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Abstract.

In this study, the interest of ground penetrating radar (GPR) time-lapse measurements for the estimation of hydrodynamic

unsaturated soil parameters is investigated using synthetic infiltration experiments. Water movement and electromagnetic wave

propagation in the unsaturated zone are modeled using a one-dimensional hydrogeophysical model. The GPR travel time data

are analyzed for different reflectors: a moving reflector (the infiltration wetting front) and three fixed reflectors located at5

different depths in the soil. Global sensitivity analysis (GSA) is employed to assess the influence of the saturated hydraulic

conductivity, the saturated and residual water contents, and the Mualem–van Genuchten shape parameters α and n of the soil

on the GPR travel time data of the reflectors. Statistical calibration of the soil parameters is then performed using the Markov

chain Monte Carlo (MCMC) method. The impact of the type of reflector (moving or fixed) is then evaluated by analyzing the

calibrated model parameters and their confidence intervals for different scenarios. GSA results show that the sensitivities of10

the moving and fixed reflectors data to the hydrodynamic soil parameters are different whereas the fixed reflectors have similar

sensitivities. Results of parameter estimation show that the use of only data from the moving or fixed reflectors does not allow a

good identification of all soil parameters. When both data are combined, all soil parameters can be well estimated with narrow

confidence intervals.
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1 Introduction

The vadose zone is defined by the region between the ground surface and the groundwater table. Because of its location, it is

at the center of the interactive atmospheric-surface-underground water system. Hence, understanding water flow in the vadose20

zone is crucial for hydrological modeling and forecasting that can be useful for water resources management, agricultural

practices optimization, or geotechnical studies. The porous medium in the vadose zone is filled by both water and air phases.

The air phase is considered infinitely mobile and remains at atmospheric pressure. The movement of water has a non-linear

behavior and is characterized by two fundamental hydraulic relationships, namely the water retention and the hydraulic con-
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ductivity functions. Various mathematical expressions can describe these functions in terms of dependent variables and fitting25

parameters. In this work, we use the Mualem-van Genuchten (Mualem 1976, van Genuchten 1980) hydraulic conductivity

and water retention models. These models include the following unsaturated soil hydraulic parameters: the saturated hydraulic

conductivity, the saturated and residual water contents, and the Mualem–van Genuchten shape parameters α and n.

Different approaches can be applied to estimate the unsaturated soil parameters. A typical and prevalent approach relies

on laboratory measurements conducted on soil core samples. The typical measurement approaches can be of various types30

but common practices rely on hydraulic fluxes measurements (Vereecken et al., 2008). If this approach can be accurate at

the column scale, it is prone to certain limitations when the objective is to deduce the soil parameter values at larger scales.

Indeed, sample analysis through laboratory experiments is unlikely to provide parameter estimates at field conditions since

the volume of the analyzed samples is often not representative of the field heterogeneity at the mesoscale (Scharnagl et al.,

2011). In addition, the method is invasive and can be labor-intensive for deep or large scales investigations (Binley et al.,35

2015). Furthermore, the conservation of collected samples can be challenging because of issues of compaction and changes in

porosity.

A more appropriate approach for large scales is based on the monitoring of underground water content. In fact, water

content measurements can show significant variations because of their sensitivity to different hydrological processes. As a

consequence, they are convenient for the estimation of soil parameters of the subsurface at the field scale by inverse modeling.40

Water content measuring techniques can be classified into two categories, based on whether they provide information on water

content directly or not. The first group uses direct measurements conducted at the point scale with water content sensing

techniques, for instance using thermal or electromagnetic sensors (e.g., capacitance or time domain reflectometry, Jones et al.,

2005; Belfort et al., 2019). These techniques can yield data with great resolution at one location and give information on the

dynamics at the field scale (Vereecken et al., 2008). In addition, measurements taken at various locations can help to describe45

the distribution of water content, and thus, allow a good characterization of the state of the soil. However, the installation of

sensors is often laborious, time-consuming, and destructive (Huisman et al., 2003; Dal Bo et al., 2019). Furthermore, their

reliability requires an accurate calibration (Robinson et al., 2008).

The second category uses indirect measurements of the water content, like remote sensing and hydrogeophysical methods

with non-invasive devices. Remote sensing techniques use devices that are not in direct contact with the ground, such as50

unmanned aerial vehicles thermal infrared imagery (Zhang et al., 2019) or airborne ground penetrating radar (Edemsky et al.,

2021). These methods provide the mapping of water content at a large scale and in locations where direct sensing measurements

cannot be conducted. However, remote sensing methods exhibit a penetration depth of only a few centimeters and are often

limited by the vegetation density (Vereecken et al., 2008; Robinson et al., 2008).

Common hydrogeophysical methods include electromagnetic induction (Doolittle and Brevik, 2014), direct current resis-55

tivity (de Jong et al., 2020), nuclear magnetic resonance (Costabel and Günther, 2014), and ground penetrating radar (GPR)

(Huisman et al., 2003; Klotzsche et al., 2018) methods. These techniques supply indirect information on hydraulic properties

or states, at various scales, from estimated geophysical properties. As mentioned by Binley et al. (2015), such conversion from
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geophysical to hydraulic properties or states requires the use of robust petrophysical relationships to provide reliable estimates

of hydraulic parameters.60

Nowadays, GPR is highly used in the field of hydrogeophysics. Different techniques have been reviewed and discussed by

Huisman et al. (2003) and Klotzsche et al. (2018). GPR is highly sensitive to water content, and, as such, it can close the gap

between the spatial scales covered by direct and remote sensing techniques. Furthermore, the temporal variability of the soil

water content can be characterized from time-lapse measurements. For instance, GPR data can be collected during artificial

experiments (e.g., infiltration, runoff, drainage, imbibition) that can provide interesting information on the flow characteristics65

