

# Hybrid Radiation Hardening Approach: a RISC-V System-on-Chip case study

**André M. P. Mattos** (University of Montpellier, on behalf of RADNEXT WP6-JR2) *G-RADNEXT Workshop* – *8-9 Nov 2023* 







# Acknowledgements

# uc3m



#### IES, University of Montpellier, CNRS, Montpellier, France:

- Luigi Dilillo (luigi.dilillo@umonpellier.fr)
- Douglas A. Santos
- Lucas M. Luza
- André M. P. Mattos
- Douglas R. Melo (external collaborator)

#### Electronic Technology Department, University Carlos III of Madrid, Leganes-Madrid, Spain:

- Luis Entrena (entrena@ing.uc3m.es)
- Almudena Lindoso
- Pablo M. Aviles
- Mario Garcia-Valderas

#### Facilities:

- ChipIr ISIS Facility, Rutherford Appleton Laboratory, United Kingdom
- CNA University of Seville, Junta de Andalucía, CSIC, Spain
- CHARM European Organization for Nuclear Research (CERN), Switzerland
- PARTREC University of Groningen, Netherlands





**Proposed Strategy** 

Hardware and software

**Experimental Results** 

Test campaigns (Chiplr, PARTREC, CNA, CHARM)

Conclusion





G-RADNEXT Workshop- 8-9 Nov 2023

### **Context / Statement**

 COTS (Commercial Off-The-Shelf) components are rapidly reaching dependable systems in space applications

### **Motivation**

• Demand for high-performance, feature-rich, flexible, and cheaper processing units for attending complex application demands

### Challenges

• Radiation Effects (SEE, TID, and DD)





### Single-Event Effects on System-on-Chip (SoC)

- System and code memories upsets
- System registers upsets
- Communication bus corruption
- Timeouts, loops, hangs

#### Solution under investigation

- RISC-V SoC based on a COTS FPGA
  - Hardening techniques (exploiting redundancies)
  - Reconfigurable and modular design
  - Radiation testing



#### **COTS-based FPGA SoC**



#### FPGAs are not built the same!

- Configuration Memory (CMEM) can be highly sensitive (dominate error rates)
- COTS drawbacks apply for these devices (lot variability, latch-up, packaging, ...)





### **Proposed Strategy**



# **Proposed Strategy**

### A hybrid hardening approach [1,2]

### Hardware: Fault-tolerant RISC-V System-on-Chip

- Soft-core SoC entirely developed by the group (UM)
- Reliable SoC with enhanced fault observability
- Combination of Triple Modular Redundancy (TMR) and Error Correcting Code (ECC) for most critical structures

### Software: Application-independent recovery strategy

- **Periodic context saving:** save important registers, memory, and pointers
- **Context Restoration:** triggered by the added observability at hardware covering the full SoC



**[1]** D. A. Santos, et. al., "Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip", Electronics 2023, 12, 2557.

uc3m

**[2]** P. M. Aviles, et. al., "Radiation Testing of a Multiprocessor Macrosynchronized Lockstep Architecture With FreeRTOS", TNS, vol. 69, no. 3, pp. 462–469, 2022.



### **Proposed Strategy: Hardware**





### Fault-tolerant RISC-V System-on-Chip

- Enhanced single-core processor with embedded observation of the hardened structures of the full SoC
- Provides detailed information about the processor context and external errors





# **Proposed Strategy: Hardware**







# uc3m

# **Proposed Strategy: Software**

Enable the system or application to recovery to a previous error-free state

### **Consists of three operations**

- Context saving: Checkpoint performs the processor context saving in safe memory
- Context Restoration: Rollback restores the processor context to a previous state
- System hard reset (last resource) is triggered due to abnormal behavior or hangs

### **Reference implementation**

- Macrosynchronized Lockstep Architecture (MSLS) [2]
  - Synchronizes two ARM processor cores
  - Enables error detection with a **loosely-coupled lockstep** architecture

### This implementation

• Only a single core required! (fault awareness triggers recovery, not cores mismatch)



# uc3m

# **Proposed Strategy: Software**

### Checkpoint

- Implemented in software through a periodic interrupt
- Context of the application is transferred to a safe memory
  - Includes register file and the local variables of the application
- Saved in BRAM memory blocks with SECDED protection
  - Includes an extra error detection code (CRC32)

### Error handling

- Performed using an exception service routine
- Based on the severity of the error for the execution:
  - Report error and continue execution
  - Correct upset at hardware •
  - Rollback to a previous checkpoint •
  - Reset SoC and reconfigure FPGA •





Rollback pointer -

# **Proposed Strategy: Software**

### For SRAM-based FPGA designs

Main concern: Configuration Memory (CMEM) upsets

### Proposed solution (valid for Xilinx FPGAs)

- We implemented an interface to the built-in scrubber in the CMEM (Xilinx FRAME\_ECCE2 buffer, not SEM IP!)
- This custom solution allows a low-cost and transparent interface for CMEM reporting









