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c Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, 
Switzerland 

KEYWORDS. Ziegler-Natta catalysts, solid-state NMR, DFT calculations, High-field 47/49Ti NMR. 

ABSTRACT: Ziegler-Natta (ZN) catalysts – typically formulated as TiCl4/MgCl2/AlR3 and possibly containing additional 
organic ligands – are essential to the production of polyethylene and polypropylene. Despite their industrial relevance and 
years of research on these materials, the role of each constituent (support, organic ligands, post-treatment with organic or 
inorganic modifiers etc.) on the structure of Ti surface sites responsible for polymerization remains poorly understood, partly 
because of the high complexity of such materials. Herein, we show how high-field 47/49Ti NMR can bring about new lights on 
the structures of the Ti surface sites in ZN pre-catalysts (prior to activation with alkyl aluminium) resulting from adsorption 
of TiCl4 on MgCl2 followed by a post-treatment with BCl3, an additive used to improve catalytic activity by increasing the 
amounts of active sites. The implementation of high-field NMR (900 MHz), low temperature (~100 K), magic angle spinning 
(10 kHz), CPMG echo train acquisition and DFT modelling, to study this material (TiCl4/MgCl2/BCl3) and molecular analogs, 
allows the detection of a 47/49Ti NMR signature and the development of a molecular level understanding of the NMR signature 
of Ti surface sites. The extracted 49Ti NMR parameters (δiso, exp = –170 ppm and CQ, exp = 9.3 MHz) from this signature analyzed 
by DFT modeling indicate the presence of one specific coordination sphere for Ti, namely a fully chlorinated hexacoordinated 
Ti site with a symmetric charge distribution, due to the post-treatment with BCl3 (that removes the alkoxide ligands) and the 
coordination environment provided by surface of an amorphous MgCl2. 

Introduction 

Heterogeneous Ziegler-Natta (ZN) catalysts1-3 are central for the industrial production of polyethylene (PE grades such as 
HDPE & LLDPE) and polypropylene (PP such as isoPP).4 These catalysts are multicomponent hybrid materials that include 
organic (ether, alcohol and esters, referred to as internal donors) and inorganic parts (TiCl4/MgCl2),5 which are activated with 
alkyl aluminum, e.g. Al(C2H5)3, in the presence or not of additional organic promoters (external donors), to provide polymers 
with specific properties resulting from the molar masses, the dispersity and the stereoselectivity when applicable (isoPP).6 
Despite intensive studies over the past decades,7-16 establishing structure–activity relationships in ZN catalysts has remained 
elusive. The situation is particularly challenging because of the low Ti weight loading (2-4 wt. %), and the multistep catalyst 
preparation, where the state of Ti sites and the structure of the MgCl2 support undergoes changes at every stage. This process 
ultimately results in a small fraction of catalytically active Ti sites upon activation with alkyl aluminum reagents.17  

EPR spectroscopy combined with DFT modeling has recently enabled to identify the spectroscopic signature of Ti active sites 
in activated ZN PE catalysts and to assign them to a specific structural motif, namely a bimetallic Ti(III)/Al alkyl species.17 
Despite these advances, establishing a link between the Ti site structures before and after activation remains an important 
question in order to establish the role of MgCl2 on the structure of the surface sites and a detailed structure-activity 
relationship. While the preparational procedure of MgCl2 is known to be critical to generate highly active catalysts,18 
understanding the interaction of Ti with the support surface is complicated because MgCl2 loses crystallinity upon interaction 
with TiCl4.19 Thus, structural investigations based on XRD or other techniques that rely on long-range order, are not that 
informative. While optical spectroscopy (IR, UV-Vis, Raman, etc.)14, XAS techniques20 and various multinuclear NMR (1H, 13C, 
25Mg, and 35Cl)21-25 methods have been successfully used for addressing the structure of Ti sites on MgCl2, the results are very 
difficult to interpret and lead to rather poor molecular-level understanding. Furthermore, previous studies have also shown 
that the internal donors such as THF or ethanol, that are known to activate MgCl2, are non-innocent and react with TiCl4 
resulting in the formation of surface Ti alkoxide species,26, 27 that may explain the broad range of reactivity of surface sites. In 
fact, the addition of BCl3 (and other MClx additives) has been proposed to remove surface alkoxy species via transmetallation 
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by forming B-alkoxide species. Note that this treatment also results in a significant removal of Ti sites (see Table S2 for 
elemental analysis), while increasing the number of active sites when the pre-catalyst is treated with triethylaluminum 
(TEA).17, 26-28  

