

Fast alignment of mass spectra in large proteomics datasets, capturing dissimilarities arising from multiple complex modifications of peptides

Grégoire Prunier, Mehdi Cherkaoui, Albane Lysiak, Olivier Langella, Mélisande Blein-Nicolas, Virginie Lollier, Emile Benoist, Géraldine Jean, Guillaume Fertin, Hélène Rogniaux, et al.

To cite this version:

Grégoire Prunier, Mehdi Cherkaoui, Albane Lysiak, Olivier Langella, Mélisande Blein-Nicolas, et al.. Fast alignment of mass spectra in large proteomics datasets, capturing dissimilarities arising from multiple complex modifications of peptides. BMC Bioinformatics, 2023 , 24 (1), pp.421. $10.1186/s12859-$ 023-05555-y . hal-04296170

HAL Id: hal-04296170 <https://hal.science/hal-04296170v1>

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

SOFTWARE

Fast alignment of mass spectra in large proteomics datasets, capturing dissimilarities arising from multiple complex modifcations of peptides

Grégoire Prunier^{1,2}, Mehdi Cherkaoui^{1,2}, Albane Lysiak^{1,3}, Olivier Langella⁴, Mélisande Blein-Nicolas⁴, Virginie Lollier^{1,2}, Emile Benoist³, Géraldine Jean³, Guillaume Fertin³, Hélène Rogniaux^{1,2} and Dominique Tessier^{1,2*}

*Correspondence: dominique.tessier@inrae.fr

1 INRAE, PROBE Research Infrastructure, BIBS Facility, 44300 Nantes, France 2 INRAE, UR1268 Biopolymères Interactions Assemblages, 44316 Nantes, France 3 Nantes Université, CNRS, LS2N, UMR 6004, 44000 Nantes, France 4 Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190 Gif-Sur-Yvette, France

Abstract

Background: In proteomics, the interpretation of mass spectra representing peptides carrying multiple complex modifications remains challenging, as it is difficult to strike a balance between reasonable execution time, a limited number of false positives, and a huge search space allowing any number of modifcations without a priori. The scientifc community needs new developments in this area to aid in the discovery of novel post-translational modifcations that may play important roles in disease.

Results: To make progress on this issue, we implemented SpecGlobX (SpecGlob eXTended to eXperimental spectra), a standalone Java application that quickly determines the best spectral alignments of a (possibly very large) list of Peptideto-Spectrum Matches (PSMs) provided by any open modifcation search method, or generated by the user. As input, SpecGlobX reads a fle containing spectra in MGF or mzML format and a semicolon-delimited spreadsheet describing the PSMs. Spec‑ GlobX returns the best alignment for each PSM as output, splitting the mass diference between the spectrum and the peptide into one or more shifts while considering the possibility of non-aligned masses (a phenomenon resulting from many situations including neutral losses). SpecGlobX is fast, able to align one million PSMs in about 1.5 min on a standard desktop. Firstly, we remind the foundations of the algorithm and detail how we adapted SpecGlob (the method we previously developed following the same aim, but limited to the interpretation of perfect simulated spectra) to the interpretation of imperfect experimental spectra. Then, we highlight the interest of SpecGlobX as a complementary tool downstream to three open modifcation search methods on a large simulated spectra dataset. Finally, we ran SpecGlobX on a proteome-wide dataset downloaded from PRIDE to demonstrate that SpecGlobX functions just as well on simulated and experimental spectra. We then carefully analyzed a limited set of interpretations.

Conclusions: SpecGlobX is helpful as a decision support tool, providing keys to interpret peptides carrying complex modifcations still poorly considered by current

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://](http://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/) The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo· [main/zero/1.0/\)](http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

open modifcation search software. Better alignment of PSMs enhances confdence in the identifcation of spectra provided by open modifcation search methods and should improve the interpretation rate of spectra.

Keywords: Proteomics, Peptide identifcation, Open modifcation search, Post translational modifcation, Dynamic programming

Background

Interpreting fragmentation mass spectra and their assignment to a peptide sequence is an important and challenging issue in proteomics, especially when peptides carry one or several modifications. These modifications could explain the low rate of interpreted spectra after a standard bottom-up mass spectrometry analysis [1, 2]. While the modifcations on proteins may be the consequence of co- or post-translational events in the cell, they may also be due to sample preparation (use of chemicals during the preparation, e.g., surfactants) or to the presence of allelic variants not described in the protein databases. Although reference databases of modifcations exist and can draw up a list of more than a thousand modifcations such as in Unimod [3], the variety of putative modifcations is so large that existing databases cannot be exhaustive. Besides, it is also difficult, if not impossible, to predict and account for all possible modifications occurring in a sample.

In recent years, several open modifcation search (OMS) methods have been proposed to enhance the identification of mass spectra corresponding to modified peptides. These identifcations are achieved through the comparison of experimental spectra to 'reference spectra', either simulated in silico from peptide candidates—referred to as theoretical spectra—or collected in a spectral database $[4]$. Whereas conventional methods (also called restricted or closed-search methods) try to identify experimental spectra in comparison to reference spectra in a narrow search mass window, OMS methods evaluate all or at least a large part of the reference spectra without any (or only a limited restriction) on their masses. Several advantages distinguish OMS methods from their conventional methods counterparts: (1) they enable the interpretation of spectra corresponding to peptides with unanticipated modifcations; (2) the large number of modifcations they can underpin does not alter identifcation results confdence as it occurs when an extremely large search space is generated by the introduction of many variable modifcations on simulated spectra in the reference spectra database $[5, 6]$.

