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Abstract

Grover Search is currently one of the main quantum algorithms leading to hybrid quantum-

classical methods that reduce the worst-case time complexity for several combinatorial opti-

mization problems. Specifically, the combination of Quantum Minimum Finding (obtained from

Grover Search) with dynamic programming has proved particularly efficient in improving the

complexity of NP-hard problems currently solved by classical dynamic programming. For these

problems, the classical dynamic programming complexity (ignoring the polynomial factors) in

O∗(cn) can be reduced by a hybrid algorithm to O∗(cnquant), with cquant < c. In this paper,

we provide a bounded-error hybrid algorithm that achieves such an improvement on NP-hard

minimization problems for which we give a generic description. We illustrate our approach on

a variety of scheduling problems. Moreover, we extend this algorithm to decision problems to

tackle the 3-machine flowshop problem. Our algorithm reduces the exponential-part complexity

compared to the best-known classical algorithm, sometimes at the cost of an additional pseudo-

polynomial factor.

keywords: Quantum optimization, Grover algorithm, Dynamic Programming, Scheduling

∗This is an extension of the conference paper of Grange et al. [10].
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1 Introduction

The fields of quantum computing and combinatorial optimization are becoming every day more

closely linked, thanks to the work of the operations research community that has been focusing

on the new quantum paradigm. More precisely, there are two types of quantum algorithms for

solving optimization problems. The first type encompasses heuristics, often designed today as

hybrid quantum-classical algorithms, such as the class of Variational Quantum Algorithms described

by Cerezo et al. [5] or by Grange et al. [11] and, within it, the famous Quantum Approximate

Optimization Algorithm (QAOA) of Farhi et al. [8]. Essentially, these algorithms require the

optimization problem to be formulated as a QUBO (Quadratic Unconstrained Binary Optimization)

and can be implemented on current noisy quantum computers because the quantum part can be

made rather small. Among others, the problems of MAX-CUT (Farhi et al. [8]), Travelling Salesman

Problem (Ruan et al. [27]), MAX-3-SAT (Nannicini [20]), Graph Coloring (Tabi et al. [31]) and Job

Shop Scheduling (Kurowki et al. [16]) are reformulated as QUBO and solved with hybrid heuristics

on small instances. However, due to the small size of instances processed today and the nature of

heuristics whose performances are evaluated empirically, no quantum advantage with heuristics is

emerging yet. This is where the second type of quantum algorithms differ: they are exact algorithms

(i.e. that output the optimal solution with a high probability of success) that provide theoretical

speed-ups for several types of problems and algorithms, as displayed by Nannicini [21] and Sutter

et al. [30]. Notice that with the current quantum hardware, it is impossible to implement them

today because of the huge size of quantum resources they require.

Grover [12] provides one key exact quantum algorithm, that achieves a quadratic speed-up when

searching for a specific element in an unsorted table, where the complexity is computed as the

number of queries of the table and is done by an oracle. Grover Search represents the routine

of many exact quantum algorithms. For instance, Durr and Hoyer [7] use Grover Search as a

subroutine for a hybrid quantum-classical algorithm that finds the minimum of an unsorted table,

resulting in the algorithm called Quantum Minimum Finding (QMF). Later, Ambainis et al. [3]

combine QMF with dynamic programming to address NP-hard vertex ordering problems, such

as the Traveling Salesman Problem (TSP) or the Minimum Set Cover problem. The problems

of interest must satisfy a specific property which implies that they can be solved by classical
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dynamic programming in O∗(cn), with c is usually not smaller than 2. Henceforth, we use O∗

which is the usual asymptotic notation that ignores the polynomial factors. The hybrid algorithm

of Ambainis et al. [3] reduces the complexity to O∗(cnquant) for cquant < c. As an example, Held

and Karp [14] dynamic programming solves the TSP in O∗(2n) whereas the hybrid algorithm of

Ambainis et al. [3] achieves to solve it in O∗(1.728n). Following the work of Ambainis et al. [3],

other NP-hard problems have been tackled with the idea of combining Grover Search (or QMF) and

classical dynamic programming. This has led to quantum speed-ups for the Steiner Tree problem

(Miyamoto et al. [19]), the graph coloring problem (Shimizu and Mori [29]), and the subset sum

problem (Allcock et al. [2]).

The purpose of this work is to provide a general method, a hybrid quantum-classical bounded-

error algorithm, adapting the seminal idea of Ambainis et al. [3] to reduce the time complexity of

solving problems on which the Dynamic Programming Across the Subsets (DPAS) can be applied.

These types of problems are directly inspired by NP-hard scheduling problems described by T’kindt

et al. [32] but the mathematical formulations throughout this work aim to be as generic as possible,

leading the proposed algorithm to be applicable to a broader class of problems. A scheduling

problem lies in finding the optimal assignation of a set of jobs to machines over time. Each job j is

defined by at least a processing time pj and possibly additional data like a due date dj , a deadline

d̃j , or even a weight wj reflecting its priority. One or more machines can process the set of jobs,

however, at any time point, a machine can only process one job at a time. The computation of

a schedule is done in order to minimize a given objective function. Throughout this paper, we

use the usual notation α|β|γ, introduced by Graham et al. [9], to describe the scheduling problem

consisting of α machines, with the constraints β and the criterion γ to be minimized. For instance,

1|d̃j |
∑

j wjCj is the problem of minimizing the total weighted completion time with deadlines

constraints on a single machine. The reader interested in scheduling can refer to any textbook in

scheduling, e.g. to Pinedo [23]. In this paper, we generalize the hybrid algorithm and its theoretical

speed-up of Grange et al. [10], that dealt with one specific kind of recurrence property satisfied by

many single-machine scheduling problem, to more general problems that satisfy other recurrence

properties, consequently adapting the description of the hybrid algorithm.

Let P be a problem with a recurrence structure that can be solved by classical Dynamic Pro-

gramming Across the Subsets (DPAS) in exponential time. For scheduling problems, it essentially
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amounts to satisfying the following property: for a given set of jobs J , the optimal solution for J is

the best concatenation of optimal solutions for X and J \X among all X ⊆ J such that |X| = |J |/2

(modulo an additive term due to the concatenation). The main idea of our hybrid algorithm is to

make use of this particular dynamic programming structure and combine it with Grover Search or

QMF to reduce the exponential part of the time complexity. Notice that the dynamic programming

properties that must be satisfied for our problem are sometimes more complex than those used for

a classical dynamic programming resolution. In this case, a pseudo-polynomial factor can appear,

depending on the formulation of these dynamic programming properties. Thus, we describe these

new dynamic programming properties and give the mathematical description of the algorithm in

the gate-based quantum computing model.

Problem Our hybrid algorithm Best classical algorithm

1|d̃j |
∑

wjCj O∗ (
∑

pj · 1.728n) O∗(2n), T’kindt et al. [32]

1||
∑

wjTj O∗ (
∑

pj · 1.728n) O∗(2n), T’kindt et al. [32]

1|prec|
∑

wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ, Cygan et al. [6]

1|rj |
∑

wjUj O∗ ((∑wj)
3 ·
∑

pj · 1.728n
)

O∗(
∑

wj ·
∑

pj · 2n), Ploton and T’kindt [25]

1|rj |
∑

wjCj O∗ ((∑wj)
3 · (
∑

pj)
4 · 1.728n

)
O∗(

∑
wj · (

∑
pj)

2 · 2n), Ploton and T’kindt [25]

F3||Cmax O∗ ((∑ pij)
4 · 1.728n

)
O∗(3n), Shang et al. [28], Ploton and T’kindt [26]

Table 1: Comparison of worst-case time complexities between our hybrid algorithm and the best-
known classical algorithm

Our contributions. We provide a bounded-error hybrid quantum-classical algorithm that ex-

tends the work of Ambainis et al. [3] to more general problems. In particular, it applies to problems

with temporal constraints and non-linear objective functions found in the scheduling literature as

we illustrate on several examples. Specifically, we cover three types of problems P that satisfy

three different kinds of dynamic programming properties. Not only do we tackle problems for

which the dynamic programming property is based on the addition of optimal values of the prob-

lem on sub-instances (as done by Grange et al. [10]) but we also consider problems for which the

dynamic programming naturally applies on the composition of optimal values of the problem on

sub-instances. Furthermore, we address the 3-machine flowshop problem that differs from previous

problems by the nature of the recurrence property and widen the range of problems solved by our
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hybrid algorithm. Last, we also propose an approximation algorithm for the 3-machine flowshop

problem. In each case, the algorithm slightly differs depending on which case we work on, but the

central idea is the same. We show that the algorithm reduces the worst-case time complexity of

problems for which the current best classical resolution is by DPAS, sometimes at the cost of an

additional pseudo-polynomial factor. We summarize in Table 1 the complexities on several NP-hard

scheduling problems we tackle in this paper.

The structure of the paper. We detail in Section 2 the first case where P is related to a mini-

mization problem (defined in Subsection 2.1), that itself includes two cases according to the nature

of the dynamic programming properties it satisfies (Additive or Composed DPAS). We illustrate

these notions with NP-hard single-machine scheduling problems. Next, we describe in Section 3

the hybrid quantum-classical algorithm Q-DDPAS that solves with high probability the problems

of interest, recalling basic notions of quantum complexity. We end in Section 4 by adapting the

previous Q-DDPAS algorithm to problem P that is related more naturally to a decision problem

(defined in Subsection 4.1), satisfying other dynamic programming properties. We illustrate it on

the 3-machine flowshop scheduling problem. Additionally, we provide an approximation scheme

for the 3-machine flowshop, based on the hybrid algorithm, that disposes of the pseudo-polynomial

factor in the time complexity. Appendix A recalls well-known bounds useful to derive the complex-

ities of the algorithm while Appendix B provides a detailed proof of the correctness of our main

algorithm Q-DDPAS.

2 Dynamic Programming Across the Subsets

2.1 Problems definitions

Let us describe the type of combinatorial optimization problems P on which DPAS can be applied.

An instance of problem P is denoted by I and is described by a tuple of vectors of dimension n

(the number of elements in the tuple depends on P). We can think as an example of a single-

machine scheduling problem with n jobs where the vectors specify processing times, due dates, and

deadlines, among others. Any solution to P is a permutation of [n] := {1, . . . , n}. We denote by
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S[n] the set of all permutations of [n]. Our nominal problem can be cast as follows:

P(I) : min
π∈Π(I)

f(π, I) , (1)

where Π(I) ⊆ S[n] is the set of feasible permutations of [n] according to given constraints and f is

the objective function, which both depend on I.

We introduce a problem P related to P that will be instrumental in deriving the dynamic pro-

gramming recursion, satisfying the two following properties. First, an instance J of P is described

by an instance I of P together with an additional parameter t ∈ Z. Second, for an instance I,

there is tI ∈ Z such that solving P for I amounts to solving P for J = (I, tI). As we will

solve P by dynamic programming based on a recurrence formula, it is convenient to define sub-

instances as follows. For J = (I, t) and J ⊆ [n] we define the sub-instance of J associated to J by

J (J) = (I(J), t), where I(J) is the tuple of vectors of dimension |J | ≤ n obtained by considering

the sub-vectors of I that are indexed by the components in J . Thus, we denote by PJ (J, t) the

problem P defined on the sub-instance (I(J), t). We omit the index J in what follows and consider

the solution of

P (J, t) : min
π∈Π(J,t)

f(π, J, t) , (2)

where Π(J, t) ⊆ SJ is the set of feasible permutations of J according to the given constraints and

f(., J, t) is the objective function. According to the above notations, the nominal problem P(I) is

equivalent to problem P(I,tI)([n], tI), or shortly, P ([n], tI).

Henceforth, we note OPT[J, t] the optimal value of P (J, t), for J ⊆ [n] and t ∈ Z. Throughout

the dynamic programming recursions, we shall consider values of t that may differ from tI . More

specifically, we will introduce the bounded set T (I) ⊆ Z and consider t ∈ T (I). Again, to keep

concise notations, we shall omit the explicit dependency of T on I and consider throughout the

problem P (J, t), for J ⊆ [n] and t ∈ T .

To illustrate the above notations, we consider P as a single-machine scheduling problem of n

jobs. Thus, problem P (J, t) is the problem P that schedules only jobs in J ⊆ [n] starting at time

t ∈ Z. The nominal problem P schedules all the jobs and starts at time t = 0. In other words, we

wish to solve P ([n], 0) and find the optimal value OPT[[n], 0].