Thus, resolving the structure of Ti surface sites formed upon adsorption of TiCl4 on activated MgCl2 is still of prime interest 
and calls for the development of characterization techniques, that can probe the local environment and electronic structure 
of the Ti sites. Considering that these sites are Ti(IV) and diamagnetic, 47/49Ti NMR appears to be a perfect candidate. However, 
47/49Ti NMR spectroscopy suffers from a number of critical limitations, namely i) the low gyromagnetic ratio of both 49Ti and 
47Ti nuclei, ii) the low natural abundance of these nuclei (5.41 and 7.44 % correspondingly), iii) the quadrupolar nature of the 
nuclei (I = 7/2 and 5/2, respectively), iv) the rather large quadrupole moment of both nuclei (24.7 and 30.2 fm2, 
correspondingly),29 and v) close proximity of these isotopes in the NMR spectra (within 267 ppm), often yielding overlapping 
broad lines.30 All these factors contribute to the difficulty in obtaining high quality 47/49Ti NMR spectra, usually associated 
with a poor signal-to-noise ratio and complex line shapes. The situation is further worsened for ZN catalysts due to the low 
amount of Ti (often about 2-4 wt. % in range), the expected heterogeneity of surface sites formed upon the adsorption of TiCl4 
on specific sites of MgCl2 as well as the presence of Ti with both Cl and OR ligands.26, 27 Pioneering work on 47/49Ti NMR of 
Ziegler-Natta pre-catalysts led to observation of a very broad low-intense signal, which is difficult to interpret.31 However, 
recent hardware developments (higher fields, low temperature) augmented with computational approaches have shown that 
it is possible to detect the NMR signature of Ti sites in Ti silicalite (TS-1), another industrially relevant materials containing 
only 1-2 wt% Ti.32  

A specific challenge associated with the characterization of the ZN catalyst is MgCl2 itself. Its disordered character (upon 
adsorption of TiCl4)19 makes the development of meaningful DFT models particularly challenging, due to the lack of the 
corresponding crystal structure. Consequently, previously Ti surface models used for DFT computations were based on TiCl4 
adsorbed on various facets of crystalline MgCl2.31 However, recent findings related to the characterization of the 
corresponding V-based ZN pre-catalysts (prepared by adsorption of VOCl3 on similar MgCl2) have shed light on how the 
morphology of MgCl2 can affect the structure of the V sites and the NMR signatures, thanks to the high sensitivity of 51V NMR 
combined with computations.33 Namely, adsorption of VOCl3 on MgCl2-(THF)1.5 generates a well-defined V-alkoxide surface 
species, with a distorted local geometry due to loss of crystallinity of MgCl2.33 Encouraged by the advances in solid-state NMR 
and computational modeling, along with our improved understanding of MgCl2 and its impact on the local geometry of surface 
sites, we investigate here the corresponding Ti-based ZN PE pre-catalysts by combining high magnetic field (900 MHz), magic 
angle spinning (MAS), low temperature (~100 K), higher filling factor (3.2 mm thin-wall rotor, ~40 µL sample volume), and 
probe optimized for low-gamma nuclei, with DFT computations benchmarked on molecular compounds. This multipronged 
approach unveils the structure of Ti sites in ZN PE catalysts, prepared from the adsorption of TiCl4 on MgCl2 followed by a 
BCl3 treatment.28  

 

Results and discussions 

NMR measurements 

We first conducted 47/49Ti NMR measurements on two molecular complexes in order to assess the effect on NMR signatures 
of specific Ti local environments, representative of possible surface sites, namely [H2NMe2]2[TiCl6]34 and 
[H2NMe2]2[TiCl5(OiPr)]. For the NMR measurements, the Double Frequency Sweep – Quadrupolar Carr-Parcell-Meiboom-Gill 
(DFS-QCPMG) methodology was selected in order to gain from DFS (signal enhancement), MAS (narrowing down NMR line) 
and CPMG (signal enhancement by echo train acquisition).35, 36  

While [H2NMe2]2[TiCl6] shows two relatively narrow lines (<1 kHz) corresponding to the 49Ti and the 47Ti isotopes (Fig. 1a), 
the Ti complex having one alkoxide ligand does not show any NMR signal under similar conditions, likely due to a too large 
quadrupolar coupling constant associated with a much larger asymmetric environment (vide infra). Fitting the spectrum for 
[H2NMe2]2[TiCl6] yields a CQ(49Ti) = 3.0 MHz, δiso(49Ti) = –250 ppm.  

