
HAL Id: hal-04295982
https://hal.science/hal-04295982

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Summarization for Federated Learning
Julianna Devillers, Olivier Brun, Balakrishna Prabhu

To cite this version:
Julianna Devillers, Olivier Brun, Balakrishna Prabhu. Data Summarization for Federated Learning.
Proceedings of the 6th International Conference on Machine Learning for Networking (MLN’2023),
Nov 2023, Paris, France. �hal-04295982�

https://hal.science/hal-04295982
https://hal.archives-ouvertes.fr

Data Summarization for Federated Learning ⋆

Julianna Devillers1,2, Olivier Brun2, and Balakrishna J. Prabhu2

1 ISAE-SUPAERO, Toulouse, France
2 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Julianna.DEVILLERS@student.isae-supaero.fr

{brun,Balakrishna.Prabhu}@laas.fr

Abstract. We explore data summarization techniques as a mean to re-
duce the energy footprint of Federated Learning (FL). We formulate the
problem of selecting a small subset of data points that best represent
the gradient of each local dataset as a submodular maximization prob-
lem and provide sufficient conditions under which the FL training is
guaranteed to converge to the same global model as if the whole local
datasets have been used on each client. Experimental results on IID and
non-IID datasets show that this approach yields a similar accuracy as
training on the full local datasets, but with a significant reduction of
runtimes. There is however no clear advantage of data summarization
over random sampling.

Keywords: Data summarization, FedAvg, convergence

1 Introduction

Training state-of-the-art deep learning models has an ever increasing compu-
tational cost, which double every few months, and consumes a lot of energy
[20,21]. For instance, it is known that training the GPT-3 language model (175
billion parameters) consumed around 1,287 MWh of energy, which represents
an amount of energy equivalent to the yearly consumption of 126 Danish homes
and a CO2 emission equivalent to 552 round-trip flights between New York and
Paris [17]. It is now broadly recognized that the current race for improved model
accuracy in ML is not sustainable both from an environmental and economic
point of view.

There is an increasing interest in a new distributed ML paradigm called
Federated Learning (FL) in which many clients collaboratively train a shared
model under the orchestration of a central server, while keeping the training data
private. At each round, the central server selects a subset of clients and sends
them the parameters of the shared model. The selected clients train the model on
their local data and send back their gradient information to the central server for
aggregation and update of the shared model. FL has a wide range of applications,

⋆ This work was partially financed by French Agence Nationale de la Recherche (ANR)
through grant ANR-22-CE23-0024 (project DELIGHT).

2 J. Devillers et al.

especially for sensitive data for example in the fields of healthcare or finance or
considering data on peoples’ localization. FL has however a surprisingly large
carbon footprint, which can even be up to two orders of magnitude higher than
its more traditional centralized counterparts [18]. As FL is becoming more and
more prevalent, the reduction of its energy footprint therefore becomes a real
issue.

A first approach aims at reducing the energy spent for the communications
between the clients and the central server. Gradient sparsification and gradient
quantization techniques (see, e.g., [7,3,6]) have been recently proposed for that
purpose. Since compression is a lossy process, the gains in terms of communi-
cation costs are usually achieved at the expense of a worse iteration complexity
and there is not a good understanding of how these techniques impact the total
energy consumption and whether they are worth applying in general.

Another approach, which is explored in this paper, aims at reducing the
energy spent for local model updates by using data summarization techniques.
The general idea is to extract a small representative set from the original local
dataset on each client and to train on that smaller set. It seems reasonable to
expect that training on a succinct summary rather than on the entire dataset
directly can substantially reduce the energy consumption of the training phase.
This raises however two main questions. The first one is: ”how to choose the data
summary on each client while preserving data privacy and converging to the same
global model as if the whole local datasets have been used?”. The second one is:
”is he extra energy required for data summarization offset by the energy saved
during the training phase?”. These two questions are investigated in this paper.

1.1 Contributions

From a theoretical point of view, we propose to constitute the data summary on
each client by choosing the data points in the local dataset which best represent
the local gradient of the loss function. We show that the computation of the data
summary can be cast as a submodular maximization problem or as a submod-
ular cover problem. With the latter setup for data summarization, we provide
sufficient conditions under which the FL training is guaranteed to converge to
the same global model as if the whole local datasets have been used on each
client.

From a practical point of view, we study the empirical test accuracy and
the efficiency of the gradient matching method based on submodular maximiza-
tion. Unfortunately, it is difficult to estimate the energy cost of our experiments
and we use the number of rounds before convergence and the runtime instead.
We note that runtime is a good proxy for the computational cost, although it
does not capture the costs of communication in a real federated environment.
We use the Flower toolkit to train Deep Neural Networks (DNN) on the MNIST
and CIFAR10 datasets and evaluate these performance metrics in scenarios with
IID and non-IID datasets. They are compared against that of the FL with the
full datasets, and against random sampling. In contrast to [15], our experimen-

Data Summarization for Federated Learning 3

tal results did not show a clear advantage of data summarization over random
sampling.

1.2 Organization

In Sec. 3, a federated learning algorithm that uses data summary is first pre-
sented, and its convergence guarantee is proven. Results from numerical ex-
periments are detailed in Sec. 4. A discussion on our observations from these
experiements as well as future work is given in Sec. 5.

Before presenting the algorithm in Sec. 3, we start by presenting in the next
section the related work as well as the concepts from federated learning and
submodular maximization that will be useful later on.