The result of an OMS method is a list of PSMs (*St*, *Se*, ΔM) where *St* denotes the theoretical fragmentation spectrum of a candidate peptide, *Se* denotes an experimental spectrum, and ∆M is the mass diference between *St* and *Se*. Tis mass diference ∆M, if above the mass accuracy of the instrument, should be explained by one or several modifications carried by the peptide in the experience. Therefore, one or more mass shift(s) (resulting from the modifcation(s)) should be applied to *St* to align it with *Se*. When *Se* displays the fragmentation pattern of a peptide carrying only one modifcation, identifcation and localization (more or less precisely according to the software) of this modification are already resolved by several methods $[7-11]$, mainly by testing successively the location of the modification on each amino acid. The detection of pairs of modifed and unmodifed peptides that may coexist in the same sample can also boost the sensitivity of the protein modifcation mapping [12]. When *Se* corresponds to a peptide

carrying more than one modifcation, the interpretation is much more complicated because ∆M has to be split into several mass shifts. Several software [13–18] attempt to explain ∆M by a combination of masses related to modifcations stored in a predetermined list, or deduced from the most frequent ones observed in the sample. However, to our knowledge, there is currently no open-source software adapted to routine laboratory use allowing the ∆M interpretation without any a priori on the modifcations, including labile ones. To fll this gap, we implemented SpecGlobX, which aligns very quickly pairs of spectra (*St*, *Se*).

SpecGlobX (SpecGlob eXtended version adapted to eXperimental spectra) is a standalone software based on a dynamic programming algorithm. It derives from SpecGlob [19], which we first developed using perfect simulated spectra. This initial step was essential to evaluate the SpecGlob algorithm's ability to consider complex and variable modifcations and to optimize its execution time. To reach a fast execution speed, we introduced—among other things—a simplifcation in the alignment of spectra compared to previous methods also based on dynamic programming [20–22]: each peptide is modeled by a series of peaks corresponding to only the b-ions generated by an ideal fragmentation. However, on their side, experimental spectra are not ideal; they lack some fragmentation peaks and are noisy. In this article, we present the main adaptations developed in SpecGlobX towards the applicability of SpecGlob on experimental spectra, considering the imperfections of these spectra. Then, we highlight the benefits that SpecGlobX delivers downstream to three OMS methods: SpecOMS [23], MODPlus [14], and MSFragger [9] on a simulated dataset that mimics experimental spectra. Indeed, even if the complexity of an experimental spectrum is difcult to reproduce, simulated spectra are helpful to understand the behavior of an algorithm when there is no ground truth available for large-scale interpretation of PSM lists. Finally, we challenged Spec-GlobX on a set of experimental spectra already interpreted by diferent OMS software, namely the HEK293 dataset $[24]$. Overall, we demonstrate that SpecGlobX highlights modifcations that other methods missed while maintaining a good execution time.

SpecGlobX implementation

The algorithm of SpecGlobX follows three processing steps described in detail below. First, the completion of experimental spectra compensates for missing peaks; second, the alignment between completed experimental spectra and theoretical spectra including possible mass shifts; third, the optimization of the location of the suggested mass shifts (post-processing step).

Completion process of the experimental spectra

Usually, a peptide p with an amino acid sequence $a_1a_2...a_i...a_n$ is represented by a spectrum containing peaks that correspond to the b-ions ${b_1,..., b_i, ..., b_n}$ and the y-ions $\{y_1, ..., y_i, ..., y_n\}$ generated by a perfect fragmentation. Then, a mass modification applied to amino acid a_i results in a mass shift of the peaks b_i to b_n and y_1 to y_{n-i+1} , all the remaining peaks being unchanged. The shift of only a part of the peaks creates a complex situation to manage when aligning spectra with a dynamic programming approach. To overcome this difculty, in SpecGlobX, a peptide *p* is only represented by its b-ion peaks, so spectra alignment only requires aligning pairs of b-ion peaks from *St* (representing amino acids) with pairs of b-ion peaks from *Se*. However, distinguishing b- from y-ions in an experimental spectrum is not easy a priori (i.e., before interpretation). Moreover, it is well known an experimental spectrum is likely to have several missing b-ion peaks. However, SpecGlobX needs as many b-ion peaks as possible to adjust its alignment. So, as we did in [25], SpecGlobX transforms *Se* into a new spectrum called *Sec* (for completed *Se*) by adding new peaks according to the following rule: each original peak in *Se* is hypothesized at frst as a b-ion peak (assumption 1), so it can be directly compared to the b-ion peaks of the theoretical model (*St*); then each original peak in *Se* is hypothesized as corresponding to a y-ion (assumption 2); in that latter situation, SpecGlobX adds a new peak in the spectrum Se_c , called a "complementary peak", whose mass is $M + m$ — mass(peak), where M is the total mass of the experimental spectrum *Se* and *m* the mass of the proton. We underline that a complementary peak in *Se_c* can replace a missing b-ion peak provided the y-ion peak is observed in *Se*. When a peptide fragmentation produces both b- and y-ions simultaneously in *Se*, except in particular situations we will focus on later in this manuscript, the "completion process" does not add any peak. Conversely, if the fragmentation process has generated only one of the two expected ions, an additional peak is added in *Se_c* compared to *Se*.

Representing peptides by their b-ions rather than their y-ions was initially arbitrary. It just allows an alignment in the direction where peptides are read – from left to right. Although y-ions are generally dominant in spectra, we assume that the introduction of complementary peaks in both solutions leads to similar results. Moreover, given the accuracy of fragment masses in current mass spectrometers (of the order of 0.005 Da), we hypothesize that the noise added by complementary peaks should not significantly interfere with alignments. The generation of a series of complementary peaks is illustrated in Fig. 1a.

Alignment between experimental and theoretical spectra

SpecGlobX like SpecGlob [19] relies on a dynamic programming technique to fnd the best alignment between the series of b-ion peaks in a theoretical spectrum *St* representing the amino acids of a peptide *p* and pairs of peaks of the complemented spectrum Se_c . Briefly, each cell of a matrix *D* of size N x M (where N is the number of amino acids in p and M the number of peaks in Se_e) is filled according to a scoring system based on (1) a boolean, *aafound*, which is set to true only if the mass of the considered amino acid of *St* is found between two peaks of Se; (2) three elementary scores S_A , S_R and S_N (where A stands for Align and refers to an extension of an alignment in progress, R for Re-align and refers to the introduction of a shift to "re-align" the *i*-th amino acid, and N for Non-aligned when aafound is false).