On the basis of the narrow lines, this sample was used for the calibration of NMR measurement parameters, which was of 
highest importance for the spectra of ZN pre-catalysts. We next focused on ZN catalysts (TiCl4@MgCl2(THF)1.5) treated with 
BCl3, in order to remove possible alkoxide ligands and increase our chances to obtain an NMR spectrum with narrower lines 
(vide infra), a highly active in ethylene polymerization (see ESI Fig. S2). The 47/49Ti DFS-QCPMG NMR spectrum of BCl3-treated 
sample shows only a broad feature centred at ca. -276 ppm with a number of sidebands (Fig. 1b), whose peak position and 
width is consistent with a surface Ti site in a similar Ti coordination environment as in [H2NMe2]2[TiCl6]. The signal can be 
fitted to a single Ti site (with both 49Ti and 47Ti isotopes; we note that due to larger electric quadrupolar moment 47Ti isotope 
leads to a very broad line on a level of background) with a δiso(49Ti) of –170 ppm and a CQ(49Ti) of  9.3 MHz, which indicate 
that Ti is in a distorted octahedral environment with likely only Cl ligands. Notably, no 47/49Ti NMR signal could be obtained 
on the pristine sample (without prior treatment with BCl3) consistent with what we observe for the molecular compound and 
as expected for Ti sites having large CQ due to the presence of both Cl and OR ligands as revealed by 13C MAS NMR (see ESI 
Fig. S3 for details).  
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FIGURE 1. 47/49Ti DFS-QCPMG MAS NMR spectra (10 kHz MAS, 21.1 T, 100 K) for (a) [H2NMe2]2[TiCl6] (512 scans) and (b) ZN pre-
catalyst treated with BCl3 (370’496 scans) as well as modeled line shape (solid red line) for δiso = -170 ppm and CQ = 9.3 MHz. 
Magnitude correction was used for the representation. 

 
TABLE 1. Calculated 49Ti NMR spectroscopic signatures (δiso / ppm, CQ / MHz) of model Ti surface species in ZN pre-catalysts  

Adsorbate   Model 

TiCl4-x(OR)xa  
[TiCl6-x(OR)x]2- TiCl4-x(OR)x @MgCl2-110 TiCl4-x(OR)x @MgCl2-NR 

δiso CQ δiso CQ δiso CQ 

TiCl4 -203 2.1 -64 15.3 -122 11.7 

TiCl3OR -573 37.9 -489 27.5 -511 33.8 

TiCl2(OR)2 - - -763 30.4 -760 33.7 

ax = 0, 1 or 2

 

DFT calculations 

In this study, we investigated the contributions that affect the NMR signatures – namely the chemical shift anisotropy and CQ 
– of molecular model systems as well as model surface species. For this purpose, we conducted DFT calculations of the NMR 
parameters37 – using B3LYP,38, 39 QZ4P,40 and the all electron scalar relativistic zeroth-order regular approximation (ZORA)41 
– to explore these contributions. For the purpose of benchmarking the computational protocol, we used a library of molecular 
compounds with previously reported solution 47/49Ti NMR isotopic chemical shifts and observed a good agreement between 
computation and experiment (referenced against benchmark correlation, see ESI for details).42-44 Building on this DFT 
protocol, the NMR calculations based on the crystal structures of the molecular compounds [H2NMe2]2[TiCl6] and 
[H2NMe2]2[TiCl5(OiPr)], confirmed a very high sensitivity of the chemical shift and CQ towards substitution between chlorido 
and alkoxide ligands. Having one alkoxide ligand is enough to decrease the chemical shift from -203 ppm to -573 ppm, but 
also to induce a significant increase in the CQ from 2.1 to 37.9 MHz when compared to the hexachlorido compound, 
[H2NMe2]2[TiCl6]. Consequently, the lineshape of the Ti-alkoxy species is expected to be significantly broadened compared to 
the highly symmetric [H2NMe2]2[TiCl6] species, thus explaining the difficulty to observe and the absence of 47/49Ti NMR signal 
for [H2NMe2]2[TiCl5(OiPr)] and the related supported ZN catalysts prior to treatment with BCl3 under our experimental 
conditions.26, 27 