(e.g., Saintenoy et al., 2008; Moysey, 2010; Scholer et al., 2011; Busch et al., 2013; Jonard et al., 2015; Jaumann and Roth,

2018; Léger et al., 2014; 2016; 2020). Note however that the hydraulic properties estimated from GPR data are subject to an

inherent compromise between a deep investigation and a fine spatial resolution. For instance, the lowest frequencies (typically

from 1 GHz down to 100 MHz) allow deeper penetrations (until a maximum depth between 1 m and 3 m in most organic

media).70

Saintenoy and Hopmans (2011) performed a sensitivity analysis to evaluate the importance of the soil parameters on the

reflections caused by the water table. They found that the detectability of the GPR reflections is mainly dependent on the

slope of the retention curve in the capillary zone. Moysey (2010) showed that the Mualem-van Genuchten parameter n is the

most poorly constrained among all unsaturated soil parameters when considering the two-way travel time (TWT) from various

sources of reflection for a laboratory infiltration experiment conducted in a sandbox. At the laboratory scale, Léger et al. (2020)75

have monitored imbibition-drainage experiments using a single-offset surface GPR. At the field scale, infiltration experiments

have been monitored with a single-offset surface GPR (Léger et al., 2014; 2016) or off-ground GPR (Jadoon et al., 2012). Saito

et al. (2018) used a more complex multi-offset and multi-channel surface GPR to directly monitor the wetting front progression.

Mono-channel multi-offset technique is usually not suited for monitoring experiments with high temporal variability, as the

offset must be adjusted between each measurement. The multi-channel technique has the advantage to be multi-offset and is,80

therefore, able to simultaneously determine the propagation speed and the depths of reflectors.

Time-lapse GPR monitoring of artificial infiltrations is one of the cheapest non-destructive methods that can be easily

conducted to estimate the unsaturated soil parameters in field conditions. Léger et al. (2014) have demonstrated the relevance

of such a methodology to evaluate the hydraulic parameters of sandy soil. The authors have investigated synthetic and field

examples and showed that the inverted parameters were in agreement with the values obtained in the laboratory for soil samples85

and with disk infiltrometer measurements. However, in their study, Léger et al. (2014) didn’t assess the reliability of the

estimated values since the uncertainty associated with the calibrated parameters has not been evaluated. Furthermore, Léger et

al. (2014) employed only the TWT data obtained from the GPR reflection on the wetting front for the calibration of the soil

parameters. The present study extends the work of Léger et al. (2014) by:

– Considering different reflectors at different depths: a moving reflector which corresponds to the infiltration dynamic90

wetting front and two fixed reflectors located at different depths in the soil.
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– Investigating the influence of all soil parameters (the saturated hydraulic conductivity, the saturated and residual water

contents, and the Mualem–van Genuchten shape parameters α and n) on the GPR TWT data of the three reflectors using

Global Sensitivity Analysis (GSA).

– Performing statistical calibration of soil parameters using the Markov Chain Monte Carlo (MCMC) method and eval-95

uating the reliability of the estimated parameters by analyzing not only the calibrated model parameters but also their

associated uncertainty.

– Evaluating the impact of the type of reflector (moving or fixed) by analyzing the calibrated model parameters and their

confidence intervals for different scenarios.

The plan of the paper is as follows: Section 2 describes the test case as well as the mathematical and numerical hydrogeo-100

physical models. Section 3 reports on the GSA results of the different TWT signals. Then, Section 4 discusses the results of

soil parameter estimation with MCMC for different scenarios.

2 Test case description and numerical solution

2.1 Test case description

The test case considered in this work is a hypothetical one-dimensional experiment of water infiltration in a homogeneous105

sandy soil of 150 cm (Fig.1a). The infiltration is driven by a constant pressure head of 10 cm applied at the surface of the

soil (i.e., a 10 cm water ponding condition is maintained at the top). The medium is initially at the hydrostatic equilibrium

with a water table maintained at 100 cm below the soil surface (Fig.1b). The domain is initially formed by an unsaturated

zone of 100 cm thick above a saturated zone of 50 cm thick. We assume the experiment to be monitored with a surface GPR.

The propagating time (i.e., the TWT) of the GPR waves reflected by two types of reflectors are considered (Fig.1c): (i) the110

moving infiltration wetting front and (ii) two fixed reflectors corresponding to a local heterogeneity at two different depths.

For instance, these can be small objects that are artificially buried (e.g., moisture sensing probes) or naturally embedded (such

as small rocks) in the porous medium. The fixed reflectors are supposed to be small enough compared to the section of the

infiltrated area, so they do not significantly perturb the vertical flow. The upper fixed reflector, R50, is located in the initially

unsaturated zone at 50 cm depth. The reflector R120 is located in the saturated zone, under the water table, at a distance of 120115

cm from the soil surface (Fig.1a). In the following, the time-lapse TWT signal for reflection caused by the infiltration wetting

front is noted TWTf and that from the two immovable diffracting points R50 and R120, are respectively noted TWT50 and

TWT120.

4

https://doi.org/10.5194/egusphere-2022-936
Preprint. Discussion started: 29 September 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 1. Test case and experimental device illustration at an advanced time step (a). R50 and R120 are fixed reflectors considered in this

experiment. TX and RX refer to the transmitter and receiver antennas of the GPR system. Effective saturation Se (b) and reflection coefficient

r (c) profiles with depth.

