 65% also found in two or three other papers (29 HCPs founds 

in our study and the three papers, 14 in our study and two of the three papers, Supporting Figure S1) 

further strengthens the confidence and reliability on the reported results. Accurate and reproducible 

characterization and quantification of trace-level HCPs in matrices showing a very high dynamic 

range with a superabundant mAb such as DPs needs and deserves the use of serious and stringent 

analytical filters for high-confidence results. Thus, only individual peptides that passed the filters 

from the replicate associated HCP-PROFILER standard internal calibration curve were calculated. 

Trauchessec et al. [65] already described the internal calibration benefits for quantification 

reproducibility and robustness (example of calibration curve in Supporting Figure S2). Subsequently,  

protein group quantities were retrieved based on the  Top3 approach, [63] affording an average total 

amount of HCP impurities of 518 ± 20 ng per mg of mAb or ppm.  The quantification accuracy of our 

results was evaluated against published data in the literature. Figure 1.C represents the correlation 

between the quantities obtained for each HCP in common to our results and selected papers [54,64]. 



The Pearson coefficients obtained are 0.97 and 0.99 for the Molden et al. and Huang et al. papers 

respectively, demonstrating the strong correlation of the absolute quantities calculated. Altogether 

these results clearly show that advanced LC-MS/MS workflows are perfectly suited to reliably 

monitor trace-level HCPs in DPs and thus eventually become the method of choice for quality control 

of released DPs. 

3.2 Digging deeper into the HCP landscape with the implementation of an additional FAIMS 

separation 

We explored high-field asymmetric waveform ion mobility spectrometry (FAIMS) benefits for 

detection of trace-level HCPs in DPs. Indeed, while the native digestion protocol enables the removal 

of a major part (estimated between 70% and 80% depletion, data not shown) of the mAb and thus 

reduces the dynamic range in the samples, mAb-specific peptides are still being detected and 

abundant in comparison to HCP impurities. The use of compensation voltages applied to FAIMS 

electrodes enables a better resolution of co-eluting peptides, based on the precursor ions gas phase 

mobility and charge, by filtering the ion population entering the mass spectrometer. To investigate 

the potential of applying multiple compensation voltages in our LC-MS/MS workflows to separate 

HCP peptides from co-eluting mAb peptides, the three technical replicates previously analyzed using 

nanoLC-DDA analysis were analyzed using an optimized FAIMS method. Chromatograms observed 

without FAIMS and with different FAIMS compensation voltages applied during the experiment are 

provided in Supporting Figure S3 and clearly illustrate the benefits of ion mobility to clean the signal 

by removing highly abundant peptides depending on the CV applied (Supporting Figure S3.A). Indeed, 

as an example, co-elution of the mAb heavy chain peptide STSGGTAALGCLVK and the mouse PPAC 

(low molecular weight phosphotyrosine protein phosphatase, accession number: Q9D358) HCP 

peptide SPIAEAVFR prevented the identification of peptide SPIAEAVFR without FAIMS due to the 

wide dynamic range between those two peptides. On the contrary, when a CV of -85V was applied, a 

clean signal for peptide SPIAEAVFR allowed its identification and quantification while the mAb heavy 



chain peptide STSGGTAALGCLVK was filtered out at this CV value (Supporting Figure S3.B and C). 

Overall, the use of the optimized FAIMS method lead to an increase of 49% (from 325 to 484) and 

66% (from 133 to 221) of identified peptides and protein groups, respectively (Figure 1.D). The 

validation filters earlier described were applied to quantify HCPs. Figure 1.D illustrates that signal 

quality and repeatability filters resulted in a drop of 46% (from 484 to 262) and 28% (from 221 to 

158) between identified and quantified peptides and protein groups, respectively. Of note is that the 

latter decrease in identified and quantified peptides with FAIMS is less significant compared to the 

DDA workflow without the ion mobility dimension in the front-end of the MS (63% and 49%, 

respectively). The signal repeatability filtering step (coefficient of variation < 20% filter) is the one 

excluding the highest numbers of peptides and protein groups. Again, the drop is much more 

pronounced in DDA (26% for proteins and 38% for peptides) compared to FAIMS DDA (10% for 

proteins and 24% for peptides), demonstrating that data acquired with the FAIMS interface seem to 

be overall more reproducible. Furthermore, FAIMS addition allowed increasing the number of both 

peptides and protein groups quantified by more than twofold (from 121 to 262, and from 68 to 158, 

respectively).  Among the 158 quantified protein groups, 53 had also been quantified in DDA without 

FAIMS, representing 78% of the 68 proteins quantified with DDA only. This significant gain in terms of 

quantified HCPs logically results in 70% increase of total HCP amount quantified in the NIST mAb, 

from 518 ± 20 ppm to 880 ± 15 ppm without and with the FAIMS, respectively, thus demonstrating 

the real asset of adding FAIMS in the workflow. To further describe the benefits of implementing 

FAIMS, we compared in detail the amounts of each HCPs quantified either with or without the 

FAIMS. The quantities derived by both methods highly correlate with a Pearson coefficient of 0.97. 