Next, the 49Ti NMR signatures of model ZN surface sites were investigated as shown in Table 1, inspecting the effect of directly 
bound ligands (Cl vs. OR) as well as the MgCl2 morphology, focusing on the difference between the representative crystalline 
(110)-facet (TiCl4-x(OR)x@MgCl2-110) vs. an disordered environment around Ti/Mg modeled by a nanoribbon structure 
(TiCl4-x(OR)x @MgCl2-NR).33 The calculated 49Ti NMR signatures for the models built from the commonly employed crystalline 
MgCl2 (110)-facet surface21, 22, 45-49 show a similar trend as the molecular model systems discussed above: the chemical shift 
decreases upon introduction of terminal alkoxide ligands from –64 ppm for the fully chlorinated titanium (TiCl4@MgCl2-110) 
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to –489 and –763 ppm for the mono- and bis-alkoxide systems, respectively. This is accompanied by a significant increase in 
CQ from 15.3 MHz for the perchlorinated species to 27.5 MHz and 30.4 MHz for the mono- or bis-alkoxide model surface sites. 

 

FIGURE 2. Two-dimensional map of calculated 49Ti NMR signatures for the nanoribbon (green points) and (110)-facet model systems 
(violet points). Experimental value of BCl3-treated ZN pre-catalysts (red point). The deviations from the computed values were 
estimated from the benchmark sets for the chemical shift (ca. ±50 ppm) and CQ (ca. ±2 MHz).  

Although, the trend of the isotropic chemical shift upon introduction of alkoxide ligands (300-500 ppm per alkoxide ligand) 
is consistent with what was observed for the Ti molecular systems and the corresponding V-based ZN pre-catalysts,33 the 
isotropic chemical shift of all model systems  based on the (110)-facet significantly diverged from the experimentally 
observed value (δiso, exp = –170 ppm), pointing out that this (crystalline) model does not capture the electronic structure of Ti 
sufficiently. Furthermore, these model systems do not reproduce the rather low CQ value of the measured Ti species observed 
for the ZN pre-catalyst (CQ, exp = 9.3 MHz) well. The specific difference between experimental and computational values, in 
particular in terms of CQ, indicates that Ti has to be in a more symmetrical environment than predicted from crystalline MgCl2 
models, paralleling what has been recently proposed for the corresponding V-based Ziegler-Natta pre-catalysts. In the latter 
case, the NMR response is in better agreement when MgCl2 is modeled by a disordered model (nanoribbon) rather than 
crystalline (110)-facet models. It is noteworthy that the metal sites adopt a more symmetric environment when adsorbed on 
nanoribbon, whereby the fully chlorinated Ti site (TiCl4@MgCl2-NR) is associated with a calculated chemical shift and CQ value 
of –122 ppm and 11.7 MHz, respectively. Such calculated values show similar trends upon substituting Cl by OR ligands, 
namely increasing shielding and CQ values, and match within the level of uncertainty the experimental values (–170 ppm and 
9.3 MHz). Overall, these results indicate that the ZN pre-catalysts treated with BCl3 contain a well-defined Ti surface site, best 
described as being fully chlorinated and having a more symmetric environment inherited from being absorbed on disordered 
MgCl2 (see Fig. 1 and 2). 

This data also indicates that it is currently only possible to observe 47/49Ti NMR signatures when Ti is solely decorated by Cl 
ligands as in the BCl3-treated ZN pre-catalyst, because of the associated lower CQ and thereby narrow lines. On the contrary, 
the untreated ZN pre-catalysts, that has been shown to contain Ti-alkoxy species by 13C NMR, is expected to contain Ti sites 
with (extremely) large CQ leading to significant second-order quadrupolar line broadening, which would be currently 
impossible to observe with the state-of-the-art equipment even at prolonged measurement times.21  

We next examined the orientation of the chemical shielding tensor (CST) and carried out a Natural Chemical Shielding (NCS)50-