2.2 The mathematical model

2.2.1 Unsaturated flow model120

Water infiltration in unsaturated/saturated soils is governed by the one-dimensional Richards’ equation (Richards, 1931):

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z
− 1

)]
(1)

where h (cm) is the pressure head; z is the depth (cm), taken positive in the downward direction; t is the time (s), θ (cm3/cm3)

is the actual water content, and K(θ) (cm/s) is the hydraulic conductivity which is a function of water content. The initial

condition is a hydrostatic pressure distribution corresponding to a water table at 100 cm depth. The boundary condition at the125

top of the domain is a fixed Dirichlet condition of 10 cm maintained during the experiment. The boundary condition at the

bottom is a piezometric head fixed at -100 cm which corresponds to the water table position (Fig.1).
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The interdependencies of the pressure head, conductivity, and water content are described using the standard models of

Mualem (1976) and van Genuchten (1980):

Se(h) =
θ(h)− θr

θs− θr
=





[1 + (α|h|)n]−m if h < 0

1 if h≥ 0
(2)130

K(h) =





Ks×Se(h)1/2[1− (1−Se(h)1/m)m]2 if h < 0

Ks if h≥ 0
(3)

where Se(h) (-) is the effective saturation, θs and θr (cm3/cm3) are the saturated and residual water contents respectively, Ks

(cm/s) is the saturated conductivity, m = 1− 1/n, α (1/cm) and n (-) are the Mualem-van Genuchten shape parameters.

2.2.2 Petrophysical and Geophysical relationships135

In GPR sounding, pulses of radiofrequency (MHz to GHz) electromagnetic waves are emitted from a transmitting antenna

through the sounded medium. The electromagnetic response is then acquired with a receiving antenna. With a surface GPR,

both antennas are installed at the surface of the soil Fig.1). To monitor the experiment of water infiltration with time-lapse GPR,

the sounding system is set immobile above the infiltration zone in order to capture the time variation of the electromagnetic

response due to the change of saturation.140

To describe the dependency of the dielectric permittivity on the water content, we use the complex refractive index model

(Birchak et al., 1974). This petrophysical relationship relates the dielectric constant ϵ (-) of a three-phase (water-solid-air)

medium to its water content by:

√
ϵ(z, t) = θ(z, t)

√
ϵw + (1−ϕ)

√
ϵs + [ϕ− θ(z, t)]

√
ϵa (4)145

where ϕ (-) is the porosity, ϵw = 80, ϵs = 2.5 and ϵa = 1 are the relative dielectric constants of water, silica (sand) and air,

respectively.

In a low electrical conductivity and non-magnetic soil, the electromagnetic waves propagate at a speed V (cm/ns) (Annan,

2003):150

V =
c√
ϵ

(5)

where c≈ 30 cm/ns is the speed of electromagnetic waves in air, and ϵ (-) is the dielectric constant of the porous medium.

Equations (4) and (5) evidence that GPR waves propagate at a much lower speed in wet conditions. Any source of reflection

in the sounded soil produces a reflected wave that is recorded at a time corresponding to the duration of its propagation, from

the transmitting antenna, down to the source of reflection, then back up to the receiving antenna, i.e., the TWT of the reflected155

6

https://doi.org/10.5194/egusphere-2022-936
Preprint. Discussion started: 29 September 2022
c© Author(s) 2022. CC BY 4.0 License.



wave.

We consider a one-dimensional scenario (the offset between the antennas is null) and discretize the domain into N cells i,

centered at a depth zi, with element boundaries at zi−1/2 and zi+1/2. The TWT for the reflection occurring at the interface

(i− 1/2) between the elements i− 1 and i can be expressed as the sum of the vertical TWT in each element above i:

TWT(zi−1/2) = 2
i−1∑

j=1

|lj |
Vj

(6)160

in which |lj | (cm) is the length of the element j above i and Vj (cm/ns) is the GPR propagation speed in the element j.

A reflection occurs at the interface between two successive elements if the reflection coefficient is not zero. The reflection

coefficient expresses the contrast of dielectric constant (due to the contrast of water content) at the interface between the two

elements i−1 and i. When the offset between transmitting and receiving antennas is null, the reflection coefficient at interface

(i− 1/2) is defined by:165

r(zi−1/2) =
ϵ(zi)− ϵ(zi−1)
ϵ(zi) + ϵ(zi−1)

(7)

where ϵ(zi) is the dielectric constant of the element i.

For an 800 MHz antenna, the wavelength can typically vary from 6 cm in a wet medium to around 18 cm in a dry medium.

The abrupt change in the reflection coefficient makes the wetting front easily detectable whatever the hydraulic parameters,

contrarily to the water table which may be hidden due to the capillary fringe (Bano, 2006; Saintenoy and Hopmans, 2011).170

2.3 The numerical model

The variation of the water content in the soil during the infiltration is computed using the WAMOS-1D code (Belfort et al.,

2018). The model describes the water movement in the porous medium using Richards’ equation (1), and the constitutive

relationships between the pressure, the hydraulic conductivity, and the volumetric water content given by Eq. (2) and Eq. (3).

The domain of 150 cm depth is discretized with uniform elements of 1 cm thick with homogeneous properties. The WAMOS-175

1D code solves the system of Eqs. (1)-(3) and yields the vertical distribution of water content at each time step. This distribution

is then converted into a vertical dielectric permittivity profile ϵ using the petrophysical relationship Eq. (4) and into a GPR wave

propagation speed profile V using Eq. (5). Then, the time-lapse TWT signals for the fixed objects, TWT50 and TWT120, are

calculated at each time step using Eq. (6) (dashed and dotted curves in Fig.2).