### **Experimental Results**



# **Experimental Results**

### On going work!

 Some results from the proposed strategy (most relevant, not a deep dive)

Test campaign #1

vore otr

(Coff)



| (Soliware strategy)                              | (protons) [2]                               |                                               |              |
|--------------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------|
| Test campaign #2<br>(Hardware)                   | -                                           | <b>ChipIr</b><br>(atmospheric neutrons) [1,3] | UM           |
| Test campaign #3<br>(Hardware)                   | -                                           | PARTREC<br>(high-energy protons) [4]          | UM           |
| Test campaign #4<br>(Hardware)                   | -                                           | <b>CHARM</b><br>(mixed-field environment) [1] | UM           |
| <b>Test campaign #5</b><br>(Hardware + Software) | <b>ChipIr</b><br>(atmospheric neutrons) [5] | -                                             | UM +<br>UC3M |



# **Experimental Results: Test Campaign #1**

#### **Objectives**

- Evaluate the software recovery strategy (using a two-core loosely-coupled lockstep)
- Comparison between baremetal and Operating System (OS) versions

#### Outcomes

- Software strategy highly effective to detect errors and significant for correction
- Technique more effective to baremetal applications

|                    | Catagory          | Mmult        |              |  |
|--------------------|-------------------|--------------|--------------|--|
| 2                  | Category          | Baremetal    | OS           |  |
| Errors             | Undetected errors | 2 (0.7%)     | 5 (2%)       |  |
|                    | Detected errors   | 273 (99.3%)  | 248 (98%)    |  |
|                    | Total errors      | 275 (100.0%) | 253 (100.0%) |  |
| Detected<br>errors | Corrected errors  | 142 (52%)    | 65 (26.2%)   |  |
|                    | WDT               | 64 (23.4%)   | 118 (47.6%)  |  |
|                    | SW Reset          | 67 (24.6%)   | 65 (26.2%)   |  |

Software strategy detection and correction evaluation: baremetal vs OS



uc3m

[2] P. M. Aviles et. al., "Radiation Testing of a Multiprocessor Macrosynchronized Lockstep Architecture With FreeRTOS", TNS, vol. 69, no. 3, pp. 462–469, 2022.





#### **Objectives**

- Evaluate the applied fault tolerant techniques
- Evaluate the impact in an application

#### Outcomes

- Hardware strategies highly effective to improve reliability (detect and correct)
- However:
  - Limited observability
  - Lack of "time to failure" type of analysis

Hardware strategy correction evaluation: impact on the test benchmark

| Hardening configuration | Correct | Error | Timeout |
|-------------------------|---------|-------|---------|
| None                    | 75.80%  | 0.64% | 23.57%  |
| Processor               | 73.19%  | 0.00% | 26.81%  |
| Memory                  | 97.59%  | 0.00% | 2.41%   |
| Memory & Processor      | 97.73%  | 0.00% | 2.27%   |



**[3]** D. A. Santos et al., "Neutron Irradiation Testing and Analysis of a Fault-Tolerant RISC-V System-on-Chip," DFT, 2022, pp. 1-6.



# **Experimental Results: Test Campaign #3**



#### **Objectives**

- Evaluate the hardware reliability for space applications
- Better understand fault propagation

#### **Outcomes**

- **[4] [accepted, not published yet]** D. A. Santos et. al., "Characterization of a Fault-Tolerant RISC-V System-on-Chip for Space Environments", DFTS, 2023.
- More robust analysis, including: MFTF, TID and benchmarks impact

| Configuration | НҒТЕ Туре                             | #HFTE <sup>1</sup> | <b>#Propagated HFTEs<sup>1</sup></b> | HFTE Propagation XS <sup>1</sup> [cm <sup>2</sup> /device] |         |
|---------------|---------------------------------------|--------------------|--------------------------------------|------------------------------------------------------------|---------|
| Baseline      | Memory single-bit upset               | 21                 | 0                                    | -                                                          |         |
|               | Register file single-bit upset        | 6                  | 1                                    | $6.99 \times 10^{-13}$                                     |         |
|               | Timeout load access fault             | 6                  | 4                                    | $2.80 \times 10^{-12}$                                     |         |
| Hardened      | Memory single-bit upset               | 23                 | 0                                    | -                                                          | DARTREC |
|               | Register file single-bit upset        | 11                 | 0                                    |                                                            | TANINEO |
|               | Timeout load access fault             | 3                  | 1                                    | $6.28 \times 10^{-13}$                                     |         |
|               | Memory double-bit upset               | 2                  | 0                                    |                                                            |         |
|               | Program counter single-bit upset      | 1                  | 0                                    |                                                            |         |
|               | Instruction register double-bit upset | 1                  | 0                                    | -                                                          |         |
|               | Program counter double-bit upset      | 1                  | 0                                    | -                                                          |         |
|               | Load access fault                     | 1                  | 0                                    | -                                                          |         |

