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Abstract.—The bootstrap method is based on resampling sequence alignments and re‑estimating trees. Felsenstein’s boot‑
strap proportions (FBP) are the most common approach to assess the reliability and robustness of sequence‑based phylo‑
genies. However, when increasing taxon sampling (i.e., the number of sequences) to hundreds or thousands of taxa, FBP
tend to return low support for deep branches. The transfer bootstrap expectation (TBE) has been recently suggested as an
alternative to FBP. TBE is measured using a continuous transfer index in [0,1] for each bootstrap tree, instead of the binary
{0,1} index used in FBP to measure the presence/absence of the branch of interest. TBE has been shown to yield higher and
more informative supports while inducing a very low number of falsely supported branches. Nonetheless, it has been ar‑
gued that TBE must be used with care due to sampling issues, especially in datasets with a high number of closely related
taxa. In this study, we conduct multiple experiments by varying taxon sampling and comparing FBP and TBE support
values on different phylogenetic depths, using empirical datasets. Our results show that the main critique of TBE stands
in extreme cases with shallow branches and highly unbalanced sampling among clades, but that TBE is still robust in most
cases, while FBP is inescapably negatively impacted by high taxon sampling. We suggest guidelines and good practices
in TBE (and FBP) computing and interpretation. [Felsenstein’s bootstrap; phylogenetic trees; support robustness; taxon
sampling; transfer bootstrap.]

Branch supports are essential for interpreting trees
because they allow quantifying the degree of uncer‑
tainty in our phylogenetic hypotheses. For maximum‑
likelihood (ML) tree estimation (and other approaches,
e.g., distance‑based), the most popular branch sup‑
port is undeniably the bootstrap method proposed by
Felsenstein (1985), one of the most cited articles of all
time (Van Noorden et al. 2014). The procedure relies
on resampling with the replacement of the sites of a
reference alignment until obtaining a pseudo‑ (or boot‑
strap) alignment of the same length. Then, pseudo‑ (or
bootstrap) trees are estimated using the same inference
method. Finally, the support for every branch on the ref‑
erence tree is measured as the bootstrap proportion (BP)
of pseudo‑trees containing that branch.

The interpretation of bootstrap support values has led
to great controversies in the 1990s (reviewed in Sander‑
son 1995; Soltis and Soltis 2003; Simon 2022). Originally,
Felsenstein (1985) suggested interpreting it as a mea‑
sure of repeatability, meaning the “probability that a
specified group will be found in an analysis of an in‑
dependent sample of characters” (Hillis and Bull 1993).
However, this interpretation has been contrasted with
another view that bootstrap could be interpreted as a
confidence region of some kind in a null hypothesis
framework (Hillis and Bull 1993), and was further dis‑
cussed in the literature (Felsenstein and Kishino 1993;

Sanderson 1995; Efron et al. 1996; Susko 2009) but did
not find success among practitioners. Through simula‑
tions, Hillis and Bull (1993) suggested a threshold value
of 70%, although this value was proposed under very
specific conditions, namely “equal rates of change,”
“symmetric phylogenies,” and “internodal change of
<20% of the characters.” Despite those important limi‑
tations, Soltis and Soltis (2003) note that “many system‑
atists have adopted Hillis and Bull’s ‘70%’ value as an
indication of support,” an observation still true today,
even though the “95%” and the more arbitrary “80%”
cut‑offs can often be seen in the literature.

Aside from conceptual matters, two main criticisms
against FBP are recurring in the literature, especially
for “large” datasets. By large datasets, we mean in this
study matrices where the number of taxa is large, while
the number of sites remains moderate, usually corre‑
sponding to a single gene or phylogenetic marker. The
first limitation is technical: re‑estimation (usually by
ML) of pseudo‑trees is computationally demanding on
large datasets and can be impractical on very large
datasets. A rapid bootstrap support (RBS; Stamatakis et
al. 2008) was proposed and consists in using some of the
trees found during the ML topological research as boot‑
strap trees. The RBS is fast and reliable, but it remains
computationally intensive and tends to be more liberal
than standard FBP (Anisimova et al. 2011). Even faster
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is the Ultrafast Bootstrap approximation approach (UF‑
Boot; Minh et al. 2013; Hoang et al. 2018), but recent
works suggest that it is considerably more liberal than
standard FBP (and RBS), questioning the comparability
of UFBoot to standard bootstrap (Gascuel and Lemoine
2022). The second main criticism is FBP’s sensitivity to
rogue taxa (Wilkinson 1996), that is, taxa whose position
varies from (pseudo‑)trees to (pseudo‑)trees. Indeed, if a
single taxon is unstable (e.g., due to homoplasy or miss‑
ing data) in the overall tree or in a particular region of it,
then the FBP support values are expected to be consider‑
ably lowered in that region. Other criticisms discuss the
problem of “large” datasets in the sense of “large num‑
ber of sites” (e.g., Sharma and Kumar 2021), but this will
not be covered here as it is not the subject of this study.

The commonly used alternatives to Felsenstein Boot‑
strap Support (FBP) can be divided into 2 main classes.
The first one is the Posterior Probability (PP) of Bayesian
phylogenetics (Rannala and Yang 1996), calculated as
the proportion of all sampled trees in the MCMC chain
(post burn‑in) in which the branch of interest is found.
Due to their parametric nature and implementation,
PP is often considered liberal, as opposed to the more
conservative FBP. Abundant literature exists on com‑
paring BP and PP (e.g., Douady et al. 2003), but ex‑
panding on that matter goes beyond the frame of this
article. Local supports are another class of alternative
supports, responding to a need for computational speed
in a context of ever‑growing datasets. These supports
are obtained by locally rearranging the tree topology
around the branch of interest, using Nearest Neighbor
Interchange. Some of the most popular ones include
the approximate likelihood‑ratio test (aLRT; Anisimova
and Gascuel 2006) and the non‑parametric Shimodaira–
Hasegawa‑like version (aLRT SH‑like; Guindon et al.
2010). However, these approaches only provide a local
view of the support. It is also important to note that none
of these two classes explicitly addresses the problem or
rogue taxa: Bayesian PP is expected to behave similarly
to FBP with a tree that contains rogues; the local sup‑
ports are little affected by the presence of a few rogues,
but they are also unable to detect them and measure
their impact on the overall tree due to their local nature.

Recently, an alternative to FBP has been proposed:
the transfer bootstrap expectation (TBE; Lemoine et
al. 2018). TBE in itself is fast to compute (Lutteropp
et al. 2020) but is also based on resampling and re‑
estimating pseudo‑trees, and thus is overall compu‑
tationally heavy, although easily parallelizable and
applicable with RBS and UFBoot. The difference lies in
the comparison of the pseudo‑trees to the reference tree.
Rather than the binary presence/absence of a reference
branch in the pseudo‑trees, TBE uses a “transfer” dis‑
tance that is measured using the number of taxa that
must be transferred (or removed) to make two branches
identical (Lemoine et al. 2018). Because of its continuous
nature, TBE scores are always higher than FBP, except
for cherries (i.e., a clade comprising only two taxa) and
when FBP = 100%, where both supports are identical.

