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Abstract
Purpose: Sodium (23Na) multi-quantum coherences (MQC) MRI was accel-
erated using three-dimensional (3D) and a dedicated five-dimensional (5D)
compressed sensing (CS) framework for simultaneous Cartesian single (SQ) and
triple quantum (TQ) sodium imaging of in vivo human brain at 3.0 and 7.0 T.
Theory and Methods: 3D 23Na MQC MRI requires multi-echo paired with
phase-cycling and exhibits thus a multidimensional space. A joint reconstruc-
tion framework to exploit the sparsity in all imaging dimensions by extending
the conventional 3D CS framework to 5D was developed. 3D MQC images of
simulated brain, phantom and healthy brain volunteers obtained from 3.0 T and
7.0 T were retrospectively and prospectively undersampled. Performance of the
CS models were analyzed by means of structural similarity index (SSIM), root
mean squared error (RMSE), signal-to-noise ratio (SNR) and signal quantifica-
tion of tissue sodium concentration and TQ/SQ ratio.
Results: It was shown that an acceleration of three-fold, leading to less than
2 × 10 min of scan time with a resolution of 8 × 8 × 20 mm3 at 3.0 T, are possible.
5D CS improved SSIM by 3%, 5%, 1% and reduced RMSE by 50%, 30%, 8% for
in vivo SQ, TQ, and TQ/SQ ratio maps, respectively. Furthermore, for the first
time prospective undersampling enabled unprecedented high resolution from
8 × 8 × 20 mm3 to 6 × 6 × 10 mm3 MQC images of in vivo human brain at 7.0 T
without extending acquisition time.
Conclusion: 5D CS proved to allow up to three-fold acceleration retrospectively
on 3.0 T data. 2-fold acceleration was demonstrated prospectively at 7.0 T to
reach higher spatial resolution of 23Na MQC MRI.
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1 INTRODUCTION

Sodium (23Na) MRI is a promising tool to probe tissue
ionic homeostasis, which in return could provide valuable
information on tissue viability.1-3 Sodium MRI is attrac-
tive for its unique specificity to directly characterize tis-
sues ionic homeostasis from the linear correlation between
MR signal and the sodium concentration in vivo. Indeed,
with proper calibration and ultra-short echo times, 23Na
MRI can map apparent quantitative tissue sodium con-
centration (TSC).4-7 The cell’s vitality is closely related to
the sodium concentration and thus, offers great poten-
tials to be a clinical marker for disease states.8 Sodium
MRI has been used to assess various types of cancer,9
brain tumors,10,11 in neurodegenerative diseases such as
Alzheimer’s disease,12 or multiple sclerosis.13,14 Thanks to
the advent of ultra-high field (≥7.0 T) MRI and associated
coil designs for dual-tuned 1H/23Na complementary imag-
ing, 23Na has received increased interest in recent years.8

Besides TSC quantification, 23Na MRI also offers MR
contrasts that could further inform on tissue’s health and
evolution. In particular, 23Na nuclei exhibit a quadrupo-
lar moment leading to multi-quantum coherences (MQC).
Under certain conditions, one can observe besides the sin-
gle quantum (SQ), also double- (DQ), and triple quantum
(TQ) coherences. TQ coherences arise from the biexpo-
nential relaxation observable in slow motion regimes such
as white matter (WM), gray matter (GM) and is sensitive
to the nucleus’ molecular environment.15 Beyond sodium
concentration, the TQ signal of 23Na holds promises for
novel or even complementary information to conventional
23Na MRI. It has been shown that the TQ signal is sensi-
tive to changes in the sodium surroundings much earlier
than conventional 23Na MRI16 and scales linearly with the
intracellular sodium concentration, as it has been shown
by Schepkin et al.17 in rat hearts. Conclusively, studying
the full 23Na MR signal by leveraging MQC imaging tech-
niques18 to jointly acquire SQ and TQ signal components
could provide more and/or novel information about the
tissue, the macroscopic sodium environment and the cell’s
vitality overall.

23Na MQC imaging is challenging as it suffers from
lower NMR sensitivity and requires radio frequency (RF)
phase-cycling, severely prolonging acquisition time and
therefore limiting spatial resolution. Additionally, 23Na
MQC MRI requires strong 90◦ RF pulses which are lim-
ited due to SAR restrictions. So far the feasibility of 23Na
TQ imaging has been demonstrated in the brain,18-21 the
knee22 and in spinal disc tissue.23 Additionally, Boada
et al.24 demonstrated TQ imaging of primary brain tumors
and proposed that it is a valuable tool to monitor the
changes of intracellular sodium content that relates to
neoplastic changes.

Compressed sensing (CS) has been established to
speed up MR imaging by undersampling the acquisition.
The pseudo-randomly undersampled data are iteratively
reconstructed to provide images that fulfill sparsity in
one or multiple transformed domains from the image.25

CS has demonstrated to improve conventional sodium
imaging of the knee,26 of multichannel breast data27 and
of the brain,28-30 also including CNN postprocessing.31

To our knowledge, however, CS has not been applied to
23Na MQC MRI yet. As such, this technique is a suit-
able candidate to accelerate 23Na MQC imaging, too.
Three-dimensional (3D) MQC imaging acquires 3D volu-
metric images along the echo time for a minimum of 12
RF phase-cycling steps, yielding a five-dimensional (5D)
signal structure. This signal is a superposition of differ-
ent signal components consisting of the SQ, DQ, and TQ
signals. Hence, 23Na MQC MRI spans a redundant multi-
dimensional space which can be jointly reconstructed by
exploiting sparsity in each imaging dimension and thus,
fulfills basic CS requirements.32

It has been shown that optimal reconstruction results
are achieved by exploiting sparsity in all imaging dimen-
sions.33 Spatial sparsity can be efficiently exploited by min-
imizing the energy of the gradients, total variation (TV).34

Based on the high similarity of the successive multi-echo
images, the temporal information is redundant.35 Hence,
the temporal signal evolution can be represented with only
a few coefficients. Additionally, 23Na MQC MRI requires
RF phase-cycling. According to the Fleysher phase-cycling
scheme,36 applying a one-dimensional Fourier transform
along the equidistant phase-cycle dimension reveals the
individual MQC spectra. Hence, the spectra informa-
tion can contain intrinsically sparser information than
the superimposed 23Na MQC MR signal. Following, the
temporal and spectral information can be additionally
leveraged to enhance reconstruction performance of
undersampled 23Na MQC k-space data.