Hardware strategy correction and fault propagation analysis





#### 20

# **Experimental Results: Test Campaign #4**

#### **Objectives**

• Evaluate the hardware reliability and fault awareness

#### **Outcomes**

Enhanced observation in reported errors

### CHARM

Hardware observability analysis

| Error                            | #Errors | Percentage | HEH XS [cm²/device]   |
|----------------------------------|---------|------------|-----------------------|
| Memory single-bit upset          | 71      | 52.21%     | $7.38	imes10^{-11}$   |
| Memory double-bit upset          | 35      | 25.74%     | $3.64 	imes 10^{-11}$ |
| Register file single-bit upset   | 21      | 15.44%     | $2.18	imes10^{-11}$   |
| Load access fault                | 6       | 4.41%      | $6.24	imes10^{-12}$   |
| Store access fault               | 2       | 1.47%      | $2.08 	imes 10^{-12}$ |
| Program counter double-bit upset | 1       | 0.74%      | $1.04 	imes 10^{-12}$ |



[1] D. A. Santos, et. al., "Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip",

Electronics 2023, 12, 2557.



# **Experimental Results: Test Campaign #5**

#### **Objectives**

Evaluate the proposed hardware + software strategy

#### Outcomes

- Capabilities of the software recovery on top of the added hardware observability
- Missing more evaluation scenarios for reporting the combined reliability improvement

Software recovery effectiveness

| <b>Recovery attempts</b>  | Occurrence |
|---------------------------|------------|
| Effective at 1st rollback | 44.51 %    |
| Effective at 2nd rollback | 0.58 %     |
| Effective at 3rd rollback | 0.00 %     |
| Failed at 1st attempt     | 23.70 %    |
| Failed at 2nd attempt     | 9.83 %     |
| Failed at 3rd attempt     | 12.14 %    |
| Failed before checkpoint  | 9.25 %     |
| Total effectives          | 45.09 %    |
| Total failures            | 54.91 %    |

Future work!



**[1] [accepted, not published yet]** D. A. Santos, et. al., "Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-on-Chip", RADECS, 2023.





### Conclusion



### Conclusion

Successful test of a complex system and recovery strategies in different facilities

- Use of COTS FPGA for the deployment and validation of reliable processing units
- Evaluate different devices with distinct sensitivities for a radiation testing
- Comparison of irradiation campaigns results for different facilities/particles

Development and characterization of a robust, flexible, and low-cost SoC for space applications based on readily available technologies (COTS FPGAs) and an open processor architecture (RISC-V)

Proposition of guidelines for SoC testing with enhanced observability







### Thanks for your attention!

André M. P. Mattos (PhD at University of Montpellier) andre.martins-pio-de-mattos@etu.umontpellier.fr

G-RADNEXT Workshop – 8-9 Nov 2023







This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101008126** 

G-RADNEXT Workshop- 8-9 Nov 2023

# **Experimental Results: Other Outcomes**

#### Preliminary device failure comparison between the SoC in different FPGAs

| <ul> <li><sup>1</sup> For the SRAM-based FPGA, the custom integration with the built-in scrubber was used</li> <li><sup>2</sup> Failure: assumed when power cycle was required to restore functional state</li> <li><sup>3</sup> Chinlm atmospheric poutpope</li> </ul> | XILINX#           XX7.72020           XC7.72020           CL G484ACX1509           D505501833           L 11           Txxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | Microchin's SmartEusion2                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| <sup>3</sup> Chipir: atmospheric neutrons                                                                                                                                                                                                                               | Xilinx's Zynq-7000 <sup>1</sup><br>SRAM-based (28 nm)                                                                                                        | Microchip's SmartFusion2<br>Flash-based (65 nm) |  |
| Total Fluence <sup>3</sup> [n/cm <sup>2</sup> ]                                                                                                                                                                                                                         | 1.80x10 <sup>12</sup>                                                                                                                                        | 5.83x10 <sup>10</sup>                           |  |
| Mean Fluence to Failure <sup>2</sup> [n/cm <sup>2</sup> ]                                                                                                                                                                                                               | 2.06x10 <sup>10</sup>                                                                                                                                        | 3.60x10 <sup>8</sup>                            |  |
| Cross Section [cm <sup>2</sup> ]                                                                                                                                                                                                                                        | 4.98x10 <sup>-11</sup>                                                                                                                                       | 2.78x10 <sup>-9</sup>                           |  |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                 |  |

~ 200x difference in robustness!