TBE is also less affected by rogues and it has a natural
interpretation: on a given reference branch, we can eas‑
ily calculate the average number of taxa that have to be
transferred to recover that branch in bootstrap trees. Fi‑
nally, yet importantly, results with real and simulated
data showed that TBE induces very few falsely sup‑
ported branches when used with common thresholds.
This does not mean that the supported branches are en‑
tirely correct, as implicitly assumed with FBP, but that
they are nearly correct with a low level of conflict with
the true branches. While their initial results indicate that
70% is a reasonable threshold for supporting branches
that are at least 95% accurate (based on a quartet dis‑
tance to the true tree), Lemoine et al. (2018) suggest that
it is “better to interpret TBE values depending on the
data and the phylogenetic question being addressed.”
TBE also has solid mathematical ground and is guar‑
anteed to converge in probability to 0 when the size of
the tree grows and there is no signal in the data (Dávila
Felipe et al. 2019).

TBE was proposed in a context of the ever‑growing
number of sequences, in particular in the epidemiol‑
ogy field. It has become recurrent in the literature to
find extremely large datasets (in terms of number of se‑
quences): bacteria/archaea (10,575 tips; Zhu et al. 2019),
mushrooms (5284 tips; Varga et al. 2019), fishes (31,526
tips; Rabosky et al. 2018), diatoms (19,197 tips; Lewi‑
tus et al. 2018), angiosperms (36,101 tips; Janssens et
al. 2020), and especially viruses‑like HIV (9147 tips,
Lemoine et al. 2018) and of course SARS‑CoV‑2 (>15
million tips; Turakhia et al. 2022). In datasets of this
size, it is expected that some of the taxa will behave
like rogues, thus lowering FBP values. In fact, it is not
rare to find FBP scores below 20% (or even at 0%), espe‑
cially for deep branches, even when those have a strong
phylogenetic signal. Yet these deep branches are usually
the primary focus of large‑scale studies. Lemoine et al.
(2018) showed that TBE was in fact able to support deep
branches that have strong phylogenetic signals without
being affected by a few rogues. TBE is available on the
BOOSTER platform (https://booster.pasteur.fr/) and in
software programs like Gotree (Lemoine and Gascuel
2021), PhyML (Guindon et al. 2010), Seaview (Gouy et
al. 2021), IQ‑TREE 2 (Minh et al. 2020), and RAxML‑NG
(Kozlov et al. 2019).

Since its publication 5 years ago, TBE has been cited
more than 400 times (Google Scholar, June 2023), but has
generated little debate. However, a recent review of the
history and development of branch support measures
(Simon 2022) contained a stimulating critique commu‑
nicated by Nick Goldman, that “TBE must be used
with care due to sampling issues. For example, if many
closely related taxa are added to the tree TBE values
will increase across the entire tree. This is because the
measure is based on counting the number of sequences
sampled, not taking into account their variation.” This
critique raises a series of important questions related to
sampling variation (or taxon sampling) and sampling
disequilibrium in datasets with large numbers of taxa.
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In this study, we will explore the impact on both FBP
and TBE of taxon sampling, rogue taxa, and sampling
disequilibrium in large datasets, using theoretical ex‑
amples and empirical datasets. We provide a series of
guidelines in the “Discussion” section for good prac‑
tices and interpretation when estimating FBP and TBE
support values on large datasets.

THEORETICAL RESULTS
In this section, we explore two theoretical cases with

sampling variation and presence of rogues. The goal is
mainly pedagogical, partly to address the critique pub‑
lished by Simon (2022), but it is unlikely that any of
these examples could be found as such in real data,
which we explore further in the next section. To facil‑
itate the reader’s comprehension, we remind here the
basic formulae for FBP and TBE.

In FBP, the support of a branch (or bipartition) in a
tree T is the proportion of bootstrap trees T* in which
the bipartition is present. If a bipartition b* from T* is
found identical as b in T, then the support of b given
T* is equal to 1, else it is equal to 0. As opposed to the
binary nature of FBP, TBE was proposed as a contin‑
uous version, using the transfer distance. The distance
𝛿(b,b*) is equal to the number of taxa that must be trans‑
ferred (or removed) to make both bipartitions identi‑
cal. The transfer index Φ(b,T*) is the minimum of the
transfer distances for all bipartitions b* present in T*:
Φ(𝑏, 𝑇∗) = 𝑀𝑖𝑛𝑏∗∈𝑇∗ {𝛿(𝑏, 𝑏∗)}. This index is then nor‑
malized in [0,1] and averaged over all bootstrap trees.
The normalization relies on p, the size of the smallest of
the two subsets of taxa defined by b. It is easily seen that
Φ(𝑏, 𝑇∗) ≤ 𝑝 − 1. The normalized version of the transfer
index is thus equal to 1 − Φ(𝑏, 𝑇∗)/(𝑝 − 1), and the TBE
support is defined by: TBE(𝑏) = 1 − Φ(𝑏, 𝑇∗)/(𝑝 − 1),
where the bar denotes the average over all bootstrap
trees. It follows that TBE(𝑏) ≥ FBP(𝑏) when using the
same set of bootstrap trees. The difference between the
two supports depends on p and thus the depth of b (as
in Lemoine et al. 2018, we assume here and in the whole
article that the depth of a branch is measured by p). If
p = 2 (i.e., a cherry), then both supports are equal, be‑
cause Φ(𝑏, 𝑇∗) values can only be 0 or 1 (i.e., the cherry
is recovered in 𝑇∗ or absent). If b is a deep branch and
p is large, there will often be a large difference between
the two supports. This is what we will explore in this
study, first through theoretical examples and then with
real data.

Impact of Duplicated Sequences on TBE Scores
In his personal communication to Simon (2022), Nick

Goldman suggests that, for a given phylogenetic signal,
TBE supports will be increased if we add many closely
related taxa to the tree. A model that closely matches this
hypothesis is presented hereafter. Let P|Q be a biparti‑
tion of reference tree T, where P and Q have sampling
size p and q, respectively, 𝑝 ≤ 𝑞 and 𝑝 + 𝑞 = 𝑛, where

n corresponds to the total number of taxa (p is again
the depth of bipartition/branch P|Q). To keep the same
phylogenetic signal while increasing the sampling, we
simply add duplicated taxa (i.e., strictly identical se‑
quences). The number of taxa will be multiplied by a
factor k, where k represents the number of duplicated se‑
quences, 𝑘 = 1 corresponds to the original dataset, and p
and q are transformed into kp and kqwhen duplicates are
added. With any reasonable phylogenetic program, the
reference and bootstrap trees will remain essentially the
same, with all duplicated sequences grouped together
into clusters that form the “tips” of the tree, while the
rest of the tree and the internal branches are unchanged.
In this model, the phylogenetic signal remains the same
and the FBP support is unchanged regardless of the
value of k.

Let us now describe the behavior of the TBE supports.
In the absence of duplicates (𝑘 = 1), the TBE support of
P|Q (let us call it 𝜎(1)) is equal to 1 − 𝜏/(𝑝 − 1), where
𝜏 is the average number of taxa that need to be trans‑
ferred to retrieve P|Q in the bootstrap trees. Then, we
have 𝜏 = (1−𝜎(1))(𝑝−1). Let us now assume that each
sequence is duplicated k times. Then, it is easily seen that
the support of the duplicated version of P|Q is equal to:

𝜎(𝑘) = 1 − 𝑘𝜏
𝑘𝑝 − 1 = 1 − 𝑘(1 − 𝜎(1))(𝑝 − 1)

𝑘𝑝 − 1 .