Conclusively, for the first time we present reconstruc-
tion of highly multidimensional 23Na MQC MRI by lever-
aging conventional 3D and joint 5D multidimensional CS
in retrospectively undersampled numerical simulations,
phantom and in-vivo brain data acquired at 3.0 T and
prospectively undersampled in vivo brain data acquired at
7.0 T.

2 METHODS

2.1 Image acquisition

2.1.1 Numerical simulation
23Na MQC brain data were simulated based on a
numerical phantom of the three-compartment
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LICHT et al. 3

T A B L E 1 Sequence parameters for numerical simulations, phantom study at 3.0 T, retrospective in vivo study at 3.0 T and prospective
in vivo study at 7.0 T.

Parameter Numerical Phantom In vivo In vivo
simulation 3.0 T 3.0 T 3.0 T 7.0 T

Field of view (mm3) 181×217×181 190×190×200 230×230×160 220×220×220

Matrix size 30×30×20 24×24×10 24×24×8 36×36×22

TE1/ ΔTE (ms) 1.0/ 5.0 1.67/ 6.4 1.62/ 6.2 1.16/ 4.5

Bandwidth (Hz/px) — 200 220 330

TR (ms) 200 150 150 196

Pulse duration (ms) 0a 0.5 0.5 0.7

Evolution time (ms) 10 12.1 10.1±2.12 10

Averages 1 17 11 7

TA (min) — 2×60 2×31 2×34

Abbreviations: FoV, field of view; TE, echo time; TR, pulse repetition time.
a Hard pulse approximation was used.

segmentation from Collins et al.37 utilizing the Fleysher
phase-cycle scheme.36 Phantom brain data were resized
via interpolation of nearest neighbour to approximate 23Na
MQC images with a resolution of 7 × 7 × 10 mm3. The syn-
thetic brain was divided into a three-compartment model
consisting of WM, GM and cerebrospinal fluid (CSF). T1
and T∗2 values for each compartment were assigned as:4,38

(T1/ T∗2f / T∗2s in ms) for WM (34/ 3.4/ 18), GM (32/ 3.6/
15), and CSF (55/ 51/ 51) with a magnetic field strength
of B0 = 3.0 T. 23Na NMR dynamics were simulated using
the irreducible spherical tensor operator formalism of
Hancu et al.39 and the evolution equations of van der
Maarel,40 hard pulse approximation. Random Gaussian
noise with varying power defined as P = mean(𝜂2) was
added. CRISTINA simulation and acquisition parameters
were summarized in Table 1.

2.1.2 Phantom and in vivo

Imaging was performed on an NaCl/agarose phantom
and six healthy volunteers at 3.0 T (four volunteers)
and 7.0 T (three volunteers) MRI (Siemens MAGNE-
TOM Trio and Magnetom) systems, each equipped with
a 1Tx/Rx dual-tuned 1H/23Na head coil (3.0 T: RAPID
Biomedical, 7.0 T: QED). The study was approved by
local ethical committee and volunteers were recruited
after providing written informed consent according to
the Declaration of Helsinki. A custom 3D multi-echo
multi-quantum sequence termed CRISTINA,18 was used
to obtain the single- and triple-quantum filtered images
with an optimized 2 × 6-steps phase cycle.41 Prior to each
measurement, B0 shimming was performed to minimize

field inhomogeneities. RF pulses’ flip angle was globally
calibrated. CRISTINA evolution time for 3.0 T acquisitions
was determined via a global TQ time proportional phase
incrementation42 spectroscopic prescan and a subsequent
offline fit was used to map the TQ signal evolution over
time. The evolution time for 7.0 T scans was preset to 10
ms.41 In order to validate accurate signal intensity recon-
struction, fully sampled (R = 1) images of a phantom con-
sisting of nine tubes (350-mL each) with varying agarose
(0%, 2%, and 4%) and sodium (50, 100, 150 mM) concen-
trations were obtained. For 3.0 T in vivo acquisitions, a
two-dimensional anatomical 1H T1 scan was performed
with a nominal resolution of 1 × 1 × 5 mm3 within 4 min.
For 7.0 T acquisitions, a prototype CS 3D anatomical 1H
MP2RAGE43 scan was performed with a nominal resolu-
tion of 1 × 1 × 1 mm3 within 4 min. Four vials were placed
next to the head, with concentrations of agarose and 23Na
of: (4%; 100 mM), (4%; 50 mM), (2%; 100 mM), and (2%;
50mM).

Numerical simulations, phantom and 3.0 T in vivo
data were retrospectively undersampled by factors of
R = 2–7 and in vivo 7.0 T data were prospectively
undersampled by R = 2 and one dataset R = 3 (matrix
size 30 × 30 × 26). 3D variable-density random sampling
patterns (undersampling solely performed along ky and
kz) following a Poisson distribution44 were used to ret-
rospectively and prospectively undersample 23Na MQC
k-space data. Undersampling patterns were alternated
along phase-cycling to enhance incoherence. The level
of incoherence was measured by computing the num-
ber of points that were sampled at least once during
the phase-cycling, divided by the size of the k-space
matrix.
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4 LICHT et al.

