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Structure of the companion paper. This companion paper describes the three algorithms

regarding Q-DDPAS and its decision-based version (Algorithm, Algorithm 2, and Algo-

rithm 4) of the main paper with a low-level description. We call low-level description the

description of the quantum part of the above-mentioned hybrid algorithms with unitary cir-

cuits representing complete algorithms or single operations. This description aims to provide

the necessary details to prove the correctness of these algorithms, and consequently enlighten

possible implementations, but avoiding too many details as with a quantum gate description

that seems unnecessary at this stage. Henceforth, we suppose the reader to be familiar with the

basics of quantum circuits. Readers may refer to Nannicini (2020) for these notions. To clarify

the references, we write in bold the one referring to the main paper.

1 Preliminaries

Let us introduce the building blocks required for the description of the algorithms in the next

sections.

1.1 Building block quantum circuits

We specify the quantum circuit associated with two algorithms that we use in a black box way

and which constitute fundamental subroutines in Q-DDPAS or Q-Dec-DDPAS algorithms. The

first one is the Quantum Minimum Finding algorithm of Durr and Hoyer (1996) presented in

Definition 2.6, needed for Q-DDPAS. The second one is the Grover Search Extension of Boyer
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et al. (1998) presented in Definition 5.6, needed for Q-Dec-DDPAS. But first, we make the

following observation.

Observation 1.1 (Classical algorithm into quantum circuit (Bennett, 1973)). Any classical

algorithm A can be executed as a quantum circuit UA by preserving the number of gates but

increasing the size memory. This additional cost comes from the fact that UA must be reversible.

Specifically, if A uses T gates and S bits of memory, UA uses O(T ) gates and O(T +S) bits of

memory.

The circuit associated with the QuantumMinimum Finding (Definition 2.6) is the following.

Definition 1.2 (Circuit UQMF). Let f : [n] → Z be a function and let Uf be its corresponding

quantum circuit, specifically,

Uf |i⟩ |0⟩ = |i⟩ |f(i)⟩ , ∀i ∈ [n] .

We note UQMF[Uf ] the quantum circuit corresponding to the Quantum Minimum Finding algo-

rithm of Durr and Hoyer (1996) that computes with high probability the minimum value of f

and the corresponding minimizer:

UQMF[Uf ]
n∑

i=1

1√
n
|i⟩ |0⟩ |0⟩ =

n∑
i=1

1√
n
|i⟩

∣∣∣∣∣argmin
i∈[n]

{f(i)}

〉∣∣∣∣min
i∈[n]

{f(i)}
〉

.

Next, we present the circuit associated with the extension of Grover Search (Definition 5.6).

Definition 1.3 (Circuit UG). Let f : [n] → {0, 1} be a function and let Uf be its corresponding

quantum circuit, specifically,

Uf |i⟩ |0⟩ = |i⟩ |f(i)⟩ , ∀i ∈ [n] .

We note UG[Uf ] the quantum circuit corresponding to the algorithm of Boyer et al. (1998) that

computes with high probability the logical OR of all the f values. If it appends to be True,

UG[Uf ] also gives the corresponding set If = {i : f(i) = 1}. Specifically,

UG[Uf ]
N∑
i=1

1√
N

|i⟩ |0⟩ |0⟩ =
N∑
i=1

1√
N

|i⟩ |If ⟩

∣∣∣∣∣∣
∨

i∈[N ]

f(i)

〉
,

Henceforth, we only look at the gate complexity of our algorithm. Thus, we deliberately

ignore extra qubits required in Quantum Minimum Finding, Grover Search Extension, and

classical computation as quantum circuits (see Observation 1.1).

1.2 Quantum circuits indexing

Before going into the description of the algorithms, we introduce some notations about indexing

quantum circuits to be able to describe them rigorously. Let reg = |q1⟩ . . . |qn⟩ be a register of
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n qubits and U be an operator acting on k qubits, with k < n. Let I be a k-tuple of distinct

indices in [n], I = (i1, . . . , ik). We denote by U I the operator acting on the full register reg,

that applies U on |qi1⟩ . . . |qik⟩, and applies Id on the remaining qubits. For instance, if I is the

tuple of contiguous indices (3, . . . , k + 3) with k < n− 3, then

U I := Id⊗2 ⊗ U ⊗ Id⊗n−k−3 .