Moreover, the amount of each individual protein was investigated to show the benefits of FAIMS to 

afford a more detailed characterization of the trace-level HCP landscape. Figure 2.A represents the 

density of HCP protein groups as a function of the concentration range. It points out the contribution 

of FAIMS separation in the quantification of low-abundant impurities since more than 75% of HCPs 

quantified (82 out of 105) exhibited concentrations lower than 2-ppm. Considering these results, 



FAIMS appeared to be very useful to increase the number of quantified HCP, thanks to dynamic 

range and sensitivity enhancements. The removal of singly charged peptides and better separation of 

some highly abundant mAb peptides improved the signal to noise ratio, and consequently pushing 

the detection and quantification limits of the instrument for remaining HCPs. Notwithstanding, the 

CV values applied also influenced the HCP peptides, resulting in a slight decrease in the average 

number of peptides per protein, from 1.8 without the FAIMS to 1.6 with the FAIMS. As a conclusion, 

the implementation of FAIMS in the workflow appears to be highly beneficial to allow digging deeper 

into the HCP landscape, with quantification of up to 158 protein impurities down to sub-ppm level 

after stringent validation filters.   

3.3 Digging deeper into the HCP landscape with data independent acquisition supplemented with gas 

phase fractionation 

We [38,39] and others [33,66] have previously demonstrated the benefits of using DIA methods and MS2-

based quantification to accurately monitor HCP impurities, and it is clearly confirmed in the current 

study.  While DDA allowed the identification of the highest number of protein groups, namely 135, 

against 115 in DIA (Figure 1. D), DIA allowed quantifying 100 HCPs (222 peptides) against 68 in DDA 

(121 peptides). This can be explained by the stochasticity of DDA causing missing values and CV 

filtering steps to remove more peptides and proteins. Contrary to DDA, the high reproducibility of 

DIA, with the systematic fragmentation of all peptides included in a defined mass range, significantly 

reduces the rate of missing values and the abundance variability. DIA increased by 45% and 83%, 

respectively, the number of protein groups and peptides quantified, compared to DDA. 

Consequently, an average of 2.2 peptides per protein was determined using DIA against 1.8 using 

DDA strengthening the confidence of the identifications. Fifty out of the 68 (74%) HCPs quantified in 

DDA are also quantified in DIA, representing a good overlap between both approaches (Supporting 

Table S3). The retrieved quantities of these 50 common proteins also attest the strong correlation 

between DDA and DIA, with a Pearson coefficient of 0.96. Overall, total HCP amounts retrieved by 



both acquisition modes are comparable, with a total HCP amount of 518 ± 20 ppm in DDA and 465 ± 

28 ppm in DIA.  

As an alternative to sample-fractionation to generate comprehensive spectral libraries, gas-phase 

fractionation DIA using chromatogram libraries can be applied with significantly reduced sample 

consumption and analysis time [46]. To evaluate this approach, we have performed six runs of 100 m/z 

mass range, from 480 to 1080 m/z, to generate a chromatogram library containing 844 precursors 

from 226 protein groups. Figure 1.D displays the results achieved by processing DIA data previously 

acquired using this chromatogram library: 526 peptides and 172 protein groups, corresponding to a 

59% and 50% increase respectively, compared to the DIA “spectrum-centric” data interpretation. 