In what follows, we distinguish between two types of recurrences satisfied by problem (2). The
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first one is the recurrence that adds optimal values of the related problem on sub-instances, called

Additive DPAS and introduced in Subsection 2.2. The second one is the recurrence that composes

optimal values of the related problem on sub-instances, called Composed DPAS and defined in

Subsection 2.3. Notice that in the first case, the recurrence applies to the related problem (2) that

derive directly from P. In that sense, it constitutes the easiest and most natural way to define the

recurrence. In the second case, we find single-machine scheduling problems that necessitate going

through a slightly different related problem to apply recurrence. In our examples, the use or not

of this latter auxiliary problem is driven by the nature of the constraints. For instance, single-

machine scheduling problems with deadline constraints naturally satisfy Additive DPAS recurrence

whereas those with release date constraints need the Composed DPAS formulation. In both cases,

we illustrate the dynamic programming properties with single-machine scheduling problems. Thus,

throughout this section, we assume that we aim at solving P ([n], tI), with tI = 0. Without

loss of generality, other problems than scheduling problems may also be solved by the dynamic

programming algorithm proposed in this work.

2.2 Additive DPAS

Let us start by defining problems for which the constraints defined by Π are compatible with the

addition of optimal values of the problem on sub-instances, formally defined below. For instance,

deadline constraints and precedence constraints are such constraints for single-machine scheduling

problems as we illustrate after. Problem P can be solved by dynamic programming if the related

problem P satisfies one of the two recurrences (Add-DPAS) and (Add-D-DPAS). Notice that

solving P with our hybrid quantum-classical algorithm necessitates P to satisfy both recurrences.

However, we observe in Remark 2.4 that P satisfies one if and only if it satisfies the other. Let us

introduce the first recurrence. Henceforth, we denote by 2[n] the set of all subsets of [n] = {1, . . . , n}.

Property 2.1 (Additive DPAS). There exists a function g : 2[n] × [n] × T → R, computable in

polynomial time, such that, for all J ⊆ [n] and for all t0 ∈ T ,

OPT[J, t0] = min
j∈J

{
OPT[J \ {j}, t0] + g(J, j, t0)

}
(Add-DPAS)
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initialized by OPT[∅, t0] = 0.

Throughout, we commit a slight abuse of language by letting (Add-DPAS) both refer to the

property satisfied by a given optimization problem and to the resulting dynamic programming

algorithm. Notice the presence of the additional parameter t0 in the above property that is a

constant throughout the whole recursion (Add-DPAS) and does not impact the resulting compu-

tational complexity. The use of that extra parameter defined in (2) shall be necessary later when

applying our hybrid algorithm.

The previous property enables to solve problem P by dynamic programming with the following

time complexity.

Lemma 2.2 (Additive DPAS complexity). (Add-DPAS) solves P in O∗(2n).

Proof. We solve Equation (Add-DPAS) for all J such that |J | = k, and for t0 = 0, starting

from k = 1 to k = n. For a given J , the values {OPT[J \ {j}, 0] : j ∈ J} are known, so

OPT[J, 0] is computed in time poly(n) · k according to Equation (Add-DPAS) (the computation of

g is polynomial). Eventually, the total complexity of computing OPT[[n], 0] is

n∑
k=1

poly(n)k

(
n

k

)
= poly(n) · n · 2n−1 = O∗(2n).

The problem P related to P must not only satisfy recurrence (Add-DPAS) but also recur-

rence (Add-D-DPAS) below.

Property 2.3 (Additive Dichotomic DPAS). There exist two functions tshift : 2[n] × 2[n] × T → T

and h : 2[n] × 2[n] × T → R, computable in polynomial time, such that, for all J ⊆ [n] of even

cardinality, and for all t ∈ T ,

OPT[J, t] = min
X⊆J

|X|=|J|/2

{
OPT[X, t] + h(J,X, t) + OPT[J \X, tshift(J,X, t)]

}
(Add-D-DPAS)

initialized by the values OPT[{j}, t] for each j ∈ [n] and t ∈ T .

Notice that if OPT[X, t] for X ⊆ [n] and t ∈ T is infeasible, then by convention OPT[X, t] = +∞.

However, differently from the previous recurrence (Add-DPAS), recurrence (Add-D-DPAS) now
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calls OPT[X ′, t′] for t′ that may be different than t0 by the use of the function tshift. This will lead

to the introduction of the pseudo-polynomial factor |T | in its complexity detailed below. Next, we

underline that both recurrences are essentially equivalent.

Remark 2.4. We observe that problem (2) satisfies recurrence (Add-DPAS) if and only if it satis-

fies (Add-D-DPAS). This can be seen by developing recursively both recurrences, which essentially

leads to optimization problems over π ∈ S[n], whose objective functions respectively involve g in the

first case and h and tshift in the second case. Here, one readily verifies that g can then be defined

from h and tshift and reciprocally.

Despite the previous remark, the two recurrences differ on the size of the subsets considered along

the recursions, leading to different formulations and therefore require more or less sub-problems

to be solved optimally in the dynamic programming process. This is formalized in the following

lemma.

Lemma 2.5 (Additive Dichotomic DPAS complexity). (Add-D-DPAS) solves P in ω(|T | · 2n).

Proof. First, we note that to solve P with (Add-D-DPAS), n must be a power of 2. If this is not

the case, we can always transform the instance such that we fall back into the previous case. Thus,

without loss of generality, we suppose that n = 2N for N ∈ N. We solve Equation (Add-D-DPAS)

for all J such that |J | = 2k, and for all t ∈ T , starting from k = 1 to k = N . For a given J , the

values {OPT[X, t′] : X ⊆ J s.t. |X| = |J |/2 , t′ ∈ T} are known, so OPT[J, t] is computed in time

poly(n)
(

2k

2k−1

)
according to Equation (Add-D-DPAS) (the computation of tshift and h is polynomial).

Thus, computing all OPT[J, t] for any J of size 2k and t ∈ T is done in time |T |poly(n)
(

2k

2k−1

)(
n
2k

)
.

Eventually, the total complexity is equal to

C(n) = |T |poly(n)
N∑
k=1

(
2k

2k−1

)(
n

2k

)
.

Second, we compute the complexity of (Add-D-DPAS). For that, we consider the sequence

(C(2i))i∈N, knowing that for families of instances with a size different from a power of 2, we

transform them artificially into families of instances of size of the following power of 2. Let n = 2i
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for i ∈ N. A lower bound on C(n) is the sum of the two last terms:

C(n) > |T |poly(n)

((
n

n/2

)
+

(
n

n/2

)(
n/2

n/4

))
≈ A|T |poly(n)

21.5n

n
,

where A is a constant. The asymptotic equivalent is readily obtained with the Stirling equivalent

for factorials, n! ≈
√

2πn
(
n
e

)n
for n ∈ N. Thus, C dominates asymptotically n 7→ |T | · 2n. In other

words, C(n) = ω(|T | · 2n).

Lemma 2.5 shows that solving P using classical dynamic programming with recur-

rence (Add-D-DPAS) is worse than with (Add-DPAS). It explains why the dynamic programming

algorithms found in the literature (e.g. in T’kindt et al. [32]) rely on recurrence (Add-DPAS).

In the next section, we describe a hybrid algorithm we call Quantum Dichotomic DPAS (Q-

DDPAS) that improves the complexity of solving P by combining recurrence (Add-DPAS) and

recurrence (Add-D-DPAS) with Grover Search. Before introducing this algorithm, we illustrate the

two recurrences (Add-DPAS) and (Add-D-DPAS) above with several examples of single-machine

scheduling problems that can, consequently, be solved by Q-DDPAS. Let us begin with the NP-hard

scheduling problem with deadline constraints and minimization of the total weighted completion

time. In all the scheduling examples that follow, we note p(J) :=
∑
j∈J

pj , for J ⊆ [n].

Example 1 (Minimizing the total weighted completion time with deadlines, 1|d̃j |
∑

j wjCj). For

each job j ∈ [n], we are given a weight wj, a processing time pj, and a deadline d̃j. Let T =

J0, p([n])K, where p([n]) =
n∑

i=1

pi. We define the related problem P as follows: for J ⊆ [n] and

t ∈ T ,

Π(J, t) = {π ∈ SJ |Cj(π) ≤ d̃j − t ,∀j ∈ J} ,

where Cj is the completion time of job j, and for π ∈ Π(J, t):

f(π, J, t) =
∑
j∈J

wj(Cj(π) + t) .

Thus, the optimal solution of P (J, t) is the best feasible solution for jobs in J supposing that the

machine is available at time t, and not 0 as usual. Our problem of interest P is P ([n], 0) , and it can
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be solved by (Add-DPAS). Indeed, Equation (Add-DPAS) is valid with: ∀J ⊆ [n],∀j ∈ J, ∀t ∈ T,

g(J, j, t) =


wj(p(J ∪ {j}) + t) if d̃j ≥ p(J ∪ {j}) + t

+∞ otherwise

where the computation of g is polynomial (linear). This problem P also satisfies (Add-D-DPAS).

Indeed, Equation (Add-D-DPAS) is valid for the following functions:

∀X ⊆ J ⊆ [n] : |X| = |J |/2,∀t ∈ T,

tshift(J,X, t) = t + p(X)

h(J,X, t) = 0

initialized by, for j ∈ [n] and t ∈ T ,

OPT[{j}, t] =


wj(pj + t) if d̃j ≥ pj + t

+∞ otherwise

We present another example which is the strongly NP-hard scheduling problem with minimization

of the total weighted tardiness.

Example 2 (Minimizing the total weighted tardiness, 1||
∑

j wjTj). For each job j ∈ [n], we are

given a weight wj, a processing time pj, and a due date dj. Let T = J0, p([n])K. We define the

related problem P as follows: for J ⊆ [n] and t ∈ T ,

Π(J, t) = SJ ,

and for π ∈ Π(J, t):

f(π, J, t) =
∑
j∈J

wj max(0, Cj(π)− dj + t) ,

where max(0, Cj−dj +t) represents the tardiness of job j for the effective due date dj−t. Our prob-

lem of interest P is P ([n], 0) , and it can be solved by (Add-DPAS). Indeed, Equation (Add-DPAS)

is valid with: ∀J ⊆ [n], ∀j ∈ J,∀t ∈ T,

g(J, j, t) = wj max(0, p(J ∪ {j})− dj + t) ,
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where the computation of g is polynomial (linear). This problem also satisfies (Add-D-DPAS).

Indeed, Equation (Add-D-DPAS) is valid for the following functions:

∀X ⊆ J ⊆ [n] s.t. |X| = |J |/2,∀t ∈ T,

tshift(J,X, t) = t + p(X)

h(J,X, t) = 0

initialized by, for j ∈ [n] and t ∈ T ,

OPT[{j}, t] = wj max(0, pj − dj + t) .

Eventually, we consider the scheduling problem with precedence constraints and minimization of

the total weighted completion time that is also NP-hard. Conversely to the two previous examples,

the set T is reduced to {0} and function h translates the potential infeasibility of the concatenation

of problem P on two sub-instances.

Example 3 (Minimizing the total weighted completion time with precedence constraints,

1|prec|
∑

j wjCj). We are given, for each job j ∈ [n], a processing time pj, a weight wj, and a

set of precedence constraints K = {(i, j) : i ≺ j} that contains all pairs of jobs (i, j) such that i

precedes j. Let T = {0}. Here, an instance of the problem P under consideration is only indexed

by the chosen subset of [n]. Thus, we consider the problem P as follows: for J ⊆ [n],

Π(J, 0) = {π ∈ SJ |π respects K} ,

and for π ∈ Π(J, 0):

f(π, J, 0) =
∑
j∈J

wjCj(π) .

Our problem of interest P is P ([n], 0) , and it can be solved by (Add-DPAS). Indeed, Equa-

tion (Add-DPAS) is valid for:

∀J ⊆ [n], ∀j ∈ J, g(J, j, 0) =


+∞ if ∃(j, k) ∈ E|k ∈ J

wjp(J ∪ {j}) otherwise

where the computation of g is polynomial (quadratic). This problem P also satisfies (Add-D-DPAS).
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Indeed, Equation (Add-D-DPAS) is valid for the following functions: ∀X ⊆ J ⊆ [n] such that

|X| = |J |/2,

tshift(J,X, 0) = 0

h(J,X, 0) =


+∞ if ∃(j, k) ∈ E|j ∈ J \X and k ∈ X

p(X) ·
∑

j∈J\X

wj otherwise

where the computation of h is polynomial (quadratic). The initialization is, for j ∈ [n],

OPT[{j}, 0] = wjpj .