Using the derivative, we note that 𝜎(𝑘) is an increas‑
ing function of 𝑘. When k is large, 𝜎(𝑘) converges to
𝜎𝑚𝑎𝑥 = 𝜎(1)(1 − 1/𝑝) + 1/𝑝, and with large p we have
𝜎(1) ≈ 𝜎𝑚𝑎𝑥 ≈ 𝜎(k) for any value of k. In other words,
the support of large clades (deep branches) remains un‑
changed when adding duplicates. However, things are
different when p is small (i.e., close to 2). Figure 1 shows
the TBE supports for different values of p and k, and
for 𝜎(1) = 0.3, 0.7, and 0.9 (i.e., very low, moderate,
and high phylogenetic signal). We see that sampling re‑
dundancy (i.e., the addition of duplicates) has a strong
impact on cherries (p = 2), much less on small clades
(p = 3, 5, 10), and very little when the clade is large
(p = 100). The gap between FBP and TBE is maximized
for cherries: with p = 2, FBP = TBE and FBP is not im‑
pacted by duplicates, whereas TBE is clearly impacted
and increases with the number of duplicates, especially
if the support is low.

This simple model allows us to capture some trends
in TBE supports. In line with Goldman’s hypothesis,
the TBE supports of very small clades will indeed in‑
crease when duplicates are added to the tree, whereas
in this model, the FBP supports remain the same. How‑
ever, this is much less true for medium‑sized clades
(e.g., 10–30 taxa), and for large clades, the TBE sup‑
ports are practically unchanged. Furthermore, the re‑
moval of duplicates before tree inference should be done
systematically and is already considered good practice
by most phylogeny software. We will confirm these re‑
sults on TBE supports with our empirical data sets in
the following sections. FBP is robust in this example, but
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FIGURE 1. Variation of TBE supports in the presence of duplicates.
Horizontal axis: k = 1 corresponds to the original tree with no du‑
plicates, whereas with k = 20 each taxon is duplicated 20 times; the
largest value of k is on the left to facilitate understanding of results
with real data, where we progressively remove taxa (see below). Ver‑
tical axis: TBE support. Colorings: p corresponds to the depth of the
branch in the original tree (e.g., p = 2 is a cherry, in yellow). The 3 sets
of curves correspond to different values of the original TBE support
without duplicates: 𝜎(1) = 0.9 on top, 0.7 in the middle, and 0.3 on
bottom.

not in our next example, which has no duplicates and a
strong signal, but where we introduce a few rogue taxa.

Presence of Rogue Taxa When the Tree is Globally Supported
As in the previous example, let us consider again a bi‑

partition P|Q, where P and Q have sampling size p and
q, respectively, 𝑝 ≤ 𝑞 and 𝑝+𝑞 = 𝑛. We assume now that
the signal is globally strong but affected by the presence
of a few rogue taxa. Hence, the bipartition P|Q is “al‑
most” found in bootstrap trees, but every taxon has a
small probability 𝜋 (in the order of 1/𝑛) of being rogue
and randomly placed in P or Q in the bootstrap trees,
following a uniform model with a probability of being
assigned to 𝑃 = 𝑝/𝑛 and probability of being assigned
to 𝑄 = 𝑞/𝑛. In this model, we can easily compute FBP
and TBE supports as a function of 𝜋, p, and n.

If a taxon of P in the reference tree is rogue, its prob‑
ability of being wrongly placed in a bootstrap tree is

𝑞/𝑛 = (𝑛 − 𝑝)/𝑛. Conversely, the probability for a rogue
taxon of Q to be wrongly placed is 𝑝/𝑛. Thus, the total
probability for a rogue to be wrongly placed is equal to
2𝑝(𝑛 − 𝑝)/𝑛2 and the probability for a taxon to be rogue
and wrongly placed is equal to 2𝜋𝑝(𝑛−𝑝)/𝑛2. Therefore,
the expected FBP support is equal to the probability that
no taxon is rogue and wrongly placed: FBP(𝜋, 𝑝, 𝑛) =
(1 − 2𝜋𝑝(𝑛 − 𝑝)/𝑛2)𝑛. As for TBE, the expected number
of rogues is equal to 𝜋𝑛, and so the TBE support is ap‑
proximated by TBE(𝜋, 𝑝, 𝑛) ≈ 1 − 2𝜋𝑝(𝑛 − 𝑝)/𝑛(𝑝 − 1)
(we assume here that 𝜋 represents a small fraction of the
taxa, making the perturbed‑by‑rogues version ofP|Q the
closest bipartition to P|Q in bootstrap trees).

Figure 2 shows the evolution of supports for FBP
and TBE when varying 𝜋 {0.001, 0.005, 0.01, 0.05} and
𝑝 {2, 3 … 500} in a 1000‑taxon tree (𝑛 = 1000). With cher‑
ries (p = 2) both supports are the same, as explained
before. For FBP, the support depends on the number of
rogues (𝜋), but also strongly on the sampling size p of
the clade P. Figure 2 confirms that FBP drops extremely
fast when the number of rogues is high (i.e., ∼50 rogues
with 𝜋 = 0.05). Furthermore, FBP also drops for large
clades even with a very low number of rogues (e.g., ∼1
rogue with 𝜋 = 0.001; then FBP < 70% when 𝑝 > 232).
The TBE support, on the other hand, behaves in a dia‑
metrically opposed way to the FBP support, but with
much less variation; TBE rapidly increases when p is
very low (between 2 and 5), and then slowly increases
as p keeps increasing. Figure 2 highlights the very differ‑
ent nature of FBP and TBE supports in the presence of
randomly distributed rogue taxa in large trees. TBE re‑
mains mostly stable no matter the depth of the reference
branch (bipartition) when the number of rogue taxa is
reasonable (i.e., 1–10 among 1000 taxa). On the contrary,
the FBP support will always be considered low if there
is even a single rogue when the topological depth of the
reference branch is high (i.e., a large clade). These be‑
haviors are clearly visible in our analyses of empirical
datasets.

In light of the two models presented above, there is
reason to be concerned for both branch supports: for
FBP, with deep branches and large clades in case of
rogue taxa; for TBE, with shallow branches and small
clades in case of sampling issues. However, real data
are much more complex than these two theoretical ex‑
amples, and thus we will further explore the properties
of the two branch supports on a series of large biologi‑
cal datasets that supposedly have more or less sampling
disequilibrium and rogue taxa.

RESULTS ON EMPIRICAL DATASETS

Overview
Our dataset‑picking strategy consists in taking large

empirical datasets from the literature, for which we ex‑
pect some degree of heterogeneity in phylogenetic sig‑
nal and sampling. This would imply that the genetic
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FIGURE 2. Theoretical results with strong signal but a few rogues. Evolution of support values (FBP on the left, TBE on the right) depend‑
ing on sampling p of clade P, in a 1000‑taxon tree. The color gradient represents the probability (𝜋) of being rogue as the color darkens (e.g.,
𝜋 = 0.005 in green corresponds to ∼5 rogues among 1000 taxa).

locus is expected to return good phylogenetic signal for
some clades, but will fail to fully resolve a large portion
of the phylogeny due to a lack of (informative) sites. For
example, barcode markers like the ∼660 bp segment of
cytochrome c oxidase I (COI) gene in most metazoans, or
16S ribosomal ribonucleic acid (16S rRNA; ∼1500 bp) in
prokaryotes, are typically adequate phylogenetic mark‑
ers to get a rough idea of the relationships between taxa,
but are not sufficient to build reliable phylogenies, es‑
pecially with thousands of taxa as we are considering
here. Another striking example of a weak phylogenetic
signal is that of SARS‑CoV‑2, for which we have com‑
plete genome sequences (∼29,500 bp), but very few sites
are informative, which prevents any complete resolu‑
tion of the tree (Morel et al. 2021). Moreover, unbalanced
sampling is expected, with some “charismatic” clades
being over‑represented (e.g., Primates and Cetaceans in
Mammals), with many more taxa and sequences avail‑
able in the databases and published phylogenies, and
some others under‑represented (e.g., Rodents; see our
numbers below for Mammals).