53 analysis of the surface Ti sites in TiCl4-x(OR)x@MgCl2-NR with the goal to rationalize the chemical shift trends observed 
upon substitution of Cl for OR ligands (detailed analysis of TiCl4-x(OR)x@MgCl2-110-facet in ESI). Notably, the CST orientation 
strongly depends on the symmetry of the system and the number of terminal Cl/OR ligands. For the fully chlorinated system, 
TiCl4@MgCl2-NR, the most deshielded component (σ11/δ11) is oriented perpendicular to the plane containing Ti and the two 
terminal cis-Cl ligands (µ1-Cl), associated with short Ti-Cl bonds (Fig. 3a), with σ22 bisecting the µ1-Cl–Ti–µ1-Cl angle, and σ33 
being perpendicular to the other two components. With one terminal alkoxide ligand, as in TiCl3OR@MgCl2-NR, σ11 is oriented 
along the Ti-OR bond, while σ22 is oriented perpendicular to the plane containing Ti and the terminal Cl and OR ligands. When 
both terminal ligands are alkoxides (TiCl2(OR)2@MgCl2-NR), the CST adopts a similar orientation as in the fully chlorinated 
system. Noteworthy, the chemical shift across the series of model systems is significantly influenced by the CST component 
perpendicular to the plane containing Ti and the two terminal µ1-X (Cl/OR) ligands. The subsequent NCS analysis shows that 
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the chemical shift is mostly driven by the paramagnetic part of the chemical shifts and thereby the nature and the relative 
energies of high-lying occupied and low-lying unoccupied molecular orbitals, as evidenced by the Ramsey equation (Fig. 3d). 
The NCS analysis reveals that the chemical shift originates predominantly from the coupling between the σ(Ti-µ1-X) and 
π*(Ti-µ1-X) orbitals, as well as to a smaller extent the corresponding π(Ti-µ1-X) and σ*(Ti-µ1-X) orbitals (see ESI). The 
introduction of more electronegative terminal alkoxide ligands results in a larger energy gap between the coupled σ and π* 
orbitals and consequently to a smaller deshielding as expected from the Ramsey equation54 (see Fig. 3d). 

Conclusion 

Overall, we have established a protocol to measure and calculate the 47/49Ti NMR spectroscopic signatures for Ti surface sites, 
focusing here on an industrially relevant ZN pre-catalysts based on TiCl4 adsorbed on MgCl2. We have found that the 47/49Ti 
NMR signatures are highly sensitive to the presence of alkoxides bound to Ti and to the local coordination environment 
imposed by the morphology of MgCl2 support. Notably, employing DFS-QCPMG MAS NMR at 21.1 T and 100 K a single 47/49Ti 
NMR signature with a chemical shift of -170 ppm and a low CQ of 9.3 MHz is observed in the ZN pre-catalyst treated with BCl3, 
that indicates the presence of a well-defined species with a rather symmetric environment, best described as a 
hexacoordinated Ti species adsorbed on a disordered MgCl2 with only chlorido ligands. We propose that the formation of 
these well-defined Ti sites results from the minimization of the charge distribution around Ti, only possible upon distortion 
of the Ti sites on the highly flexible ionic disordered MgCl2 support (model here using the nanoribbon-like structure). 

Observing the structure of this surface species indicates the role of BCl3 and the support, and its overall well-defined structure 
is particularly noteworthy considering that ZN catalysts are multisite polymerization catalysts, possibly pointing that the 
multi-sites activity in these systems could be related to the activation steps with alkyl aluminium and transfer reactions rather 
than the complexity of the adsorbed Ti species on MgCl2. We are currently exploring the matter in more details.    

 

FIGURE 3. (a) Coordination environment of the Ti species with three distinct Cl ligands for TiCl4@MgCl2-NR (terminal: violet, cis to 
both terminal ligands: turquois, trans to one terminal ligand: red). Chemical shielding tensor orientation in the TiCl4-x(OR)x@MgCl2-
NR model systems (σ11 in red, σ22 in green and σ33 in blue).55, 56 (b) Rationalisation of the chemical shielding through the visualisation 
of the corresponding σ - π* Kohn-Sham orbitals obtained from the DFT calculations of the fully chlorinated (TiCl4@MgCl2-NR) surface 
model, which were selected by reconstruction of the Natural Localized Molecular Orbitals (NLMO) orbitals that contribute the most 
to the deshielding (see ESI). (c) The influence on the MO scheme upon exchanging the terminal ligands rationalizes the large 
deshielding for the fully chlorinated species compared to alkoxide species. (d) The Ramsey equation describes the chemical shielding 
arising from the magnetic coupling of occupied (ψocc) and vacant (ψvac) orbitals  with an associated energy difference ΔEvac-occ 

between these orbitals.54 
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