2.2 Image reconstruction

The proposed workflow for the project is depicted in
Figure 1. Multiple repetitions obtained with the same
undersampling pattern were averaged before recon-
struction. Each phase-cycle dataset, 𝜒0 and 𝜒90, were
reconstructed individually. To solve the optimization
problems stated in Equation (1), the Split Bregman
method was extended based on the algorithm proposed
by Goldstein et al.,45 either to solve for 3D or 5D sig-
nal inputs. Subsequently, the constrained optimization
algorithm for 3D and 5D CS aims to solve the following
problems:

3D CS ∶ min
u

𝜆p||(∇xu,∇yu,∇zu)||2 (1)

s.t. ||𝛷F(u) − f ||22 < 𝜎

2
,

5D CS ∶ min
u

𝜆p||(∇xu,∇yu,∇zu)||2 + 𝜆TE||𝛹TEu||2 + 𝜆

𝜑

||𝛹
𝜑

u||2

s.t. ||𝛷F(u) − f ||22 < 𝜎

2
,

with u being the target image to reconstruct, ∇ represents
the first-order derivative along the spatial dimensions, x,
y and z, Ψ the Fourier transform along the temporal and
phase cycle dimension and 𝜆 being the sparsity weight-
ing parameter for spatial, p = [x, y, z], multi-echo, TE, and
phase-cycle dimension,𝜙. The optimal values for each reg-
ularization term were explicitly computed by leveraging
shrinkage operations45 that used different sparsity thresh-
olds (𝛽). The second term corresponds to the data fidelity
with ΦF indicating the partial Fourier transform followed
by random undersampling, f representing the measured
data in frequency domain and 𝜎

2 being the variance of
the signal noise. 3D CS reconstructed each 3D volume
separately.

Reconstruction performances of Wavelet transform
and TV were tested, with both performing similar
(Figure S1). Hence, TV was utilized as the transform to
exploit sparsity in the spatial domains. The latter regular-
ization terms in the 5D CS optimization problem exploit
sparsity along the multi-echo and phase-cycle dimension.
By computing the one-dimensional Fourier transform
along the multi-echo and phase-cycle dimensions sepa-
rately, a sparser domain is obtained (Figure S2). Based on
empirical evaluation, spatial sparsity term weighting was
set to 𝜆p = 1, with the optimal threshold being 𝛽p = 1.5
and 𝛽p = 0.3 for 3D and 5D CS, respectively. However,
multidimensional sparsity is challenging to balance and
therefore, additional sparsity term weightings for 5D CS
were determined by performing 144 CS reconstructions
with weighting factors 𝜆TE = 0.1 ...1.2 and 𝜆

𝜙

= 1 ...2.1
(12× 12 combinations), enabling to find the optimal
regularization parameters (Figure S3). Identically, optimal

sparsity thresholds for the additional terms in the 5D CS
model were empirically determined with 𝛽TE = 0.1 … 1.2
and 𝛽

𝜙

= 1.0 … 2.1 (Figure S4). Based on the empirical
results, optimal sparsity weightings were 𝜆TE = 0.2 and
𝜆

𝜙

= 1.9 and optimal sparsity thresholds were 𝛽TE = 0.5
and 𝛽

𝜙

= 1.6. Reconstruction times for numerical simu-
lations were 550 s for 3D (50 iterations) and 227 s for 5D
CS (300 iterations), and for 3.0 T in vivo 313 s for 3D (100
iterations) and 55 s (250 iterations) for 5D CS.

2.3 Image processing

k-Space was zero-padded with the addition of 3D Ham-
ming windowing. The first two echoes of CRISTINA
phase data were used to compute a 3D B0 map to
obtain the signal off-resonances for combination of the
two phase cycles (𝜒0 and 𝜒90) according to the method
of Fleysher et al.36 Finally, applying a Fourier trans-
form along the phase-cycle dimension revealed the SQ
and TQ spectra. Reconstructed SQ and TQ images
were fitted to the MQC bi-exponential model given in
Equation (2).

TQ ∶ ATQ

(

e
− TE

T∗2s − e
− TE

T∗2f

)

e
− 𝜏1

T∗2s + DCTQ

SQ ∶
(

ASQ1 e
− TE+𝜏1+𝜏2

T∗2s + ASQ2 e
− TE+𝜏1+𝜏2

T∗2f

)

e−
TE+𝜏1+𝜏2

T2s∗ + DCSQ

(2)

with ATQ, ASQ1 , ASQ2 being triple- and single-quantum
amplitude terms (slow and fast), DCTQ,SQ = DC offset
accounting for noise, T∗2s= T∗2 slow, T∗2f= T∗2 fast, 𝜏1 = evo-
lution time and 𝜏2 = mixing time (time between second
and third RF pulse). The value of TQC at TE = 0 ms is
0 from theory and was added to the multi-echo data to
enhance the fit. First, the voxel-wise multiparametric fit
of TQ was performed followed by the SQ fit with updated
initial values, using nonlinear least squares solver in Mat-
lab (R2020a, Mathworks) leveraging parallel computing,
providing T∗2s and T∗2f maps.

2.4 Image analysis

Quantitative analysis of the phantom study was performed
in a predetermined region of interest (ROI) that was drawn
over each tube on a single central slice, avoiding edges.
ROI mean values served to compute SQ and TQ/SQ ratios
for each tube. Linear regression between SQ and prior
known sodium concentration, as well as TQ/SQ ratio and
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LICHT et al. 5

F I G U R E 1 Workflow
including variable density
undersampling and compressed
sensing (CS) reconstruction for
accelerated 23Na multi-quantum
coherences (MQC) MRI. (1)
Image acquisition is performed
by utilizing a three-pulse
radiofrequency phase-cycled
three-dimensional (3D)
Cartesian multi-echo readout
sequence, yielding a
five-dimensional (5D) signal
structure involving 3D spatial,
multi-echo and phase-cycle
dimension. Undersampling is
performed along ky and kz
(phase-encoding) by alternating
the patterns along the
phase-cycle dimension, 𝜙. (2)
Undersampled
high-multidimensional k-space
data is reconstructed leveraging
a conventional 3D or a custom
build 5D CS algorithm that
exploits sparsity in all imaging
dimensions. (3) The CS
reconstructed data is processed
by utilizing Fleysher
combination and applying a
Fourier transform along the
phase cycle dimension revealed
the 23Na MQC spectra, namely
single quantum (SQ) and triple
quantum (TQ) signal
components. Finally, the
reconstructed and processed
images enable in vivo
quantification of Tissue Sodium
Concentration (TSC) and/or
TQ/SQ ratio.