For I = (i1, . . . , ik) and J = (j1, . . . , jl) two distinct tuples in [n] (k-tuple and l-tuple where

i ̸= j,∀(i, j) ∈ I × J) , we note I ⊕ J the concatenation of I and J , namely I ⊕ J =

(i1, . . . , ik, j1, . . . , jl). Regarding the Quantum Minimum Finding operator, let us denote the

indexes related to the quantum circuit Uf of a function f as

Uf |i⟩︸︷︷︸
I

|0⟩︸︷︷︸
J

= |i⟩︸︷︷︸
I

|f(i)⟩︸ ︷︷ ︸
J

.

To clarify the computations detailed next, we index the corresponding Quantum Minimum

Finding operator as UQMF[U
I
f ]. We omit the index J because this is an auxiliary register that

does not appear in the output of UQMF[Uf ]. Similarly, we index the corresponding Grover

Search Extension operator as UG[U
I
f ] omitting the index J .

2 Hybrid algorithm Q-DDPAS

In this section, we describe in the gate-based quantum computing model our algorithm Q-

DDPAS that applies to any problem that satisfies (Add-DPAS) and (Add-D-DPAS) or (Comp-

DPAS) and (Comp-D-DPAS). We introduce in the two following subsections the sets and quan-

tum circuits that constitute the building blocks of our algorithm Q-DDPAS, and we provide

for each of them their complexity. Depending on the tackled problem P solved by the hybrid

algorithm, these sets, respectively quantum circuits, slightly differ whether the related prob-

lem P satisfies (Add-DPAS) and (Add-D-DPAS), or the related auxiliary problem P ′ satisfies

(Comp-DPAS) and (Comp-D-DPAS).

2.1 Additive DPAS sets and quantum circuits

Let us begin with the sets and related quantum circuits useful to the description of our algorithm

for solving problems whose related problem P satisfies recurrences (Add-DPAS) and (Add-D-

DPAS).

We define two sets Λadd and Ωadd indexed by (J, t) for J ⊆ [n] and t ∈ T . Essentially, the

set Λadd(J, t) contains all the possible balanced bi-partitions of J and the associated parameter

value of tshift. The second set Ωadd(J, t) contains the optimal solutions for each bi-partition in
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Λadd(J, t).

Definition 2.1 (Sets Λadd and Ωadd). For J ⊆ [n] such that |J | is even and for t ∈ T , we

define the set

Λadd(J, t) =

{
(X, t, J \X, tshift(J,X, t)) : X ⊆ J, |X| = |J |

2

}
,

and the set

Ωadd(J, t) =

{
(X,OPT[X, t], J \X,OPT[J \X, tshift(J,X, t)], t) : X ⊆ J, |X| = |J |

2

}
.

The two following quantum circuits UΛadd
and UΩadd

amount, respectively, to put into uniform

superposition the elements of Λadd and Ωadd.

Definition 2.2 (Circuit UΛadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define

UΛadd
as follows:

UΛadd
|J⟩ |t⟩ |0⟩⊗6 = |J⟩ |t⟩

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd(J,t)

1√
|Λadd(J, t)|

|λs
1⟩
∣∣λt

1

〉
|0⟩ |λs

2⟩
∣∣λt

2

〉
|0⟩ .

Observe that we index the objects that represent sets by s, and the objects that represent

scalars by t, because these are equal to the values in T .

Proposition 2.3 (Complexity of UΛadd
). The complexity of UΛadd

is polynomial in the size of

the input.

Proof. First, let us prove that, for a given J ⊆ [n] of size m for m even, the construction of the

quantum superposition of subsets of J of size m/2 (i.e. superposition of balanced bi-partitions)

is polynomial. We recall that we define Ja, bK := {a, a+ 1, . . . , b} for integers a ≤ b.

Let J ⊆ [n] be of size m, for m even. We note σenum : J 7→ J1,mK the bijection that

enumerates the elements of J . We note σbipart : J1,
(

m
m/2

)
K 7→

{
(A, J1,mK \A) : |A| = m

2

}
the

bijection that enumerates the balanced bi-partitions of J1,mK. Let Uσbipart
be the quantum

circuit corresponding to the function σbipart. Specifically, for i ∈ J1,
(

m
m/2

)
K,

Uσbipart
|i⟩ |0⟩ |0⟩ = |i⟩ |Ai⟩ |J1,mK \Ai⟩︸ ︷︷ ︸

σbipart(i)

.

Let U
σ−1
enum

be the quantum circuit corresponding to the inverse of the function σenum. Thus,

U
σ−1
enum

|i⟩ |Ai⟩ |J1,mK \Ai⟩ = |i⟩ |Xi⟩ |J \Xi⟩ ,

for Xi = σ−1
enum(Ai) ⊆ J . We denote by σ−1

enum(S), for S a set, the operation of applying σ−1
enum

to each element of S.