2 Preliminaries

In this section, we will summarize the two main objects of this paper. FL al-
gorithms and data summarization techniques. First, we will present various FL
algorithms and their convergence rates. This will be followed by known results
in data summarization. These concepts will be used in the next section to show
the convergence rate of a specific FL algorithm when it is combined with data
summarization.

Federated learning (FL) [13] enables multiple actors to build a common, ro-
bust machine learning model without sharing data, thus allowing to address
critical issues such as data privacy, data security, data access rights and access
to heterogeneous data. It is a distributed learning paradigm with two key chal-
lenges that differentiate it from traditional distributed optimization: (1) signifi-
cant variability in terms of the characteristics (hardware, data rate, etc.) of each
device or client in the network (system heterogeneity), and (2) non-identically
distributed data across the devices (statistical heterogeneity) which can lead to
model bias during training.

In the FL setting, it is assumed that there are K clients over which the
data are partitioned, with Pk the set of indexes of data points on client k, with
nk = |Pk|. The objective of the server is the following optimization problem:

min
w

f(w) =

K∑
k=1

nk

n
Fk(w) where Fk(w) =

1

nk

∑
i∈Pk

fi(w). (1)

where fi(w) = ℓ(xi; yi, w) is the loss of the prediction on example (xi; yi) made
with the model parameters w.

If the partition Pk was formed by distributing the training examples over the
clients uniformly at random, then we would have EPk

[Fk(w)] = f(w), where the
expectation is over the set of examples assigned to a fixed client k. This is the
IID assumption typically made by distributed optimization algorithms. The IID
assumption is not always satisfied in FL settings since the server has no control
on how the data is distributed among the clients. The degree of heterogeneity

4 J. Devillers et al.

of the data in this non-IID setting can be quantified by Γ = F ∗ −
∑

k pkF
∗
k ,

where F ∗ (resp. F ∗
k) is the optimal loss on the whole (resp. local) dataset and

pk = nk/n [12].

One of the first algorithm specifically designed for FL was FedAvg [13] which
proposed to cooperatively train a global model. The algorithm works in discrete-
time steps or rounds. At the beginning of each round, the clients receive the
parameters of the global model from the central server. They then update the
parameters using some standard learning algorithm on their local dataset and
send the updated parameters back to the central server at the end of the round.
The server averages the received model parameters and sends them to the end
devices to signal the start of a new round. The pseudo-code of FedAvg is given
in Alg. 1 with wt being the parameters of current model at round t. The amount
of computation is controlled by three key parameters: C the fraction of clients
that perform computation on each round; E, the number of training passes each
client makes over its local dataset on each round; and B, the local mini-batch
size used for the client updates.

Algorithm 1 FedAvg algorithm

1: procedure Server(C,E,B) ▷ Run on central server
2: Initialize w0

3: for each round t = 1, 2, . . . , T do
4: m← max(C K, 1)
5: St ← random set of m clients
6: Nt ←

∑
k∈St

nk

7: for each client k ∈ St in parallel do
8: wk

t+1 ← ClientUpdate(k,wt)
9: end for
10: wt+1 ←

∑
k∈St

nk
Nt

wk
t+1

11: end for
12: return wT+1

13: end procedure

14: procedure ClientUpdate(k,w) ▷ Run on client k
15: B ← split Pk into batches of size B
16: for each local epoch i = 1, 2, . . . , E do
17: for batch b ∈ B do
18: w ← w − η∇ℓ(w; b)
19: end for
20: end for
21: return w to server
22: end procedure

The convergence of FedAvg has been analysed in several works [12][23][8]
and the algorithm has established itself as the algorithm of choice for FL due to
its simplicity and relatively low communication cost.

Data Summarization for Federated Learning 5

When there is a large statistical heterogeneity in the client datasets, the
local updates in FedAvg can push the local model parameters towards the local
optimum which is different from the global optimum. The global parameter
models obtained from averaging can thus be different from the actual global
optimum. FedProx [11] proposes to add a regularization term to the objective
function at every client. The new objective is

hk(w,wt) = Fk(w) +
µ

2
∥w − wt∥2. (2)

with the second term on the RHS being the proximal term.

2.1 Convergence in FL

The main challenge in FL being the statistical heterogeneity, the analysis tech-
niques used for centralized learning must be adapted for the non-IID case by
adding assumptions on data dissimilarities. A number of works have studied the
convergence of FL algorithms, trying to relax the less realistic assumptions. For
example, the authors of [12] propose a convergence analysis for FedAvg where
only a subset of clients participate in the training at each round. The authors of
[24] note that the assumption taken to bound gradient dissimilarity in the work
introducing FedProx [11] is quite unrealistic and propose to relax this assump-
tion and extend the analysis to loss functions that are not smooth. However, they
assume that the local client functions are L-Lipschitz which is also a restrictive
condition on gradient dissimilarity. In Table 3 are some examples of convergence
results along with the assumptions taken for FedAvg and FedProx. The explana-
tions of the assumptions are in Table 1 and Table 2. Recall that here T the total
number of communication rounds, E the number of local rounds between each
communication round, K the total number of clients, C the number of clients
participating in each round.

Table 1. Non-IID assumptions.