prior known agar concentrations were performed. Retro-
spectively undersampled numerical simulations and 3.0
T in vivo data, provided the fully sampled images, were

analyzed by means of structural similarity index (SSIM),46

root mean squared error (RMSE) and signal-to-noise
ratio (SNR). For numerical simulations, the metrics were
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6 LICHT et al.

evaluated over the whole image whereas for the
in vivo study, the metrics were computed for the
head only.

SSIM(u, ref) = l(u, ref) ∗ c(u, ref) ∗ s(u, ref)

RMSE(u, ref) =

√
√
√
√ 1

n

n∑

i=1
|ui − refi|2

SNR(u, ref) = 20 log10

(
uROI

𝜎BG

)

, (3)

with ref being the fully sampled reference image and
SSIM(u, ref) the product of luminescence, l(u, ref), con-
trast, c(u, ref) and structure, s(u, ref). SI represents mean
signal intensity in a specific region. uROI is the region
of interest and uBG is the noise obtained from the back-
ground, BG. Normalized intensity complex magnitude
images were used to compute the SSIM and the RMSE.
For 7.0 T prospectively undersampled data, the rela-
tive degree of focus was measured by computing the
focus measure as the energy of the Laplacian47 inside
the ROI.

3 RESULTS

3.1 Numerical simulations

The realistic numerical simulation of a CRISTINA acqui-
sition from the three-compartment 3D brain enabled to
anticipate the SQ and TQ noise levels with and with-
out k-space undersampling (Figure 2). Alternating the
sampling masks along the phase-cycle enabled to cover
k-space by 82%, 76%, 62%, 50%, 40%, 24% for R = 2–7,
respectively. Indeed, 3D and 5D CS improved image recon-
struction when compared to zero-filling only. Discrepan-
cies between 3D and 5D CS reconstructions were already
observed at an undersampling factor of R = 3. Mean TSC
values in WM, GM, and CSF were found to be on par:
43 ± 14, 45 ± 21, 132 ± 31 mM for fully sampled, 43 ± 16,
44 ± 20, 118 ± 45 mM for 3D CS and 43 ± 15, 45 ± 22,
131 ± 32 mM for 5D CS reconstructions, respectively. Sim-
ilarly, mean TQ/SQ ratio values in WM, GM, and CSF
were 0.17 ± 0.05, 0.14 ± 0.06, 0.08 ± 0.06 for fully sampled,
0.16 ± 0.05, 0.14 ± 0.06, 0.10 ± 0.07 for 3D CS and 0.17 ±

F I G U R E 2 (A) Simulated
single quantum (SQ), triple
quantum (TQ), and TQ/SQ
brain data with a nominal
resolution of 7 × 7 × 10 mm3

fully sampled and
undersampled with R = 3.
Noise was added (noise power
P=1.4*10-4) and undersampled
data were reconstructed with
zero-filling, three-dimensional
(3D) and five-dimensional
(5D) compressed sensing (CS).
(B) Quantitative evaluation of
reconstruction performance for
R = 3 via structural similarity
index (SSIM), root mean
squared error (RMSE),
signal-to-noise ratio (SNR) for
simulated SQ and TQ brain
data depicted in (A).
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LICHT et al. 7

T A B L E 2 Mean and SDs for structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR) of
reconstructed single quantum (SQ) and triple quantum (TQ).

Model Signal SSIM RMSE SNR (dB)

(A) In silico

3D CSR=3 SQ 0.88 0.038 30.01

TQ 0.57 0.117 6.19

TQ/SQ 0.75 0.052 —

5D CSR=3 SQ 0.99 0.010 27.27

TQ 0.84 0.044 8.28

TQ/SQ 0.95 0.017 —

3D CSR SQ 0.81 ± 0.10 0.057 ± 0.022 —

TQ 0.56 ± 0.06 0.124 ± 0.024 —

TQ/SQ 0.74 ± 0.05 0.051 ± 0.008 —

5D CSR SQ 0.94 ± 0.07 0.024 ± 0.018 —

TQ 0.76 ± 0.09 0.081 ± 0.040 —

TQ/SQ 0.85 ± 0.10 0.029 ± 0.015 —

(B) In vivo

3D CSR=3 SQ 0.93 0.048 29.59

TQ 0.82 0.094 10.46

TQ/SQ 0.91 0.024 —

5D CSR=3 SQ 0.96 0.023 27.07

TQ 0.86 0.066 11.54

TQ/SQ 0.92 0.022 —

3D CSR SQ 0.90 ± 0.04 0.065 ± 0.027 —

TQ 0.84 ± 0.02 0.075 ± 0.014 —

TQ/SQ 0.89 ± 0.03 0.027 ± 0.005 —

5D CSR SQ 0.93 ± 0.04 0.037 ± 0.019 —

TQ 0.79 ± 0.07 0.097 ± 0.032 —

TQ/SQ 0.89 ± 0.05 0.027 ± 0.007 —
Notes: CSR=3 represents the metrics for R = 3 for SQ at TE = 1 or TQ at TE = 3. CSR represents the metric evaluation averaged over all undersampling factors,
R = 2–7. Table (A) corresponds to the nummerical simulation (fully sampled: SNR SQ = 25.56 dB, TQ = 7.94 dB) and (B) to the in vivo study performed at 3.0
T (fully sampled: SNR SQ = 22.73 dB, TQ = 8.40 dB).