Consequently, we get a quantum superposition of all balanced bi-partitions of J by applying

first Uσbipart
then U

σ−1
enum

to a quantum register that represents the superposition of all elements
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in J1,
(

m
m/2

)
K. For that, we require nq := ⌈log2(

(
m

m/2

)
)⌉ = O(m) qubits, each one initially in state

|0⟩ on which we apply the Hadamard gate. Specifically,

U
σ−1
enum

Uσbipart
H⊗nq |0⟩⊗nq |0⟩ |0⟩ = U

σ−1
enum

Uσbipart

( m
m/2)∑
i=1

|i⟩ |0⟩ |0⟩

= U
σ−1
enum

( m
m/2)∑
i=1

|i⟩ |Ai⟩ |J1,mK \Ai⟩

=

( m
m/2)∑
i=1

|i⟩ |Xi⟩ |J \Xi⟩ .

Let us compute the complexity of U
σ−1
enum

Uσbipart
H⊗nq . For a given i, computing σbipart(i),

respectively σ−1
enum(i), is polynomial in m. According to Observation 1.1, the complexity of

Uσbipart
, respectively U

σ−1
enum

, is polynomial in m. Thus, the construction of the superposition of

balanced bi-partitions of J is polynomial.

Eventually, the computation of the function tshift is polynomial. Thus, the complexity of

UΛadd
is polynomial.

Definition 2.4 (Circuit UΩadd
). For J ⊆ [n] such that |J | is even, and for t ∈ T , we define

UΩadd
as follows:

UΩadd
|J⟩ |t⟩ |0⟩ = |J⟩ |t⟩

∑
ω∈Ωadd(J,t)

1√
|Ωadd(J, t)|

|ω⟩ .

Proposition 2.5 (Complexity of UΩadd
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPT[X, t] for all X ⊆ J such that |X| = |J |/2 and for all t ∈ T , the

complexity of UΩadd
is polynomial in the size of the input.

Proof. The proof follows essentially the same lines as the proof of Property 2.3. The quantum

superposition of subsets is done in polynomial time, and instead of computing tshift, we get

values in the QRAM in constant time.

We end this subsection with the definition of the quantum circuit of the addition required

for recurrence (Add-D-DPAS).

Definition 2.6 (Circuit Ua). We define the antecedent set Sa = 2[n]× (Z∪{+∞})×2[n]× (Z∪

{+∞})× T . Let a : Sa → Z ∪ {+∞} be the function:

a(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) = ωv
1 + ωv

2 + h(ωs
1 ∪ ωs

2, ω
s
1, ω

t) .

We note Ua the quantum circuit corresponding to a, namely:

∀(ωs
1, ω

v
1 , ω

s
2, ω

v
2 , ω

t) ∈ Sa, Ua |ω⟩ |0⟩ = |ω⟩ |a(ω)⟩ ,
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where |ω⟩ = |ωs
1⟩ |ωv

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt

〉
is encoded in five registers. Notice that we index the objects

that represent numerical values by v.

Notice that according to recurrence (Add-D-DPAS), the function a applies on objects of

Ωadd(J, t) for J ⊆ [n] and t ∈ T , explaining the choice of the antecedent set.

Proposition 2.7 (Complexity of Ua). The complexity of Ua is polynomial in the size of the

input.

Proof. By assumption, the computation of h is polynomial. It implies that the computation of

a is polynomial, and thus Ua has a polynomial complexity (see Observation 1.1).

Remark 2.8. Notice that for J ⊆ [n] and t ∈ T ,

OPT[J, t] = min
ω∈Ωadd(J,t)

a(ω) .

2.2 Composed DPAS sets and quantum circuits

In this subsection, we define the sets and their associated quantum circuits used for the de-

scription of the hybrid algorithm that solves problems whose related auxiliary problem satisfies

recurrences (Comp-DPAS) and (Comp-D-DPAS). Similarly to the previous subsection, we de-

fine two sets Λcomp and Ωcomp indexed by (J, t, ϵ) for J ⊆ [n], t ∈ T and ϵ ∈ E. In this case, the

set Λcomp(J, t, ϵ) contains all the possible balanced bi-partitions of J and the possible param-

eter values of T and E. The second set Ωcomp(J, t, ϵ) contains the optimal solutions for each

bi-partition and parameter values in Λcomp(J, t, ϵ).