The time-lapse signal TWTf, induced by wave reflection on the wetting front because of the sharp water content variation180

at the front position is calculated in two steps. First, we search the wetting front position z∗i−1/2, which corresponds to the

interface position having the maximum reflection coefficient from Eq. (7) as illustrated in Fig.1. Then, the TWT signal of the

wetting front is obtained using TWTf = TWT(z∗i−1/2) from Eq. (6) (solid curve Fig.2).

Note that TWT50 and TWT120 signals are induced by fixed objects, thus, these signals exist regardless of the position of

the infiltration front. On the other hand, TWTf is induced by the infiltration wetting front whose position varies over time.185

Besides, contrarily to TWT50, and TWT120, the TWTf signal disappears when the wetting front reaches the water table. To
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Figure 2. Hydrogeophysical model responses for Ks = 0.08 cm/s, θs = 0.4 (-), θr = 0.07 (-), α = 0.145 cm-1, n = 2.68 (-). TWTf corre-

sponds to the TWT signal for the wetting front, while TWT50 and TWT120 are the TWT signals for fixed objects located at 50 and 120 cm

below the surface, respectively.

avoid numerical issues when simulations are performed with different soil parameter sets, the value of TWTf when the water

table is reached, is artificially maintained for the remaining time steps until the end of simulation time. The water table is

assumed to be reached when the maximum reflection coefficient of Eq. (7) is under a threshold of 10-2. This reflects a fully

saturated domain with an almost uniform water content distribution (solid curve Fig.2). An explanation of the computation of190

all TWT signals is summarized in Fig.3.

3 Global sensitivity analysis of TWT signals

3.1 GSA method

The GSA method evaluates how the outputs of a model are influenced by the variation of the input parameters (Mara and

Tarantola, 2008). Among the various forms of GSA, a variance-based sensitivity analysis, allowing the calculation of Sobol195

sensitivity indices (Sobol′, 2001) is employed. Such indices depict the contribution of the variation of any input variable x to

the total variance of an output variable y. In our case, the input variables are the unsaturated soil parameters (Ks, θs, θr, α, n)

and the output variables are the TWT signals (TWTf, TWT50, TWT120).

Given a model with a set of p independent random parameters X = {x1, x2, ..., xp} that yields a random response y(X),

the two variance-based sensitivity measures, also called Sobol indices (Sobol′, 2001) are:200
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Figure 3. Summary of the working process of the forward hydrogeophysical model and how it is used to build the PCE surrogate model.

– the first-order sensitivity index:

Si =
Var [E [y(X)|xi]]

Var [y(X)]
∈ [0,1] (8)

– the total sensitivity index:

STi =
E [Var [y(X)|x−i]]

Var [y(X)]
∈ [0,1] (9)

where x−i = X \xi is the set of all parameters except xi, E() and E(.|.) are respectively the expectation and the conditional205

expectation operators, Var() and Var(.|.) are the variance and the conditional variance, respectively. The first-order index Si

quantifies the contribution of the parameter xi alone to the total variance of y(X), while STi also includes all interactions of

xi with the other parameters x−i.

To perform a variance-based GSA, a practical approach (to save computational time) is to use Polynomial Chaos Expan-

sion (PCE; Wiener, 1938). The PCE approach consists in developing any signal y(X) as a set of orthonormal multivariate210

polynomials of a degree not exceeding D:

y(X) =
∑

|β|≤D

sβΨβ(X) (10)

9
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Ks (cm/s) θs (cm3/cm3) θr (cm3/cm3) α (1/cm) n (-)

[xmin - xmax] [0.001 - 0.15] [0.32 - 0.48] [0.01 - 0.13] [0.01 - 0.28] [1.5 - 10]

Table 1. Prior intervals of the unsaturated soil parameters for both GSA and Bayesian estimation.

TWTf TWT50 TWT120

t = 50 s

Var_HYD_model 14 5 15.9

Var_PCE_model 13.4 5 15.8

Var_error 4.3% 0.9% 0.5%

t = 150 s

Var_hyd_model 54.6 5.5 23.3

Var_PCE_model 53.9 5.4 23.2

Var_error 1.3% 1.4% 0.4%

t = 2000 s

Var_hyd_model 28.8 1.5 9.9

Var_PCE_model 27.1 1.4 9.3

Var_error 5.7% 7.4% 5.2%

Table 2. Variance of TWTf, TWT50 and TWT120 signals at t = 50 s, 150 s and 2000 s calculated with the PCE surrogate model and with the

hydrogeophysical model.

where β = β1, β2, ..., βp ∈ Rp is a pth–dimensional index, sβ are the PC coefficients, Ψβ are the generalized polynomial chaos

of degree |β|= ∑p
i=1 βi.

In this work, Legendre polynomials are used since uniform distributions are assumed for all uncertain parameters. Uniform215

distributions express the absence of prior information. This makes all parameter values in the given prior intervals equally

likely. Large prior distribution intervals are considered for all unsaturated soil parameters (Table 1).

The number of coefficients for a full PCE representation is P = (p + D)!/p!D!. A training dataset of M realizations of the

forward coupled hydrogeophysical model is used to build the PCE surrogate model of order D (Fajraoui et al, 2011; Shao et

al., 2017; Younes et al., 2013). The coefficients of the PCE are obtained by searching the best fit (in the least square sense) of220

the PCE surrogate model to the hydrogeophysical model for the M realizations. To work with low-discrepancy sets, the M

realizations correspond to sets of input parameters sampled from their prior probability distributions, using quasi-random Sobol

sequences (Shao et al., 2017). We illustrate the principle of the construction of the PCE with our hydrogeophysical model in

Fig.3.
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A PCE is constructed at each time step for all model responses (TWTf, TWT50, and TWT120) since we deal with transient225

simulations. In this work, M = 2048 hydrogeophysical model realizations are employed to obtain PCEs of degrees D = 5

containing P = 252 coefficients. The obtained PCEs are sufficiently accurate as the variance of the TWT output signals is

calculated with the surrogate PCE model and the forward hydrogeophysical model at three different times t = 50 s, 150 s, and

2000 s. The results of Table 2 show that the relative difference between the two variances is very small for all investigated times.