2.3 Composed DPAS

In this subsection, we study problems whose constraints do not enable the computation of an

optimal solution by simply adding optimal values of sub-instances as for Additive DPAS (see Sub-

section 2.2). Instead, we consider that the optimal value of P can be computed with the composition

of optimal values of a slightly different related minimization problem P ′ on sub-instances. We call

this problem an auxiliary problem. To illustrate, we consider single-machine scheduling problems

with release date constraints. The recurrence formulas below are inspired by the work of Lawler [17]

for the problem 1|rj , pmtn|
∑

wjUj , namely minimizing the total weighted number of late jobs on

a single machine under preemption and release date constraints.

2.3.1 Auxiliary problems definitions

Let us introduce the set of values of the objective function of P,

E(I) = {f(π, I) : π ∈ Π(I))} .

We define the auxiliary problem P ′ as follows. An instance I ′ of P ′ is defined as an instance I of

P together with an additional parameter ϵ ∈ E(I), so P ′ reads

P ′(I ′) : min
π∈Π′(I′)

f ′(π, I ′) ,

13



where I ′ = (I, ϵ), Π′(I ′) ⊆ S[n] is a set of feasible permutations of [n] according to I and ϵ and f ′

is the objective function. In what follows, the objective of P is to find the smallest ϵ ∈ E(I) such

that the associated problem P ′ is bounded, formally

P(I) : min
ϵ∈E

{
ϵ : min

π∈Π′(I,ϵ)
f ′(π, (I, ϵ)) < +∞

}
. (3)

We introduce a problem P ′ related to P ′ exactly as it has been done for P related to P in Subsec-

tion 2.1. Thus, an instance J ′ of P ′ is an instance I ′ of P ′ with an additional parameter t ∈ T (I ′),

so J ′ = (I, t, ϵ). As before, we consider the sub-instance J ′(J) = (I(J), t, ϵ) corresponding to

J ⊆ [n], and consider the solution of

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

f ′(π, J, t, ϵ) , (4)

where Π′(J, t, ϵ) ⊆ SJ is the set of feasible permutations of J according to the given constraints

and f ′(., J, t, ϵ) is the objective function. We note OPT[J, t, ϵ] the optimal value of P ′(J, t, ϵ), for

J ⊆ [n] and t, ϵ ∈ Z. As in Subsection 2.1, we introduce the bounded set T (I ′) ⊆ Z and consider

parameters t ∈ T (I ′). Once again, we omit the dependency to I ′ to lighten the notations, denoting

by T , respectively E, the set T (I ′), respectively E(I ′). Rewriting (3) with the above notations

yields

P : min
ϵ∈E

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
. (5)

Thus, solving P amounts to solving P ′([n], 0, ϵ) for all ϵ ∈ E. Observe that the optimal solution of

P is the optimal solution of P ′([n], 0, ϵ∗) for ϵ∗ the optimal value of P.

Notice that we consider an extra parameter in E to define our auxiliary problem as generic as

possible. This is motivated by the fact that it enables to tackle strongly NP-hard problems as

shown in the examples that end this subsection. However, this formulation covers the simple case

of P deriving in a problem (not involving an auxiliary problem) that satisfies the composition of

optimal values on sub-instances, essentially by setting E = ∅.

Remark 2.6. We formulate P as in (5) because in the examples we study, finding the optimal

value amounts to finding the smallest ϵ such that the auxiliary problem P ′(J, t, ϵ) admits a feasible

14



solution. However, all the results of this subsection generalize to any problem formulated as

min
ϵ∈E

{
ϵ : bool(OPT[[n], 0, ϵ]) = true

}
,

where bool is a boolean function.

2.3.2 Composed DPAS recurrences

To solve the nominal problem P by classical dynamic programming, problem P ′ must satisfy

recurrence (Comp-DPAS) or recurrence (Comp-D-DPAS) below (as in Remark 2.4, we can state

that a problem satisfies one if and only if it satisfies the other one). As we explain later, solving P

with our hybrid algorithm necessitates problem P ′ to satisfy the two recurrences.

Property 2.7 (Composed DPAS). For all J ⊆ [n], t ∈ T and ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ− ϵ′], ϵ′

]}
, (Comp-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], ϵ ∈ E and t ∈ T . Notice that for J ⊆ [n],

t ∈ T and ϵ ∈ E, we adopt the convention OPT[J, t, ϵ] = +∞ for ϵ /∈ E.

Recurrence (Comp-DPAS) differs from recurrence (Add-DPAS) in two aspects. First, the optimal

values of the problem on sub-instances are composed, and not added, because of the nature of the

constraints. Second, the search for the minimum value is done not only over all jobs in J , but

also over all values in E. More precisely, for a given ϵ0 ∈ E, the optimal value of P ′(J, t, ϵ0) is the

minimum value of all possible composition of optimal values of the problem on sub-instances with

parameters ϵ1 and ϵ2 such that ϵ1 + ϵ2 = ϵ0. We have the following results.

Lemma 2.8 (Composed DPAS complexity). Let ϵ0 ∈ E. (Comp-DPAS) solves P ′([n], 0, ϵ0) in

O∗(|E|2 · |T | · 2n).

Proof. This proof is essentially the same as the one of Lemma 2.2. To compute OPT[[n], 0, ϵ0], we

need to solve Equation (Comp-DPAS) for all J such that |J | = k starting from k = 1 to k = n,

and for all t ∈ T and ϵ ∈ E. For a given J , t ∈ T and ϵ ∈ E, the values {OPT[J \ {j}, t′, ϵ′] : j ∈

J, t′ ∈ T, ϵ′ ∈ E} and {OPT[{j}, t′, ϵ′] : j ∈ J, t′ ∈ T, ϵ′ ∈ E} are known, so OPT[J, t, ϵ] is computed

in time |E| · k according to Equation (Comp-DPAS). Thus, computing all OPT[J, t, ϵ] for any J of
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size k and for t ∈ T and ϵ ∈ E is done in time |T | · |E|2 · k
(
n
k

)
. Eventually, the total complexity of

computing OPT[[n], 0, ϵ0] is

n∑
k=1

|T | · |E|2 · k
(
n

k

)
= O∗(|T | · |E|2 · 2n).

Corollary 2.9 (Composed DPAS complexity). (Comp-DPAS) solves P in O∗(|E|3 · |T | · 2n).

Proof. Solving P amounts to solving P ′([n], 0, ϵ) for all ϵ ∈ E, according to (5). The complexity

results directly from the previous Lemma 2.8.

The auxiliary problem P ′ must satisfy the following recurrence (Comp-D-DPAS) in addition to

recurrence (Comp-DPAS).

Property 2.10 (Composed Dichotomic DPAS). For all J ⊆ [n] of even cardinality, t ∈ T and

ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E

X∈J:|X|=|J|/2

{
OPT

[
X,OPT[J \X, t, ϵ− ϵ′], ϵ′

]}
, (Comp-D-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], t ∈ T and ϵ ∈ E.

Lemma 2.11 (Composed Dichotomic DPAS complexity). Let t0 ∈ T and ϵ0 ∈ E. (Comp-D-DPAS)

solves P ′([n], t0, ϵ0) in ω(|E|2 · |T | · 2n).

Proof. This proof is essentially the same as the one of Lemma 2.5 with the same modifications that

for the proof of Lemma 2.8.

Corollary 2.12 (Composed Dichotomic DPAS complexity). (Comp-D-DPAS) solves P in ω(|E|3 ·

|T | · 2n).

Proof. See proof of Corollary 2.9.

As for the Additive DPAS, we notice that, with a classical dynamic programming algo-

rithm, the time complexity to solve P with recurrence (Comp-DPAS) is better than with recur-

rence (Comp-D-DPAS). We show that our hybrid algorithm Q-DDPAS improves these complexities.

But first, we illustrate the recurrences (Comp-DPAS) and (Comp-D-DPAS) with two single-machine
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scheduling examples. Let us first consider the strongly NP-hard problem of minimizing the total

weighted sum of late jobs with release date constraints.

Example 4 (Minimizing the total weighted number of late jobs with release date constraints,

1|rj |
∑

wjUj). Each job j ∈ [n] has a weight wj, a processing time pj, a due date dj, and a release

date rj. Let T = J0,
n∑

j=1

pjK ∪ {+∞} and E = J0,
n∑

j=1

wjK. For a given ϵ ∈ E, we consider the

problem P ′ as follows: ∀J ⊆ [n], t ∈ T,

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

Cmax(π) ,

where Cmax is the makespan, and

Π′(J, t, ϵ) =

π ∈ SJ : Cj(π) ≥ max(t, rj) + pj and
∑
j∈J

wjUj(π) = ϵ

 ,

where Uj indicates if job j is late. If j is late for the permutation π, Uj(π) = 1, otherwise,

Uj(π) = 0. In other words, OPT[J, t, ϵ] is the minimum makespan for jobs in J beginning at

time t where exactly ϵ jobs are late. Notice that if there is no solution where ϵ jobs are late, then

OPT[J, t, ϵ] = +∞. Our problem of interest is P = min
ϵ∈E
{ϵ : OPT[[n], 0, ϵ] < +∞}.

Problem P ′ satisfies both (Comp-DPAS) and (Comp-D-DPAS) recurrences. The initialization of

the two recurrences is, for j ∈ [n], t ∈ T and ϵ ∈ E,

OPT[{j}, t, ϵ] =



max(t, rj) + pj︸ ︷︷ ︸
Cj

, if Cj ≤ dj and ϵ = 0

+∞, if Cj > dj and ϵ = 0

+∞, if Cj ≤ dj and ϵ = wj

Cj , if Cj > dj and ϵ = wj

+∞, if ϵ ∈ J1, wj − 1K ∪ Jwj + 1,

n∑
k=1

wkK

Notice that for this example, Equation (Comp-DPAS) can be simplified to

OPT[J, t, ϵ] = min
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ], 0

]
︸ ︷︷ ︸

job j is not late

,OPT
[
{j},OPT[J \ {j}, t, ϵ− wj ], wj

]
︸ ︷︷ ︸

job j is late

}
.
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With this particular recurrence formula, solving P with (Comp-DPAS) is done in O∗(|E|2 · |T | · 2n)

instead of O∗(|E|3 · |T | · 2n).

As we mentioned before, (Comp-DPAS) and (Comp-D-DPAS) recurrences naturally apply to

scheduling problems with release date constraints. We illustrate that with another example, which

is the strongly NP-hard problem of minimizing the total weighted completion time with release

date constraints.

Example 5 (Minimizing the total weighted completion time with release date constraints,

1|rj |
∑

wjCj). Each job j ∈ [n] has a weight wj, a processing time pj, and a release date rj.

Let T = J0,
n∑

j=1

pjK∪ {+∞} and E = J0,
n∑

j=1

wj ·
n∑

j=1

pjK. For a given ϵ ∈ E, we consider the problem

P ′ as follows: ∀J ⊆ [n], t ∈ T,

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

Cmax(π) ,

where Cmax is the makespan, and

Π′(J, t, ϵ) = {π ∈ SJ : Cj(π) ≥ max(t, rj) + pj and
∑
j∈J

wjCj(π) = ϵ} ,

where Cj is the completion time of job j. In other words, OPT[J, t, ϵ] is the minimum makespan for

jobs in J beginning at time t where the weighted completion time is exactly ϵ. Notice that if there is

no solution where this total sum is equal to ϵ, then OPT[J, t, ϵ] = +∞. With these notations, our

problem of interest is P = min
ϵ∈E
{ϵ : OPT[[n], 0, ϵ] < +∞}.

We can note that problem P ′ satisfies the two recurrences (Comp-DPAS) and (Comp-D-DPAS).

The initialization of the recurrences is, for j ∈ [n], t ∈ T and ϵ ∈ E,

OPT[{j}, t, ϵ] =


max(t, rj) + pj︸ ︷︷ ︸

Cj

, if ϵ = wjCj

+∞, otherwise

3 Hybrid algorithm Q-DDPAS

In this section, we describe in the gate-based quantum computing model our algorithm Q-DDPAS

that applies to any problem that satisfies the recurrences properties described in Section 2. But
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first, we introduce some preliminary notions on quantum circuits and notations for the description

of Q-DDPAS.