0.05 and 0.14 ± 0.06, 0.08 ± 0.06 for 5D CS reconstructions,
respectively.

All metrics, SSIM, RMSE, and SNR, confirmed 5D CS
outperformed 3D CS both along the echo time dimen-
sion for R = 3 (Figure 2B) or at various undersampling
rates (Figure 3B). Mean values and SDs were reported in
Table 2A. 5D CS proved to achieve low errors (RMSE)
especially at rates R = 2 and R = 3. Especially for the TQ
reconstruction at R = 3, 5D CS improved SSIM by 47% and
reduced RMSE by 2.5-fold. 5D CS consistently provided
improved reconstruction results across all undersampling
factors and especially for higher undersampling factors
(R > 3).

Reconstruction from 5D CS also proved to be more
resilient to increased noise level compared to 3D CS
(Figure 3A). Mean and SD of SSIM, RMSE, and SNR were

given in Table S1. Notably, errors for R = 3 TQ images
increased almost linearly with noise power for 5D CS.
Although TQ signal being of low SNR, 5D CS managed
to recover this signal component despite increasing noise
levels. Especially remarkable is the consistently improved
SSIM and SNR for the TQ signal reconstructed by 5D CS.

3.2 Phantom study

Image reconstruction from three-fold retrospectively
undersampled phantom data acquired at 3.0 T confirmed
5D CS improvement over 3D CS (Figure 4): under-
sampling artefact were reduced, especially for vials 1-3
and image sharpness was increased. Linear regression
(Figure 4C) were confirmed between the SQ signal and
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8 LICHT et al.

F I G U R E 3 Quantitative evaluation of reconstruction performance via structural similarity index (SSIM), root mean squared error
(RMSE), signal-to-noise ratio (SNR) for simulated SQ and TQ brain data depicted in Figure 2. (A) Additive noise performance evaluation in
regards to SSIM, RMSE and SNR for R = 3, with three-dimensional (3D) and five-dimensional (5D) compressed sensing (CS) reconstructed,
along increasing noise levels. (B) Reconstruction evaluation for different acceleration factors, R, for 3D and 5D CS models obtained with the
same noise power as used in Figure 2.

to the prior known NaCl concentration and between the
TQ/SQ ratio and the prior known agar concentration in
each vial. The TSC was well preserved in both reconstruc-
tions, but the 3D CS TQ/SQ ratio in vials 1 to 3 deviated
more from the fully sampled data, indicated by the arrow
in the linear regression plot. Fully sampled phantom data
exhibited a SNR of 21.93 and 8.26 dB, 3D CS of 27.56
and 6.18 dB, and 5D CS of 28.44 and 13.65 dB for SQ and
TQ, respectively. Results of fit parameter maps can be
appreciated in supporting information, Figure S5, with
a summary of the T∗2 slow and fast components given in
Table S3. No significant difference between fully sam-
pled and reconstructed T∗2 values were found for both
3D and 5D CS.

3.3 3.0 T in vivo study

It was found that exploiting sparsity along the multi-echo
and phase-cycle dimension improved reconstruction
results when compared to only exploiting sparsity along
either one of the dimensions (Figure S6, Table S1). Results
from retrospectively undersampled in vivo 23Na MQC
brain data acquired at 3.0 T confirmed the superiority of
5D CS over 3D CS (Figure 5). Images reconstructed by 3D

CS exhibited severe blurring, notably the SQ image, and
aliasing artifacts, as seen in the TQ image, whereas most
features observed in fully sampled images were preserved
in images reconstructed by 5D CS. The quantification
of TSC and TQ/SQ ratio in the three-compartment WM,
GM, and CSF demonstrated minimal discrepancies of
region-wise quantification. TSC for fully sampled data was
49 ± 66, 36 ± 41, and 141 ± 123 mM, for 3D CS 54 ± 69,
32 ± 42, and 142 ± 128 mM and for 5D CS 51 ± 67, 34 ± 38,
and 141 ± 126 mM, for WM, GM, and CSF, respectively.
TQ/SQ ratio was found to be 0.16 ± 0.06, 0.13 ± 0.04,
and 0.11 ± 0.05 for fully sampled, 0.15 ± 0.04, 0.14 ± 0.03,
and 0.12 ± 0.04 for 3D CS, and 0.16 ± 0.06, 0.13 ± 0.04,
and 0.11 ± 0.04 for 5D CS. At an undersampling factor
of R = 2, 3D and 5D CS performed similar (Figure 5A).
However at R = 3, TQ reconstructed with 3D CS exhibited
residual undersampling artifacts, which were suppressed
in the 5D CS reconstruction. SSIM, RMSE, and SNR eval-
uated for R=3 along the echo time showed consistently
improved performance for the 5D CS model (Figure 5B).
With increasing undersampling factor, expected blurring
and image degradation was observed. Nevertheless, 5D
CS systematically provided higher quality SQ images in
contrast to 3D CS, even for high acceleration factors.
Quantitative metrics were given in Table 2B.
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LICHT et al. 9

F I G U R E 4 Phantom study: (A) Phantom design consisting of 9 different vials (350-mL each) with different NaCl (50, 100, 150-mM)
and varying agar concentrations (0%, 2%, and 4%). Phantom vial enumeration for subsequent reconstruction performance evaluation within
each vial. (B) single quantum (SQ), triple quantum (TQ), and TQ/SQ ratio comparison of fully sampled, three-dimensional (3D) and
five-dimensional (5D) compressed sensing (CS) reconstruction for a retrospective undersampling factor of R = 3. SQ and TQ images were
fitted with corresponding equations in Equation (2), respectively. Note the residual undersampling artifacts in the 3D CS reconstruction. (C)
Shows the linear regression for the mean SQ signal intensity versus prior known TSC in each vial for the fitted data. Data exhibited linear
relationships of R2 = 0.99* for fully sampled, 3D and 5D CS reconstructed images. Additionally, linear regression was performed on the mean
TQ/SQ signal intensity versus known agar concentration in each vial. For the fitted data, linear relationship were found to be R2 = 0.84*,
R2 = 0.87*, R2 = 0.86* for fully sampled, 3D and 5D CS, respectively. With R2 being the adjusted goodness-of-fit and * representing statistical
significance (p < 0.05). Computed T∗2 values can be found in Table S3 and Figure S5.