Symbol Full name Explanation

(G,B)-BGD Bounded gradient dissimilarity Ek[||∇Fk(w)||2] ≤ G2 + ||∇f(w)||2 ·B2

BCGV Bounded inter-client gradient
variance

Ek[||∇Fk(w)−∇f(w)||2] ≤ δ2

There are of course other significant works and approaches covering the topic
of FL due to the growing interest in FL, both in industry and research. The goal
of this section was however to explain some of the main concepts in FL and show
the different challenges arising in the FL setup. Some of the methods covered in
this section are orthogonal to each other and can be combined, some of them
are only relevant in certain cases.

6 J. Devillers et al.

Table 2. Other assumptions and variants.

Symbol Explanation

CVX Each client function Fk(.) is convex.
SCVX Each client function Fk(.) is µ-strongly convex.
BNCVX Each client function has bounded nonconvexity with ∇2Fk(x) ⪰ −l · I.
SMO Each client function Fk(.) is L-smooth.
BLGV The variance of stochastic gradients on local clients is bounded.
BLGN The expected squared norm of any stochastic gradient is bounded.

LBG Clients use the full batch of local samples to compute updates.
AC All clients participate in each round.
Prox Use proximal gradient steps on clients.

Table 3. Convergence rates.

Method Non-IID Other assumptions Variant Rate

Yu et al. [23] (G, 0)-BGD SMO; BLGV; BLGN AC O(1√
KT

)

Khaled et al. [9] (G-B)-BGD SMO; CVX; BLGV AC; LBG O(K
T
) +O(1√

KT
)

Li et al. [12] (G, 0)-BGD SMO; SCVX; BLGV;
BLGN

- O(E
T
)

Karimireddy et al. [8] (G,B)-BGD SMO; BLGV - O(T (1−C/K)
TC

)
FedProx [11] (0, B)-BGD SMO; BNCVX Prox O(1√

T
)

2.2 Data Summarization

We are given a large dataset V of size n. The goal is to extract from V a subset
S ⊂ V of data points which are most representative according to some objective
function f : 2V → R+. For each S ⊆ V , f(S) quantifies the utility of S. A
set function f is naturally associated a discrete derivative, also called marginal
gain,

∆f (e|S) = f (S ∪ {e})− f (S) ,

which quantifies the increase in utility obtained when adding e ∈ V to S.

Definition 1. A set function f : 2V → R+ is submodular if ∆f (e|A) ≥
∆f (e|B) for every subsets A ⊆ B ⊆ V and every data point e ∈ V \B. Further-
more, f is monotone if and only if f(A) ≤ f(B) for every subsets A ⊆ B ⊆ V .

Submodular functions naturally model notions of information, diversity, and
coverage in many applications. For example, let si,j be the similarity between
two elements i, j ∈ V (e.g., si,j = e∥i−j∥/σ). Then, the following function is
submodular (non-monotone):

f(S) =
∑
i∈V

∑
j∈S

si,j − λ
∑
i∈S

∑
j∈S

si,j ,

Data Summarization for Federated Learning 7

where λ ∈ [0, 1]. The first term is the traditional sum-coverage metric, while
the second one penalizes similarity within S. Note that the function f(S) =∑

i∈V maxj∈S si,j is another example of submodular function (see Chapter 3 of
[14] for other examples).

We can distinguish two different data summarization (DS) problems of in-
terest:

– Submodular maximization : the goal here is to find a summary S∗ of size
at most k that maximizes the utility, that is,

S∗ = argmax|S|≤kf(S).

– Submodular cover : the goal is to find a subset S∗ of data elements which
achieves a target fraction of the utility provided by the full dataset, that is,

S∗ = argmin {|S| : S ⊆ V s.t. f(S) ≥ (1− ϵ)f(V)} .

These optimization problems are NP-hard for many classes of submodular
functions [10][5][22]. However, a simple greedy algorithm proposed by Nemhauser
in [16] is known to be very effective (see Algorithm 2).

Algorithm 2 Greedy algorithm

1: procedure Greedy
2: S ← ∅
3: while |S| < k do
4: v ← argmaxe∈V ∆f (e|S)
5: S ← S ∪ {v}
6: end while
7: return S
8: end procedure

Theorem 1 ([16]). For the submodular maximization problem of any non-
negative and monotone submodular function f , the greedy heuristic produces a
solution Sg of size k that achieves at least a constant factor (1 − 1/e) of the
optimal solution:

f(Sg) ≥
(
1− 1

e

)
max
[S]≤k

f(S).

For the submodular cover problem, the approximation ratio of the greedy
heuristic is 1 + log (maxe f(e)), that is

|Sg| ≤
(
1 + log

(
max

e
f(e)

))
|S∗| ,

where S∗ is the smallest subset (in cardinality) of V such that f(S∗) ≥ (1 −
ϵ)f(V).

Interestingly, [14] proposes an accelerated version of the greedy algorithm
called Stochastic-Greedy that scales to voluminous datasets.

8 J. Devillers et al.

3 Federated learning with data summary

To reduce computational and energy costs, we propose that each client extracts
a data summary Sk from its local dataset Pk. Further, we also modify how
updates are done by clients in each epoch. Instead of training on mini-batches
and covering the whole local dataset, we propose that client k perform one full-
batch update per epoch on Sk.