3.1 Preliminaries

Let us begin with some notions of time complexity for quantum circuits.

Definition 3.1. Let us consider a family of quantum circuits (Qn)n∈N of complexity O(C(n)),

meaning that Qn is a circuit that applies on n qubits and contains f(n) universal quantum gates,

where f(n) = O(C(n)). This family is efficient if C(n) = nα for α > 0.

Observation 3.2 (Complexity of quantum circuits (Nielsen and Chuang [22])). Let U1 and U2 be

two quantum circuits, with complexity O(C1(n)) and O(C2(n)), respectively. The complexity of the

composition U1 · U2 is

O(C1(n) + C2(n)) = O(max(C1(n), C2(n))) .

The tensor product U1 ⊗ U2 has the same complexity.

Observation 3.3 (Classical algorithm into quantum circuit (Bennett [4])). Any classical algorithm

A can be described as a quantum circuit UA. The complexity of UA is equal to the complexity of A.

Before we describe specific sets and quantum circuits in the following subsections, we introduce

the generic quantum circuit associated with the Quantum Minimum Finding (QMF) algorithm of

Durr and Hoyer [7], that constitutes a fundamental subroutine in our algorithm. This algorithm

essentially applies several times the search algorithm of Grover [12].

Definition 3.4 (Circuit UQMF). Let f : [n] → Z be a function and let Uf be its corresponding

quantum circuit, specifically,

Uf |i⟩ |0⟩ = |i⟩ |f(i)⟩ , ∀i ∈ [n] .

We note UQMF[Uf ] the quantum circuit corresponding to the Quantum Minimum Finding algo-

rithm of Durr and Hoyer [7] that computes with high probability the minimum value of f and the

corresponding minimizer:

UQMF[Uf ]

n∑
i=1

1√
n
|i⟩ |0⟩ |0⟩ =

n∑
i=1

1√
n
|i⟩

∣∣∣∣∣arg min
i∈[n]

{f(i)}

〉∣∣∣∣min
i∈[n]
{f(i)}

〉
.
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Observation 3.5 (Complexity of UQMF). The complexity of the Quantum Minimum Finding al-

gorithm is O (
√
n · Cf (n)), where n is the size of the domain of f and O(Cf (n)) is the complexity

of the circuit Uf . Thus, the complexity of UQMF[Uf ] is

O
(√

n · Cf (n)
)

according to Observation 3.3.

Remark 3.6 (Success probability and bounded-error algorithm). Durr and Hoyer [7] prove that

QMF finds the minimum value with a probability of success bigger than 1
2 . Thus, for ϵ > 0, finding

the minimum value with probability 1− ϵ is achieved by repeating O(1) times QMF. Henceforth, we

refer to this statement when we write that QMF finds the minimum value with high probability.

Equivalently, we say that this is a bouded-error algorithm.This notion is defined by Nielsen and

Chuang [22].

We introduce in the two following subsections the sets and quantum circuits that constitute the

building blocks of our algorithm Q-DDPAS, and we provide for each of them their complexity. De-

pending on the tackled problem P solved by the hybrid algorithm, these sets, respectively quantum

circuits, slightly differ whether the related problem P satisfies (Add-DPAS) and (Add-D-DPAS),

or the related auxiliary problem P ′ satisfies (Comp-DPAS) and (Comp-D-DPAS). In both cases,

we define two sets Λadd and Ωadd indexed by (J, t) for J ⊆ [n] and t ∈ T , respectively Λcomp and

Ωcomp indexed by (J, t, ϵ) for J ⊆ [n], t ∈ T and ϵ ∈ E. Essentially, the set Λadd(J, t) contains all

the possible balanced bi-partitions of J and the associated parameter value of tshift. The second

set Ωadd(J, t) contains the optimal solutions for each bi-partition in Λadd(J, t). Similarly, the set

Λcomp(J, t, ϵ) contains all the possible balanced bi-partitions of J and the possible parameter values

of T and E. The second set Ωcomp(J, t, ϵ) contains the optimal solutions for each bi-partition and

parameter values in Λcomp(J, t, ϵ).

3.1.1 Additive DPAS sets and quantum circuits

Let us begin with the sets and related quantum circuits useful to the description of our algorithm for

solving problems whose related problem P satisfies recurrences (Add-DPAS) and (Add-D-DPAS).
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Definition 3.7 (Sets Λadd and Ωadd). For J ⊆ [n] such that |J | is even and for t ∈ T , we define

the set

Λadd(J, t) =

{
(X, t, J \X, tshift(J,X, t)) : X ⊆ J, |X| = |J |

2

}
,

and the set

Ωadd(J, t) =

{
(X,OPT[X, t], J \X,OPT[J \X, tshift(J,X, t)], t) : X ⊆ J, |X| = |J |

2

}
.

The two following quantum circuits UΛadd
and UΩadd

amount, respectively, to put into uniform

superposition the elements of Λadd and Ωadd.

Definition 3.8 (Circuit UΛadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define UΛadd

as follows:

UΛadd
|J⟩ |t⟩ |0⟩⊗6 =

|J⟩ |t⟩
∑

(λs
1,λ

t
1,λ

s
2,λ

t
2)∈Λadd(J,t)

1√
|Λadd(J, t)|

|λs
1⟩
∣∣λt

1

〉
|0⟩ |λs

2⟩
∣∣λt

2

〉
|0⟩ .

Observe that we index the objects that represent sets by s, and the objects that represent scalars

by t, because these are equal to the values in T .

Proposition 3.9 (Complexity of UΛadd
). The complexity of UΛadd

is polynomial in the size of the

input.

Proof. First, let us prove that, for a given J ⊆ [n] of size m for m even, the construction of the

quantum superposition of subsets of J of size m/2 (i.e. superposition of balanced bi-partitions) is

polynomial.

Let J ⊆ [n] be of size m, for m even. We note σenum : J 7→ J1,mK the bijection that enumerates

the elements of J . We note σbipart : J1,
(

m
m/2

)
K 7→

{
(A, J1,mK \A) : |A| = m

2

}
the bijection that

enumerates the balanced bi-partitions of J1,mK. Let Uσbipart
be the quantum circuit corresponding

to the function σbipart. Specifically, for i ∈ J1,
(

m
m/2

)
K,

Uσbipart
|i⟩ |0⟩ |0⟩ = |i⟩ |Ai⟩ |J1,mK \Ai⟩︸ ︷︷ ︸

σbipart(i)

.
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Let U
σ−1
enum

be the quantum circuit corresponding to the inverse of the function σenum. Thus,

U
σ−1
enum
|i⟩ |Ai⟩ |J1,mK \Ai⟩ = |i⟩ |Xi⟩ |J \Xi⟩ ,

for Xi = σ−1
enum(Ai) ⊆ J . We denote by σ−1

enum(S), for S a set, the operation of applying σ−1
enum to

each element of S.

Consequently, we get a quantum superposition of all balanced bi-partitions of J by applying

first Uσbipart
then U

σ−1
enum

to a quantum register that represents the superposition of all elements in

J1,
(

m
m/2

)
K. For that, we require nq := ⌈log2(

(
m

m/2

)
)⌉ = O(m) qubits, each one initially in state |0⟩

on which we apply the Hadamard gate. Specifically,

U
σ−1
enum

Uσbipart
H⊗nq |0⟩⊗nq |0⟩ |0⟩ = U

σ−1
enum

Uσbipart

( m
m/2)∑
i=1

|i⟩ |0⟩ |0⟩

= U
σ−1
enum

( m
m/2)∑
i=1

|i⟩ |Ai⟩ |J1,mK \Ai⟩

=

( m
m/2)∑
i=1

|i⟩ |Xi⟩ |J \Xi⟩ .

Let us compute the complexity of U
σ−1
enum

Uσbipart
H⊗nq . For a given i, computing σbipart(i), re-

spectively σ−1
enum(i), is polynomial in m. According to Observation 3.3, the complexity of Uσbipart

,

respectively U
σ−1
enum

, is polynomial in m. Thus, the construction of the superposition of balanced

bi-partitions of J is polynomial.

Eventually, the computation of the function tshift is polynomial. Thus, the complexity of UΛadd

is polynomial.

Definition 3.10 (Circuit UΩadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define UΩadd

as follows:

UΩadd
|J⟩ |t⟩ |0⟩ = |J⟩ |t⟩

∑
ω∈Ωadd(J,t)

1√
|Ωadd(J, t)|

|ω⟩ .

Proposition 3.11 (Complexity of UΩadd
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPT[X, t] for all X ⊆ J such that |X| = |J |/2 and for all t ∈ T , the

complexity of UΩadd
is polynomial in the size of the input.
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Proof. The proof follows essentially the same lines as the proof of Property 3.9. The quantum

superposition of subsets is done in polynomial time, and instead of computing tshift, we get values

in the QRAM in constant time.

We end this subsection with the definition of the quantum circuit of the addition required for

recurrence (Add-D-DPAS).

Definition 3.12 (Circuit Ua). We define the antecedent set Sa = 2[n] × (Z ∪ {+∞})× 2[n] × (Z ∪

{+∞})× T . Let a : Sa → Z ∪ {+∞} be the function:

a(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) = ωv
1 + ωv

2 + h(ωs
1 ∪ ωs

2, ω
s
1, ω

t) .

We note Ua the quantum circuit corresponding to a, namely:

∀(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) ∈ Sa, Ua |ω⟩ |0⟩ = |ω⟩ |a(ω)⟩ ,

where |ω⟩ = |ωs
1⟩ |ωv

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt
〉
is encoded in five registers. Notice that we index the objects that

represent numerical values by v.

Notice that according to recurrence (Add-D-DPAS), the function a applies on objects of Ωadd(J, t)

for J ⊆ [n] and t ∈ T , explaining the choice of the antecedent set.

Proposition 3.13 (Complexity of Ua). The complexity of Ua is polynomial in the size of the input.

Proof. The computation of h is polynomial (see (Add-D-DPAS)). It implies that the computation

of a is polynomial, and thus Ua has a polynomial complexity (see Observation 3.3).

Remark 3.14. Notice that for J ⊆ [n] and t ∈ T ,

OPT[J, t] = min
ω∈Ωadd(J,t)

a(ω) . (6)

3.1.2 Composed DPAS sets and quantum circuits

In this subsection, we define the sets and their associated quantum circuits used for the descrip-

tion of the hybrid algorithm that solves problems whose related auxiliary problem satisfies recur-

rences (Comp-DPAS) and (Comp-D-DPAS).
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Definition 3.15 (Sets Λcomp and Ωcomp). For J ⊆ [n] such that |J | is even, for t ∈ T and for

ϵ ∈ E, we define the set

Λcomp(J, t, ϵ) =

{
(X, ti, ϵi, J \X, t, ϵ− ϵi) : X ⊆ J, |X| = |J |

2
, ϵi ∈ E, ti ∈ T

}
,

and the set

Ωcomp(J, t, ϵ) =

(X,OPTϵi [X, ti], ti, ϵi, J \X,OPTϵ−ϵi [J \X, t], t, ϵ− ϵi) :

X ⊆ J, |X| = |J |
2 , ϵi ∈ E, ti ∈ T

 .

Definition 3.16 (Circuit UΛcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and for ϵ ∈ E, we

define UΛcomp
as follows:

UΛcomp
|J⟩ |t⟩ |0⟩⊗8 =

|J⟩ |t⟩
∑

(λs
1,λ

t
1,λ

e
1,λ

s
2,λ

t
2,λ

e
2)∈Λcomp(J,t,ϵ)

1√
|Λcomp(J, t)|

|λs
1⟩
∣∣λt

1

〉
|λe

1⟩ |0⟩ |λs
2⟩
∣∣λt

2

〉
|λe

2⟩ |0⟩ .

Observe that we index the objects that represent sets by s, the objects that represent scalars in

T by t, and the objects that represent parameter values in E by e.

Proposition 3.17 (Complexity of UΛcomp
). The complexity of UΛcomp

is polynomial in the size of

the input.

Definition 3.18 (Circuit UΩcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and ϵ ∈ E, we

define UΩcomp
as follows:

UΩcomp
|J⟩ |t⟩ |ϵ⟩ |0⟩ = |J⟩ |t⟩ |ϵ⟩

∑
ω∈Ωcomp(J,t,ϵ)

1√
|Ωcomp(J, t, ϵ)|

|ω⟩ .