We selected the two empirical datasets of the origi‑
nal TBE study (Lemoine et al. 2018) consisting of a COI
Mammals dataset (1449 sequences; ∼266 aa) and an HIV
dataset (9147 pol sequences; ∼1036 bp). Additionally, we
used the full SARS‑CoV‑2 dataset from Zhukova et al.
(2021) comprising 11,316 genomes (∼29,500 bp). Finally,
we selected 10 aligned nucleotide barcode datasets from
Delsuc and Ranwez (2020) comprising between 1000
and 2000 mitochondrial COI gene sequences (∼660 bp).
All of these published datasets were already aligned
and had in common to be large (>1000 sequences), with

heterogeneous phylogenetic signal and unbalanced tax‑
onomic sampling.

Our methodology consisted in studying the evolu‑
tion of FBP and TBE supports, starting from a reference
tree with N taxa and unbalanced sampling, to reach
a reduced and re‑balanced target tree with n (<< N)
taxa. In addition, along this path, we studied progres‑
sively more and more balanced intermediate trees. The
sampling of these intermediate trees was defined by:
𝑛𝑓 = 𝑁 − 𝑓 ∗ (𝑁 − 𝑛), with 0 ≤ 𝑓 ≤ 1. For example,
to get the midpoint between N and n, we choose f = 0.5,
while f = 0 and f = 1 correspond to the starting and
target trees, respectively. When we wanted to target the
sampling of specific clades (e.g., HIV subtypes), then the
representativeness of each clade was multiplied by n to
obtain the required number 𝑛𝑋 of sequences to be re‑
tained for clade X. Let 𝑁𝑋 be the initial size of clade
X, the intermediate clade samplings were then defined
by 𝑛𝑋,𝑓 = 𝑁𝑋 − 𝑓 ∗ (𝑁𝑋 − 𝑛𝑋). The target samplings
(𝑛𝑋) in the reduced tree were defined by different cri‑
teria based on the specifics of the dataset: representa‑
tiveness for Mammals, worldwide prevalence for HIV
subtypes, sampling density per country for SARS‑CoV‑
2, and uniform sampling per delimited species for the
barcode datasets.

The objective was to assess the stability and robust‑
ness of each branch‑support measure throughout the
subsampling. We selected a set of relevant clades for
which one expects a strong phylogenetic signal. For in‑
stance, long‑branch clades like Cetacea or Marsupialia
in the Mammals dataset are expected to be recovered
even with a simple COI marker. The same applies to
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HIV subtypes and the pol gene. For such clades, with
strong phylogenetic signal, a stable and robust branch
support should give a high score, with more or less the
same value, whatever the sampling size and balance.

To get supports for the target and intermediate trees,
the ideal approach would be re‑estimating the refer‑
ence and bootstrap trees at each sampling point. How‑
ever, this procedure can be quite computationally in‑
tensive, especially for very large datasets with mul‑
tiple replicates. Another much faster approach is to
prune the leaves of the starting reference and boot‑
strap trees, and calculate FBP/TBE supports on the re‑
duced trees. The “pruned” approach is the one we fa‑
vored to reduce computational costs, but in parallel,
we also used the “re‑estimated” approach on the tar‑
get sampling to check if the results matched those ob‑
tained with the “pruned” approach. In the two ap‑
proaches, all branches with length smaller than the ex‑
pectation of having 0.5 mutations in total among all
sites were collapsed in both the reference and boot‑
strap trees to prevent adding noise in the support val‑
ues (Guindon et al. 2010). The minimum branch length
was defined by ℓ = 0.5/𝐿, where L was the number
of sites in the alignment. As such, ℓ is a simple form
of confidence interval: branches with length less than
ℓ are estimated to carry 0 mutations (i.e., no phyloge‑
netic signal) and are collapsed, while branches with
length greater than ℓ carry at least 1 mutation and are
retained.

We looked for clades of interest in the reference trees
(T) using well‑established classifications. For Mammals,
we chose the NCBI taxonomy, with a focus on Primates,
Cetaceans, Marsupials, and so on. For HIV, we used
subtype annotation and Nextstrain clades for SARS‑
CoV‑2. These clades may (or not) be fully recovered in
the reference tree, which is inferred from the data. To
account for this, we traversed all branches in the ref‑
erence tree and looked for the branch that minimized
the transfer distance with the clade of interest (e.g., Pri‑
mates with Mammals, or subtype B with HIV). We dis‑
tinguished wrong taxa (i.e., taxa that do not belong to
the clade of interest) from missing taxa (i.e., taxa that be‑
long to the clade of interest, but are not found in the clos‑
est clade of T). The numbers of wrong and missing taxa
are denotedw andm, respectively, andw+m is the trans‑
fer distance between the clade of interest and the closest
clade in T that is selected. Hence, a clade in the reference
tree that had no wrong and no missing taxa (w = m = 0)
was perfectly recovered, with respect to the NCBI taxon‑
omy, HIV subtypes, Nexstrain clades, and so on. Some
other clades were not perfectly recovered in our refer‑
ence trees, with a few wrong and missing taxa. In both
cases, we measured the FBP and TBE supports of these
reference clades, having in mind that a clade that is (al‑
most) perfectly recovered should be highly supported.
The same approach was used in Lemoine et al. (2018),
for example with HIV, where several subtypes were not
fully (but almost perfectly) recovered in the large tree
estimated from the 9147 available pol sequences (e.g.,

w = 2 and m = 0 with subtype B that comprises >3500
sequences).

To summarize our overall strategy (Fig. 3), we be‑
gin with a large reference tree of sampling N (along
with 1000 bootstrap trees), and define an overall target
sampling n. The reference and bootstrap trees of sam‑
pling N are then progressively pruned until achieving
target sampling n, with multiple replicates to account
for random effects. At each intermediate point, FBP/TBE
values are computed from the pruned reference and
bootstrap trees. Once target sampling is achieved, we
re‑estimate reference and bootstrap trees from sampling
n and compute again FBP/TBE values for comparison
with the “pruned” approach. To implement this work‑
flow, we extensively used Gotree/Goalign (Lemoine
and Gascuel 2021), a toolkit that implements more
than 120 user‑friendly commands dedicated to multi‑
ple sequence alignment and phylogenetic tree manip‑
ulations (e.g., tree pruning, collapsing branches, MSA
de‑duplicating). The list of Gotree/Goalign commands
used for FBP/TBE support exploration is provided in the
Supplementary Appendix.

Prior to focusing on the selected clades, we briefly
analyzed the overall average support in the Mam‑
mals, HIV, and SARS‑CoV‑2 datasets, for different sam‑
plings and depths (Supplementary Fig. SF1). Our re‑
sults mainly show that FBP and TBE average supports
remain stable (with a few exceptions) throughout the
successive subsamplings (“pruned” experiments), even
when the number of taxa is drastically reduced. Further‑
more, we observe that the difference in average scores
between the “pruned” and “re‑estimated” experiments
is low, thus validating our overall strategy (Fig. 3). Av‑
erage TBE supports are on average higher than those
of FBP are, especially for deep branches (as expected,
see above). Nevertheless, average FBP and TBE sup‑
ports are low, even for shallow branches (<0.6 for FBP
and <0.8 for TBE), as expected with these datasets.
However, all these are average supports, and the results
for the biologically important clades tell a very different
story, as shown in the following.