Figure 6 shows three slices of a second volunteer’s
T1w 1H and 23Na MQC brain data acquired at 3.0 T
and retrospectively undersampled by a factor R = 3.
Over the multiple slices, SQ images reconstructed with
the proposed 5D CS model exhibited less blurring and
finer imaging details. Similarly, joint CS reconstruction
reduced undersampling-related aliasing artifacts.

Additionally, 5D CS provided less erroneous TQ/SQ
ratio maps as indicated by the arrow and also improved
visual delineation between WM, GM, and CSF. Pushing
acceleration further by reducing the number of aver-
ages, 5D CS still proved to reconstruct reliable SQ and
TQ images within an acquisition time of less than 5 min
(Figure S7).
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10 LICHT et al.

F I G U R E 5 (A) Visual representation of reconstruction performance for different undersampling factors, R =2–3, for one volunteer
acquired at 3.0 T. (B) In vivo signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index (SSIM) evaluation
over all echoes and for one echo over all undersampling factors for retrospectively undersampled in-vivo brain 3.0 T data are shown.

3.4 7.0 T in vivo study

Leveraging a conservative two-fold prospective under-
sampling, the results of the 7.0 T in vivo study pro-
vided unprecedented resolution for MQC 23Na images
(Figure 7). Zero-filling yielded blurry SQ and aliased TQ
images. 5D CS provided increased SQ image sharpness,
which was also confirmed by the focus measure met-
ric: ZF = 2.19 ∗ 10−8, 3D CS = 2.28 ∗ 10−8, 5D CS =
2.50 ∗ 10−8. Additionally, 5D CS reconstructed images pro-
vided increased SNR: ZF = 13.10/ 4.56 dB, 3D CS =
13.34/ 6.87 dB, 5D CS = 17.62/ 11.88 dB for SQ and TQ,
respectively. The SQ images showed high signal intensity

in the CSF compartment whereas the TQ signal mostly
originated from the brain parenchyma. Combining these
two images, the TQ/SQ ratio for 3D and 5D CS were
on par with 5D CS images showing an improved delin-
eation between WM, GM and CSF. It can be appreci-
ated that WM exhibited the highest TQ/SQ ratio 0.21 ±
0.11 and 0.19 ± 0.11, GM intermediate 0.11 ± 0.06 and
0.10 ± 0.06 and CSF the lowest 0.07 ± 0.04 and 0.07 ±
0.05 for 3D and 5D CS, respectively. The improved 3D
spatial resolution can also be appreciated in the sagit-
tal and coronal views, where the delineation between the
respective compartments is also enhanced by the 5D CS
reconstruction.
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LICHT et al. 11

F I G U R E 6
Retrospectively three-fold
undersampled 3.0 T in-vivo
brain data reconstructed with
three-dimensional (3D) and
five-dimensional (5D)
compressed sensing (CS) shown
for multiple slices.

F I G U R E 7 Prospectively
two-fold undersampled 7.0 T in
vivo brain data reconstructed
with zero-filling,
three-dimensional (3D) and
five-dimensional (5D)
compressed sensing (CS) shown
for transversal, sagittal, and
coronal plane with the
corresponding anatomical 1H
reference images.

4 DISCUSSION

This study showed that CS could be used for two major
limitations of 23Na multi-quantum coherence MRI which
are elongated acquisition time and poor spatial resolu-
tion. This study evaluated CS for 23Na MQC MRI in four
steps. First, a numerical simulation framework allowed to
demonstrate the limitations of 3D CS and the necessity
to deploy 5D CS for this application. However, numer-
ical simulations, based on a simplistic segmentation of
the human brain, lacked realistic data with considerations
for imperfect B1+and B0. Second, a calibrated phantom
served to confirm experimentally the advantages of 5D CS
over 3D CS. Especially, these experiments clearly showed
the limitations of 3D CS to provide reliable results in low
sodium concentration compartments. Nevertheless, phan-
tom experiments offer beneficial conditions such as large
homogeneous regions. Third, a retrospective study was
performed on in vivo data acquired at 3.0 T. These data
offered the first opportunity to retrospectively test various
undersampling rates on in vivo data. The challenge was

complete with all the elements to account for: the B1+ and
B0 relative inhomogeneity, the relatively lower SNR of a
3.0 T sodium head MRI and the elongated scan duration
for a fully sampled acquisition. Conventional distance met-
rics such as SSIM and RMSE did not always reflect visually
perceived reconstruction improvement. These reconstruc-
tion performance evaluations may not be appropriate since
they also take irrelevant structures such as the skull into
account, skewing the metric evaluation. Strong from all
these incremental validations of our 5D CS framework, a
prospectively undersampled in vivo acquisition was imple-
mented. As a fourth step, an unprecedented spatial resolu-
tion for 23Na MQC MRI was sought. Alternatively, a short-
ened acquisition could have been performed although this
option was not significantly different from the retrospec-
tive study. Eventually, with an undersampling rate of 2,
a 2.7-fold reduction of voxel volumes and the boost in
SNR thanks to the 7.0 T, whole brain 23Na MQC MRI
was acquired with a resolution of 6 × 6 × 10 mm3. In these
images, sharper distinction between gray and white matter
MQC properties could be observed.
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12 LICHT et al.