More precisely, each cell $D[i][j]$ with $0 < i \leq N - 1$ and $0 < j \leq M - 1$ is computed according to the following rules:

- If *aafound* = true, $D[i][j]$ = max $(D[i-1][k] + S_{A_i}$ max $D[i-1][m] + S_{R_i}$ $0 \le m < k$)
- If $aafound = false$, $D[i][j] = D[i-1][j] + S_N$

Fig. 1 Alignment of peptide HINATESVR on a simulated spectrum carrying two modifcations. **a** On the left, the theoretical spectrum *St* of peptide HINATESVR is modeled only by its b-ion peaks, and below, the simulated spectrum *Se* is displayed with dummy intensities to mimic an experimental spectrum. However, note that intensities have no efect during the alignment with SpecGlobX. *Se* contains two modifcations compared to *St* and only two b-ion peaks (represented in blue) are present in the spectrum. On the right, complementary peaks – below the x-axis—are added to *Se*, to generate the spectrum *Sec*; For example, one 'original peak' and its complementary peak are connected by a dotted line for better readability. **b** The score matrix was computed by SpecGlobX to align both spectra by dynamic programming. Masses have been rounded for simplifcation of the graphical representation; masses corresponding to complementary peaks are in green; transitions are numbered on the last row. The green (when SpecGlobX found an alignment) or orange arrows -when SpecGlobX found a realignment (with a mass shift)- delineates the path followed by the traceback step interpreting *Se*. **c** The interpretation of *Se* as HI[N][0.98]ATE[S][27.99]VR in terms of peptide sequence and mass shifts suggests a deamidation on "N" (mass increment of 0.98 Da) and a formylation on "S" (mass increment of 27.99 Da); non-aligned amino acids and mass shift values are in brackets. Original b-ion peaks are in blue in the interpreted *Se* and y-ions are in red

SpecGlob looks for an alignment that maximizes the score on the last row of *D* and possibly splits the mass diference ∆M between *St* and *Se* into several mass shifts. SpecGlob is described in detail in [19].

We now explain the adaptations made on SpecGlob to implement SpecGlobX on experimental spectra and interpret them successfully. In SpecGlobX, the scoring system globally takes (positively) into account the number of aligned amino acids and (negatively) the number of inserted mass shifts and the number of amino acids that are not aligned. Each time SpecGlobX introduces a mass shift in an alignment (an elementary decision we call a realignment), this increases the risk to align a b-ion peak of *St* on an inappropriate ion peak of *Sec*. To mitigate this risk of misalignment, the score penalty is defned such that a realignment is preferred over non-aligned amino acids only if this realignment is subsequently compensated by the alignment of at least two amino acids. Tus, in the SpecGlobX scoring system, a realignment is more penalized than the non-alignment of one amino acid.

Considering the above rule, SpecGlobX uses the following scoring system –empirically chosen—during the dynamic programming step: (1) when a pair of peaks is aligned without any mass shift, the score S_A is increased by 10 if the fragmentation generated both the b- and y-ion (illustrated in transitions 2 and 9 in Fig. 1b) and by 7 otherwise (i.e., if only the b-ion or the y-ion peak is present in *Se*, as illustrated in transitions 1, 5 and 6 in Fig. 1b); (2) when a pair of peaks corresponding to an amino acid is aligned, but this alignment requires a mass shift to displace the pair of peaks from an amino acid on a pair of peaks of Se_e , then the score S_R is decreased by 8 or 6 depending on whether the fragmentation generated both b- and y-ions or only one of the two (illustrated in transitions 4 and 8 Fig. 1b); (3) when the amino acid is non-aligned, then the score S_{N} is decreased by 4 (illustrated in transitions 3 and 7 in Fig. 1b). The whole filling of the dynamic programming matrix corresponding to the alignment of the St and Se_c spectra corresponding to the peptide HINATESVR is illustrated in Fig. 1b. Lastly, SpecGlobX generates the best alignment under the form of a string as was done in [19] by a traceback step (Fig. $1c$).

For interested readers who want to dig deeper into the algorithm, we also mention a small subtlety that must be taken into account while the dynamic programming matrix is flled in SpecGlobX, compared to its previous version SpecGlob. A key observation in experimental spectra is that when a peak between two amino acids is missing in Se_c , not only those two amino acids cannot be aligned (because their masses cannot be found in the spectrum), but this non-alignment generates a subsequent realignment whose mass shift is equal to a null value. To deal with this issue, this particular realignment (only due to one or several missing peaks) must be scored as an alignment (positive contribution to the score) rather than as a realignment (negative contribution to the score).

Optimization of the location of the suggested mass shifts

In this last processing step, SpecGlobX adjusts the locations of the suggested mass shifts (if any) to maximize the number of shared peaks between *St* and *Se*. One of the most important goals of this step is to highlight the presence of a non-aligned mass if any, and potentially to relocate modifcations on the C-terminal side of the peptide.