The pseudo-code of the proposed FedAvg algorithm with data summary,
which we call FedAVgDS, is shown in Alg. 3. We point out two main differences
with the FedAvg algorithm both of which are in the ClientUpdate procedure.
First, a data summary is performed in each local epoch. And, second, the local
training is performed on the whole set Sk at once unlike the batch-based training
in FedAvg. Since the size of Sk is expected to be small, we think that dividing
it into batches is not necessary and the gradient can be computed on Sk in it
entirety.

Algorithm 3 FedAvgDS algorithm

1: procedure Server(C,E) ▷ Run on central server
2: Initialize w0

3: for each round t = 1, 2, . . . , T do
4: m← max(C K, 1)
5: St ← random set of m clients
6: Nt ←

∑
k∈St

nk

7: for each client k ∈ St in parallel do
8: wk

t+1 ← ClientUpdate(k,wt)
9: end for
10: wt+1 ←

∑
k∈St

nk
Nt

wk
t+1

11: end for
12: return wT+1

13: end procedure

14: procedure ClientUpdate(k,w) ▷ Run on client k
15: for each local epoch i = 1, 2, . . . , E do
16: Sk ← GreedyDataSummary(Pk, ϵk)
17: w ← w − η∇FSk (w)
18: end for
19: return w to server
20: end procedure

3.1 Convergence of FedAvgDS

We will prove convergence of FedAvgDS in the restricted setting of full node par-
ticipation by mimicking the one of [12]. In fact, to show convergence of FedAvg,
[12] modify slightly the original algorithm and assume that only one update is
performed per epoch on a mini-batch. That is, the ClientUpdate procedure for

Data Summarization for Federated Learning 9

the modified FedAvg in [12] is the same as that of FedAvgDS except that Sk is
chosen randomly and not by the GreedyDataSummary procedure.

For the convergence guarantees, we will need the same four assumptions as
in [12] except that the third and the fourth ones are modified to account for the
DS step as we explain below.

A.1 Fk and the FSk
are all L-smooth.

A.2 Fk and the FSk
are µ-strongly convex.

A.3 ∥∇Fk(w) −∇FSk
(w)∥ ≤ σk, ∀w. Since we do not draw samples randomly,

we do not need expectations in our bounds.
A.4 ∥∇FSk

(w)∥ ≤ G, ∀w. In FedAvg, this inequality is on the second moment
of ∇F computed on the random mini-batches. Again, since we train over all
of Sk, we need the bound on the norm of ∇FSK

.
A.5 All nodes participate in all the iterations. For a random variable X taking

values xk, k = 1, . . .K, we have E[X] =
∑K

k=1 pkxk with
∑K

k=1 pk = 1. For
example, pk = nk

n .

Theorem 2. Assume A.1 to A.5. Choose γ ≥ max{ 8Lµ , E} and ηt = 2
µ(t+γ)

for all t ≥ 0. Then,

F (w̄t)− F ∗ ≤ L

2

v

t+ γ
.

where v = max{v+, (γ + 1)∆1},

v+ =
β2B + 2β2

√
CD

µβ − 1
+
(2β
√
D)2 +

√
(2β
√
D)4 + 4(β2B + 2β2

√
CD)(µβ − 1)(2β

√
D)2

2(µβ − 1)2
,

with C = 8(E − 1)2G2 + 6LΓ , D =
∑K

k=1 p
2
kσ

2
k, B = C +D and βµ > 1.

The proof of the above theorem is in Appendix A of [4].

3.2 Finding a good DS subset

We consider two methods for extracting Sk at client k. Both are based on dis-
tances computed from the average gradient of the loss function, and motivated
from the observation that, after the local training, in an ideal setting, we would
like the weights of client k to be updated as:

w ← w − η∇wFk(w), (3)

that is, by following the average gradient of the loss on the whole local dataset
Pk. Since we want the updates with DS to closely follow those without DS, one
natural way is to compute Sk such that the average gradient of the loss on Sk

is close to that of Pk. Define

∇wFS(w) =
1

|S|
∑
i∈S

∇wfi(w), (4)

10 J. Devillers et al.

to be the average gradient on S. If on Sk, we have that ∇wFSk
(w) is a good

approximation of ∇wFk(w), then it will lead to a fairly similar updating of
weights to that of FedAvg, and we can potentially hope to obtain convergence
guarantees fairly close to those of FedAvg (i.e., without DS).

Finding such a Sk corresponds to minimizing

∥∇Fk(w)−∇wFSk
(w)∥ , (5)

under a cardinality constraint on Sk. However, we are faced with the problem
that (5) is not submodular, a property that is desirable if we want to call upon
efficient DS algorithm we saw in Sec. 2.2.

A first method around this problem is to instead use the objective function as
in Exemplar Based Clustering which can then be transformed into a monotone
submodular function (see [14] for this method). Towards this end, define

Lk(Sk) =
1

|Pk|
∑
i∈Pk

minj∈Sk
∥∇wfi(w)−∇wfj(w)∥ , (6)

which computes how far the points in set Pk are from their closest counterparts
in Sk. Here, the distance between two points is defined through the norm of the
gradients.