Proposition 3.19 (Complexity of UΩcomp
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPTϵ[X, t] for all X ⊆ J such that |X| = |J |/2, for all t ∈ T and for all

ϵ ∈ E, the complexity of UΩcomp
is polynomial in the size of the input.

The proof of Proposition 3.17 (respectively Proposition 3.19) is similar to the proof of Proposi-

tion 3.9 (respectively Proposition 3.11).

The composition is the counterpart for (Comp-D-DPAS) of the addition for (Add-D-DPAS)

(function a).
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Definition 3.20 (Circuit Uc). We note the antecedent set Sc = 2[n]× (Z∪{+∞})×T ×E× 2[n]×

(Z ∪ {+∞})× T × E. Let c : Sc → Z ∪ {+∞} be the function:

c(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) =


ωv
1 if ωt

1 = ωv
2

+∞ else

We note Uc the quantum circuit corresponding to c, namely:

∀(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) ∈ Sc, Uc |ω⟩ |0⟩ = |ω⟩ |c(ω)⟩ ,

where |ω⟩ = |ωs
1⟩ |ωv

1⟩
∣∣ωt

1

〉
|ωe

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt

2

〉
|ωe

2⟩ is encoded in eight registers.

Notice that the function c is meant to be applied on objects of Ωcomp(J, t, ϵ), for J ⊆ [n], t ∈ T

and ϵ ∈ E, according to recurrence (Comp-D-DPAS).

Proposition 3.21 (Complexity of Uc). The complexity of Uc is polynomial in the size of the input.

Proof. This is the same proof as for Proposition 3.13.

Remark 3.22. Notice that, for J ⊆ [n], t ∈ T and ϵ ∈ E,

OPTϵ[J, t] = min
ω∈Ωcomp(J,t,ϵ)

c(ω) . (7)

3.2 Description of the algorithm for Additive DPAS

In this section, we describe our hybrid algorithm Q-DDPAS adapted from the work of Ambainis et

al. [3] in the gate-based quantum computing model. We begin with the description of Q-DDPAS

for problems P whose related problem P satisfies recurrences (Add-DPAS) and (Add-D-DPAS).

Q-DDPAS for problems whose related auxiliary problem P ′ satisfies recurrences (Comp-DPAS)

and (Comp-D-DPAS) derives directly, as we explain later in Subsection 3.3. Without loss of

generality, we assume that 4 divides n. This can be achieved by adding at most three fake jobs

and, therefore, does not change the algorithm complexity. Q-DDPAS consists of two steps. First,

we compute classically by (Add-DPAS) the optimal values of problem P on sub-instances of size

n/4. Second, we call recursively two times QMF on Equation (Add-D-DPAS) to find optimal values
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of problem P on sub-instances of size n/2 and eventually of size n (corresponding to the nominal

problem P).

Before presenting our hybrid algorithm, we introduce some notations about indexing quantum

circuits to be able to describe rigorously the quantum circuits of Q-DDPAS. Let reg = |q1⟩ . . . |qn⟩

be a register of n qubits and U be an operator acting on k qubits, with k < n. Let I be a k-tuple

of distinct indices in [n], I = (i1, . . . , ik). We denote by U I the operator acting on the full register

reg, that applies U on |qi1⟩ . . . |qik⟩, and applies Id on the remaining qubits. For instance, if I is

the tuple of contiguous indices (3, . . . , k + 3) with k < n− 3, then

U I := Id⊗2 ⊗ U ⊗ Id⊗n−k−3 .

For I = (i1, . . . , ik) and J = (j1, . . . , jl) two distinct tuples in [n] (k-tuple and l-tuple where i ̸=

j,∀(i, j) ∈ I×J) , we note I⊕J the concatenation of I and J , namely I⊕J = (i1, . . . , ik, j1, . . . , jl).

Regarding the QMF operator, let us denote the indexes related to the quantum circuit Uf of a

function f as

Uf |i⟩︸︷︷︸
I

|0⟩︸︷︷︸
J

= |i⟩︸︷︷︸
I

|f(i)⟩︸ ︷︷ ︸
J

.

To clarify the computations detailed next, we index the corresponding QMF operator as UQMF[U I
f ].

We omit the index J because this is an auxiliary register that does not appear in the output of

UQMF[Uf ].

We present the quantum circuits used in the quantum part, as well as the numbering of the

different registers.

• Let |ini⟩ be the initial state:

|ini⟩ := |[n]⟩ |0⟩︸ ︷︷ ︸
I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12

I2 = I21 ⊕ I22 ⊕ I23

I3 = I31 ⊕ I32
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I4 = I41 ⊕ I42 ⊕ I43

I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

• Let

Uini := (U
I2

Ωadd
⊗ U

I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
(8)

be the quantum circuit that, given initial quantum state |ini⟩, superposes all the couples

(X,X ′) such that X,X ′ ⊆ [n], |X| = |X ′| = n/4 and X ∩ X ′ = ∅. For each couple, the

optimal values and parameters associated are also superposed.

• The quantum circuit U
I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ] applies two QMF in parallel (resulting from

the tensor product of two quantum circuits) on the function a. Consequently, let

Urecur1 := U
I21⊕I32⊕I41⊕I52⊕I12
a

(
U

I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ]
)

be the quantum circuit that adds, with the help of of function a, the resulting values of the

two registers.

• Eventually, let

Urecur := U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1] (9)

be the quantum circuit that applies QMF on the function represented by the circuit Urecur1.

The bounded-error hybrid algorithm Q-DDPAS is described in Algorithm 1.

Theorem 3.23. The bounded-error algorithm Q-DDPAS (Algorithm 1) solves P in O∗(|T |·1.754n).

The proof of Theorem 3.23 relies on the two lemmas introduced next. However, before stating

and proving these lemmas, we observe that the complexity of Q-DDPAS can be further reduced by

performing a third call to Equation (Add-D-DPAS) as suggested in [3].

Observation 3.24. A slight modification of Q-DDPAS reduces the complexity to O∗(|T | · 1.728n).

For the sake of clarity, we will prove Observation 3.24 only after having proved Theorem 3.23.

We now introduce the two lemmas necessary to prove Theorem 3.23.
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Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)
Output: OPT[[n], 0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and t ∈ T do
Compute the optimal value OPT[X, t] and the corresponding permutation π∗[X, t]
by classical (Add-DPAS);

Store the tuple (X, t,OPT[X, t], π∗[X, t]) in the QRAM;

end

end
begin quantum part

Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

end
Return the outcome of the measurement

Algorithm 1: Q-DDPAS for Additive DPAS

Lemma 3.25. The optimal value of P is stored in the register of indexes I62 by Q-DDPAS with

high probability.

Proof. We provide next a sketch of the proof, referring to Appendix B for the details of the com-

putations. We give some intuition on the effect of the quantum circuit UrecurUini and start by

explaining the effect of Uini defined in (8). First, the application of UΛadd
superposes all elements

of Λadd([n], 0) in the registers of indexes I2 (partition of J) and I4 (partition of [n] \ J). This

essentially amounts to superposing all the
(

n
n/2

)
bi-partitions of [n] where each partition is of size

n/2 (parameters t included). Next, we apply UΩadd
on register of index I2, respectively I4. This

superposes all elements of Ωadd(J, t) (for a J of size n/2 and t ∈ T previously described in registers

of indexes I2, respectively I4). This essentially amounts to superposing all the
(n/2
n/4

)
bi-partitions

of [n] where each partition is of size n/2, parameters t included, and the optimal value associated

already stored in the QRAM.

Let us explain the effect of Urecur defined in (9). The application of UQMF[Ua] on a register encod-

ing (J , t) and the superposition of elements of Ωadd(J, t) stores OPT[J, t] (with high probability)

in an output register, according to Equation (Add-D-DPAS). Thus, UQMF[Ua] on register of index

I2, respectively I4, superposes all OPT[J, t] in I3, respectively I5, according to Remark 3.14. In

other words, the circuit U
I23⊕I3

QMF [U
I23⊕I31
a ]⊗ (U

I43⊕I5

QMF [U
I43⊕I51
a ] that appears in Urecur1 superposes (with

high probability) all optimal values of Equation (Add-D-DPAS) for J of size n/2. Now that the
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optimal values are known for sets of size n/2 (before, we only knew optimal values for sets of size

n/4), we apply one more time UQMF[Ua] on these new registers: it outputs OPT[[n], 0] with high

probability on the register of index I62 .

Lemma 3.26. The complexity of Q-DDPAS is O∗ (|T | · 1.754n).

Proof. Let us compute the complexity of this algorithm. First, we compute the complexity of the

classical part. The proof of Lemma 2.2 shows that solving all OPT[X, t] for all X of size n/4 and

for all t ∈ T is done by (Add-DPAS) in time

|T |poly(n)

n/4∑
k=1

k

(
n

k

)
= O∗

(
|T |
(

n

≤ n/4

))
.

Thus, because O∗
((

n
≤n/4

))
= O∗(20.811n) (see Equation (19)), the complexity of the classical part

is

O∗(|T | · 20.811n) .

Second, let us compute the complexity of the quantum part (using Property 3.3).

• The complexity of Uini is polynomial in n. Indeed, UΛadd
is polynomial in n (Property 3.9).

Moreover, UΩadd
is also polynomial in n: the classical part stored in the QRAM all OPT[X, t]

for X of size n/4 and t ∈ T (Property 3.11).

• The complexity of Urecur is O∗
(√(

n
n/2

)(n/2
n/4

))
. Indeed, both terms UQMF[Ua] in Urecur1 have

a polynomial complexity for Ua and find the minimum of functions with a domain of size(n/2
n/4

)
. Thus, the complexity of each of these two factors is O∗

(√(n/2
n/4

))
, and so is the

complexity of the tensor product. The circuit Urecur1 has the same complexity because of the

composition with Ua that is polynomial. The circuit Urecur finds the minimum of a function

with a domain of size
(

n
n/2

)
described by the corresponding quantum circuit Urecur1 above.

Thus, its complexity is O∗
(√(

n
n/2

)(n/2
n/4

))
.

Because O∗
(√(

n
n/2

)(n/2
n/4

))
= O∗(20.75n) (see Equation (21)), the complexity of the quantum part

is

O∗(20.75n) .
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Eventually, the complexity of Q-DDPAS is

O∗ (20.75n + |T | · 20.811n
)

= O∗ (|T | · 20.811n) = O∗ (|T | · 1.754n) .

Proof of Theorem 3.23. Follows directly from Lemmas 3.25 and 3.26.

Proof of Observation 3.24. The slight modification of Q-DDPAS amounts to adding a level of re-

currence in the quantum part, but instead of searching for the best concatenation among all the

bi-partition of size (n/8, n/8) (i.e. solving Equation (Add-D-DPAS) for |J | = n/4), we search for

the best concatenation among all the bi-partitions of size (0.945 · n4 , 0.055 · n4 ), i.e. solving

OPT[J, t] = min
X⊆J

|X|=0.945|J|

{
OPT[X, t] + h(J,X, t) + OPT[J \X, tshift(J,X, t)]

}
.

A third call to this recurrence formula in Q-DDPAS implies that:

• the classical part computes OPT[X, t] for X of size 0.945 · n4 and 0.055 · n4 . Its complexity is

then O∗
(
|T |
(

n
≤0.945·n

4

))
= O∗(|T | · 20.789n) (see Equation (20)).

• the quantum part applies three levels of recurrence of QMF, finding the minimum over func-

tions with a domain of size
(

n
n/2

)
,
(n/2
n/4

)
and

( n/4
0.945·n/4

)
respectively. Its complexity is then

O∗
(√(

n
n/2

)(n/2
n/4

)( n/4
0.945·n/4

))
= O∗(20.789n) (see Equation (22)).

The quantum part and the classical part have the same complexity, thus the total complexity of

Q-DDPAS is the same, namely O∗(20.789n) = O∗(1.728n) .

Notice that the classical part of Q-DDPAS can be replaced by any classical algorithm A, if A

computes in O∗(|T |·1.728n) all OPT[X, t] for X ⊆ [n] of size n/4 and t ∈ T . Moreover, if A happens

to reduce the classical part complexity O∗(|T | · cn) for c < 1.728, the complexity of Q-DDPAS can

also be reduced in the same spirit as the slight modification of Observation 3.24.