Definition 2.9 (Sets Λcomp and Ωcomp). For J ⊆ [n] such that |J | is even, for t ∈ T and for

ϵ ∈ E, we define the set

Λcomp(J, t, ϵ) =

{
(X, ti, ϵi, J \X, t, ϵ− ϵi) : X ⊆ J, |X| = |J |

2
, ϵi ∈ E, ti ∈ T

}
,

and the set

Ωcomp(J, t, ϵ) =

(X,OPTϵi [X, ti], ti, ϵi, J \X,OPTϵ−ϵi [J \X, t], t, ϵ− ϵi) :

X ⊆ J, |X| = |J |
2 , ϵi ∈ E, ti ∈ T

 .

Definition 2.10 (Circuit UΛcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and for ϵ ∈ E,

we define UΛcomp
as follows:

UΛcomp
|J⟩ |t⟩ |0⟩⊗8 = |J⟩ |t⟩

∑
(λs1,λ

t
1,λ

e
1,

λs2,λ
t
2,λ

e
2)∈Λcomp(J,t,ϵ)

1√
|Λcomp(J, t)|

|λs
1⟩
∣∣λt

1

〉
|λe

1⟩ |0⟩ |λs
2⟩
∣∣λt

2

〉
|λe

2⟩ |0⟩ .
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Observe that we index the objects that represent sets by s, the objects that represent scalars

in T by t, and the objects that represent parameter values in E by e.

Proposition 2.11 (Complexity of UΛcomp
). The complexity of UΛcomp

is polynomial in the size

of the input.

Definition 2.12 (Circuit UΩcomp
). For J ⊆ [n] such that |J | is even, for t ∈ T and ϵ ∈ E, we

define UΩcomp
as follows:

UΩcomp
|J⟩ |t⟩ |ϵ⟩ |0⟩ = |J⟩ |t⟩ |ϵ⟩

∑
ω∈Ωcomp(J,t,ϵ)

1√
|Ωcomp(J, t, ϵ)|

|ω⟩ .

Proposition 2.13 (Complexity of UΩcomp
). Let J be the input set. If we suppose to have stored

in the QRAM the values OPTϵ[X, t] for all X ⊆ J such that |X| = |J |/2, for all t ∈ T and for

all ϵ ∈ E, the complexity of UΩcomp
is polynomial in the size of the input.

The proof of Proposition 2.11 (respectively Proposition 2.13) is similar to the proof of Propo-

sition 2.3 (respectively Proposition 2.5).

The composition is the counterpart for (Comp-D-DPAS) of the addition for (Add-D-DPAS)

(function a).

Definition 2.14 (Circuit Uc). We note the antecedent set Sc = 2[n] × (Z ∪ {+∞})× T × E ×

2[n] × (Z ∪ {+∞})× T × E. Let c : Sc → Z ∪ {+∞} be the function:

c(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) =


ωv
1 if ωt

1 = ωv
2

+∞ else

We note Uc the quantum circuit corresponding to c, namely:

∀(ωs
1, ω

v
1 , ω

t
1, ω

e
1, ω

s
2, ω

v
2 , ω

t
2, ω

e
2) ∈ Sc, Uc |ω⟩ |0⟩ = |ω⟩ |c(ω)⟩ ,

where |ω⟩ = |ωs
1⟩ |ωv

1⟩
∣∣ωt

1

〉
|ωe

1⟩ |ωs
2⟩ |ωv

2⟩
∣∣ωt

2

〉
|ωe

2⟩ is encoded in eight registers.

Notice that the function c is meant to be applied on objects of Ωcomp(J, t, ϵ), for J ⊆ [n],

t ∈ T and ϵ ∈ E, according to recurrence (Comp-D-DPAS).

Proposition 2.15 (Complexity of Uc). The complexity of Uc is polynomial in the size of the

input.

The proof of the above proposition is the same as for Proposition 2.7.

Remark 2.16. Notice that, for J ⊆ [n], t ∈ T and ϵ ∈ E,

OPTϵ[J, t] = min
ω∈Ωcomp(J,t,ϵ)

c(ω) .
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2.3 Algorithm for Additive DPAS (Algorithm 1)

Let us describe the hybrid algorithm Q-DDPAS in the gate-based quantum computing model.

We begin with the description of Algorithm 1 which is Q-DDPAS for problems P whose related

problem P satisfies recurrences (Add-DPAS) and (Add-D-DPAS). Algorithm 2, which is Q-

DDPAS for problems whose related auxiliary problem P ′ satisfies recurrences (Comp-DPAS)

and (Comp-D-DPAS), derives directly as we explain later in Subsection 2.4.

We present the quantum circuits used in the quantum part, as well as the numbering of the

different registers.