Note that although the relative variance error for the TWT50 at t = 2000 s is the largest (around 7%), it remains insignificant230

since the total variance of the signal at this time is negligible (less than 2 ns2). The variance of the forward hydrogeophysical

model is therefore well reproduced by the PCE surrogate model which will be employed for the GSA of the TWT signals using

the variance decomposition.

3.2 GSA results

The temporal distribution of the output variance of the three TWT signals (TWTf, TWT50 and TWT120) are represented Fig.4.235

For each TWT signal, the variance is represented by the black curve and the relative contributions of the uncertain parameters

to the variance are represented by the shaded area. The blank region between the variance curves and the shaded area represents

interactions between parameters.

TWTf has a different behavior from the TWT signals of fixed reflectors TWT50 and TWT120 (Fig.4). Although the TWT

signals of fixed reflectors have different variance magnitudes, they exhibit similar behavior (Fig.4b and 4c). The variance of240

the TWT signal is five times more significant for TWT120 than for TWT50. This is in agreement with the physics since the zone

of the porous medium affecting the GPR wave is more important for the TWT120 signal than for the TWT50. In addition, the

period of influence of the unsaturated parameters (θr, α, n) is also more important for TWT120 than for TWT50 since saturated

conditions for the reflector R120 are reached much later than for R50. Since fixed reflectors exhibit similar behavior, in the

following, we comment on the results of TWTf and TWT120 signals.245

3.2.1 GSA of the TWTf signal

TWTf variance is zero at the beginning of the infiltration (Fig.4a) which means that the TWTf signal is not affected by the

initial conditions. Indeed, the infiltration wetting front and the TWTf signal start at zero for all parameter sets. Then, the

variance of the signal increases until a maximum of 60 ns2, reached at around 3 min. After that, the variance decreases, but

keeps a significant value of around 25 ns2 (Fig.4a). Concerning parameter sensitivities, at the beginning, the TWTf signal is250

mainly affected by Ks. The influence of this parameter decreases over time and reaches zero for long times when steady-state

conditions (corresponding to a fully saturated soil) are reached. The parameter θs has a moderate influence on the TWTf signal.

Its influence is not observable at short times since unsaturated conditions occur. Overall, the most influential parameter on the

TWTf signal is the van Genuchten parameter α. This parameter seems influential even for saturated conditions. Note that this

numerical artifact is observed because the value of TWTf is artificially maintained when the infiltration wetting front reaches255

the water table, while physically the signal disappears. The effects of the parameters θr and n are not observable (Fig.4a). The

blank region between the variance curve and the shaded area in this figure is due to the interaction between the parameters.
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Figure 4. Time distribution of the variance of TWTf (a), TWT50 (b) and TWT120 (c). The shaded area under the variance curve represents

the partial marginal contributions of the uncertain parameters; the blank region between the shaded area and the variance curves represents

the contribution of interactions between the parameters. The marginal effects shown in Fig.6 are represented at three time steps t1 = 1 min,

t2 = 5 min, and t3 = 200 min, highlighted here (dotted black lines).

To estimate this interaction, we plot the difference between the total (STi) and the first order (Si) sensitivity indices for all

parameters (Fig.5a). This difference reflects the interaction between the parameters over time. Interactions between parameters

are negligible for all parameters (STi ≈ Si), except for Ks and α (Fig.5a). Hence, the interaction between these two parameters260

affects the variance of the TWTf signal as represented by the blank region between the variance curve and the shaded area

(Fig.4a).
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Figure 5. Difference between the total (STi) and the first order (Si) sensitivity indices for all parameters for the TWTf (a) and the TWT120

(b) signals.

To evaluate further the effect of the unsaturated soil parameters on the TWTf, we plot the marginal effect of each parameter

(Fig.6). The marginal effect can be easily derived from the PCE coefficients and reflects the effect of one parameter on the

output signal. Fig.6 depicts the marginal effects of each hydraulic parameter, i.e. their influence on the TWT signals as a265

function of their value when they vary over the range of their prior distribution interval, while the other hydraulic parameters

are kept fixed at their center value. This representation allows determining the regions of influence of the hydraulic parameters,

given that the stronger the slope of the marginal effect curve, the higher the influence of the parameter. These marginal effects

can vary over time, so we represent them at the three time steps (t1 = 1 min, t2 = 5 min, and t3 = 200 min) highlighted with

dotted vertical black lines in Fig.4. The oscillations are caused by numerical artifacts related to the degree of the polynomials270

used in the PCE model. From Fig.6a, it can be noticed that:

– Ks is highly influential at the beginning of the experiment. At t1 = 1 min, the TWTf signal varies almost linearly with

Ks. Indeed, at the beginning of the experiment, when Ks increases, the wetting front is more advanced, thus, the GPR

wave propagates at a lower speed and the TWTf signal increases. At t2 = 5 min, the TWTf signal is sensitive only for

small Ks values. Indeed, for high Ks values, the soil is fully saturated and the perturbation of the high value of Ks275

doesn’t change the TWTf signal. At t3 = 200 min, the soil is fully saturated for almost all Ks values, thus, the TWTf

signal becomes insensitive to Ks.