Mammals Dataset
The Mammals dataset consists of 1449 aligned COI

protein sequences used in Lemoine et al. (2018). A few
clades, almost without contradiction with the NCBI tax‑
onomy (w ≈ m ≈ 0; for details, see Lemoine et
al. 2018), had been highlighted to illustrate the dif‑
ferences between the FBP and TBE supports (Cetacea,
Elephantidae, Geomyidae, “Insectivora,” Marsupialia,
Monotremata, Mustelinae, Perognathinae, and Simi‑
ans). We selected these clades but discarded those where
the number of available species was insufficient for our
experiments (i.e., Elephantidae and Monotremata). As
expected, these clades have been unevenly sampled
across the mammalian diversity, either over‑sampled
or under‑sampled. For example, the Cetacea sampling
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FIGURE 3. Summary of the overall sampling strategy. We start from a large reference tree of unbalanced sampling (N, top‑left) and we define
a target sampling (n). We then define intermediate sampling points (top‑right) and prune the reference and bootstrap trees accordingly, across
multiple replicates. When target sampling is achieved (bottom‑right), we then subsample the original alignment accordingly and re‑estimate a
reference tree along with 1000 bootstrap trees.

represents 61% of all cetacean species, while the Sorico‑
morpha (“Insectivora” in Lemoine et al. 2018) sampling
represents only 13% of the Soricomorpha species.

We used the Integrated Taxonomic Information Sys‑
tem to obtain the taxon representativeness 𝑅𝑋 of each
selected clade X (Supplementary Table ST1). The target
sampling n for the reduced tree from the initial sam‑
plingN(= 1449) was estimated with the following steps.
First, we selected the clade with the lowest sampling
(i.e., Mustelinae, with 𝑁𝑋 = 9). To obtain the small‑
est possible target sampling n while keeping all the se‑
lected clades, the target sampling 𝑛𝑋 of Mustelinae was
set to 2 (a cherry, the smallest possible clade). Then,
we divided 2 by the Mustelinae taxon representative‑
ness 𝑅𝑋 = 0.0003 (i.e., 0.03% of Mammals diversity),
to obtain the final target sampling of the reduced tree,
n = 669. We estimated the target sampling of each
clade X using 𝑛𝑋 = 𝑛 × 𝑅𝑋. Finally, we estimated 3
intermediate samplings points with f = 0.25, 0.5, and
0.75 (while f = 0 and f = 1 correspond to the start‑
ing and target trees, respectively). The species retained
in the target sampling as well as in the intermediate
points were randomly drawn from the initial species set,
and this subsampling was iterated to obtain 30 repli‑
cates. This procedure allowed us to follow the trend
of FBP and TBE scores while subsampling from initial
unequal clade sampling (𝑁𝑋) to more accurate taxon
representativeness (𝑛𝑋).

In Lemoine et al. (2018), bootstrap trees were initially
estimated with RAxML version 8 (Stamatakis 2014),
but using rapid bootstrapping (Stamatakis et al. 2008),
and thus bootstrap trees was lacking branch lengths.
We kept the initial reference tree from Lemoine et
al. (2018) but re‑estimated 1000 “traditional” bootstrap
trees (see the Supplementary Appendix for command‑
line options).

Reference and bootstrap trees were also re‑estimated
on alignments with target sampling using the same
RAxML command. Prior to each FBP and TBE sup‑
port computation, branches shorter than 0.000949
(= 0.5/527) were collapsed (resulting in ∼53% of in‑
ternal branches collapsed). This value corresponds to
the expectation of having less than 0.5 mutations on
the branch, given that the alignment has 527 sites. FBP
and TBE support values were computed at each in‑
termediary point with the pruned approach (Fig. 3).
We retrieved the selected clades in the re‑estimated
reference trees as in Lemoine et al. (2018, see above
and the Supplementary Appendix for command‑lines
options).

The initial results from Lemoine et al. (2018) showed
that TBE significantly supports the selected clades
while FBP does not, even when these clades were per‑
fectly recovered in the reference tree (e.g., Cetacea,
with w = m = 0). Our experiment confirms and
complements these results by showing similar trends,
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FIGURE 4. Results on the Mammals dataset. For each clade, the first value on the x‑axis corresponds to the initial number of taxa and the
last value to the number of taxa in the target sampling. We also provide the intermediate values, with proportions f = 0.25, 0.50, and 0.75.
Trees were re‑estimated on the target sampling (reest.). The number of wrong (𝑤) and missing (𝑚) taxa is indicated next to each clade name.
To obtain the subsamples, taxa were randomly removed. The ribbon shows the maximum and minimum values over 30 replicates, the thick
line is the mean value.

when subsampling the initial species to achieve a (bal‑
anced) target sampling of the Mammals tree (Fig. 4).
FBP tends to increase with reduced sampling, but in
most cases, it fails to reach the conventional thresh‑
old of 0.7 (e.g., the best score is Cetacea with origi‑
nal support ≈40% and average support with reduced
sampling ≈60%).

Two types of behavior can be observed for TBE, as
predicted by our theoretical analyses (see above). When
the number of taxa is sufficiently high (i.e., more than
10 in the reduced target sampling), TBE scores are high
(>70%) and stable across all sampling points, as ob‑
served for the clades Cetacea, Marsupialia, Simians,
and Soricomorpha. However, when the number of taxa
in the target sampling is low (<10), then TBE tends
to decrease slightly and behave more like FBP as the
number of taxa reduces (i.e., Geomyidae, Mustelinae,

Perognathinae). When there are only 2 taxa left in the
clade (i.e., Mustelinae), then FBP and TBE scores are
equal, as expected and explained in the “Introduction”
section. Noteworthy, FBP shows more variability in
maximum and minimum values (red ribbons) than TBE
(green ribbons), even when there is no signal for the
presence of rogues (w = m = 0, e.g., Cetacea and Ge‑
omyidae, Fig. 4). These results suggest a low robust‑
ness of FBP in the face of a heterogeneous phyloge‑
netic signal, even when the clade is perfectly recovered
in the reference tree. Finally, the trees re‑estimated at
the target sampling (n) confirm our results obtained
with the “pruned” approach but tend to show greater
variability in FBP scores across replicates, indicating
that the robustness of FBP is even weaker in a real‑
istic (full computation) setting with these mammalian
data.
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The HIV Dataset
Like the Mammals dataset, the HIV dataset was used

in Lemoine et al. (2018) to highlight the differences
between FBP and TBE. It consists of 9147 HIV‑1 group
M pol sequences representing the 9 subtypes, and in‑
cludes 50 recombinants detected using jpHMM (Schultz
et al. 2009), that is, sequences that contain DNA from at
least two different subtypes in the pol region. In this ex‑
periment, we achieved a representative sampling based
on the current prevalence of each subtype in the world‑
wide population. The prevalence values of each subtype
were obtained from Cassan et al. (2016, Fig. 3 and Sup‑
plementary Table ST2). Then, we applied the same ap‑
proach as used with the Mammals dataset. We divided
2 by the prevalence of the most under‑represented sub‑
type (i.e., subtype K, with 𝑅𝑋 = 0.1261%) to calculate n
(= 1599). We estimated 4 intermediate sampling points
with f = 0.2, 0.4, 0.6, and 0.8, and achieved 30 repli‑
cates by randomly subsampling. With the target sam‑
pling, we re‑estimated the trees and retrieved the se‑
lected clades as Lemoine et al. (2018, see above, the Sup‑
plementary Appendix and Supplementary Table ST2
for details). All trees (reference, bootstrap, subsampled,
and so on) were estimated using FastTree version 2.1.11
Double precision (Price et al. 2010). The precision of
branch length estimation was improved using RAxML‑
NG v. 1.1.0 (Kozlov et al. 2019). Then, branches shorter
than 0.000479 (= 0.5/1043, where 1043 is the number
of alignment sites) was collapsed (resulting in ∼12% of
internal branches collapsed). In addition, we computed
the average FBP/TBE support of all branches for differ‑
ent depths. This additional experiment allowed us to
follow the evolution of the average FBP/TBE supports
at different depths while reducing the sampling, instead
of focusing only on HIV‑1 group M subtypes that are
known to be well supported in most datasets.