• Let |ini⟩ be the initial state:

|ini⟩ := |[n]⟩ |0⟩︸ ︷︷ ︸
I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12

I2 = I21 ⊕ I22 ⊕ I23

I3 = I31 ⊕ I32

I4 = I41 ⊕ I42 ⊕ I43

I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

• Let

Uini := (U
I2

Ωadd
⊗ U

I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
(1)

be the quantum circuit that, given initial quantum state |ini⟩, superposes all the couples

(X,X ′) such that X,X ′ ⊆ [n], |X| = |X ′| = n/4 and X ∩X ′ = ∅. For each couple, the

optimal values and parameters associated are also superposed.

• The quantum circuit U
I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ] applies two Quantum Minimum Finding

in parallel (resulting from the tensor product of two quantum circuits) on the function a.

Consequently, let

Urecur1 := U
I21⊕I32⊕I41⊕I52⊕I12
a

(
U

I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ]

)
be the quantum circuit that adds, with the help of of function a, the resulting values of

the two registers.
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• Eventually, let

Urecur := U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1] (2)

be the quantum circuit that applies Quantum Minimum Finding on the function repre-

sented by the circuit Urecur1.

We describe next the bounded-error hybrid algorithm Q-DDPAS (Algorithm 1) from a low-

level point of view.

Algorithm 1: Q-DDPAS for Additive DPAS (low-level description)

Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)

Output: OPT[[n], 0] with high probability

1 begin classical part

2 for X ⊆ [n] : |X| = n/4 and t ∈ T do

3 Compute the optimal value OPT[X, t] and the corresponding permutation

π∗[X, t] by classical (Add-DPAS);

4 Store the tuple (X, t,OPT[X, t], π∗[X, t]) in the QRAM;

5 begin quantum part

6 Prepare quantum state |ini⟩;

7 Apply the quantum circuit UrecurUini to |ini⟩;

8 Measure register of indexes I62 ;

9 Return the outcome of the measurement

We recall Theorem 2.8 which states Q-DDPAS complexity. Because the complexity proof

has already been proven, we only provide the proof of the correctness, namely that the optimal

value of P is stored in the register of indexes I62 with high probability.

Theorem 2.8. The bounded-error algorithm Q-DDPAS (Algorithm 1) solves P in O∗(|T | ·

1.754n).

Proof. Before entering the details of the computations, we give some intuition on the effect of

the quantum circuit UrecurUini and start by explaining the effect of Uini defined in (1). First,

the application of UΛadd
superposes all elements of Λadd([n], 0) in the registers of indexes I2

(partition of J) and I4 (partition of [n] \ J). This essentially amounts to superposing all the(
n

n/2

)
bi-partitions of [n] where each partition is of size n/2 (parameters t included). Next, we

apply UΩadd
on register of index I2, respectively I4. This superposes all elements of Ωadd(J, t)

(for a J of size n/2 and t ∈ T previously described in registers of indexes I2, respectively I4).

9



This essentially amounts to superposing all the
(n/2
n/4

)
bi-partitions of [n] where each partition

is of size n/2, parameters t included, and the optimal value associated already stored in the

QRAM.

Let us explain the effect of Urecur defined in (2). The application of UQMF[Ua] on a register

encoding (J , t) and the superposition of elements of Ωadd(J, t) stores OPT[J, t] (with high

probability) in an output register, according to Equation (Add-D-DPAS). Thus, UQMF[Ua] on

register of index I2, respectively I4, superposes all OPT[J, t] in I3, respectively I5, according

to Remark 2.8. In other words, the circuit U
I23⊕I3

QMF [U
I23⊕I31
a ] ⊗ U

I43⊕I5

QMF [U
I43⊕I51
a ] that appears in

Urecur1 superposes (with high probability) all optimal values of Equation (Add-D-DPAS) for J

of size n/2. Now that the optimal values are known for sets of size n/2 (before, we only knew

optimal values for sets of size n/4), we apply one more time UQMF[Ua] on these new registers:

it outputs OPT[[n], 0] with high probability on the register of index I62 .

Next, we detail the computation of UrecurUini |ini⟩ and show that OPT[[n], 0] is stored in

register of indexes I62 with high probability. We write the following computations as if the

algorithm Quantum Minimum Finding was returning the optimal solution with probability 1.

First, we compute Uini |ini⟩.