– θs has no influence at the first times (t1 = 1 min) since unsaturated conditions occur. For long times, the TWTf signal

is very sensitive to θs with an almost linear behavior. Indeed, when the soil is fully saturated, the dielectric permittivity

and thus the TWTf signal is almost proportional to θs.280

– the sensitivity of TWTf to θr is moderate and can be observed only at the beginning of the experiment (unsaturated

conditions) with an almost linear behavior observable at t = 1 min and 5 min. The positive slope of the curve is consistent
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Figure 6. Marginal effects of the unsaturated soil parameters Ks, θs, θr , α and n on the TWTf and TWT120 signals at three different times

t1 = 1 min, t2 = 5 min, and t3 = 200 min, highlighted in Fig.4.

with the physics of the process (when θr increases, the speed of the electromagnetic wave decreases, and the TWTf signal

increases).

– The van Genuchten parameter α is highly influential notably for long times (t3 = 200 min). A small variation of the285

parameter α can induce a strong variation of the TWTf signal. Notably, the sensitivity of α is very high for α≤ 0.05

cm-1.

– The sensitivity of TWTf to the parameter n is almost zero (flat curves) at all times (t = 1 min, 5 min, and 200 min).

The parameter n has therefore a negligible effect on the TWTf signal and, as a consequence, it is expected to be poorly

identifiable from the TWTf data.290

3.2.2 GSA of the TWT120 signal

The variance of the TWT120 signal is nonzero at the beginning of the experiment which means that the TWT120 signal is

affected by the initial conditions (Fig.4c). Indeed, at the very beginning, the pressure distribution is hydrostatic and the water

content distribution in the column is obtained from Eq.2 which depends on all soil parameters except Ks. Therefore, the speed

of the GPR wave depends on the initial water content distribution which is dependent on the unsaturated soil parameters θs,295
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θr, α, and n. The most influential parameter at the beginning of the experiment is the parameter α. Over time, the effect of this

parameter reduces, whereas the effect of θs increases. For long times, θs becomes the only sensitive parameter. The parameter

Ks is also very sensitive. Its effect starts at zero, and increases until a maximum is reached at around 3 min, then it slowly

decreases and becomes negligible after 100 min. As with the TWTf signal, interactions between parameters are moderate. The

difference between the total and first-order Sobol indices is negligible for all parameters except after 1 min for the parameters300

Ks, α and θs (see Fig.5b). This interaction corresponds to the blank region, between the variance curve and the shaded area in

Fig.4c. The marginal effects of the soil parameters on the TWT120 signal are plotted in Fig.6b for t = 1 min, 5 min, and 200

min. The curves in this figure show that:

– As for the TWTf signal, Ks is highly sensitive, especially for t = 1 min and 5 min.

– The saturated water content θs is very influential for all times. The TWT120 varies almost linearly with θs even at the305

beginning (t1 = 1 min), since the fixed reflector is located in the lower saturated region.

– As for the TWTf signal, θr is sensitive only at the beginning of the experiment (unsaturated conditions) with an almost

linear behavior at t = 1 min and 5 min. When θr increases, the water content increases, and hence, the TWT120 increases.

– The van Genuchten parameter α is highly sensitive. However, contrarily to the TWTf signal where α is highly sensitive

at long times (t3 = 200 min), the sensitivity of α for the TWT120 signal is high at short times (t1 = 1 min). For long310

times, the influence of α disappears since the soil becomes fully saturated. The negative slope of the curve of the TWT120

signal as a function of α observed at the beginning of the experiment is consistent with the physics of the process. Indeed,

when α increases, the capillary fringe thickness decreases, hence, the water content in the unsaturated zone decreases,

and thus the TWT120 signal decreases.

– Surprisingly, and contrarily to the TWTf signal which showed a flat curve for the marginal effect of the parameter n for315

all parameter values and at all investigated times, the TWT120 signal is sensitive to n at the beginning of the experiment

(t1 = 1 min) with a high sensitivity for n < 3.5 and a moderate sensitivity (the curve has a small slope) for n≥ 3.5.

4 Bayesian soil parameter estimation from the TWT signals

In this section, we estimate the unsaturated soil parameters in a Bayesian framework using the Markov Chain Monte Carlo

(MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al., 2008). The statistical calibration is performed for a GPR monitored320

infiltration experiment in order to address the following questions:

1. Can we obtain an appropriate estimation of all unsaturated soil parameters from TWT data?

2. What is the impact of the kind of TWT data (moving/fixed reflectors) and of the number of reflectors on the calibrated

model parameters and their confidence intervals?

3. What is the optimal set of TWT measurements that yields good reliability of all unsaturated soil parameters?325
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The MCMC method has been successfully employed in various inverse hydrological problems (e.g., Fajraoui et al., 2011;

Younes et al., 2016; Younes et al., 2017; Younes et al., 2018). The method generates random sequences of parameter sets that

asymptotically converge toward the target joint posterior distribution by searching the ensemble of possible parameter sets

that satisfactorily fit the observations. The converged sets can then be used to assess the quality of the parameter estimation

such as the optimal parameter values and the 95% Confidence Intervals (CIs) which allow for evaluating the reliability of the330

parameters via uncertainty quantification.