The "completion process" compensates for a missing b-ion in Se_c when the y-ion is displayed in *Se,* as long as the mass of the complementary peak can be directly inferred from the mass of the peptide. Regrettably, this relation is not always applicable, for instance when the precursor ion loses a neutral chemical group (such as water) in an early stage of the fragmentation process. Similar situations happen when *Se* merges the fragmentation of two peptides (possibly of identical sequences) linked by a chemical bond (such as a disulfde bridge) leading to homo or heterodimers. In these cases, all the complementary peaks are shifted from their expected value by a constant mass, which we denote as *Mloss.* Since the mass of the fragmented peptide observed in *Se* does not ft the measured mass of the experimental peptide*, Mloss* can be considered a non-aligned mass. To exemplify the generation of Se_c in this instance, in Fig. 2a, we display the spectrum we obtain after the completion process when a neutral loss of 301.99 Da (i.e. the mass of a frequent modifcation referenced in Unimod, although still annotated as 'unknown') has been added to the spectrum *Se* shown Fig. 1a. In this example, ∆*M* is the sum of two mass shifts observed in *Se*

[301.99]HI[N][0.98]ATE[S][27.99]VR HI[N][0.98]ATE[S][27.99]VR_301.99 **(c)**

Fig. 2 Alignment of peptide HINATESVR on a simulated spectrum carrying two modifcations and a neutral loss. **a** The simulated spectrum *Se* is the same as the one presented in Fig. 1a, except that the mass of the peptide has been increased by a neutral loss of 301.99 Da. As a result, complementary peaks in *Se_c* – represented below the x-axis – are shifted by 301.99 Da compared to the complementary peaks displayed in Fig. 1c; For example, the peak 690.34 is connected to its complementary peak 668.16 (366.17+301.99) by a dotted line **b** The score matrix computed by SpecGlobX to align the peptide HINATESVR with Se_c by dynamic programming; Masses have been rounded for simplifcation of the graphical representation; **c** After the traceback step, *Sec* is interpreted as [301.99]HI[N][0.98]ATE[S][27.99]VR and after the post-processing step, *Se* is interpreted as HI[N][0.98]ATE[S][27.99]VR_301.99, identifying peptide HINATESVR with two modifcations (a deamidation on "N" and a formylation on "S") and a non-aligned mass of 301.99 Da (neutral loss), which is the correct identifcation

(0.98 Da and 27.99 Da, *i.e.*, the same mass shifts as in Fig. 1) and one *Mloss* (301.99 Da). The dynamic programming process can then align some of the complementary peaks that do not correspond to any b-ion peaks in the original spectrum *Se*. The number of shared peaks between *Se_c* and *St* is increased by this alignment, but the number of shared peaks between *Se* and *St* is not. Tis situation is illustrated by the simulated spectrum displayed in Fig. 2. Since the b1-ion of peptide HINATESVR is not present in the spectrum, the mass of the frst amino acid H is only given by the presence of the y8-ion. Then, the first amino acid H can be only aligned on the complementary peak shifted by 301.99 Da, a shift only due to *Mloss* in *Sec*. If we compute directly the number of shared peaks between *Se* and the suggested alignment [301.99] HI[N][0.98]ATE[S][27.99]VR, none of the y-ion peaks would align (due to *Mloss*). To circumvent this issue, the post-processing step evaluates whether each shift increases the number of peaks shared between *Se* and *St*. If not, the irrelevant shift is removed from the alignment and its value is accumulated to form the non-aligned mass indicated after the symbol '_' in the result. We illustrate this transformation in Fig. 2c.

The fact that the SpecGlobX scoring system has been designed to limit the number of shifts, as was already discussed, is another problem that may prevent a proper alignment. Indeed, if a modifcation is located on the C-terminal residue of a peptide, a nonaligned mass will provide a better score than a shift in the last rows of *D* (because a shift lowers the score without giving the chance to compensate for this decrease at the end of the peptide). To solve this problem, SpecGlobX tests systematically whether a modifcation on the C-terminal residues should be preferred to a non-aligned mass and chooses this option if the number of aligned peaks is higher. Tis principle works well if the non-aligned mass found at the end of the alignment does not accumulate several modifcation masses (for instance, a neutral loss and a modifcation). Note, however, that

a neutral loss could have been evidenced earlier in the alignment by a switch between a series of aligned b-peaks and a series of aligned y-peaks, a switch observed frequently.

Finally, the post-processing step includes other transformations to facilitate the interpretation of alignments. For instance, non-aligned amino acids associated with a negative shift are removed if this deletion does not degrade the number of shared peaks (the case for a semi-tryptic peptide).

As a result of SpecGlobX, both alignments (before and after post-processing) are returned to the user.

Results and discussion

Application features

We implemented SpecGlobX as a standalone Java application. As input, SpecGlobX reads a fle containing spectra in MGF or mzML format (parsed by the JMZReader library [26] and a comma-delimited spreadsheet that describes the list of PSMs to be aligned. This list of PSMs may be the result of any OMS method or a list of PSMs generated by a user.

The user has immediate access to the most frequent parameters from the interface (Fig. 3), while he/she can also edit an additional fle containing all the parameters and scores used in the implementation. A click on the 'Launch Alignments' button starts SpecGlobX as a mono or multi-thread execution and produces a comma-delimited CSV fle as output. For each PSM, two alignments are returned: the 'preAlignedPeptide' column gives the alignment obtained just after the traceback step, while the 'alignedPeptide'

Fig. 3 SpecGlobX graphic interface

Table 1 Performance of SpecGlobX measured on the simulated dataset *Dsim*. At first, we provided the full list of 'correct PSMs' as input to SpecGlobX: each simulated spectrum is associated with the peptide sequence it derives from (row 1). Then, we executed SpecGlobX on the PSMs returned by three diferent OMS methods (rows 2 to 4). Several percentages of correct identifcations are summarized with and without (W/o) SpecGlobX. As a first criterion (column 2), a PSM is counted as correct if the spectrum is associated with the peptide sequence it derives from; the second criterion measures the percentage of PSMs that exhibits the neutral loss among the 50,000 PSMs (columns 3 and 4); the third criterion counts the PSMs in which all detected modifcations are correctly identifed and placed related to all PSMs (columns 5 et 6); the last criterion refers to the percentage of modifcations that are correctly identifed relative to the number of modifcations (about 103,000) incorporated in the simulated spectra (columns 7 and 8)

column displays the alignment once the post-processing step is done. SpecGlobX returns all alignments as strings: amino acids not explained in the alignment and shifts are in square brackets. Therefore, the user visualizes which amino acids have corroborating peaks in the aligned spectrum. Moreover, the value of the non-aligned mass (if any) is written after the symbol '_' at the end of the string. SpecGlobX also returns the number of peaks shared between *Se* and *St* before and after the alignments, and the percentage of the overall signal intensity explained by the alignment.