U
I1⊕I2⊕I4

Λadd
|ini⟩ =U

I1⊕I2⊕I4

Λadd
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

|0⟩⊗3︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗3︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩
∣∣λt

1

〉
|0⟩︸ ︷︷ ︸

I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs
2⟩
∣∣λt

2

〉
|0⟩︸ ︷︷ ︸

I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus,

Uini |ini⟩ =(U
I2

Ωadd
⊗ U

I4

Ωadd
) · U I1⊕I2⊕I4

Λadd
|ini⟩

=(U
I2

Ωadd
⊗ U

I4

Ωadd
) |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩

∣∣λt
1

〉
|0⟩︸ ︷︷ ︸

I2

|0⟩⊗2︸ ︷︷ ︸
I3

|λs
2⟩

∣∣λt
2

〉
|0⟩︸ ︷︷ ︸

I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I2
1

∣∣λt
1

〉︸︷︷︸
I2
2

 ∑
ω∈Ωadd(λs

1,λ
t
1)

1√
|Ωadd(λs

1, λ
t
1)|

|ω⟩︸︷︷︸
I2
3

|0⟩⊗2︸ ︷︷ ︸
I3



|λs
2⟩︸︷︷︸

I4
1

∣∣λt
2

〉︸︷︷︸
I4
2

 ∑
ω∈Ωadd(λs

2,λ
t
2)

1√
|Ωadd(λs

2, λ
t
2)|

|ω⟩︸︷︷︸
I4
3

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

.

Second, we apply the tensor product of the two first Quantum Minimum Finding to the previous
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state. (
U

I23⊕I3

QMF [U
I23
a ]⊗ U

I43⊕I5

QMF [U
I43
a ]

)
|[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

 ∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|

|ω⟩︸︷︷︸
I23

|0⟩⊗2︸ ︷︷ ︸
I3



|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

 ∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|

|ω⟩︸︷︷︸
I43

|0⟩⊗2︸ ︷︷ ︸
I5

 |0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|

|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32

|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|

|ω⟩︸︷︷︸
I43

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

.

Thus, we apply the second circuit of Quantum Minimum Finding.

UrecurUini |ini⟩ =U
I21⊕I32⊕I41⊕I52⊕I12⊕I6

QMF [Urecur1]Uini |ini⟩

=U
I21⊕I32⊕I41⊕I52⊕I12 I

6

QMF [U
I21⊕I32⊕I41⊕I52⊕I12
a ] |[n]⟩ |0⟩︸ ︷︷ ︸

I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|

|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32

|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|

|ω⟩︸︷︷︸
I43

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

|0⟩⊗2︸ ︷︷ ︸
I6

= |[n]⟩ |0⟩︸ ︷︷ ︸
I1

∑
(λs

1,λ
t
1,λ

s
2,λ

t
2)∈Λadd([n],0)

1√
|Λadd([n], 0)|

|λs
1⟩︸︷︷︸

I21

∣∣λt
1

〉︸︷︷︸
I22

∑
ω∈Ωadd(λ

s
1,λ

t
1)

1√
|Ωadd(λ

s
1, λ

t
1)|

|ω⟩︸︷︷︸
I23

∣∣∣∣argmin
ω

r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I31⊗I32

|λs
2⟩︸︷︷︸

I41

∣∣λt
2

〉︸︷︷︸
I42

∑
ω∈Ωadd(λ

s
2,λ

t
2)

1√
|Ωadd(λ

s
2, λ

t
2)|

|ω⟩︸︷︷︸
I43∣∣∣∣argmin

ω
r(ω)

〉 ∣∣∣min
ω

r(ω)
〉

︸ ︷︷ ︸
I51⊗I52

∣∣∣∣∣ argmin
λ∈Λadd([n],0)

r(λs
1, min

ω∈Ωadd(λ
s
1,λ

t
1)
r(ω), λs

2, min
ω∈Ωadd(λ

s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I61
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∣∣∣∣∣ min
λ∈Λadd([n],0)

r(λs
1, min

ω∈Ωadd(λ
s
1,λ

t
1)
r(ω), λs

2, min
ω∈Ωadd(λ

s
2,λ

t
2)
r(ω), 0)

〉
︸ ︷︷ ︸

I62

.

According to definition of a and recurrence (Add-D-DPAS), the results stored in register of

indexes I62 is OPT[[n], 0].

Notice that optimal permutation π∗[[n], 0] can be rebuilt with registers of indexes I31 , I
5
1 and

I61 , and with the access to the results of the classical part in the QRAM.

2.4 Adaptation for Composed DPAS (Algorithm 2)

In this subsection, we adapt Algorithm 1 for a problem P related to auxiliary problem P ′

satisfying recurrences (Comp-DPAS) and (Comp-D-DPAS). It essentially amounts to replacing

Λadd by Λcomp, Ωadd by Ωcomp and function a by function c. Consequently, the quantum circuit

UΛcomp
, respectively UΩcomp

, apply on 8 registers, respectively 4 registers, that differ from Q-

DDPAS for Additive DPAS. The resulting Algorithm 2 is provided in a low-level description.