We illustrate in Table 1 the worst-case time complexities of solving the three NP-hard scheduling

problems examples introduced in Subsection 2.2 (1|d̃j |
∑

j wjCj , 1||
∑

j wjTj and 1|prec|
∑

j wjCj)

with Q-DDPAS and compare them with the complexities of the best-known current classical al-
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gorithms. Q-DDPAS improves the complexity of the exponent but sometimes at the cost of a

pseudo-polynomial factor (
∑

pj for problems 1|d̃j |
∑

j wjCj and 1||
∑

j wjTj).

Problem Q-DDPAS Best classical algorithm

1|d̃j |
∑

wjCj O∗ (
∑

pj · 1.728n) O∗(2n), T’kindt et al. [32]

1||
∑

wjTj O∗ (
∑

pj · 1.728n) O∗(2n), T’kindt et al. [32]

1|prec|
∑

wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ, Cygan et al. [6]

Table 2: Comparison of complexities between Q-DDPAS and the best-known classical algorithm
for some scheduling problems satisfying (Add-DPAS) and (Add-D-DPAS)

3.3 Adaptation to Composed DPAS

In the previous subsection, we describe Q-DDPAS for a problem P for which its related problem

P satisfies both recurrences (Add-DPAS) and (Add-D-DPAS). However, the description of Q-

DDPAS for a problem P related to auxiliary problem P ′ satisfying recurrences (Comp-DPAS)

and (Comp-D-DPAS) derives naturally. It essentially amounts to replacing Λadd by Λcomp, Ωadd

by Ωcomp and function a by function c. Consequently, the quantum circuit UΛcomp
, respectively

UΩcomp
, apply on 8 registers, respectively 4 registers, that differ from Q-DDPAS for Additive DPAS.

Moreover, Q-DDPAS does not solve directly P but the auxiliary problem P ′([n], 0, ϵ0), for ϵ0 ∈ E.

Eventually, we use it as a subroutine in a meta-algorithm to solve P.

Let us describe the slightly different quantum circuits adapting the number of registers and the

registers on which they apply. Let ϵ0 ∈ E. The initial state is

|ini⟩ = |[n]⟩ |0⟩ |ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13

I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24

I3 = I31 ⊕ I32

I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44
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I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωcomp
⊗ U

I4

Ωcomp
) · U I1⊕I2⊕I4

Λcomp
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
c

(
U

I24⊕I3

QMF [U
I24
c ]⊗ U

I44⊕I5

QMF [U
I44
c ]
)
,

Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6

QMF [Urecur1] .

The adaptation of Q-DDPAS to solve P ′([n], 0, ϵ0) for a given ϵ0 ∈ E is described in Algorithm 2.

Input: ϵ0 ∈ E, auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)
Output: OPT[[n], 0, ϵ0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and t ∈ T do
Compute the optimal value OPT[X, t, ϵ0] and the corresponding permutation
π∗[X, t, ϵ0] by classical (Comp-DPAS);

Store the tuple (X, t,OPT[X, t, ϵ0], π
∗[X, t, ϵ0]) in the QRAM;

end

end
begin quantum part

Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

end
Return the outcome of the measurement

Algorithm 2: Q-DDPAS for Composed DPAS

Theorem 3.27. Let ϵ0 ∈ E. The bounded-error algorithm Q-DDPAS (Algorithm 2) solves

P ′([n], 0, ϵ0) in O∗(|E|2 · |T | · 1.754n).

Proof. First, the optimal value of P ′([n], 0, ϵ0) is stored in the register of indexes I62 with high-

probability. This is exactly the same reasoning as the proof for Q-DDPAS for Additive DPAS. The

classical part computes and stores all
(n/2
n/4

)
bi-partitions of [n], for any parameter in T , any value
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in E and the optimal value associated in the QRAM. The quantum part applies recursively two

times QMF. The first call put in superposition, thanks to Remark 3.22, the optimal values for sets

of size n/2. The second call finds the optimal value for [n].

Second, the computation of the complexity is similar. The main changes are that we require

to store values in E in Ωcomp, but also let vary parameters in T to implement the composition

function c. This gives an extra factor |E| · |T | in the quantum part. We give the general idea of

the computation of complexities for each part:

• Classical part: according to Lemma 2.8, (Comp-DPAS) computes all OPT[X, t, ϵ] for X of

size n/4, t ∈ T and ϵ ∈ E, in

|E|2 · |T |poly(n)

n/4∑
k=1

k

(
n

k

)
= O∗

(
|E|2 · |T |

(
n

≤ n/4

))
= O∗(|E|2 · |T | · 20.811n) .

• Quantum part: the first call to QMF in parallel is done on a set of size |E| · |T | ·
(n/2
n/4

)
. The

second call to QMF is done on a set of size |E| · |T | ·
(

n
n/2

)
. Eventually, the complexity of the

quantum part is:

O∗

(√
|E| · |T | ·

(
n/2

n/4

)√
|E| · |T | ·

(
n

n/2

))
= O∗

(
|E| · |T |

√(
n/2

n/4

)(
n

n/2

))

= O∗(|E| · |T | · 20.75n) .

Eventually, the total complexity is the maximum of the classical and the quantum part, namely,

O∗(|E|2 · |T | · 20.811n) = O∗ (|E|2 · |T | · 1.754n
)
.

We naturally obtain the hybrid Algorithm 3 that takes Q-DDPAS as a subroutine.

Corollary 3.28. The bounded-error Algorithm 3, with Q-DDPAS as a subroutine, solves P in

O∗(|E|3 · |T | · 1.754n).

Proof. Algorithm 3 calls |E| times Q-DDPAS for Composed DDPAS (Algorithm 2), which com-

plexity is given in Theorem 3.27.
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Input: Auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)

Output: min
ϵ∈E

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
with high probability

ϵ∗ ← +∞;
for ϵ ∈ E do

Solve P ([n], 0, ϵ) with Algorithm 2;
if OPT[[n], 0, ϵ] < +∞ and ϵ < ϵ∗ then

ϵ∗ ← ϵ;
end

end
Return ϵ∗

Algorithm 3: Meta-algorithm with subroutine Q-DDPAS for Composed DPAS

As for the case of Q-DDPAS for Additive DPAS, we can reduce the exponential part of Q-DDPAS

complexity for Composed DPAS, by the very same modification.

Observation 3.29. A slight modification of the Q-DDPAS algorithm can reduce the complexity of

Algorithm 3 to O∗(|E|3 · |T | · 1.728n).

Proof. Refer to the proof of Observation 3.24.

We synthesize in Table 3 the worst-case time complexity achieved by Q-DDPAS on the exam-

ples of scheduling problems satisfying (Comp-DPAS) and (Comp-D-DPAS) and compare it with

the best-known classical complexity. The latter comes from the algorithm of Inclusion-Exclusion

designed by Ploton and T’kindt [25], which provides a generic method to solve such problems.

We observe that Q-DDPAS improves the exponential part of the complexity, at a cost of a higher

degree for the pseudo-polynomial factor.

Problem Q-DDPAS Best classical algorithm

1|rj |
∑

wjUj O∗ ((∑wj)
3 ·
∑

pj · 1.728n
)

O∗(
∑

wj ·
∑

pj · 2n), Ploton and T’kindt [25]

1|rj |
∑

wjCj O∗ ((∑wj)
3 · (
∑

pj)
4 · 1.728n

)
O∗(

∑
wj · (

∑
pj)

2 · 2n), Ploton and T’kindt [25]

Table 3: Comparison of complexities between Q-DDPAS and the best-known classical algorithm
for some scheduling problems satisfying (Comp-DPAS) and (Comp-D-DPAS)
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4 Adaptation to decision problems

We saw in the previous section that the recurrence to solve P can be done on a minimization

problem, possibly involving an auxiliary problem. Sometimes, the recurrence does not apply directly

to a minimization problem but to a decision problem. In this section, we adapt the hybrid algorithm

Q-DDPAS to this case. Originally, this adaptation came from the desire to solve the 3-machine

flowshop problem. Because this is the only scheduling problem we found that applies to this

resolution, henceforth we describe the dynamic programming properties for the 3-machine flowshop

problem to avoid additional and unnecessary abstraction. Notice that it can still be generalized

to other problems with the same structure. Particularly, it easily generalizes to the m-flowshop

problem, for m ≥ 4.

4.1 3-machine flowshop problem and dynamic programming

We consider the permutation flowshop problem on 3 machines for n jobs with minimizing the

makespan as the objective function. This strongly NP-hard problem is often referred to as F3||Cmax

in the literature, as mentioned by Shang et al. [28]. Each job j ∈ [n] consists of 3 operations Oij

for i ∈ [3], each operation being processed on the i-th machine. We note pij the processing time of

operation Oij . Each machine performs at most one operation at a time. For each job j, operations

must be processed in the specific order O1j , O2j , O3j : the first operation gets processed on the first

machine, then the second operation gets processed on second machine (as soon as the first operation

is finished and the machine 2 is available), and eventually the third operation gets processed on

the third machine (as soon as the second operation is finished and the machine 3 is available).

Thus, only the order of the executions of jobs can be decided. It implies that a solution is entirely

described by the permutation of jobs on the first machine, so the problem can be formulated as

min
π∈S[n]

Cmax(π) , (10)

where Cmax is the maximum completion time.

It happens that the two techniques presented so far do not apply to (10) so we present in the

next section an alternative approach involving the decision counterpart of the above optimization

problem.
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4.1.1 Decision problems definitions

Let us define the decision problem D related to P. An instance J of D is described by instance I of

P together with an additional parameter t ∈ Z. As in Subsection 2.1, we consider the sub-instance

J (J) = (I(J), t) corresponding to J ⊆ [n] and we focus on the solution of

D(J, t) :
∨

π∈Π(J,t)

fbool(π, J, t) , (11)

where Π(J, t) ⊆ SJ is the set of feasible permutations of J and fbool(., J, t) is a boolean function.

We note D[J, t] the boolean value of D(J, t). As before, we introduce the bounded set T (I) ⊆ Z

and omit the dependency to I and note T this latter set.

We assume that D and P are related through:

P : min
t∈T

{
t : D[[n], t] = 1

}
.

4.1.2 Special case of 3-machine flowshop

Let us describe D for the special case of the 3-machine flowshop at hand. We slightly modify the

description of an instance, and assume that an instance J of D is an instance I = ([n], pij : i ∈

[3], j ∈ [n]) of P together with four parameters β2, β3, ϵ2, ϵ3 ∈ Z. We introduce the bounded set

T (I) =

0, . . . ,
∑

j∈[n],i∈[3]

pij

 ⊆ Z

and consider parameters (β2, β3, ϵ2, ϵ3) ∈ T (I)4. Henceforth, we denote by T the set T (I) to

lighten the notations. Notice that the number of parameters is four for the 3-machine flowshop,

but generalizes to 2(m− 1) parameters for the m-machine flowshop as we see later.

Definition 4.1 (Decision problem). For J ⊆ [n], β⃗ = (β2, β3) ∈ T 2 and ϵ⃗ = (ϵ2, ϵ3) ∈ T 2, we

define the decision problem D(J, β⃗, ϵ⃗) on a sub-instance associated with J as the following question:

“Does there exist a permutation π ∈ SJ such that, for i ∈ {2, 3}, bi(π) ≥ βi , and

ei(π) ≤ ϵi ?”,

where bi(π), respectively ei(π), denotes the time that the first operation begins, respectively the last

operation ends, on the i-th machine, for i ∈ [3].
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In other words, problem D(J, β⃗, ϵ⃗) is asking whether there exists a feasible permutation with jobs

in J such that it holds between the two temporal fronts β⃗ and ϵ⃗. Notice that it is not necessary

to impose any beginning and ending time for the first machine (i = 1). Indeed, the problem is

time-invariant, thus we can always consider that the scheduling problem starts at time 0, and that

the total completion time on the first machine is known and equal to the sum of processing times

of considered jobs. With these notations, P can be cast as follows:

P : min
c∈T

{
c : D[[n], (0, c), (0, c)] = 1

}
. (12)

The decision problem D introduced in Definition 4.1 satisfies the recurrence (Dec-DPAS) below.

Property 4.2 (Decision DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

(
D[{j}, β⃗, t⃗] ∧D[J \ {j}, t⃗⊖ p1j , ϵ⃗⊖ p1j ]

)
, (Dec-DPAS)

where t⃗ ∈ [β⃗, ϵ⃗] means that the i-th coordinate of t⃗ is between the i-th coordinates of β⃗ and ϵ⃗, and

where the operation v⃗ ⊖ c, for a vector v⃗ and a constant c, subtracts c to each coordinate of v⃗.