With the initial sampling, Lemoine et al. (2018)
showed that all 9 subtypes were found in the refer‑
ence tree and highly supported by TBE (although the
average TBE support across the tree is relatively low;
Supplementary Fig. SF1). On the opposite, only the
sparsely represented subtypes (i.e., F, H, J, and K) were
supported by FBP. A prominent example is the FBP/TBE
supports of the B subtype, a clade comprising 3559 se‑
quences and which is almost perfect in the reference tree
since it contains all B sequences plus 2 B‑recombinants
(as detected by jpHMM). The FBP score of this clade is
0.03, indicating almost no signal, while the TBE score is
0.99, indicating a strong signal.

In the re‑equilibrated trees using prevalence infor‑
mation, we see that the overall tendency observed in
Lemoine et al. (2018) remains true, even when the sam‑
pling of some subtypes is considerably reduced (e.g.,
subtype B, from 3559 to 226 sequences) and most recom‑
binants are removed by random subsampling (Fig. 5;
Supplementary Table ST2). In all cases, average TBE
values are high (>90%) and with very little variation
across replicates (green ribbons). In contrast, evolution

of FBP supports across pruned trees does not follow
the same pattern for all subtypes. In subtypes A, C, D,
and G, the FBP scores increase as sampling is reduced,
but we observe a high variability (red ribbons) across
replicates. Interestingly, those are the four subtypes (A,
C, D, and G) with a high number of recombinants (as
detected with jpHMM; see Supplementary Table ST2),
with 4–12 wrong/missing taxa each (𝑤 and 𝑚; Fig. 5).
Extreme variability across replicates is likely explained
by the presence/absence of recombinants that are ran‑
domly subsampled. Quite differently, subtypes B and
F (2 wrong ones in B corresponding to B‑recombinants,
none in F, and no missings in both F and B) show lit‑
tle evolution of FBP support, and little variability across
replicates, at least for the “pruned” strategy. This sug‑
gests that subtypes B and F could be affected by taxa
other than recombinants (or undetected recombinants),
and that these taxa are relatively numerous and unsta‑
ble, so that replicate scores are not affected by the ran‑
domness of subsampling. One could thus distinguish
two forms of taxon instability (with the whole spectrum
of intermediate cases): single rogue terminal taxa prone
to instability (e.g., recombinants) and taxa belonging to
globally unstable clades.

Our results again illustrate the low robustness of FBP
to rogue taxa and show how robust TBE is, whether or
not some rogues are present (as predicted by our the‑
oretical model with rogues, see above). One could ar‑
gue that TBE might be over‑supporting those clades, but
our experiment on the overall support values across the
tree shows another story (Supplementary Fig. SF1). The
overall FBP/TBE support in the phylogeny is low for all
ranges of branch depth (by the standards of each metric,
that is, less than 0.4 for FBP and less than 0.6 for TBE)
and shows little change as trees are increasingly sub‑
sampled, except for cherries and deep branches where
a trend emerges with this HIV dataset. Indeed, average
FBP/TBE support for cherries (p = 2) slowly decreases
as we remove more and more sequences. Conversely,
average TBE supports for deep branches (p > 9) tend
to increase. These overall trends contradict the results
with selected clades/subtypes (Fig. 5), but are slight
(less than 10% point difference between initial and tar‑
get samplings) and are not found in the analysis of the
SARS‑CoV‑2 dataset that follows.

The SARS‑Cov‑2 Dataset
We retrieved the SARS‑CoV‑2 dataset from Zhukova

et al. (2021) and processed the sequences through the
Nextclade Web 2.3.0 interface (Aksamentov et al. 2021);
https://clades.nextstrain.org) to assign each sequence to
a Nextstrain “clade.” Some Nextstrain “clades” are pa‑
raphyletic, as they do not include the sequences of new
child clades. When a “clade” was paraphyletic (e.g.,
clade 20B), we added all child clades in the sampling to
make it monophyletic (i.e., 20D in the case of 20B). The
result is a reference classification composed of 5 clades:
19B, 20A (= 20A+20B+20C+20D Nextstrain “clades”),
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FIGURE 5. Results on the HIV dataset. We removed taxa within each HIV subtype based on prevalence. For each subtype (clade), the first
value on the x‑axis corresponds to the initial number of taxa, and the last value to the number of taxa in the target sampling. We also provide
intermediate values, corresponding to proportions f = 0.2, 0.4, 0.6, and 0.8 (see text for details). Trees were re‑estimated on the target sam‑
pling (reest.). The number of wrong (𝑤) and missing (𝑚) taxa is indicated next to each subtype identifier. To obtain the subsamples, taxa were
randomly removed. The ribbon shows the maximum and minimum values over 30 replicates, the thick line is the mean value.

20C, 20B (= 20B + 20D Nextstrain “clades”), and 20D.
Sampling re‑equilibrium had already been achieved by
Zhukova et al. (2021), starting from the complete 11,316‑
sequence tree to 5 subsampled and re‑balanced trees
of size ∼2000. The target sampling for these 5 datasets
was defined to reflect the number of cases reported
by country over time during the early months of the
pandemic.

For the SARS‑CoV‑2 dataset, we ran multiple tests
to determine what would be the best approach to infer
the tree on the 8541 genomes—after removing dupli‑
cate genomes from the initial 11,316 genomes dataset of
Zhukova et al. (2021). We looked at the best trade‑off
for running time and tree accuracy between FastTree,
IQ‑TREE 2 (Minh et al. 2020), IQ‑TREE 2 in fast mode,
and RAxML‑NG (results not shown). Tree accuracy was
evaluated by counting the number of taxa to transfer
from the estimated tree to recover the Nextstrain clades

from our reference taxonomy. The fastest approaches
were by far FastTree and IQ‑TREE 2‑fast, but the total
number of taxa to transfer for FastTree (309) was much
higher than for IQ‑TREE (82). The total number of taxa
to transfer was not much different from other, more time
consuming, methods; hence, IQ‑TREE 2‑fast was se‑
lected as the best approach for the SARS‑CoV‑2 dataset.
Branches shorter than 0.000017 (= 0.5/29,726, where
29,726 is the number of alignment sites) were collapsed
(resulting in ∼84% of internal branches collapsed, as ex‑
pected due the very low number of mutations in this
dataset).

We successively randomly pruned taxa by batches of
∼1500 in the starting tree to retrieve the sampling of
the 5 trees of size ∼2000 from Zhukova et al. (2021),
using 20 replicates each time, for a total of 20 ∗ 5 =
100 replicates. We extracted the FBP/TBE supports for
the 5 selected clades (Fig. 6) and the average of these
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FIGURE 6. Results on the SARS‑CoV‑2 dataset. We randomly removed taxa from the original SARS‑CoV‑2 tree (11,316 tips) in order to achieve
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20D). The ribbon indicates the maximum and minimum values, and the thick line corresponds to the mean value across all replicates.

supports for different branch depth intervals (Supple‑
mentary Fig. SF1), from the pruned and estimated trees.
As with the other datasets, we retrieved the selected
clades in the estimated trees by minimizing the num‑
ber of wrong (w) and missing (m) taxa (see above and
the Supplementary Appendix for details).