Let us describe the slightly different quantum circuits adapting the number of registers and

the registers on which they apply. Let ϵ0 ∈ E. The initial state is

|ini⟩ = |[n]⟩ |0⟩ |ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13

I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24

I3 = I31 ⊕ I32

I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44

I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωcomp
⊗ U

I4

Ωcomp
) · U I1⊕I2⊕I4

Λcomp
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
c

(
U

I24⊕I3

QMF [U
I24
c ]⊗ U

I44⊕I5

QMF [U
I44
c ]

)
,

Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6

QMF [Urecur1] .

12



Next, we describe with a low level of details Algorithm 2 which is the adaptation of Q-

DDPAS to solve P ′([n], 0, ϵ0) for a given ϵ0 ∈ E.

Algorithm 2: Q-DDPAS for Composed DPAS (low-level description)

Input: ϵ0 ∈ E, auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)

Output: OPT[[n], 0, ϵ0] with high probability

1 begin classical part

2 for X ⊆ [n] : |X| = n/4 and t ∈ T do

3 Compute the optimal value OPT[X, t, ϵ0] and the corresponding permutation

π∗[X, t, ϵ0] by classical (Comp-DPAS);

4 Store the tuple (X, t,OPT[X, t, ϵ0], π
∗[X, t, ϵ0]) in the QRAM;

5 begin quantum part

6 Prepare quantum state |ini⟩;

7 Apply the quantum circuit UrecurUini to |ini⟩;

8 Measure register of indexes I62 ;

9 Return the outcome of the measurement

The proof of correctness of Lemma 3.5 is the same as for Theorem 2.8. To lighten the

reading, and because the approach is very similar, we do not detail the calculations here.

3 Decision-based hybrid algorithm Q-Dec-DPAS (Algorithm 4)

In what follows, we define the sets and their associated quantum circuits to describe the Q-Dec-

DDPAS (Algorithm 4).

Definition 3.1 (Sets Λdec and Ωdec). For J ⊆ [n] such that |J | is even and for β⃗, ϵ⃗ ∈ T 2, we

define the set

Λdec(J, β⃗, ϵ⃗) =

{
(X, β⃗, t⃗, J \X, t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
,

and the set

Ωdec(J, β⃗, ϵ⃗) =

{
(X,D[X, β⃗, t⃗], β⃗, t⃗, J \X,D[J \X, t⃗, ϵ⃗], t⃗, ϵ⃗) : X ⊆ J, |X| = |J |

2
, t⃗ ∈ [β⃗, ϵ⃗]

}
.

The quantum circuits associated with these two sets are the following.

Definition 3.2 (Circuit UΛdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define

13



UΛdec
as follows:

UΛdec
|J⟩

∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩⊗8 =

|J⟩
∣∣∣β⃗〉 |⃗ϵ⟩

∑
(λs1,λ

tb
1 ,λte1 ,

λs2,λ
tb
2 ,λte2 )∈Λdec(J,β⃗,⃗ϵ)

1√
|Λdec(J, β⃗, ϵ⃗)|

|λs
1⟩
∣∣∣λtb

1

〉 ∣∣λte
1

〉
|0⟩ |λs

2⟩
∣∣∣λtb

2

〉 ∣∣λte
2

〉
|0⟩ .

Notice that we index the objects that represent sets by s, and the objects that represent scalars in

T 2 by tb if it represents a couple of beginning times, or by te if it represents a couple of ending

times.

Proposition 3.3 (Complexity of UΛdec
). The complexity of UΛdec

is polynomial in the size of

the input.

Definition 3.4 (Circuit UΩdec
). For J ⊆ [n] such that |J | is even, and for β⃗, ϵ⃗ ∈ T 2, we define

UΩdec
as follows:

UΩdec
|J⟩

∣∣∣β⃗〉 |⃗ϵ⟩ |0⟩ = |J⟩
∣∣∣β⃗〉 |⃗ϵ⟩

∑
ω∈Ωdec(J,β⃗,⃗ϵ)

1√
|Ωadd(J, β⃗, ϵ⃗)|

|ω⟩ .

Proposition 3.5 (Complexity of UΩdec
). Let J be the input set. If we suppose to have stored

in the QRAM the values D[X, β⃗, ϵ⃗] for all X ⊆ J such that |X| = |J |/2 and for all β⃗, ϵ⃗ ∈ T 2,

the complexity of UΩdec
is polynomial in the size of the input.