This latter recurrence enables P to be solved by classical dynamic programming.

Lemma 4.3. (Dec-DPAS) solves P in O∗(|T |4 · 2n).

Proof. First, we can show that, for a given β⃗0, ϵ⃗0 ∈ T 2, (Dec-DPAS) solves D([n], β⃗0, ϵ⃗0) in O∗(|T |4 ·

2n). This is essentially the same lines of the proof for Lemma 2.2. Second, to solve P, we make a

dichotomic search over T to find the minimum c ∈ T such that D([n], (0, c), (0, c)) is true according

to Equation 12. Thus, (Dec-DPAS) is called log2(|T |) times. Because |T | =
∑

pij is a pseudo-

polynomial term of the instance, the total complexity is

O∗(log2(|T |) · |T |4 · 2n) = O∗(|T |4 · 2n) .

Not only does problem D satisfy (Dec-DPAS), but it also satisfies the following (Dec-D-DPAS)

recurrence.
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Property 4.4 (Decision Dichotomic DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and

ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

D[X, β⃗, t⃗] ∧D[J \X, t⃗⊖
∑
j∈X

p1j , ϵ⃗⊖
∑
j∈X

p1j ]

 . (Dec-D-DPAS)

Lemma 4.5. (Dec-D-DPAS) solves P in ω(|T |4 · 2n).

Proof. This proof is similar to the proof of Lemma 2.5, with the argument that dichotomic search

is polynomial in the size of the instance as in the proof of Proposition 4.3.

Once again, we observe that recurrence (Dec-DPAS) outperforms recurrence (Dec-D-DPAS) to

solve by classical dynamic programming our problem P. In the next section, we describe how

we adapt Q-DDPAS to take advantage of those two recurrences to solve the 3-machine flowshop

problem.

4.2 Hybrid algorithm Q-Dec-DDPAS

We call Q-Dec-DDPAS the adapted decision version of Q-DDPAS. The main difference is that

instead of searching for a minimum value in a set in recurrence (Add-D-DPAS) or (Comp-D-DPAS),

we search for a True value in a set in recurrence (Dec-D-DPAS). Thus, it essentially amounts to

replacing QMF with the algorithm of Grover Search specified below.

Definition 4.6 (Circuit UG). Let f : [n] → {0, 1} be a function and let Uf be its corresponding

quantum circuit, specifically,

Uf |i⟩ |0⟩ = |i⟩ |f(i)⟩ , ∀i ∈ [n] .

We note UG[Uf ] the quantum circuit corresponding to the algorithm of Grover [12] that computes

with high probability the logical OR of all the f values. If it appends to be True, UG[Uf ] also gives

the corresponding set If = {i : f(i) = 1}. Specifically,

UG[Uf ]

N∑
i=1

1√
N
|i⟩ |0⟩ |0⟩ =

N∑
i=1

1√
N
|i⟩ |If ⟩

∣∣∣∣∣∣
∨

i∈[N ]

f(i)

〉
,
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Observation 4.7 (Complexity of UG). The complexity of Grover Search is O (
√
n · Cf (n)), where

n is the size of the domain of f and O(Cf (n)) is the complexity of the circuit Uf . Thus, according

to Observation 3.3, the complexity of UG[Uf ] is,

O
(√

n · Cf (n)
)
.

In what follows, we define the sets and their associated quantum circuits to describe the Q-Dec-

DDPAS algorithm.

Definition 4.8 (Sets Λdec and Ωdec). For J ⊆ [n] such that |J | is even and for β⃗, ϵ⃗ ∈ T 2, we define

the set

Λdec(J, β⃗, ϵ⃗) =

{
(X, β⃗, t⃗, J \X, t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
,

and the set

Ωdec(J, β⃗, ϵ⃗) =

{
(X,D[X, β⃗, t⃗], β⃗, t⃗, J \X,D[J \X, t⃗, ϵ⃗], t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
.

The quantum circuits associated with these two sets are the following.

Definition 4.9 (Circuit UΛdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define

UΛdec
as follows:

UΛdec
|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩⊗8 =

|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ ∑

(λs
1,λ

tb
1 ,λte

1 ,λs
2,λ

tb
2 ,λte

2 )∈Λdec(J,β⃗,⃗ϵ)

1√
|Λdec(J, β⃗, ϵ⃗)|

|λs
1⟩
∣∣∣λtb

1

〉 ∣∣λte
1

〉
|0⟩ |λs

2⟩
∣∣∣λtb

2

〉 ∣∣λte
2

〉
|0⟩ .

Notice that we index the objects that represent sets by s, and the objects that represent scalars in

T 2 by tb if it represents a couple of beginning times, or by te if it represents a couple of ending

times.

Proposition 4.10 (Complexity of UΛdec
). The complexity of UΛdec

is polynomial in the size of the

input.

Definition 4.11 (Circuit UΩdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define
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UΩdec
as follows:

UΩdec
|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩ = |J⟩

∣∣∣β⃗〉 |⃗ϵ⟩ ∑
ω∈Ωdec(J,β⃗,⃗ϵ)

1√
|Ωadd(J, β⃗, ϵ⃗)|

|ω⟩ .

Proposition 4.12 (Complexity of UΩdec
). Let J be the input set. If we suppose to have stored in

the QRAM the values D[X, β⃗, ϵ⃗] for all X ⊆ J such that |X| = |J |/2 and for all β⃗, ϵ⃗ ∈ T 2, the

complexity of UΩdec
is polynomial in the size of the input.

The proof of Proposition 4.10, respectively Proposition 4.12, is similar to the proof of Propo-

sition 3.9, respectively Proposition 3.11. Notice that t⃗ ∈ [β⃗, ϵ⃗] can be replaced by t⃗ ∈ T 2 in sets

UΛdec
and UΩdec

so that the circuits that superpose all elements of these sets are easier to conceive.

Indeed, (Dec-DPAS) and (Dec-D-DPAS) are less accurate but still valid with this replacement.

The operation in recurrence (Dec-D-DPAS) is not the addition (represented by the function a

for (Add-D-DPAS)) nor the composition (represented by the function c for (Comp-D-DPAS)) but

the logical AND. We define below its corresponding quantum circuit.

Definition 4.13 (Circuit Uand). We note the antecedent set Sand = 2[n]×{0, 1}×T 2×T 2× 2[n]×

{0, 1} × T 2 × T 2. Let and : Sand → {0, 1} be the function:

and(ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ωs

2, ω
b
2, ω

tb
2 , ω

te
2 ) =


1 if ωb

1 = ωb
2

0 else

We note Uand the quantum circuit associated to the function, specifically,

∀ω = (ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ωs

2, ω
b
2, ω

tb
2 , ω

te
2 ) ∈ Sand, Uand |ω⟩ |0⟩ = |ω⟩ |and(ω)⟩ .

Notice that objects representing boolean values are indexed by b. Note that according to re-

currence (Dec-D-DPAS), the function and applies on objects of sets Ωdec(J, β⃗, ϵ⃗) for J ⊆ [n] and

β⃗, ϵ⃗ ∈ T 2.

Proposition 4.14 (Complexity of Uand). The complexity of Uand is polynomial in the size of the

input.

The proof of the above proposition is the same as the one of Proposition 3.13.
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Remark 4.15. Notice that for J ⊆ [n] and β⃗, ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

ω∈Ωdec(J,β⃗,⃗ϵ)

and(ω) . (13)

Q-Dec-DDPAS algorithm solves D([n], β⃗0, ϵ⃗0), for β⃗0, ϵ⃗0 ∈ T 2. Eventually, Q-Dec-DDPAS is

the subroutine of a meta-algorithm that solves the 3-machine flowshop problem P. Let us begin

with the description of different quantum circuits for the quantum part of Q-Dec-DDPAS. Let

β⃗0, ϵ⃗0 ∈ T 2. The initial state is

|ini⟩ = |[n]⟩
∣∣∣β⃗0〉 |⃗ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13

I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24

I3 = I31 ⊕ I32

I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44

I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωdec
⊗ U

I4

Ωdec
) · U I1⊕I2⊕I4

Λdec
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
and

(
U

I24⊕I3

G [U
I24
and]⊗ U

I44⊕I5

G [U
I44
and]
)
,

Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6
G [Urecur1] .

The description of Q-Dec-DDPAS is in Algorithm 4.

Theorem 4.16. Let β⃗0, ϵ⃗0 ∈ T 2. The bounded-error algorithm Q-Dec-DDPAS (Algorithm 4) solves
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Input: β⃗0, ϵ⃗0 ∈ T 2, decision problem D satisfying (Dec-DPAS) and (Dec-D-DPAS)
Output: D[[n], β⃗0, ϵ⃗0] with high probability
begin classical part

for X ⊆ [n] : |X| = n/4 and β⃗, ϵ⃗ ∈ T 2 do

Compute the optimal value D[X, β⃗, ϵ⃗] and the corresponding permutation
π∗[X, β⃗, ϵ⃗] by classical (Dec-DPAS);

Store the tuple (X, β⃗, ϵ⃗, D[X, β⃗, ϵ⃗], π∗[X, β⃗, ϵ⃗]) in the QRAM;

end

end
begin quantum part

Prepare quantum state |ini⟩;
Apply the quantum circuit UrecurUini to |ini⟩;
Measure register of indexes I62 ;

end
Return the outcome of the measurement

Algorithm 4: Q-Dec-DDPAS for 3-machine flowshop

D([n], β⃗0, ϵ⃗0) in O∗((
∑

pij)
4 · 1.754n).

Proof. As for the proof of Theorem 3.27, we follow the same reasoning of the proof of Theorem 3.23.

First, we can show that the boolean value D[[n], β⃗0, ϵ⃗0] is stored in the register of indexes I62 with

high-probability. Indeed, the classical part computes and stores in the QRAM the decision variables

for all
(n/2
n/4

)
bi-partitions of [n], for any couple of parameters in T 2. The quantum part applies

recursively two times Grover Search. The first call puts the optimal values for sets of size n/2 in

superposition (refer to Remark 4.15). The second call finds the optimal value for [n].

The computation of the complexity in time of Q-Dec-DDPAS is also similar.

• Classical part: according to Lemma 4.3, (Dec-DPAS) computes all D[X, β⃗, ϵ⃗] for X of size

n/4 and β⃗, ϵ⃗ ∈ T 2 in

O∗
(
|T |4 ·

(
n

≤ n/4

))
= O∗(|T |4 · 20.811n) .

• Quantum part: the first call to Grover Search in parallel is done on a set of size |T |2 ·
(n/2
n/4

)
.

The second call to Grover Search is done on a set of size |T |2 ·
(

n
n/2

)
. Eventually, the complexity

of the quantum part is:

O∗

(√
|T |2 ·

(
n/2

n/4

)√
|T |2 ·

(
n

n/2

))
= O∗

(
|T |2

√(
n/2

n/4

)(
n

n/2

))

= O∗(|T |2 · 20.75n) .
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Eventually, the total complexity is

O∗(|T |4 · 20.811n + |T |2 · 20.75n) = O∗ (|T |4 · 1.754n
)

= O∗
(

(
∑

pij)
4 · 1.754n

)

It stems from Q-Dec-DDPAS the Algorithm 5 that solves the 3-machine flowshop P.

Input: 3-machine flowshop
Output: Minimum makespan with high probability
c∗ ← +∞;
for c ∈ T do

Solve D([n], (0, c), (0, c)) with Algorithm 4;
if D[[n], (0, c), (0, c)] and c < c∗ then

c∗ ← c;
end

end
Return c∗

Algorithm 5: Meta-algorithm with subroutine Q-Dec-DDPAS for the 3-machine flowshop

Theorem 4.17. Algorithm 5 solves the 3-machine flowshop in O∗((
∑

pij)
4 · 1.754n) with high

probability.

Once again, as mentioned in Observation 3.24, the complexity can be reduced thanks to a slight

modification on the Q-Dec-DDPAS that constitutes the subroutine.

Observation 4.18. A slight modification of Algorithm 5 reduces the complexity of solving the

3-machine flowshop in O∗((
∑

pij)
4 · 1.728n) with high probability.

It is worth noting that the previous algorithm easily generalizes to the m-machine flowshop

problem and runs in O∗((
∑

pij)
2(m−1) · 1.728n). Indeed, the only difference is the description of

the temporal front that necessitates 2(m− 1) parameters.