In the sequel, the MCMC method is performed with the DREAM(ZS) software (Laloy and Vrugt, 2012), which is an efficient

MCMC sampler. The vector of unknowns is formed by the five unsaturated soil parameters (Ks, θs, θr, α, n). A reference

solution is generated by simulating the hydrogeophysical problem formed by the system of equations (1)-(6) using the following

reference parameter values K∗
s = 0.08 cm/s, θ∗s = 0.4, θ∗r = 0.07, α∗ = 0.145 cm-1, n∗ = 2.68, as shown in Table 3. The335

TWTf, TWT50, and TWT120 signals used as calibration data are deduced from the results of the simulation using the reference

parameter values. These TWT signals are then independently corrupted using a normally distributed noise with a standard

deviation σ = 0.5 ns.

The TWTf, TWT50 and TWT120 calibration signals, illustrated before noise corruption in Fig.2, increase almost linearly until

reaching a plateau. For the TWT50 signal, the plateau is reached when the infiltration front attains the R50 reflector and the340

value of the plateau corresponds to the time needed by the electromagnetic wave to make a round trip from the surface to a 50

cm depth of a full saturated porous medium. For the TWT120 signal, the plateau signal is reached when the infiltration front

attains the water table (the domain becomes fully saturated) and the value of the plateau corresponds to the time needed by the

electromagnetic wave to make a round trip from the surface to a 120 cm deep of a fully saturated porous medium. For TWTf,

the plateau value is also reached when the infiltration front attains the water table and the value of the plateau corresponds to345

the time needed by the electromagnetic wave to make a round trip from the surface to the water table at 100 cm deep.

The reliability of the unsaturated soil parameters is assessed for 5 different scenarios of measurement sets. In the first

scenario, only data of the wetting-front TWTf signal are used for the calibration. The second and third scenarios use only the

TWT50 and TWT120 signal, respectively, obtained from reflection on the fixed reflector R50 and R120. The fourth scenario

uses both data of TWTf and TWT120 as fitting data. The last scenario investigates the benefit of adding a fixed reflector by350

using data of the TWTf, TWT50 and TWT120 signals as conditioning information.

In the five scenarios, the MCMC sampler uses three parallel chains and a total number of 50000 runs. The last 25% of the

runs that adequately fit the model onto observations are used to estimate the joint posterior distribution.

The MCMC results of the five studied scenarios are given in Table 3 which depicts, for each parameter, the mean estimated

value, its posterior CI size, and the ratio of prior to posterior intervals. Note that the CI and the last indicator are calculated355

from the standard deviation by assuming a Gaussian posterior distribution. A small CI indicates an accurate estimation of the

parameter. A significant difference between the prior and posterior intervals is a sign of the high sensitivity of the model to that

parameter (Dusek et al., 2015).

Results of table 3 for scenario 1 using only data of the TWTf signal for the estimation of the unsaturated soil parameters

show that:360
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Ks (cm/s) θs (-) θr (-) α (1/cm) n (-)

X∗ 0.08 0.40 0.07 0.145 2.68

Scenario 1 0.081 0.39 0.076 0.211 2.75

TWTf (0.037) (0.031) (0.14) (0.167) (0.93)

4 5 1 2 9

Scenario 2 0.074 0.4 0.081 0.173 5.79

TWT50 (0.023) (0.008) (0.061) (0.269) (9.99)

6 19 2 1 1

Scenario 3 0.078 0.4 0.089 0.167 5.93

TWT120 (0.011) (0.007) (0.053) (0.195) (9.36)

13 24 2 1 1

Scenario 4 0.08 0.4 0.074 0.151 2.72

TWTf, (0.003) (0.004) (0.015) (0.029) (0.5)

TWT120 46 37 8 9 17

Scenario 5 0.079 0.4 0.073 0.149 2.68

TWTf, (0.003) (0.004) (0.015) (0.027) (0.49)

TWT50, 49 44 8 10 17

TWT120

Table 3. First line: Reference values used to build the synthetic calibration data. Then for the different scenarios: estimated mean values

(bold), size of the posterior confidence intervals (CIs) (between brackets), and ratio of prior to posterior intervals (italic).

– An accurate estimation of Ks, the most sensitive parameter (Fig.4a), is obtained with a CI of 0.037 cm/s and a variation

interval reduced by 4.

– A fair estimate of the parameters θs with a standard deviation of 0.031 (-) and a reduction of the interval of variation by

5. This result is relatively surprising as this parameter did not show a strong influence on TWTf sensitivity (Fig.4a).

– The parameter θr is not well estimated. Indeed, although its mean estimated value is very close to its reference value,365

the associated uncertainty of 0.14 is large and the posterior interval is as large as the prior one, which indicates the low

reliability of the estimation.

– A poor estimation of α, while the sensitivity analysis showed it has a strong influence on TWTf (Fig.4a). Its CI is large,

with a value of 0.167 cm-1 and its posterior interval size is half the prior one.
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– The TWTf signal yields a mean estimated value n = 2.75± 0.47 which is close to the reference value n∗ = 2.68. The370

parameter n is quite well identified since its posterior interval is 9 times smaller than the prior interval. This is relatively

surprising since the sensitivity of n is negligible (Fig.4a and 6a5).

In summary, using only data of the TWTf signal as conditioning information for the hydrogeophysical model calibration

yielded well mean estimated parameter values, close to the reference values for all unsaturated soil parameters. However, the

examination of the associated uncertainties, showed that only Ks, θs, and n are correctly identified (with narrow posterior375

intervals with respect to the prior ones). This points out the importance of statistical calibration methods for highly nonlinear

problems to investigate not only estimated parameter values but also the associated uncertainties.

The estimation of the unsaturated soil parameters for scenarios 2 and 3, using only data of the TWT50 or TWT120 signal for

the calibration shows that:

– The parameters Ks and θs, which are the most sensitive parameters during most of the experiment (Fig.4b and 4c), are380

well identified with small CI size and strong reductions by at least 6 for Ks, and 19 for θs, of their intervals of variation.