The proof of Proposition 3.3, respectively Proposition 3.5, is similar to the proof of Propo-

sition 2.3, respectively Proposition 2.5. Notice that t⃗ ∈ [β⃗, ϵ⃗] can be replaced by t⃗ ∈ T 2 in

sets UΛdec
and UΩdec

so that the circuits that superpose all elements of these sets are easier to

conceive. Indeed, (Dec-DPAS) and (Dec-D-DPAS) are less accurate but still valid with this

replacement.

The operation in recurrence (Dec-D-DPAS) is not the addition (represented by the function

a for (Add-D-DPAS)) nor the composition (represented by the function c for (Comp-D-DPAS))

but the logical AND. We define below its corresponding quantum circuit.

Definition 3.6 (Circuit Uand). We note the antecedent set Sand = 2[n] × {0, 1} × T 2 × T 2 ×

2[n] × {0, 1} × T 2 × T 2. Let and : Sand → {0, 1} be the function:

and(ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ωs

2, ω
b
2, ω

tb
2 , ω

te
2 ) =


1 if ωb

1 = ωb
2

0 else

We note Uand the quantum circuit associated to the function, specifically,

∀ω = (ωs
1, ω

b
1, ω

tb
1 , ω

te
1 , ωs

2, ω
b
2, ω

tb
2 , ω

te
2 ) ∈ Sand, Uand |ω⟩ |0⟩ = |ω⟩ |and(ω)⟩ .
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Notice that objects representing boolean values are indexed by b. Note that according to

recurrence (Dec-D-DPAS), the function and applies on objects of sets Ωdec(J, β⃗, ϵ⃗) for J ⊆ [n]

and β⃗, ϵ⃗ ∈ T 2.

Proposition 3.7 (Complexity of Uand). The complexity of Uand is polynomial in the size of the

input.

The proof of the above proposition is the same as the one of Proposition 2.7.

Remark 3.8. Notice that for J ⊆ [n] and β⃗, ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

ω∈Ωdec(J,β⃗,⃗ϵ)

and(ω) .

Next, we describe the different quantum circuits for the quantum part of Q-Dec-DDPAS

(Algorithm 4). Let β⃗0, ϵ⃗0 ∈ T 2. The initial state is

|ini⟩ = |[n]⟩
∣∣∣β⃗0〉 |⃗ϵ0⟩︸ ︷︷ ︸
I1

|0⟩⊗4︸ ︷︷ ︸
I2

|0⟩⊗2︸ ︷︷ ︸
I3

|0⟩⊗4︸ ︷︷ ︸
I4

|0⟩⊗2︸ ︷︷ ︸
I5

|0⟩⊗2︸ ︷︷ ︸
I6

,

where the tuples indexing the different registers are decomposed as follows:

I1 = I11 ⊕ I12 ⊕ I13

I2 = I21 ⊕ I22 ⊕ I23 ⊕ I24

I3 = I31 ⊕ I32

I4 = I41 ⊕ I42 ⊕ I43 ⊕ I44

I5 = I51 ⊕ I52

I6 = I61 ⊕ I62

The three quantum circuits that appear on the quantum part are:

Uini = (U
I2

Ωdec
⊗ U

I4

Ωdec
) · U I1⊕I2⊕I4

Λdec
,

Urecur1 = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43
and

(
U

I24⊕I3

G [U
I24
and]⊗ U

I44⊕I5

G [U
I44
and]

)
,

Urecur = U
I21⊕I32⊕I22⊕I23⊕I41⊕I52⊕I42⊕I43⊕I6
G [Urecur1] .

We provide below the description of Algorithm 4 with the details about the quantum

circuits.

Similarly to Q-DPAS for the Additive or the Composed version, the correctness of Lemma

5.7 can be verified by the same type of computations.
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Algorithm 4: Q-Dec-DDPAS for 3-machine flowshop (low-level description)

Input: β⃗0, ϵ⃗0 ∈ T 2, decision problem D satisfying (Dec-DPAS) and (Dec-D-DPAS)

Output: D[[n], β⃗0, ϵ⃗0] with high probability

1 begin classical part

2 for X ⊆ [n] : |X| = n/4 and β⃗, ϵ⃗ ∈ T 2 do

3 Compute the optimal value D[X, β⃗, ϵ⃗] and the corresponding permutation

π∗[X, β⃗, ϵ⃗] by classical (Dec-DPAS);

4 Store the tuple (X, β⃗, ϵ⃗, D[X, β⃗, ϵ⃗], π∗[X, β⃗, ϵ⃗]) in the QRAM;

5 begin quantum part

6 Prepare quantum state |ini⟩;

7 Apply the quantum circuit UrecurUini to |ini⟩;

8 Measure register of indexes I62 ;

9 Return the outcome of the measurement
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