4.1 7.0 T in vivo study

Transitioning from 3.0 to 7.0 T boosted the SNR, enabling
potentially higher acceleration. However, higher field
strengths come with stricter SAR limitations, adversely
prolonging acquisition due to increased TR and diminish-
ing the benefits of ultra-high field 23Na MQC MRI. More-
over, the TQ signal is highly dependent on B1+ as it scales
with sin5(𝛼), further penalizing 7.0 T acquisitions. Future
work could utilize flip angle mapping for B1+ postprocess-
ing correction.22 This study only considered dual-tuned
birdcage coils with single transmit and receive channels,
both at 3.0 and 7.0 T. Utilizing multireceive channels
could further push acceleration possibilities thanks to SNR
improvements and by simultaneously leveraging parallel
acquisition techniques.48

4.2 Potential extensions to proposed
image reconstruction

One further improvement could be to change the sam-
pling pattern more frequently, for example, for each rep-
etition and/or along echo time, thus enabling to reduce
the amount of fully sampled center region and hence, to
increase incoherence. CRISTINA phase-cycle leverages a
total of 2×6 steps for the Fleysher combination36 to com-
pensate for B0 inhomogeneity-induced signal loss occur-
ring during the evolution time. In the current implemen-
tation, to accommodate the Fleysher combination, both
data sets 𝜒0 and 𝜒90 are identically undersampled. To fur-
ther push acceleration, one could consider undersampling
each data set differently and combining them to extend the
phase cycle dimension for CS reconstruction, albeit with a
different transform than the Fourier transform employed
in our algorithm.

Another extension from the proposed CS model could
be to exploit joint constraints across the multidimensional
space instead of individual constraints. The chosen sep-
arated framework permitted independent scaling of each
regularization term, allowing tuning them for optimal
reconstruction results since sparsity might differ among
the 5 dimensions. Another joint approach could be ten-
sor sparsity, to leverage multidimensional sparsity simul-
taneously as proposed by Yu et al.49 or Roohi et al.50

Additionally, improved reconstruction might be achiev-
able by exploiting k-space similarity such as in LORAKS51

or SAKE52 and thus not limiting the reconstruction to spar-
sity assumptions only. It is also noteworthy that CS recon-
struction performances are highly dependent on the initial
SNR of the signal. Hence, reconstruction performances
and achievable acceleration factors are highly limited by
23Na MQC MRI’s intrinsically poor SNR, yielding noisy
images even though fully sampled k-space was acquired.

Following, spatial TV sparsity could be improved by lever-
aging anatomical prior constraints as proposed by Gnahm
et al.,29 Lachner et al.,27 and Zhao et al.53

Another limitation of 23Na MQC MRI is that its TSC
differs from the TSC measured by conventional 23Na MRI.
Indeed, CRISTINA’s apparent TSC is affected by T∗2 due
to the long evolution time. A more accurate TSC esti-
mation could be obtained by using an additional readout
during the evolution time by leveraging a UTE readout as
included in the SISTINA19 method. Following the work
of Aldung et al.54, the CSF was used as reference in-vivo to
quantify TSC since it is less affected by B1+ inhomogeneity
and noise due to short T2 components compared to exter-
nal vials placed at the edges of the coil with agar content
reducing their T2 values.

4.3 Alternatives for improved image
reconstruction

First, further reconstruction improvements could be
expected by leveraging convolutional neural networks as
proposed by Adlung et al.31 In particular, deep learning
techniques could be used to find optimal sparse repre-
sentations of the signal.55 Joint frameworks combining
Deep Learning and CS have also shown promising results
in regards to reduced reconstruction time56 or overall
enhanced reconstruction quality by exploiting relevant
features in the images.57 Nevertheless, the performance
highly depends on the amount of training data, which
remains limited for 23Na MQC MRI.

Second, reconstruction parameters were determined
empirically based on SSIM and RMSE assessment. Due to
the intrinsic low SNR of the signal, optimization of recon-
struction parameters was challenging. Further research
could utilize Automated Parameter Selection for Accel-
erated MRI Reconstruction as proposed by Ilicak et al.58

Furthermore, estimating the noise floor and comput-
ing the sparsity threshold with respect to this parameter
could help to find optimal sparsity thresholds for each
dimension.

Third, the here presented workflow was separated
into image reconstruction (CS) and image postprocessing,
which consisted of Fleysher combination and model-based
reconstruction of fitting the signal equations (Equation
2). Future work could evaluate the benefits of combining
these steps by leveraging CS coupled with a model-based
reconstruction59 that incorporates SQ and TQ signal fitting
into CS. The here presented 5D CS model exploits shared
information of the superimposed 23Na MQC signal and
the spectrum by computing the one-dimensional Fourier
transform along the phase-cycling dimension. Hence, the
proposed 5D CS algorithm could easily be extended, with
additions for T∗2 signal decay, to a model-based image
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LICHT et al. 13

reconstruction that takes relevant physical parameters into
account and leverages the theoretical SQ and TQ sig-
nal models. However, these model-based approaches add
another level of complexity and risk overfitting,59 which
was deemed beyond the scope of this study.

Finally, CRISTINA sequence is based on Cartesian
readouts, which are SNR efficient since they sample
k-space more evenly. Alternatively, non-Cartesian read-
outs might be better suited to full fill the prerequisite of
incoherent undersampling noise required for CS. Never-
theless, Cartesian sampling eases reconstruction proce-
dure, notably memory when handling large datasets, and
is more robust to hardware imperfections, potentially fos-
tering reproducibility across different platforms. Further-
more, alternating the sampling patterns along the phase
cycle dimension promoted incoherent undersampling
artifacts thus, better satisfying CS reconstruction theory.
Further acceleration, however, could be achieved by lever-
aging Twisted Projection Imaging60 or density-adapted61

radial k-space sampling, due to the fact that these methods
provide increased initial SNR and additionally, enhance
sampling randomness. However, the 3D variable density
Cartesian sampling technique has already demonstrated
potential in multiple CS applications. Furthermore, the
proposed multi-dimensional CS model’s strength lies in
the regularization of the phase-cycle dimension, which
would be similar between Cartesian and non-Cartesian
sampling trajectories. Finally, paired with a strong asym-
metric first echo, 23Na MQC signal Cartesian sampling
could be performed with a short first echo time, benefiting
SQ signal. Later echoes were fully sampled to balance the
lower SNR, especially for sampling the TQ signal.