After applying our stringent validation filtering, we quantified 119 HCP protein groups and 248 

peptides. In comparison to library-free processing, chromatogram library DIA data processing 

enables to quantify 20% more protein groups. The total amount of quantified HCPs by GPF was 457 ± 

20 ppm, a very similar value compared to the library-free DIA strategy. Furthermore, 88 HCPs were 

simultaneously identified and quantified using both DIA approaches, representing 88% and 73% of 

the proteins quantified using the library-free and chromatogram library based approaches, 

respectively. In addition to this high overlap, the Pearson coefficient of 0.99 also highlights the strong 

correlation between the two strategies. This result demonstrates that chromatogram library based 

approach increases the number of quantified proteins, without impairing the individual 

quantification of the proteins, as evidenced by the similar total HCP amounts reported with both 

methods. On top of that, we investigated the capabilities of the GPF DIA approach to quantify low-

level proteins and digging deeper in the HCP landscape. By looking at the HCPs only quantified using 

the GPF DIA approach, we highlighted that these proteins are mostly under the ppm level, as 

depicted in Figure 2.B. The shape of the violin plot clearly underlines that the density of HCPs is more 

important for low concentration levels using GPF DIA compared to DIA, mainly because of the 

presence of proteins quantified only with this approach. These elements clearly highlight that the use 

of GPF DIA allows increasing the number of identified and quantified HCPs, without the current 



drawbacks of generating exhaustive spectral library from DDA data after fractionation, requiring 

huge amounts of sample along with time-consuming sample preparation, and data acquisition of 

fractionated samples. In addition, FAIMS implementation in DIA can be performed, but data 

interpretation is still the limiting step. In summary, DIA-based strategies appear to improve classical 

DDA, by increasing the number of identified and quantified proteins and digging deeper into the HCP 

landscape. 

3.4 Combined coverage achieved on the NIST and application of the methods to FDA/EMA approved 

DPs 

The merging of the results obtained using the four methods evaluated in previous sections (i.e. DDA, 

FAIMS DDA, DIA and GPF DIA) allows reaching a total of 278 HCP protein groups identified in the NIST 

mAb Reference Material , among which 80 are common to the four methods. The list of identified 

and quantified HCPs by each method is available in Supporting Table S2. We matched these 

identification results with those obtained in two recent papers showing high numbers of identified 

HCPs thanks to the combination of innovative technologies, including protein A depletion, native 

digestion, FAIMS and 2h30 gradient in Johnson et al. (2020) [61] or ultralow trypsin concentration, 

long column and gradient (50 cm, 4 h) and BoxCar acquisition in Nie et al. (2021) [67]. We discovered 

213 common HCPs with the literature (i.e. Johnson et al. and Nie et al.), representing 77% of the 278 

proteins we identified in this work, and we uniquely identified 32 proteins (Supporting Figure S4).  

The optimizations performed on the NIST mAb Reference Material demonstrate the enhanced 

performances achieved when implementing innovative methods such as FAIMS DDA or GPF DIA 

compared to classical DDA and DIA. However, the NIST mAb has not been designed for clinical use 

and its purification process is not at the level of the ones employed for FDA/EMA approved DPs. 

Therefore, we analyzed two high-value approved DPs, trastuzumab and nivolumab, with our 

advanced MS methods (Figure 3.A and B, peptides results are presented in Supporting Figure S5). 

Overall, our results confirm the trends observed with the NIST mAb, with an increase of identified 



features using the FAIMS DDA and GPF DIA compared to DDA and DIA, respectively. Indeed, 67 HCPs 

in trastuzumab and 60 HCPs in nivolumab using DDA with FAIMS were detected, while only 37 and 18 

HCP impurities could be reported without FAIMS. In terms of quantification, 31 and 29 protein 

groups in trastuzumab and nivolumab, respectively, were successfully quantified with our FAIMS DDA 

method. Thus, FAIMS hyphenation in DDA increased by threefold the number of quantified trace 

level proteins compared to DDA without FAIMS in trastuzumab (from 10 to 31). Similarly, the use of 

GPF quantified 4 more HCPs, from 8 in DIA to 12 in GPF DIA.  

These few proteins quantified account for a total HCP amount between 6 and 57 ppm, depending on 

the methods. Briefly, quantities are around 10 ppm in trastuzumab and nivolumab using DDA, DIA 

and GPF DIA methods, and up to 57 ppm using DDA FAIMS (Figure 3.C, Supporting Table S4 and S5). 

In a previous study by Pythoud et al. (2021) [39], comparable numbers and quantities of HCPs were 

measured for nivolumab and trastuzumab in both DDA and DIA mode, with 3 and 10 HCPs quantified 

representing a total HCP amount between 20 and 80 ppm. Additionally, a study by Molden et al. [64] 

about HCPs profiling in various mAb-based therapeutic proteins, including nivolumab and 

trastuzumab, reported comparable results. Indeed, among the 28 therapeutic proteins analyzed, 7 

HCPs on average were identified for an average total amount of 20 ppm in each DP. These findings 

are consistent with the current results, confirming the low number and abundance of HCP impurities 

in approved DPs and being in line with the current target of many biopharmaceuticals companies and 

authorities recommendations, with admitted quantities of HCPs in DP tolerated between 1 and 100 

ppm [18]. Our work highlights the capabilities of LC-MS/MS to quantify routinely and accurately 

individual HCPs in challenging FDA/EMA approved  DPs demonstrating trace-level impurities. Based 

on their individual identification and quantification, investigations on the potential immunogenic 

effect of the monitored HCPs can be undertaken. 