SpecGlobX is fast and can align one million PSMs in about 1.5 min on a desktop with 8 allocated threads and in about 10 min in a mono-thread confguration (around 100 times faster than InsPecT).

Evaluation of SpecGlobX with a simulated spectra dataset

Firstly, we challenged SpecGlobX on a simulated spectra dataset *Dsim* generated from 50,000 tryptic unique peptides randomly selected from the human proteome—downloaded from Ensembl99, release GrCh38 [27]—and whose lengths span from 12 to 25 amino acids*.* We transformed those peptides into doubly charged simulated spectra with the following modifcations: we introduced a deamidation on each asparagine $(N+0.984016$ Da) and a sodium adduct on each aspartic acid $(D+21.981943$ Da); next, we randomly removed 20% of the peaks to simulate missing peaks. Two-thirds of the removed peaks were b-ion peaks and one-third were y-ion peaks, as we observed that missing peaks are mainly b-ion peaks in experimental fragmentation spectra acquired in an HCD cell (a common instrument confguration of high-resolution mass spectrometers used in proteomics). Then, we simulated noise by adding up to 60 peaks of randomly selected masses. Lastly, we simulated a neutral loss of 17.03 Da on the peptide mass of each spectrum. We provided the complete list of 'correct PSMs' as input to SpecGlobX i.e., each simulated spectrum was associated with the peptide it derived from. Depending on the peptide's composition, simulated spectra in *Dsim* contain a range of one to

fve modifcations (among which at least one neutral loss of 17.03 Da). Given that every spectrum in *Dsim* is simulated, we can unambiguously determine whether a modifcation suggested by SpecGlobX is correct. Our assessment shows that SpecGlobX performs well: it detected the neutral loss on a large proportion of spectra (nearly 70%) and correctly identifed 53% of all the expected modifcations (Table 1, frst row).

Given its underlying algorithm, it appears that SpecGlobX's performance depends on the recognition of the peptide's amino acids in the spectrum, which can be more or less efective depending on the percentage of missing peaks, the absence of fragmentations representing certain amino acids or the presence of co-fragmented peptides in the spectrum. We varied several spectral simulation parameters to assess the efects of these potential sources of reduced quality spectra (Additional fle 1: Tables S1, S2 and S3). Achieving excellent results when spectra display complete fragmentation information, SpecGlobX performance unsurprisingly declines when spectra quality deteriorates. However, SpecGlobX proved resilience to loss of informative peaks or co-fragmentation of peptides. Whether a substantial part of the fragmentation information is lost (up to 50% missing peaks or up to six amino acids missing in the fragmentation traces) or whether spectra represent co-fragmented peptides, SpecGlobX still return correct interpretations on highly modifed peptides without any a priori.

Complementarity between SpecGlobX and existing OMS methods

Secondly, we evaluated whether SpecGlobX improves the results provided by three existing OMS software: MODPlus [14], MSFragger [9], and SpecOMS [23]. To this end, we frst challenged each of these tools with *Dsim* spectra (see Additional fle 1 for detailed parameters) and we examined each software's ability to interpret the mass modifcations in the correctly identifed PSMs. On one hand, MODPlus explains ∆M observed between *Se* and *St* by combining modifcations stored in a predefned list (consisting of all or only a selection of modifcations referenced in Unimod, or a list provided by the user). We have previously shown that this strategy is particularly efficient if the objective is to identify the maximum number of peptides carrying common or known in-advance modifcations. However, as soon as a peptide carries a modifcation not reported in the list, MODPlus fails in recovering a correct interpretation. Since MOD-Plus does not consider mass losses, it was unable to provide a good interpretation of any of the correctly identifed PSMs, even though it interpreted and located 18% of the modifcations (Table 1). On the other hand, MSFragger and SpecOMS try to explain each modification by a single shift. Therefore, both of them yielded good interpretations for only 27% of the correctly identifed PSMs, which corresponded to peptides carrying a single modification (Table 1). Then, we applied SpecGlobX on the PSMs correctly identifed by SpecOMS, MODPlus, and MSFragger. Regardless of the search engine used to produce the PSMs, a large part of the neutral losses misinterpreted by the three search engines can be recovered by SpecGlobX. Similarly, the percentage of correct modifcations relative to the number of expected modifcations (based on the number of N and D in *Dsim*) is multiplied by two or three depending on the OMS software used. The limitation of SpecGlobX, therefore, is that even when the PSM is correct, only half of the modifications (53%) are perfectly identified and localized. This is not a surprise since

Fig. 4 Distribution of mass shifts and non-aligned masses on the HEK293 dataset interpretation with SpecGlobX downstream to SpecOMS (FDR<1%). **a** A general histogram overview shows the major peaks. **b** In this detailed histogram above, non-aligned major peaks around 1 Da have been removed and the mass delta scale is reduced from−200 to 400 Da so that minor peaks can be observed. The number of mass shifts in each 1 Da wide bin is represented in orange. **c** In the detailed histogram below, the number of non-aligned mass shifts in each 1 Da wide bin is represented in blue

some modifcations cannot be corroborated without any a priori due to missing peaks. In addition, if two modifcations are present on two adjacent amino acids, SpecGlobX is not able to distinguish them. Consequently, although a manual curation by an expert is still needed to remove ambiguities in the proposed alignments, SpecGlobX is helpful as a decision-support tool. SpecGlobX provides keys to interpret peptides carrying complex modifcations, while this issue is still poorly considered by current open modifcation search software.