The quantity in (6) can be related to a slight modification of that in (5) as
follows. With σ(i) = argminj∈Sk

∥∇wfi(w)−∇wfj(w)∥, Aj = {i ∈ Pk, σ(i) = j}
and αj = |Aj |, we have:

Lk(Sk) =
1

|Pk|
∑
i∈Pk

∥∥∇wfi(w)−∇wfσ(i)(w)
∥∥

≥ 1

|Pk|

∥∥∥∥∥∑
i∈Pk

(∇wfi(w)−∇wfσ(i)(w))

∥∥∥∥∥
≥ 1

|Pk|

∥∥∥∥∥∥
∑
i∈Pk

∇wfi(w)−
∑
j∈Sk

αj∇wfj(w)

∥∥∥∥∥∥ .
(7)

Thus, by modifying the definition of ∇wFSk
to

∇wFSk
(w) =

1

|Pk|
∑
i∈Sj

αj∇wfj(w), (8)

it can inferred that if we find a Sk with Lk(Sk) ≤ ϵ, its norm in (5) is also at
most ϵ.

To transform Lk into a monotone submodular function, we follow the steps
in [14]. Define

gk(S) = Lk({e0})− Lk(S ∪ {e0}),
with e0 a phantom point chosen such that maxi′∈Pk

∥∇wfi(w) − ∇wfi′(w)∥ ≤
∥∇wfi(w)−∇wfe0(w)∥, ∀i ∈ Pk. That is, e0 is a point that is farther than any
point in Pk in the gradient distance. Then, gk monotone submodular.

Data Summarization for Federated Learning 11

Finally, the data summary is obtained by applying the greedy algorithm for
the submodular cover problem, i.e. for a given ϵk ∈]0, 1[, we look for the smallest
possible subset Sk ⊆ Pk such that gk(Sk) ≥ (1−ϵk)gk(Pk). The greedy algorithm
will then find a Sg

k such that |Sg
k | ≤ (1 + log(maxe f(e))) |S∗|, where S∗ is the

optimal subset.
It can be shown that ∥∇Fk(w)−∇FSk

(w)∥ is bounded with this method as
is required in A.4 for the convergence guarantee.

Lemma 1
∥∇Fk(w)−∇FSk

(w)∥ ≤ ϵkLk({e0}) =: σk

.

Proof. From the definition of gk and the fact that gk(Sk) ≥ (1 − ϵk)gk(Pk), we
have

Lk({e0})− Lk(Sk ∪ {e0}) ≥ (1− ϵk) · [Lk({e0})− Lk(Pk ∪ {e0})].

Thanks to our choice of e0, Lk(S ∪ {e0}) is Lk(S) for any set S, and the above
inequality reduces to

Lk({e0})− Lk(Sk) ≥ (1− ϵk) · [Lk({e0})− Lk(Pk)]

which becomes
Lk(Sk) ≤ ϵkLk({e0}),

since Lk(Pk) = 0.
The claim follows by substituting (7) in the above inequality. ⊓⊔

However, this method has the drawback that it requires to find e0 satisfying
maxi′∈Pk

∥∇wfi(w) − ∇wfi′(w)∥ ≤ ∥∇wfi(w) − ∇wfe0(w)∥, ∀i ∈ Pk and that
minimize

∑
i∈Pk
|∇wfi(w) − ∇wfe0(w)∥ under the previous constraint. This is

in itself another optimization problem. Other works usually take the 0 point
as their auxiliary element [14], however the theoretic results obtained with the
optimal e0 can’t be verified in that case.

A second method for extracting Sk is to transform the problem in (5) into
a monotone submodular one by putting it in the Facility Location form and to
maximize: ∑

i∈Pk

maxj∈Sk
s(i, j) (9)

where s(i, j) is a similarity measure between points i and j. To do so, we define

d(i, j) =
∣∣∣∣∣∣∇wfi(w)−∇wfj(w)

∣∣∣∣∣∣ and sk(i, j) = maxe,e′∈Pk
d(e, e′)− d(i, j).

This formulation is very close to the problem addressed in [15], and it becomes
the same for their application to DNNs. The greedy algorithm and its accelerated
versions are equally applicable to this method. In the following, we will refer to
Problem (9) mainly as the CRAIG problem. In the numerical experiments, we
use the last-layer approximation as in CRAIG (see [15] for details).

12 J. Devillers et al.

4 Numerical experiments

All the experiments were performed using the Flower [2] Python package which
provides an easy-to-use library for federated learning. Its source code is available
in the GitHub repository [1]. We used a weighted variant of the cross-entropy
loss and the Adam optimizer with its default parameters (except for the learning
rate) for all clients in all our experiments. The dataset was either MNIST or
CIFAR10.

In the legends, the terms ‘ds’ or ‘craig’ refer to the data summary obtained
by solving Problem (9). The terms ‘r’ or ‘rd’ refer to random sampling. The term
‘full’ refers to using the full set. The number following the terms in the legend
is the subset size.

For our tests, we will show the test accuracy as a function of the number of
rounds or as a function of the runtime. Indeed, the communication cost depends
on the number of rounds, while the computational cost depends on the running
time.

4.1 IID datasets

Our first tests were done using on a Quad Core Intel Core i7-7700 CPU. We
first used MNIST dataset, splitting the training dataset into 10 datasets and
splitting each of that dataset into a training and a validation set with a ratio of
90/10%. Therefore, each of our ten clients had a training set of 4500 images and
a validation set of 500 images. We gave the MNIST test set to the server and
used the implemented FedAvg [13] strategy of Flower.