This new method improves the best-known classical algorithm that is in O∗(3n) or in O∗(M ·2n)

if there exists a constant M such that pij ≤M for all i ∈ [3], j ∈ [n] presented by Shang et al. [28]

and by Ploton and T’kindt [26]. Hybrid quantum-classical bounded-error Algorithm 5 reduces the

exponential part of the time complexity at the cost of a pseudo-polynomial factor. For most cases,

this factor is negligible because the numerical values of 3-machine flowshop instances are small
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compared to the exponential part value. However, we present in the next subsection a way to

dispose of this factor with an approximation scheme.

4.3 Approximation scheme

We present an approximation scheme for the 3-machine flowshop problem that trades the pseudo-

polynomial factor in the complexity of Q-Dec-DDPAS and the optimality of the algorithm for a

polynomial factor in 1
ϵ and an approximation factor of (1 + ϵ). In other words, we provide the Al-

gorithm 6 that finds a solution in time O∗ ( 1
ϵ3
· 1.728n

)
for which the makespan is not greater than

(1+ϵ) times the optimal makespan. The latter point denotes that this is an ϵ-approximation scheme.

Our algorithm belongs to the class of moderate exponential-time approximation algorithms. Notice

that the 3-machine flowshop problem does not admit an FPTAS (fully polynomial-time approxima-

tion scheme) because it is strongly NP-hard, meaning that no ϵ-approximation algorithm exists to

solve the 3-machine flowshop in time O
(
poly(n, 1ϵ )

)
unless P = NP (Vazinari [33]). In comparison,

Hall et al. [13] provide for the m-machine flowshop problem an FPT-AS (fixed-parameter tractable

approximation scheme), namely an ϵ-approximation algorithm that runs in time O(f(ϵ, κ) ·poly(n))

for κ a fixed parameter of the instance and f a computable function. Hall et al. [13] choose κ to be

the number of machines of the flowshop, leading to an FPT-AS that runs in time O
(
n3.5 · (mϵ )

m4

ϵ2

)
.

In our case, we should consider the case m = 3.

Input: ϵ > 0, 3-machine flowshop on n jobs with processing times {pij : i ∈ [3], j ∈ [n]}
Output: solution at most 1 + ϵ times the optimal solution
P = max

i∈[3],j∈[n]
{pij};

K = ϵP
n+2 ;

for i ∈ [3], j ∈ [n] do
p′ij = ⌈pijK ⌉;

end
Solve 3-machine flowshop on n jobs with new processing times {p′ij : i ∈ [3], j ∈ [n]} with

Algorithm 5 that outputs permutation π′;
Return π′

Algorithm 6: Hybrid approximation scheme for the 3-machine flowshop

Lemma 4.19. Let π∗ be an optimal solution of the 3-machine flowshop problem, for the processing
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times {pij : i ∈ [3], j ∈ [n]}. Let π′ be the output of Algorithm 6. We have

Cmax(π
′) ≤ (1 + ϵ) · Cmax(π

∗) .

Next, we introduce two observations necessary to prove Lemma 4.19. The proofs are omitted

because of their simplicity.

Observation 4.20. Let π be a permutation and let α be a non-negative real number. We note

Cmax(π) the makespan of π of the 3-machine flowshop for processing times {pij : i ∈ [3], j ∈ [n]}. We

note C ′
max(π) the makespan of π of the 3-machine flowshop for processing times {p′ij : i ∈ [3], j ∈ [n]}

such that p′ij := αpij for all i, j. Then,

C ′
max(π) = αCmax(π) .

Notice that for p′ij ≤ αpij, we have C ′
max(π) ≤ αCmax(π) even if the critical path in π may differ to

obtain Cmax and C ′
max.

Observation 4.21. Let π be a permutation and let β be a real number such that β ≥

− min
i∈[3],j∈[n]

{pij}. We note Cmax(π) the makespan of π of the 3-machine flowshop for processing

times {pij : i ∈ [3], j ∈ [n]}. We note C ′′
max(π) the makespan of π of the 3-machine flowshop for

processing times {p′′ij : i ∈ [3], j ∈ [n]} such that p′′ij := pij + β for all i ∈ [3], j ∈ [n]. Then,

C ′′
max(π) ≤ Cmax(π) + β(n + 2) .

Notice that for p′′ij ≤ pij + β, we still have C ′′
max(π) ≤ Cmax(π) + β(n + 2) even if the critical path

in π may differ to obtain Cmax and C ′′
max.

Proof of Lemma 4.19. Given ϵ > 0, let us prove Lemma 4.19. The new processing times considered

p′ij := ⌈pijK ⌉ imply that
pij
K ≤ p′ij <

pij
K + 1. We note C ′

max the makespan of the new problem, i.e.

the 3-machine flowshop problem with processing times {p′ij : i ∈ [3], j ∈ [n]}.

On the one hand, we have p′ij <
pij
K +1 for all i ∈ [3], j ∈ [n]. Thus, according to Observations 4.20

and 4.21 considering the optimal permutation π∗,

C ′
max(π∗) ≤ Cmax(π∗)

K
+ n + 2 ,
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namely, because K > 0,

KC ′
max(π∗) ≤ Cmax(π∗) + K(n + 2) . (14)

On the other hand, we have
pij
K ≤ p′ij . Thus, according to Observation 4.20 considering the

output permutation π′ of Algorithm 6,

Cmax(π′)

K
≤ C ′

max(π′) ,

namely, because K > 0,

Cmax(π′) ≤ KC ′
max(π′) (15)

≤ KC ′
max(π∗) (16)

≤ Cmax(π∗) + K(n + 2) = Cmax(π∗) + ϵP (17)

≤ Cmax(π∗) + ϵCmax(π∗) = (1 + ϵ)Cmax(π∗) , (18)

where (16) comes from the fact that π′ is the optimal solution for makespan C ′
max, (17) results from

Equation (14), and (18) is true because the makespan is always larger than P = max
i∈[3],j∈[n]

{pij}.

Theorem 4.22. Algorithm 6 is an approximation scheme for the 3-machine flowshop problem and

outputs a solution whose makespan it at most (1 + ϵ) times the optimal value in time

O∗
(

1

ϵ3
· 1.728n

)
.

Proof. First, according to Lemma 4.19, Algorithm 6 outputs a solution whose makespan it at most

(1 + ϵ) times the optimal value.

Second, Algorithm 5 solves the new problem in time O∗((
∑

p′ij)
4 · 1.728n) = O∗( 1

ϵ4
· 1.728n).

Indeed,

∑
p′ij ≤

∑
(
pij
K

+ 1) =
1

K

∑
pij + 3n

≤ 1

K
· 3nP + 3n

=
3n(n + 2)

ϵ
+ 3n .

Thus,
∑

p′ij ≤ poly(n, 1ϵ ).
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5 Conclusion

In this work, we extend the quantum-classical algorithm of Ambainis et al. [3] to optimization

problems that satisfy Dynamic Programming Across the Subsets (DPAS) properties. We illustrate

our hybrid algorithm Q-DDPAS on several NP-hard single-machine scheduling problems and adapt

it for the 3-machine flowshop problem. Q-DDPAS reduces the best-known classical time complex-

ity, often equal to O∗(2n) for single-machine problems and O∗(3n) for the 3-machine flowshop,

to O∗(1.728n), sometimes at the cost of an additional pseudo-polynomial factor as summarized

in Table 1. Future work should be dedicated to finding a quantum brick, e.g. Grover Search

(Grover [12]), Quantum Fourier Transform (Kitaev [15]) or Quantum Walks (Aharonov et al. [1]),

that could speedup exponential algorithms such as Sort-and-Search (Lenté et al. [18]), Inclusion-

Exclusion (Ploton [24]) or Branch-and-Reduce (T’kindt et al. [32]).
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A Notations and upper bounds

In what follows, we use the notation

(
n

≤ k

)
=

k∑
i=1

(
n

i

)
.
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We also define the binary entropy of ϵ ∈]0, 1[ by H(ϵ) = −(ϵ log2(ϵ)+(1−ϵ) log2(1−ϵ)) . We remind

some useful upper bounds of binomial coefficients [3]:

∀k ∈ J1, nK,
(
n

k

)
≤ 2H( k

n)·n ,

∀k ∈
r

1,
n

2

z
,

(
n

≤ k

)
≤ 2H( k

n)·n .

Observe that
(

n
≤n/4

)
is bounded above by 2

H
(

n/4
n

)
·n

, where

H

(
n/4

n

)
= H

(
1

4

)
= −

(
1

4
log2

(
1

4

)
+

3

4
log2

(
3

4

))
= 0.811 ,

leading to (
n

≤ n/4

)
≤ 20.811n . (19)

In the same way, we can show that (
n

≤ 0.945 · n/4

)
≤ 20.789n . (20)

Similarly,
√(

n
n/2

)(n/2
n/4

)
is bounded above by

√
2
H
(

n/4
n/2

)
·n
2 2

H
(

n/2
n

)
·n

= 2
1
2( 1

2
H( 1

2)+H( 1
2))·n = 2

3
4
H( 1

2)n ,

where H
(
1
2

)
= 1, leading to √(

n

n/2

)(
n/2

n/4

)
≤ 20.75n . (21)

In the same way, we can show that√(
n

n/2

)(
n/2

n/4

)(
n/4

0.945 · n/4

)
≤ 20.789n . (22)

B Omitted proof

In this appendix, we detail the proof of Lemma 3.25. Next, we compute UrecurUini |ini⟩ and show

that OPT[[n], 0] is stored in register of indexes I62 with high probability. We write the following

computations as if the algorithm QMF was returning the optimal solution with probability 1. First,
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we compute Uini |ini⟩.

U
I1⊕I2⊕I4

Λadd
|ini⟩ =U

I1⊕I2⊕I4

Λadd
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩
∣∣λt

1

〉
|0⟩︸ ︷︷ ︸

I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs
2⟩
∣∣λt

2

〉
|0⟩︸ ︷︷ ︸

I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus,

Uini |ini⟩ =(U
I2

Ωadd
⊗ U

I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
|ini⟩

=(U
I2

Ωadd
⊗ U

I4

Ωadd
) |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩
∣∣λt

1

〉
|0⟩︸ ︷︷ ︸

I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs
2⟩
∣∣λt

2

〉
|0⟩︸ ︷︷ ︸

I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

 ∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λs

1, λ
t
1)|
|ω⟩︸︷︷︸
I23

|0⟩⊗2︸ ︷︷ ︸
I3



|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

 ∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λs

2, λ
t
2)|
|ω⟩︸︷︷︸
I43

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

.

Second, we apply the tensor product of the two first QMF to the previous state.

(
U

I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ]
)
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

 ∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λs

1, λ
t
1)|
|ω⟩︸︷︷︸
I23

|0⟩⊗2︸ ︷︷ ︸
I3



|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

 ∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λs

2, λ
t
2)|
|ω⟩︸︷︷︸
I43

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λs

1, λ
t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣arg min
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32
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|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λs

2, λ
t
2)|
|ω⟩︸︷︷︸
I43

∣∣∣∣arg min
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus, we apply the second circuit of QMF.

UrecurUini |ini⟩ =U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1]Uini |ini⟩

=U
I21⊕I32⊕I41⊕I52⊕I12 I

6

QMF [U
I21⊕I32⊕I41⊕I52⊕I12
a ] |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λs

1, λ
t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣arg min
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32

|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λs

2, λ
t
2)|
|ω⟩︸︷︷︸
I43

∣∣∣∣arg min
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λs

1, λ
t
1)|
|ω⟩︸︷︷︸
I23

∣∣∣∣arg min
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32

|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λs

2, λ
t
2)|
|ω⟩︸︷︷︸
I43∣∣∣∣arg min

ω
r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

∣∣∣∣∣ arg min
λ∈Λadd([n],0)

r(λs
1, min

ω∈Ωadd(λ
s
1,λ

t
1)
r(ω), λs

2, min
ω∈Ωadd(λ

s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I61∣∣∣∣∣ min
λ∈Λadd([n],0)

r(λs
1, min

ω∈Ωadd(λ
s
1,λ

t
1)
r(ω), λs

2, min
ω∈Ωadd(λ

s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I62

.

According to definition of a and recurrence (Add-D-DPAS), the results stored in register of indexes

I62 is OPT[[n], 0].

Notice that optimal permutation π∗[[n], 0] can be rebuilt with registers of indexes I31 , I51 and I61 ,

and with the access to the results of the classical part in the QRAM.
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