 

 



 

 

 

 

 

 

 

 

4 Concluding remarks 

To summarize, we compared LC-MS/MS acquisition methods to characterize and monitor HCPs in 

DPs and achieved individual identification and quantification of hundreds of these impurities. First, 

using DDA analysis on the NIST mAb Reference Material, we proved the extreme necessity to apply 

stringent validation filtering steps in order to precisely and accurately quantify individual trace-level 

HCPs, by removing low-confidence and non-reproducible signals. Then, we evaluated optimized LC-

MS/MS acquisition methods including DDA with and without FAIMS implementation, DIA, and gas-

phase fractionation DIA. The benchmarking of DIA against DDA confirmed its benefits for HCPs 

monitoring in DP, with an increase of 47% in the number of impurities quantified. The addition of the 

chromatogram library-based approach for DIA data analysis also revealed very promising results, 

allowing quantification of 119 HCPs. Finally, the FAIMS implementation in DDA provided enhanced 

capabilities with the quantification of 158 protein impurities for a total amount of 880 ppm. Finally, 

we applied the aforementioned methods to trastuzumab and nivolumab, two FDA/EMA approved 

DPs known and presumably highly-pure products. FAIMS implementation to DDA reveals to be a 

powerful approach, with the quantification of around 30 HCPs for a total amount around 55 ppm in 



both trastuzumab and nivolumab. This work demonstrated that LC-MS/MS based approaches 

followed by stringent validation filters can be employed for precise individual HCP impurities 

characterization in very challenging DPs.  

 

 

 

 

 

 

 

Associated Data 

Additional supporting information may be found online in the Supporting Information section at the 

end of the article. 

The dataset was deposited with the ProteomeXchange Consortium via the PRIDE partner repository 

with the dataset identifiers PXD039582 (for DIA data) and PXD039585 (for DDA data). [68]. 
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Figures 

Figure 1: A) Number of HCP peptides and protein groups identified (light blue) and quantified after 

applying validation filters (navy blue) in DDA mode. B) Overlap of host cell proteins identified in 

Huang et al. (2017) [54] (grey), Molden et al. (2021) [64] (yellow), Ma et al. (2020) [36] (purple) and in the 

current study (blue). All studies used a native digestion protocol adapted from Huang et al. [54]. Data 

from Molden et al. were acquired in LC-MS/MS, vs. nanoLC-MS/MS for Huang et al., Ma et al. (44 

min gradient) and our study. C) Pearson coefficient and correlation between the individual amounts 

of host cell proteins in ng of HCP per mg of NIST mAb (ppm) in our study using nanoLC-MS/MS DDA 

analysis after native digestion vs. previously reported quantities using native digestion followed by 

nano-LC-MS/MS obtained by Huang et al. (grey) and Molden et al. (yellow). For representation 

convenience, results from Molden, originally in micromoles to moles ratio, were converted into ng of 

HCP to mg of mAb ratio. D) Number of HCP peptides and protein groups identified (light colors) and 

quantified after applying validation filters (dark colors) using DDA (blue), FAIMS DDA (green), DIA 

(orange) and GPF DIA (red). 



 

 

 

 

 

 

 

 

 

 



Figure 2: Violin plots representing the density of host cell proteins as a function of their 

concentration in ng of HCP per mg of NIST mAb (ppm). Blue dots represent proteins quantified by 

both approaches and red dots proteins quantified only in one approach, with A) the comparison of 

DDA and FAIMS DDA and B) the comparison of DIA and GPF DIA. 

 

 

 

 

 

 

 

 

 

 



Figure 3: Number of HCP peptides identified (light colors) and quantified after applying validation 

filters (dark colors) using DDA (blue), FAIMS DDA (green), DIA (orange) and GPF DIA (red) A) in 

trastuzumab and B) in nivolumab. C) Average quantity of HCPs quantified in nivolumab and 

trastuzumab drug products using DDA, DDA FAIMS, DIA and DIA GPF. 

 

 

 

 

 

 