On MNIST, we compared extracting a data summary using the CRAIG
method, with random sampling, or the full dataset, with the same initial model
parameters. The results presented here are for the accuracy on the test set.
For Figs 2 and 3, the subset size is of 500 images while it is of 200 for Fig. 1.
The FL training included R = 10 rounds of training where at each round the
server sends the current global parameters to the ten clients, the clients locally
train the model for E = 5 epochs on the required dataset (full, random or data
summary) and then sends its updated parameters to the server that aggregates
all the responses to update the global model and so on.

Figure 1 shows that using subsets greatly accelerates training in terms of
execution time when compared to the full dataset in our setup. However, this
requires more rounds. In that configuration, we were able to reach a test accuracy
of 0.980 in 8 rounds taking 18 minutes with the data summaries while it took
1h22 to complete 2 rounds of training on the full dataset to achieve a test
accuracy of 0.976. In the FL setup, using submodular maximization seems to
outperform random sampling. In 19 minutes corresponding to 10 rounds, the
model was only able to reach an accuracy of 0.933 with random sampling. This
comes from the fact that data selection time is much smaller compared to the
whole training process.

Given that the communication rounds are very costly in FL, we tried to
compensate the increased number of rounds by increasing the learning rate η.

Data Summarization for Federated Learning 13

(a) Nb of epochs as x-axis. (b) Runtime as x-axis.

Fig. 1. Test accuracy compared between random sampling, CRAIG sampling or the
full dataset for MNIST IID data. E = 5, R = 10, η = 1e− 3. Full set size is 50000 and
subset size is 0.0044.

(a) Nb of epochs as x-axis. (b) Runtime as x-axis.

Fig. 2. Test accuracy compared between random sampling, CRAIG sampling or the
full dataset for MNIST IID data. E = 5, R = 10, η = 1e− 3. Full set size is 50000 and
subset fraction size is 0.011. FL setup.

Figure 3 shows that increasing the learning rate did not really improve the
training with the full dataset. For the data summaries however, increasing the
learning rate in that configuration enabled the model to reach an accuracy of
0.96 in 2 rounds and 9 minutes when it took it 6 rounds and 35 minutes with
the previous learning rate. In only 1 epoch, the model trained on the whole
dataset was able to reach an accuracy of 0.954 in 41 minutes. Training on subsets
therefore seems to greatly decrease the local training time but we were still not
able on IID data to achieve a given accuracy in the same number of rounds as
the full dataset training. This could however be possible on certain tasks or by
adjusting some hyperparameters such as the learning rate η, the rate of subset
selection (every E epochs in that configuration) or the subset size.

Data subset selection seems far more relevant here, especially as the training
takes more time. This shows that data subset selection, using random sampling
or CRAIG sampling, can significantly speed up training for bigger models (with

14 J. Devillers et al.

(a) Nb of epochs as x-axis. (b) Runtime as x-axis.

Fig. 3. Test accuracy compared between random sampling, CRAIG sampling or the
full dataset for MNIST IID data. E = 5, R = 10, η = 1e− 2 for the high learning rate
(hlr) and η = 1e − 3 for the other. Full set size is 50000 and subset fraction size is
0.011.

long training time) or for devices with limited system resources. This could help
reduce the energy consumption in the case where reducing the dataset does not
induce a drop in training accuracy and therefore the need for more computation
rounds. Several hyperparameters are to be tuned for that, including the subset
size, the number of local epochs and even the learning rate.

4.2 Non-IID datasets

In this part we tested two configurations. In the first one, 10 Flower clients run
on a single machine with an Intel 5218R 2.1G CPU (20 cores) and one GPU
RTXA6000. The datasets are divided as in the previous section. In the second
configuration, 4 Flower clients run on the same machine, 2 on one RTXA6000
GPU and 2 on another RTXA6000 GPU. The dataset is split so that each client
has images corresponding to 5 labels : 1 to 5 for the first, 6 to 10 for the second,
only the even-numbered for the third and the uneven for the last one. This second
configuration is therefore less non-IID than the first one. Each local dataset
contains 12500 images while they contain 5000 images in the first configuration.
On both configurations, the server is run on another machine (Intel E5-2695 v3
2.3G CPU). As the computing time is reduced with the use of GPU, we also
decided to use ResNet-18 as this model is the one commonly used in the other
works for tests on CIFAR-10. [15][18][19].

As shown in Figure 4, the configuration with 10 clients, using CRAIG for
datasummary is far too time-consuming compared with random sampling or
even using the full set, as mentioned earlier in this report. However, random
sampling seems to perform better than using the full set, even if we reduce the
number of training epochs for each round to E = 1. This probably comes from
the chosen data distribution. As we are in a non-iid configuration, each local
model will be updated towards a local optimum which is not the same as the
global one. If we let each client make a large number of local updates, their local

Data Summarization for Federated Learning 15

(a) Nb of rounds as x-axis. (b) Runtime as x-axis.

Fig. 4. Test accuracy compared between random sampling, CRAIG sampling or the full
dataset for CIFAR-10 non-IID data, using ResNet-18. R = 100, η = 1e− 3, µ = 0.01.
Subset fraction size is 0.11. FL setup with 10 clients on 1 GPU.

model will be updated towards that local optimum which can be self-defeating
for our training. This seems to be what happens in the case where E = 5 where
the model fails to learn due to an excessive number of local updates.

(a) Nb of rounds as x-axis. (b) Runtime as x-axis.

Fig. 5. Test accuracy compared between random sampling, CRAIG sampling or the full
dataset for CIFAR-10 non-IID data, using ResNet-18. R = 100, η = 1e− 3, µ = 0.01.
Subset fraction size is 0.11. FL setup with 4 clients on 2 GPU.