Alignments highlighted on the HEK293 dataset

As a fnal evaluation, we ran SpecGlobX as a post-processing tool of SpecOMS on 24 spectra datasets generated from HEK293 cells [24] downloaded from PRIDE (PXD001468). Tis collection of spectra datasets has been used several times to evaluate open modifcation search methods. We converted the raw spectra fles into the MGF format with msConvert release 3.0 [28] and obtained a list of PSMs using SpecOMS (confguration described in Additional fle 1). Next, we divided the PSMs into three groups according to ΔM ($\Delta M < 0$, $\Delta M = 0$, $\Delta M > 0$) and filtered the PSMs to comply with an FDR<1% computed separately for each group using a target-decoy approach. Overall, 429,703 spectra were validated, among which 149,794 had a positive ∆M and 16,545 a negative ∆M. Finally, we ran SpecGlobX and clustered the mass shifts (resp. the non-aligned masses) into 1 Da wide mass bins between−500 and 500 Da, and counted their number below−500 Da and above 500 Da. Tis results in the histograms shown in Fig. 4. Non-aligned masses are in the majority (Fig. 4a), with many isotopic errors, but there are also a large number of $\Delta M > 500$ Daltons. This phenomenon is explained below, using an example based on a small subset of spectra.

These spectra are interpreted from the fle b1922_293T_proteinID_02A_QE3_122212

Our results are consistent with those published in [24], highlighting the most common modifcations that have already been observed (Fig. 4b). However, we note that there is a large proportion of non-aligned masses.

Next, to emphasize the value of SpecGlobX on experimental spectra, we focused on the interpretation of a subset of 77 spectra identifying peptide *pep*=DATNVGDEGGFAP-NIIENK according to SpecOMS (results are in Additional fle 2). Tis subset of spectra seems to be a good representation of a set of spectra identifying the same peptide in the dataset. Indeed, as shown in Fig. 5, among the 77 spectra identifying *pep*, only 15 exhibit ∆M values around 0 or 1 Da (referring to an exact match to the expected mass or an incorrect picking of the good isotope, respectively), while the others are distributed over 44 diferent values of ∆M between−500 and 2065 Da.

When examining the alignments suggested by SpecGlobX, we note a large number of non-aligned masses we did not expect (36 out of the 77 alignments returned by Spec-GlobX contain a non-aligned mass), an observation we can extend to the alignments of all PSMs obtained on the complete dataset. Situations combining non-aligned masses including neutral losses and one or several modifcations on the same peptide -as previously evaluated with *Dsim-* seems to be a reality in this dataset. The exploration of the spectra relations as done in [29] helps to decipher whether these neutral loss identifcations are correct.

 $\frac{3}{26}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ All the number of shared peaks between pairs of spectra are easily and rapidly completed by running SpecOMS (with the search_mode parameter set to "spectra"). Based on these data, we transformed the relations between the 77 spectra representing *pep* into a spectral network using GePhi [30], in which each node corresponds to a spectrum and two vertices are connected by a link when the two spectra share at least 26 out of the 50 most intense peaks. The resulting graph displayed in Fig. 6 includes 74 connected nodes and 998 links. Links between pairs of spectra are weighted by their number of shared peaks. The force-directed layout algorithm Force Atlas [31] generated the detailed arrangement of nodes on the drawing. As a consequence, groups of nodes that are densely connected (i.e., that share the same set of peaks) are immediately highlighted as clusters of nodes.

Fig. 6 The closeness of spectra identifying peptide DATNVGDEGGFAPNIIENK (HEK293 dataset). In this picture, two vertices representing spectra are linked if the two spectra share at least 26 out of the 50 most intense peaks. The size of each node is related to its degree, the label on each node displays the ∆M value, and colors on the nodes group similar masses and their isotopes for readability. Each link between a pair of spectra is weighted by the number of shared peaks. The arrangement of nodes is done by the directed Force Atlas algorithm so that the topology of the graph represents the closeness of spectra in terms of number of shared peaks

We remind that two spectra representing *pep* with diferent neutral losses should share most of their peaks –and should share most of their peaks with the spectra identifying *pep* without modification ($\Delta M = 0$ or $\Delta M = 1$ corresponding to incorrect use of isotopic peaks). On the contrary, the number of peaks shared between two spectra representing *pep* drops by half for each modifcation diferentiating the two spectra. The presence of many non-aligned masses is confirmed by several manual interpretations and can be generalized by the topology of the graph with a large central cluster For instance, ΔM = {301.99; 302.99; 303.99} Da represents a labile modifcation in three isotopic forms (an annotated spectrum plot (Spectrum #54,484)

highlighting the labile modifcation is available in Additional fle 1). Consistent with that, all the spectra carrying these modifcations and identifying *pep* with a strong confdence share most of their peaks with most other spectra, particularly with spectra associated with PSMs with $\Delta M = 0$ or 1.

Next, we interpreted the 77 spectra identifying *pep* with MODPlus and MSFragger to evaluate if the behavior on experimental spectra is similar to what we observed on simulated spectra. The answer is clearly yes (the interpretation provided by each software is given in Additional fle 2). Even though MODPlus provides the same PSMs as SpecOMS with only two exceptions, the interpretations in terms of modifcations are the same for only 19 of these 75 PSMs. On the contrary, MSFragger difers more frequently on the PSM (5 spectra are interpreted as diferent peptides), but the interpretations of the modifcations carried by 40 among 72 PSMs are the same.

As already highlighted by simulated spectra, well-known modifcations are welllocated by MODPlus $(D+21.98$ Da, N-Ter $+43.01$ Da, D $+53.92$ Da). However, one surprise is some of the nodes associated with the latter ΔM (Fig. 5, ΔM = +53.92 Da for instance) are densely connected to nodes corresponding to mass losses, whereas some other nodes of the same ∆M are close to each other but disconnected from the cluster of nodes. Tis suggests that some spectra contain a clear signature of the modifcation with a shift of peaks carrying the modifcation, while other spectra have partly or totally lost this signature. These findings –which may be related to the signifcant proportion of non-aligned masses seen in Fig. 4a—imply that non-aligned peaks are more frequent in spectra than previously thought, leading to a lower number of shared peaks if those peaks are not taken into account by search engines.