The difference with the previously analyzed dataset
(HIV) is that the overall phylogenetic signal is scarce,
with clades supported by only one or two mutations
(https://nextstrain.org; Supplementary Table ST3). As
for the previous datasets, most Nextstrain clades are
well supported by TBE and not by FBP, even when
the clade is well retrieved in the reference tree (e.g.,
20D). Interestingly, support values are little affected by
the number of wrongly placed and missing sequences
(w + m), and the FBP/TBE scores remain stable across
most clades upon subsampling (Fig. 6). For example,
clade 20C is not well supported by TBE (∼0.62). Indeed,
with 2193 sequences in this clade, a score of 0.62 means
that on average (2193 − 1) × 0.38 = 833, sequences need
to be transferred to recover that clade in the bootstrap
trees; this number of 833 is much greater than the num‑
ber of wrong/missing sequences in the reference clade
(=30, Fig. 6). As opposed to HIV, results with SARS‑
CoV‑2 seem to indicate a global instability of a large
number of taxa. This is likely due to the scarcity of the
signal and the presence of “rogue clades,” which would
be responsible for the transfer of hundreds of taxa in
the bootstrap trees (thus greatly affecting TBE as well
as FBP), rather than a few rogue terminal taxa as with
HIV (e.g., subtype B, Fig. 5).

The evolution of average FBP/TBE support at differ‑
ent ranges of branch depth (Supplementary Fig. SF1)
indicates again that TBE is higher than FBP on aver‑
age. FBP returns (again) heterogeneous average support
values depending on the depth range (low FBP sup‑
port for shallow branches, very low FBP support for
deep branches), while TBE average supports are more
homogeneous. However, these average results (Supple‑
mentary Fig. SF1) confirm the finding in clade‑specific
Figure 6 that FBP and TBE supports are little affected by
sampling biases. Moreover, both average supports are
higher compared to HIV (Supplementary Fig. SF1). In
fact, the signal is scarce that makes it impossible to infer
a fully resolved tree (Morel et al. 2021), hence the high
number of collapsed branches (∼84%) that are not sup‑
ported by any mutation, but the remaining branches are
easy to infer, even with parsimony (Kramer et al. 2023),
and are relatively well supported on average. In HIV
trees, only ∼12% of branches are collapsed and the re‑
construction is based on a single marker, which is more
prone to saturation and other phylogenetic biases.

The Barcode Datasets
We selected 10 aligned nucleotide barcode datasets

from Delsuc and Ranwez (2020) comprising between
1000 and 2000 mitochondrial COI sequences (Acantho‑
cephala, Archaeognatha, Bryozoa, Dermaptera, Mega‑
loptera, Onychophora, Siphonaptera, Tardigrada, Tes‑
tudines, Uraniidae). For all these barcode datasets,
we first removed duplicated (i.e., strictly identical)
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sequences from the initial alignment. We estimated
reference and 1000 bootstrap trees on each dataset
using RAxML‑NG. Trees were then “repopulated”
using Gotree (see the Supplementary Appendix for
command‑line options) to add back the duplicated se‑
quences. We ran the ML heuristic of the multi‑rate
Poisson Tree Processes (mPTP) method (Kapli et al.
2017) in default mode to delimit putative species in
each dataset. The output of mPTP was used to anno‑
tate species branches in each reference tree. Some of so
delimited species have many sampled sequences (∼8%
of retained species have >30 sequences), while others
are poorly sampled (∼22% of retained species have 2
sequences; see Supplementary Fig. SF2). We computed
FBP/TBE supports for each dataset on the “complete”
trees with all sequences, and on the “deduplicated”
trees where all strictly identical sequences from the ref‑
erence and bootstrap trees were removed. Our target
sampling was defined by keeping a maximum of 5 dif‑
ferent sequences (“max5”) for each species so delim‑
ited. The reference and bootstrap trees were fully re‑
estimated using RAxML‑NG from this reduced and re‑
balanced set of sequences (the pruning approach was
not used here). Sequences were not removed randomly,
but using the greedy algorithm of (Pardi and Goldman
2005; Steel 2005) implemented in the Phylogenetic Di‑
versity Analyzer (PDA; Chernomor et al. 2015). This al‑
gorithm consists of iteratively deleting the taxon associ‑
ated with the shortest branch; in doing so, we maximize
the phylogenetic diversity of the tree while reducing
the sampling. Using RAxML‑NG, we re‑estimated trees
where a maximum of 5 samples per species (selected us‑
ing PDA) were kept. Finally, we compared species edges
between 3 alternative samplings (“full,” “dedup” and
“max5”) and considered only the edges that were found
in all 3 samplings. In total, our 10 barcode datasets add
up to 15,111 COI gene sequences, of which 5700 (∼38%)
are duplicates and a total of 1390 putative species have
been delimited. On average, ∼59% of internal branches
was collapsed in the “full” trees. Some species clades
were not retained in the analyses, because they were
singletons in the complete or deduplicated trees, or be‑
cause they were not found in the “max5” reference trees
due to phylogeny re‑estimation. This filtering down‑
sized to 938 the number of putative species used in
this experiment. We distinguished several categories of
branches, based on the initial number of sequences in
the delimited species, as well as supra‑specific branches
(i.e., above the species level).

On average, the FBP and TBE support values for the
putative species branches are high, that is, above 0.7.
This result was expected and is explained by our use
of mPTP. This method counts the number of substitu‑
tions per branch and estimates the rates of branching
events to detect which parts of the tree follow as spe‑
ciation model (interspecific) and that follow a coales‑
cent model (intraspecific). Thus, the delimited species
branches usually correspond to multiple substitutions
and carry a strong signal.

As expected, FBP scores do not change when remov‑
ing duplicate sequences since complete and dedupli‑
cated tree topologies are identical (Fig. 7). We also notice
that TBE scores only slightly decrease when removing
duplicates (except for cherries). Thus, despite remov‑
ing nearly 38% of the sequences, TBE shows support
stability. The same stability in TBE scores is observed
in the target sampling (“max5”) dataset when reducing
all species’ sampling to a maximum of 5 sequences. In
contrast, FBP is much more affected than TBE by sub‑
sampling, especially for species that initially have many
sequences (i.e., more than 30 samples). To confirm this
observation, we calculated the mean absolute difference
Δ between the initial and target (“max5”) samplings
for all comparable branches in the 10 datasets for each
depth category. Results indicate a high Δ in FBP scores
between the initial and target samplings, particularly for
species that are highly represented in the initial sam‑
pling (e.g., Δ = 0.19 with >30 samples, versus 0.07 for
TBE; Fig. 7).

This last experiment differs not only from the previ‑
ous three in its subsampling strategy but also in terms
of the quantity of data and results. Instead of high‑
lighting a few clades, we assume that most delimited
species that are retrieved in all three modes of sam‑
pling should have a reasonably strong phylogenetic
signal, be well supported (on average), should be lit‑
tle affected by the subsampling procedure. While most
species are well supported by both metrics, our re‑
sults indicate a weak robustness of FBP to subsampling,
particularly for species branches that initially contain
many samples, while there is no reason to believe that
these species, in particular, should be less supported
than the others. This observation also holds for the
supra‑specific branches (Fig. 7), where TBE scores are
higher and show a better robustness (Δ = 0.05) than FBP
scores (Δ = 0.07), even if the global tendency is con‑
sistent with the theoretical analyses, with TBE supports
slightly decreasing with re‑equilibrated (“max5”) sam‑
pling, while FBP increases by a rather larger margin in
this condition.