5 CONCLUSION

A dedicated CS reconstruction exploiting 3D spatial spar-
sity and sparsity along echo and phase-cycle dimension
was demonstrated to allow undersampling of Cartesian
23Na MQC MRI. Numerical simulations, retrospective and
prospective phantom and in vivo analysis of reconstruc-
tion performance revealed suitable acceleration factors of
up to 3-fold to either accelerate acquisition to obtain 23Na
MQC MR images within less than 5 min at 3.0 T or to
increase spatial resolution up to 6 × 6 × 10 mm3 at 7.0 T
without extending imaging time or compromising image
quality.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Reconstruction evaluation of Wavelet and TV
sparsifying transform. It was found that WT and TV per-
formed similar and therefore, we chose to utilize TV as the
spatial sparsifying transform.
Figure S2. Demonstration of sparsity along the
phase-cycling (A) and along the multi-echo, TE (B). (A)
Performing the Fourier transform along the phase-cycle
dimension reveals the 23Na MQC spectrum. The TQ image
is depicted in image 𝜙1 and the SQ images are shown in
images 𝜙3 and 𝜙5. It is demonstrated that the images at
index 2 and 6 are pure noise, which shows that the image
is sparser in the transformed domain. Additionally, the
Fourier transform enables to regularize on the 23Na MQC
spectrum directly, which further improves reconstruc-
tion performance by enabling to tune the reconstruction
towards either SQ or TQ signal component. (B) Perform-
ing a Fourier transform along the multi-echo dimension
reveals the dominant Fourier coefficients, depicted at
the center (TE5). Smaller Fourier coefficients represent
noise and are shown in TE1, TE9 and TE10. Conclu-
sively, applying the Fourier transform along the echo
time and the phase-cycle dimension results in sparser
images, which reduce the complexity of the optimization
problem. This sparsity is exploited within the additional
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regularization terms of the 5D CS model to find a
better solution.
Figure S3. Color plots of all metrics for different spar-
sity thresholds for the multi-echo dimension (𝛽TE) and
the phase-cycle dimension (𝛽

𝜙

) evaluated on 3-fold under-
sampled numerical simulations. The square in red shows
the regularization parameter combination that provided
the best reconstruction result. It is demonstrated that the
phase-cycling dimension can be made sparser than the
multi-echo dimension. Additionally, the graphs demon-
strate that a variety of different values lead to high recon-
struction quality. It is also shown that not regulariz-
ing the phase-cycle dimension (𝛽

𝜙

=0) leads to decreased
reconstruction performance, whereas small thresholds are
beneficial for TE regularization. Conclusively, a trade-off
between optimal SSIM, RMSE and SNR was found by
using 𝛽TE=0.4 and 𝛽

𝜙

=2.0.
Figure S4. Color plots of all metrics for different reg-
ularization term weightings for the multi-echo dimen-
sion (𝜆TE) and the phase-cycle dimension (𝜆

𝜙

) evalu-
ated on 3-fold undersampled numerical simulations. The
square in red shows the regularization parameter combi-
nation that provided the best reconstruction result. The
graphs revealed that a variety of different values lead
to high reconstruction quality. It was also shown that
decreasing the weight of the TE regularization lead to
decreased reconstruction performance, whereas smaller
weights were beneficial for phase-cycle regularization.
Interestingly, overweighting the regularization factors (𝜆

𝜙

,
𝜆TE > 1) results in decreased reconstruction performance.
Conclusively, a trade-off between optimal SSIM, RMSE
and SNR was found by using 𝜆TE=1.6 and 𝜆

𝜙

=0.7.
Figure S5. Resulting fit parameter maps for a center slice
of fully sampled, 3D and 5D CS reconstructions obtained
with an undersampling factor of R=3 (Figure 4). Maps are
shown with a body mask. It can be appreciated that vials
containing 2 or 4% agar gel exhibit shorter T∗2 components
as well as larger TQ signal amplitudes. ASQ2 exhibited

strong artefacts for the first row of vials, which do not
contain agar. Hence, no T2f component is expected yield-
ing a noisy ASQ2 parameter fit map. This artefact is even
stronger for the 3D CS reconstruction due to the resid-
ual aliasing artefact. Additionally, the 3D CS parameters
maps revealed extended blurring when compared to fully
sampled and 5D CS.
Figure S6. Reconstruction performance with different
regularization terms added. It is noteworthy that improved
reconstruction was already observed by adding one of each
regularization term (TE or 𝜙). However, best performance
was obtained when both regularization terms, e.g. 5D CS,
were utilized. Quantitative metrics are given in Table S1.
Figure S7. Reconstruction performance of 3D and 5D CS
for R=3 and reduced averages. Reducing the number of
averages enabled further acceleration, but degraded image
quality. However, 5D CS yielded reliable SQ and TQ/SQ
ratio image reconstruction up to an acquisition time of less
than 5 minutes.
Table S1. Quantitative reconstruction evaluation for 3D,
4D and 5D CS models that utilize different regularization
terms. 5D CS demonstrated to provide superior reconstruc-
tion quality. Images are shown in Figure S6.
Table S2. Mean and standard deviations for SSIM, RMSE
and SNR of simulated fully sampled and 3-fold undersam-
pled SQ and TQ data for different noise levels. Metrics were
evaluated against noise-free fully sampled data.
Table S3. Mean and standard deviations for T∗2 fast and
slow components (ms) of the shown slice in Figure S5
reconstructed with 3D and 5D CS at an undersampling
factor of R=3.
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