Our small experimental dataset also illustrates that the counterpart of a priori knowledge and ∆M restrictions sometimes have bad efects on the interpretations of spectra (annotated spectrum plots discussed below are available in Additional fle 1). On one hand, spectrum #54,025 interpreted without any doubt by MODPlus as the O-linked glycosylated peptide YGKDATNVGDEGGFAPNILENK (probability=1, glycan 1914.69 Da) is more reliably interpreted as a homodimer of *pep* (an artifact that can be frequently observed [32] added to the frequent neutral loss 301.98 Da with SpecGlobX and MSFragger. On the other hand, MSFragger suggests another peptide than *pep* for spectrum #53,811, leading to an incorrect PSM. Indeed, some readers could be intrigued by the presence of spectrum #53,811 associated with ∆M=−451.18 Da at the center of the cluster of nodes. The spectrum position in the graph suggests that $#53,811$ shares most of its peaks with the entire peptide *pep* (nodes with ∆M=0 or 1), which excludes the possibility that #53,811 arises from a semi-tryptic form of *pep* (the MODPlus suggestion, but in this case, the number of shared peaks with other spectra representing *pep* would have been much lower). At the same time, the ∆M value is negative, suggesting a loss of amino acids. Even though none of the software has found this most probable interpretation, the usage of SpecGlobX as a decision support tool combined with an expert analysis of the spectrum graph has rather easily led us to the following explanation: the charge state evaluation of the spectrum is wrong $(3+$ rather than $2+)$ and the spectrum carries the labile modifcation of 302.99 Da (present on a large proportion of the spectra in this sample).

Integration of SpecGlobX with other OMS methods

Because SpecGlobX has a command line interface, it is simple to integrate in a workfow. On the other hand, rather than being used as a post-processing tool for OMS methods, it could also be integrated into OMS engines to identify the best candidates, taking into account spectra with multiple modifcations.

Before implementing this integration, minor changes in the algorithm should be explored. First, SpecGlobX performs a kind of "global alignment", in which the score used to start the traceback comes from a cell in the last row of the dynamic programming matrix *D*. This latter score may not be the highest in *D*. For instance, if *Se* corresponds to a semi-tryptic peptide that has been truncated from its C-Terminal end, the best alignment score in *D* drops after a maximum because the last amino acids are not found. Tus, while the "global alignment score" determines the optimal alignment path for PSMs, the highest score in the matrix -so-called the "local alignment score"- may be better to inter-classify PSMs. Note that this "local alignment score" computed without any traceback or post-processing step would be particularly fast to compute. In the same vein, if *Se* aligns with the C-terminal part of the peptide but not with its N-terminal, the initial imperfect alignment should not prevent further partial alignment. To avoid this pitfall, a solution might be to limit the lower score in *D*–if the score gets lower, it is reset to the minimum value. Second, each method has its fnal score philosophy, in which the SpecGlobX alignment score may play a role. Some fne-tuning may be required to achieve satisfactory results.

Conclusions

SpecGlobX is an easy-to-use software developed to quickly align PSMs. SpecGlobX can be seen as an additional tool to existing OMS software, providing a good decision support tool to highlight complex modifcations carried by peptides. We have shown on a large set of simulated spectra (modeled such as to simulate imperfect experimental spectra) that SpecGlobX improves the identifcation of complex and unanticipated modifcations after reprocessing the PSMs lists provided by OMS software. Next, we demonstrated the usefulness of SpecGlobX on a subset of a well-known experimental spectra dataset downloaded from PRIDE, highlighting the presence of a large proportion of non-aligned masses due to neutral losses, charge estimation error, and the presence of dimers.

SpecGlobX is freely available to all users, including the source code.

Availability and requirements

Project name: SpecGlobX Project home page:<https://github.com/bibs-lab/SpecGlobX> Operating system(s): Platform independent Programming language: Java Other requirements: 1.8 or higher License: GNU GPL Any restrictions to use by non-academics: None

Supplementary Information

The online version contains supplementary material available at<https://doi.org/10.1186/s12859-023-05555-y>.

Additional fle 1. Complementary information concerning the evaluation of SpecGlobX. Test parameters and addi‑ tional results on simulated spectra are detailed. Some spectral alignments are also presented.

Additional fle 2. Comparative interpretation of a subset of spectra by three software.

Acknowledgements

We express our sincere gratitude to Colette Larré, Michel Zivy, and Chantal Brossard for their help to set up the deepProt project and for the enriching discussions we have shared.

Author contributions

All the authors have contributed to the quality of this work (e.g. AL, GF, GJ, DT conceived the algorithm; GP, MC, AL, HR, DT adapted SpecGlob to experimental data; GP, AL, DT implemented SpecGlobX; MC, HR, EB, OL, VL, MBN tested, provided feedback and suggested improvements. All authors wrote and reviewed the manuscript).

Funding

This work was supported by the French National Research Agency (ANR-18-CE45-004), ANR DeepProt.