We note that the TWT120 signal allows a much better estimate of both Ks and θs as their CIs are smaller than the ones

estimated with TWT50. It is especially true for Ks where there is almost a factor 2 between the reduction ratios.

– The soil parameters θr, α, and n, although sensitive (Fig.4b and 4c), cannot be identified from the TWT50 and TWT120

signals since their posterior intervals are as large as, or at best two times smaller than their prior ones.385

The results of scenario 4 which combines data of TWTf and TWT120 signals show that:

– Both parameters Ks, θs, and n are very well identified, with very narrow posterior intervals showing a strong reduction

by 46, 37, and 17 of their prior intervals, respectively.

– The parameters θr and α are reasonably well estimated with mean values very close to their reference and intervals of

variation reduced by 8 and 9, respectively.390

Finally, the results of the last scenario which combines data of TWTf, TWT50 and TWT120 signals, show performances very

similar to scenario 4. Additional information from TWT50 helped to reduce slightly the posterior intervals of Ks, θs, and α

that in that case show a reduction of 49, 44, and 10 times their prior intervals, respectively.

The results of MCMC for this last scenario are shown in Fig.7 where diagonal plots depict the inferred posterior parameter

distributions and the off-diagonal scatterplots represent the pairwise correlations in the MCMC draws. Almost bell-shaped395

posterior distributions are obtained for all unsaturated soil parameters. Negligible correlations are observed between the pa-

rameters, except moderate correlations observed between Ks and θr (r=-0.78) and between n and θr (r=0.64) .

Note that the parameter n is relatively well estimated as the target reference value 2.68 is located in the high sensitivity

region (n < 3.5) (Fig.6). In the case of a reference value located in the low sensitivity region (n≥ 3.5), the calibration of the

hydrogeophysical model using TWTf and TWT120 signals yields a much poorer identification of the parameter n. For instance,400
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Figure 7. MCMC solutions using TWTf , TWT50 and TWT120 signals for the calibration of the hydrogeophysical model. The diagonal plots

represent the inferred posterior parameter distributions, showing the estimated mean value (dotted black line) and the target value (hard red

line). The off-diagonal represents the pairwise correlations between parameters.

using scenario 5 with a reference value n∗ = 4.25, the estimated mean value is 4.84 with a posterior CI size of 3.6, which

corresponds to a reduction of the interval of variation by only 2.

These results point to the high benefit, for the identification of the unsaturated soil parameters, of combining the GPR signal

data of a fixed reflector, preferably located sufficiently deep in the soil, with the TWT signal of the moving infiltration wetting

front. This combination allows good reliability of almost all soil parameters with very narrow posterior intervals in comparison405

with the prior ones. In particular, the van Genuchten parameter n is relatively well identified for investigated sandy soil where

n < 3.5.
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5 Conclusions

In this work, we investigated the interest in ground penetrating radar (GPR) time data for the estimation of hydrodynamic

unsaturated soil parameters. To this aim, water infiltration into an initially unsaturated sandy soil has been simulated using a410

one-dimensional hydrogeophysical model. GPR time signals have been analyzed from the reflection of the electromagnetic

wave on the moving wetting front and on two fixed reflectors located at different depths. GSA, based on PCE decomposition,

has been used to assess the effect of the unsaturated soil parameters (saturated hydraulic conductivity, saturated and residual

water contents, and Mualem–van Genuchten shape parameters α and n) on the different TWT signals. Statistical calibration of

the unsaturated soil parameters has been performed with the MCMC sampler using corrupted synthetic observations to evaluate415

the reliability of the soil parameters from the TWT signals.

The results of GSA showed that the TWTf signal of the wetting front is different from that of the two fixed reflectors which

had similar behavior. For the fixed reflectors, the magnitude of the variance (and therefore the sensitivity of the soil parameters)

is more pronounced for deeper reflectors. The TWTf signal is highly sensitive to Ks and α and moderately sensitive to θs. A

low sensitivity was observed for θr, whereas the parameter n was insensitive. The TWT120 signal of the fixed reflector located420

at 120 cm depth is highly sensitive to Ks, θs and α, and moderately sensitive to θr. The van Genuchten parameter n has a high

sensitivity for n < 3.5 and a poor sensitivity for n≥ 3.5.

The reliability of the unsaturated soil parameters has been assessed for 5 different scenarios of TWT measurement sets.

When only data of the TWTf signal are used as conditioning information for the model calibration, all estimated parameter

values were very close to the reference values. However, analyzing the associated uncertainties showed that only Ks, θs, and425

n were correctly identified (with narrow posterior intervals). Further, using only data of the TWT50 or TWT120 signals for the

calibration allows also only a good identification of Ks and θs with a strong reduction of their intervals of variation. The best

results, in terms of parameter reliability, are obtained with the combination of TWTf with fixed reflectors. In this case, the

four parameters Ks, θs, θr, and α are very well identified with very narrow posterior interval. The van Genuchten parameter

n is estimated with a low uncertainty but its estimation degrades in the low sensitivity region n≥ 3.5. We note that the deeper430

reflectors provide more information as the inversion of its signal furnishes parameters with lower uncertainty. Then using two

or three reflectors in addition to the wetting front signal doesn’t reduce consequently the uncertainty of the parameters.

The results of this study highlight the high benefit of combining TWT signals of fixed and moving (infiltration wetting front)

reflectors for very good identification of all the unsaturated soil parameters. It also points out the role of GSA to assess the

influence of the parameters on the output signals and the necessity to perform statistical calibration to assess the reliability of435

model parameters by evaluating not only estimated parameter values but also their associated uncertainties.
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