DISCUSSION
Similar to what was shown in Lemoine et al. (2018),

our theoretical and empirical results demonstrate the
usefulness of TBE, especially for large trees with het‑
erogeneous phylogenetic signal. Deep branches that are
known to be essentially correct are generally supported
by TBE, but FBP supports will generally be low, whether
a phylogenetic signal is expected or not. In this study,
we explored the impact of sampling biases on FBP/TBE
support values. Through numerous datasets (1 Mam‑
mals, 1 HIV, 1 SARS‑CoV‑2, and 10 barcode), we found
no evidence that TBE falsely supports poor branches
due to oversampling. In fact, most branches in these
large datasets with heterogeneous and relatively low
phylogenetic signals are on average poorly supported
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FIGURE 7. Results on the barcode datasets. Boxes correspond to the initial number of samples in the delimited species in the tree with all
available sequences. For example, if we consider the bottom‑left panel “Species with more than 30 samples,” it means that for each tree on the
full set of sequences (“all”), we retain all delimited species with more than 30 samples and report the mean support of the species branches on
the first x‑axis value. Second x‑axis value takes the exact same set of species, but this time, we compute supports using the trees with identical se‑
quences removed (“dedup”). Finally, third x‑axis value takes again the same set of species, but for re‑estimated trees for which a maximum of 5
samples (“max5”) is kept by delimited species. “Supraspecific branches” are all branches above the species level, that is, we exclude species and
infra‑specific branches. Delta values correspond to the average absolute difference of supports between the initial (“all”) and target (“max5”)
conditions, that is, a high delta value indicates a large difference in FBP/TBE supports from a highly heterogeneously sampled dataset to a more
homogeneous dataset.
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by TBE. Furthermore, our results indicate that TBE
scores of the clades with significant signal are little af‑
fected by sampling biases, unless those clades are very
small. Basically, in our experiments, the TBE support
remained unchanged when over‑sampled clades were
downsampled to achieve balanced sampling, except for
small clades whose TBE support tended to decrease. In‑
deed, for small clades the FBP and TBE supports are
similar (they are identical for cherries). With medium‑
to‑large clades, FBP supports were found to be not only
lower but also much less robust than TBE supports, with
an overall tendency to decrease with increasing sam‑
pling. Furthermore, depending on the (rogue) taxa sam‑
pled, the same clade with the same sample size can have
low or high FBP support, revealing great variability in
FBP support.

Based on these experiments, we suggest a few guide‑
lines on how to conduct a routine bootstrap analysis to
assess branch support in large trees:

• First, it should be remembered that this study and
TBE, in general, are mainly aimed at large trees
with relatively low phylogenetic signal (typically
gene or virus trees with very many taxa of the or‑
der of a thousand or more). In the opposite config‑
uration, with a smaller number of taxa but many
informative sites (typically with concatenations of
multiple gene alignments), phylogenetic signal in‑
creases and we are faced with the opposite prob‑
lem: FBP supports are generally very (sometimes
too) high, and TBE supports are usually of little in‑
terest. In fact, when FBP is close to 100%, TBE is also
close to 100% as TBE is always higher than or equal
to FBP.

• Remove duplicates. Duplicated (i.e., strictly identi‑
cal sequences) are quite common in large datasets
and can have an impact on TBE scores. Most ML
software (e.g., IQ‑TREE, RAxML‑NG) already re‑
move duplicate sequences prior to ML inference
and then add back those sequences by creating
near‑zero length branches. We suggest that dupli‑
cates should also be removed from reference and
bootstrap trees prior to computing TBE scores (and
then added back).

• Collapse insignificant branches. In the obtained
reference and bootstrap trees, many branches can
be short and have no real biological meaning be‑
cause they essentially correspond to no substitu‑
tion event among all sites in the MSA.

• Systematically calculate both FBP and TBE. Boot‑
strap trees take a long time to compute while cal‑
culating FBP/TBE is much faster in comparison,
meaning that once bootstrap trees have been calcu‑
lated, they should be used for both FBP and TBE.
If the tree is highly supported by FBP (i.e., almost
100% for all branches), then TBE will not teach any‑
thing new. However, FBP should be systematically
compared to TBE even with branches that appear
to be “well” supported (e.g., 70%), because the in‑
terpretation of these two supports is very different.

In this case, when TBE is close to 100%, this likely
means that a few rogues are perturbing FBP anal‑
yses (as with HIV), whereas when TBE is also low
(as with SARS‑CoV‑2), it is likely that many taxa
are unstable and the overall phylogenetic signal is
weak.

• Do not stop at the 70% threshold! For many phy‑
logeneticists, 70% (or 80% for some) of FBP sup‑
port has become the rule of thumb for assessing
well‑supported branches. As stated in Soltis and
Soltis (2003) and already quoted “consensus has
been reached among practitioners, if not among
statisticians and theoreticians” and “many system‑
atists have adopted Hillis and Bull’s ‘70%’ value as
an indication of support.” In fact, the “70%” rule
has no statistical basis and is likely inappropriate
for many situations. For example, finding a deep
branch with FBP = 70% in a large tree with thou‑
sands of tips generally means that this branch has
strong support and is likely correct (unless model
miss‑specification, long‑branch attraction, or any
other reconstruction bias), whereas having FBP =
70% for a cherry in a small tree will generally not
be considered very strong. For more information
on the long debate about the meaning of FBP and
the best selection threshold, see Sanderson (1995);
Berry and Gascuel (1996); Soltis and Soltis (2003);
Lemoine et al. (2018) and Simon (2022).

• With TBE, the support has a very different mean‑
ing. With FBP, we interpret the support roughly as
the probability that the inferred branch is entirely
correct (assuming there is no reconstruction bias,
etc.), whereas with TBE, the support is a measure
of the correctness of the inferred branch, accepting
that, in this inferred branch, some taxa are mis‑
placed and must be transferred to recover the gen‑
uine branch (see Extended Data Fig. 10 in Lemoine
et al. (2018) for further results along these lines).
With such an interpretation of support, the ques‑
tion of the support threshold becomes very differ‑
ent and must be put into perspective with the sam‑
pling of the clade studied. With a clade of size p and
of support s, one can easily calculate the average
number of taxa that need to be transferred in the
bootstrap trees to recover the reference clade, us‑
ing the formula (𝑝 − 1) ∗ (1 − 𝑠). Thus, a score of
80% or even 95% should not necessarily be consid‑
ered as high support for TBE if the clade is large,
as this means that many taxa must be transferred
in the bootstrap trees to recover the inferred clade.
For example, with p = 1000 and s = 95%, 50
taxa need to be transferred on average, which may
be considered acceptable with virus data due to
the inherent weak signal, recombinants, and so on,
but becomes considerable if we think, for exam‑
ple, to mammals or birds where the ultimate aim
is to decipher the true evolutionary origin of all
the species studied. These calculations on the num‑
ber of taxa to be transferred are available in certain
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software packages and websites (e.g., BOOSTER,
https://booster.pasteur.fr/) and enable a better un‑
derstanding of TBE supports, which must be in‑
terpreted by users depending on the data they
are analyzing and their expectations regarding this
data.

With now a better understanding of FBP and TBE be‑
haviors under various sampling conditions, one of the
major challenges in phylogenetics is to better interpret
and use these branch supports. In the era of large‑scale
datasets, understanding the causes of a branch sup‑
port to be low or high, through a better characterization
of rogue taxa, would allow phylogeneticists to better
comprehend their data and their flaws.
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