In the configuration with 4 clients as shown in Figure 5, the conclusion for
the CRAIG data summarization is even clearer. As each local dataset here con-
tains 12500 images, with 1250 in the validation set and the rest in the training
set, extracting a subset containing 1250 images (a 0.11 fraction as before) is
even more time-consuming. Full set strategies perform better than random and
CRAIG sampling in terms of test accuracy at each round, although random and
CRAIG sampling soon catch up.

16 J. Devillers et al.

The results in both Figure 4 and 5 suggest that there are cases where using
the full set even for only one epoch is not necessary, making the use of subsets
relevant.

Frequency of subset selection In the previous section, using CRAIG was too
time-consuming. One way of limiting this is to play on the frequency with which
the subset is selected. On all our previous experiments, we selected a new subset
at each round but we can also decide to choose a new subset each p rounds.
In this part, we use the same data partition as before with 10 clients, each
having a training set of size 4500 representing 2 different labels for CIFAR-10.
We distribute those 10 clients on 2 GPUs.

(a) Test accuracy per round for
CRAIG sampling.

(b) Test accuracy as a function of
time for CRAIG sampling.

(c) Test accuracy per round for
random sampling.

Fig. 6. Test accuracy for random sampling and CRAIG sampling for different values
of the period p for extracting the subsets. CIFAR-10 non-IID data, using ResNet-18.
R = 100, η = 1e− 3, µ = 0.01. Subset fraction size is 0.11. FL setup with 10 clients on
2 GPU.

Data Summarization for Federated Learning 17

Figure 6 shows the test accuracy obtained for different values of the period
p for random and CRAIG sampling. Interestingly enough, selecting the subset
less frequently does not lead to a significant drop in precision. Meanwhile, this
indeed allows us to save some computing time on CRAIG sampling.

(a) Nb of rounds as x-axis. (b) Runtime as x-axis.

Fig. 7. Test accuracy compared between full set or random sampling and CRAIG
sampling with p = 50 for CIFAR-10 non-IID data, using ResNet-18. R = 100, η =
1e− 3, µ = 0.01. Subset fraction size is 0.11. FL setup with 10 clients on 2 GPU.

Figure 7 compares the test accuracy obtained using the full set with the
one using random or CRAIG sampling each p = 50 rounds. When looking at
the accuracy as a function of the number of rounds, the three methods produce
close results. Craig sampling seems slightly better in this configuration. When
looking at the time, random sampling is as expected the quickest but, for the
first time in our experiments using GPU, the curve for CRAIG sampling closely
follows that of random sampling while the one for using the full set is clearly
below.

Size of subset Of course, the size of the selected subset is a hyperparameter
that can greatly impact the training. Figure 8 shows the test accuracy for dif-
ferent values of the subset size S for random sampling. If S is too large, the
local model will move towards the local optimum which can be detrimental to
the training. This is why using a subset of 2250 outperforms using the full set
(S = 4500). A large value of S will also increase the runtime, especially when
using submodular maximization for subset selection. If S is too small, the train-
ing will take much longer in terms of rounds which will result in an increased
communication cost. This is what would happen for S = 500 where the model
learns and eventually achieves the accuracy reached by bigger subsets but this
takes more rounds. A balance has to be found. In addition to that, the optimal
value for S depends on the chosen value of E or even of the learning rate η.

18 J. Devillers et al.

(a) Nb of rounds as x-axis. (b) Runtime as x-axis.

Fig. 8. Test accuracy compared for various sizes of the subset selected by random
sampling for CIFAR-10 non-IID data, using ResNet-18. R = 100, η = 1e− 3, µ = 0.01.
Subset fraction size varies. FL setup with 10 clients on 2 GPU.

5 Discussion and future work

Based on the results of our experiments, we can clearly identify two cases in
which the use of subsets of local datasets seems relevant. In both however it is
not clear how much improvement can be made by choosing the subset using a
DS method rather than randomly selecting one.

The first case concerns clients with limited computational resources. In those
cases, the training can take a very long time (the straggler problem) due to
clients that are holding back other faster one. In some cases, it is important to
also being able to include stragglers in the training loop, especially if the data
points of the stragglers don’t appear sufficiently in other datasets. Using subsets
instead of the full set can significantly decrease the training time, particularly if
those clients have large datasets, and therefore help them participate in the FL
training.

The second case concerns clients with large datasets that are not representa-
tive of the whole data distribution. Basically, this means that their local optimum
for the model’s parameters is different from the global optimum. To prevent them
from converging too much towards their local optimum, hyperparameters have
to be chosen wisely. This can be done for example by reducing the learning rate
or increasing the batch size in order to reduce the number of local updates.
However, this is not always the best choice for example if the training works
better with the initial hyperparameters for other clients with smaller datasets
and more generally if we can achieve the same performance simply by going
through a smaller number of points of their datasets. This is our interpretation
of what happens in Section 4.2 where using subsets leads to better results than
using the full set for 1 epoch.