Availability of data and materials

This published article and its supplementary fles give all information required to reproduce the simulated dataset *DSim*. The HEK293 spectra dataset supporting the conclusions of this article was downloaded from the PRIDE repository, PXD001468, fle b1922_293T_proteinID_02A_QE3_122212.raw <https://www.ebi.ac.uk/pride/archive/projects/PXD001468>

Declarations

Ethics approval and consent to participate

Not applicable, human data used was publicly available.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 13 March 2023 Accepted: 30 October 2023 Published online: 08 November 2023

References

- Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, Del-Toro N, et al. Recognizing millions of consistently unidentifed spectra across hundreds of shotgun proteomics datasets. Nat Methods. 2016;13(8):651–6.
- 2. Bogdanow B, Zauber H, Selbach M. Systematic errors in peptide and protein identifcation and quantifcation by modifed peptides. Mol Cell Proteomics. 2016;15(8):2791–801.
- 3. Creasy DM, Cottrell JS. Unimod: protein modifcations for mass spectrometry. Proteomics. 2004;4(6):1534–6.
- 4. den Ridder M, Daran-Lapujade P, Pabst M. Shot-gun proteomics: why thousands of unidentifed signals matter. FEMS Yeast Res. 2020;20(1):foz088.
- 5. Colaert N, Degroeve S, Helsens K, Martens L. Analysis of the resolution limitations of peptide identification algorithms. J Proteome Res. 2011;10(12):5555–61.
- 6. Bugyi F, Szabó D, Szabó G, Révész Á, Pape VFS, Soltész-Katona E, et al. Infuence of post-translational modifcations on protein identifcation in database searches. ACS Omega. 2021;6(11):7469–77.
- 7. Savitski MM, Nielsen ML, Zubarev RA. ModifComb, a new proteomic tool for mapping substoichiometric posttranslational modifcations, fnding novel types of modifcations, and fngerprinting complex protein mixtures. Mol Cell Proteomics. 2006;5(5):935–48.
- 8. Riffle M, Hoopmann MR, Jaschob D, Zhong G, Moritz RL, MacCoss MJ, et al. Discovery and visualization of uncharacterized drug-protein adducts using mass spectrometry. Anal Chem. 2022;94(8):3501–9.
- 9. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identifcation in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20.
- 10. Chen Y, Chen W, Cobb MH, Zhao Y. PTMap–a sequence alignment software for unrestricted, accurate, and fullspectrum identifcation of post-translational modifcation sites. Proc Natl Acad Sci U S A. 2009;106(3):761–6.
- 11. Horlacher O, Lisacek F, Müller M. Mining large scale tandem mass spectrometry data for protein modifcations using spectral libraries. J Proteome Res. 2016;15(3):721–31.
- 12. Cifani P, Li Z, Luo D, Grivainis M, Intlekofer AM, Fenyö D, et al. Discovery of protein modifcations using diferential tandem mass spectrometry proteomics. J Proteome Res. 2021;20(4):1835–48.
- 13. Solntsev SK, Shortreed MR, Frey BL, Smith LM. Enhanced global post-translational modifcation discovery with MetaMorpheus. J Proteome Res. 2018;17(5):1844–51.
- 14. Na S, Kim J, Paek E. MODplus: robust and unrestrictive identifcation of post-translational modifcations using mass spectrometry. Anal Chem. 2019;91(17):11324–33.
- 15. Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, et al. Comprehensive identifcation of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;36(11):1059-61.
- 16. Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, et al. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol. 2019;37(4):469–79.
- 17. Burke MC, Mirokhin YA, Tchekhovskoi DV, Markey SP, Heidbrink Thompson J, Larkin C, et al. The hybrid search: a mass spectral library search method for discovery of modifcations in proteomics. J Proteome Res. 2017;16(5):1924–35.
- 18. Bittremieux W, Meysman P, Noble WS, Laukens K. Fast open modification spectral library searching through approximate nearest neighbor indexing. J Proteome Res. 2018;17(10):3463–74.
- 19. Lysiak A, Fertin G, Jean G, Tessier D. SpecGlob: rapid and accurate alignment of mass spectra difering from their peptide models by several unknown modifcations. bioRxiv. 2022; doi: [https://doi.org/10.1101/2022.05.31.494131.](https://doi.org/10.1101/2022.05.31.494131)
- 20. Pevzner P, Dancik V, Tang C. Mutation-tolerant protein identifcation by mass spectrometry. J Comput Biol. 2000;7(6):777–87.
- 21. Pevzner PA, Mulyukov Z, Dancik V, Tang CL. Efficiency of database search for identification of mutated and modified proteins via mass spectrometry. Genome Res. 2001;11(2):290–9.
- 22. Bandeira N, Tsur D, Frank A, Pevzner PA. Protein identifcation by spectral networks analysis. 2007.
- 23. David M, Fertin G, Rogniaux H, Tessier D. SpecOMS: a full open modifcation search method performing all-to-all spectra comparisons within minutes. J Proteome Res. 2017;16(8):3030–8.
- 24. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, et al. A mass-tolerant database search identifes a large proportion of unassigned spectra in shotgun proteomics as modifed peptides. Nat Biotechnol. 2015;33(7):743–9.
- 25. Cliquet F, Fertin G, Rusu I, Tessier D, editors. Comparison of spectra in unsequenced species. 4th Brazilian Symposium on Bioinformatics (BSB 2009); 2009; Porto Alegre, Brazil.
- 26. Griss J, Reisinger F, Hermjakob H, Vizcaíno JA. jmzReader: a Java parser library to process and visualize multiple text and XML-based mass spectrometry data formats. Proteomics. 2012;12(6):795–8.
- 27. Yates AD, Achuthan P, Akanni W, Allen J, Alvarez-Jarreta J, Amode MR, et al. Ensembl. Nucleic Acids Res. 2020;48(D1):D682–8.
- 28. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.
- 29. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A. 2012;109(26):E1743–52.
- 30. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. 03, 2009.
- 31. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE. 2014;9(6): e98679.
- 32. Giese SH, Belsom A, Sinn L, Fischer L, Rappsilber J. Noncovalently associated peptides observed during liquid chromatography-mass spectrometry and their efect on cross-link analyses. 2019.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Ready to submit your research? Choose BMC and benefit from:

- **•** fast, convenient online submission
- **•** thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- **•** gold Open Access which fosters wider collaboration and increased citations
- **•** maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