Selecting a subset also requires tuning some parameters including the size
of the subset and the selection frequency. In our case, reducing the selection
frequency did not lead to a drop in accuracy while, for the data summarization
method, it helped reduce the running time as shown in Section 4.2. Considering

Data Summarization for Federated Learning 19

the size of the subset, a balance has to be found as explained in part 4.2. Tuning
those parameters can be done locally in order to avoid additional communica-
tion rounds. It could of course result in an additional computational cost but
this could easily be offset for long and costly trainings, for example in a FL
hyperparameter tuning context. However, it is important to point out that the
use of subsets also influences the choice of certain hyperparameters, such as the
number of epochs for local training in each round. More indirectly, the choice
of other parameters, such as the learning rate, may depend on whether or not
subsets are used.

Our approach focused on finding a subset approximating the full set gradient
for the loss. Our study did not show clear improvements in the test accuracy
or the loss. Considering the longer runtimes, this means that using submodular
maximization rather than random sampling was not relevant in our case. This
could be linked to the datasets we used or the way we distributed them between
clients. Indeed, in our experiments, each client’s local dataset would actually
be quite homogeneous, with 5000 images of only 2 labels resulting in a lot of
redundancy. Based on that, it is not surprising that random performed well. One
might think that results would be different on more complex datasets, but this
has not been studied here and is part of our future work,

Another avenue of investigation is to determine the actual energy consump-
tion of the algorithms with and without energy and determine the tradeoff be-
tween the accuracy and the energy consumption.

References

1. Flower github repository. Available at https: // github. com/ adap/ flower

(2023), https://github.com/adap/flower, last accessed 30 August 2023
2. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani,

L., Kwing, H.L., Parcollet, T., Gusmão, P.P.d., Lane, N.D.: Flower: A friendly
federated learning research framework. arXiv preprint arXiv:2007.14390 (2020)

3. Cui, L., Su, X., Zhou, Y., Zhang, L.: Clustergrad: Adaptive gradient compres-
sion by clustering in federated learning. In: 2020 IEEE Global Communications
Conference, 2020, pp. 1-7 (2020)

4. Devillers, J.: Data summarization methods for energy efficient federated learning
(October 2023), https://github.com/juliannadvl/FL-DS/blob/main/rapport_

stage.pdf, Master’s thesis internship report, ISAE-SUPAERO
5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4),

634–652 (jul 1998). https://doi.org/10.1145/285055.285059, https://doi.org/10.
1145/285055.285059

6. Haddadpour, F., Kamani, M.M., Mokhtari, A., Mahdavi, M.: Federated learning
with compression: Unified analysis and sharp guarantees. PMLR 130, 2350–2358
(2021)

7. Jiang, P., Agrawal, G.: A linear speedup analysis of distributed deep learning with
sparse and quantized communication. In: NeurIPS (2018)

8. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaf-
fold: Stochastic controlled averaging for federated learning. In: III, H.D., Singh,
A. (eds.) Proceedings of the 37th International Conference on Machine Learning.

https://github.com/adap/flower
https://github.com/adap/flower
https://github.com/juliannadvl/FL-DS/blob/main/rapport_stage.pdf
https://github.com/juliannadvl/FL-DS/blob/main/rapport_stage.pdf
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/285055.285059

20 J. Devillers et al.

Proceedings of Machine Learning Research, vol. 119, pp. 5132–5143. PMLR (13–18
Jul 2020), https://proceedings.mlr.press/v119/karimireddy20a.html

9. Khaled, A., Mishchenko, K., Richtárik, P.: Better communication complexity for
local SGD. CoRR abs/1909.04746 (2019), http://arxiv.org/abs/1909.04746

10. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical
models. In: Proceedings of the Twenty-First Conference on Uncertainty in Artificial
Intelligence. p. 324–331. UAI’05, AUAI Press, Arlington, Virginia, USA (2005)

11. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith,
V.: Federated optimization in heterogeneous networks (2018).
https://doi.org/10.48550/ARXIV.1812.06127, https://arxiv.org/abs/1812.

06127

12. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of fedavg
on non-iid data (2020)

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.:
Communication-Efficient Learning of Deep Networks from Decentralized Data. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54,
pp. 1273–1282. PMLR (20–22 Apr 2017), https://proceedings.mlr.press/v54/
mcmahan17a.html

14. Mirzasoleiman, B.: Big Data Summarization Using Submodular Functions. Ph.D.
thesis, ETH Zurich (2017)

15. Mirzasoleiman, B., Bilmes, J., Leskovec, J.: Coresets for data-efficient training of
machine learning models. In: Proceedings of the 37th International Conference on
Machine Learning. ICML’20, JMLR.org (2020)

16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - i. Mathematical Programming (1978)

17. Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.M., Rothchild, D., So,
D., Texier, M., Dean, J.: Carbon emissions and large neural network training (2021)

18. Qiu, X., Parcollet, T., Fernandez-Marques, J., de Gusmao, P.P.B., Gao, Y., Beutel,
D.J., Topal, T., Mathur, A., Lane, N.D.: A first look into the carbon footprint of
federated learning (2023)

19. Reddi, S.J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., Kumar,
S., McMahan, H.B.: Adaptive federated optimization. In: International Confer-
ence on Learning Representations (2021), https://openreview.net/forum?id=

LkFG3lB13U5

20. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai (2019)
21. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for

deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. pp. 3645–3650. Association for Compu-
tational Linguistics, Florence, Italy (Jul 2019). https://doi.org/10.18653/v1/P19-
1355, https://aclanthology.org/P19-1355

22. Weinberg, M.: Lecture notes in advanced algorithm design - lec-
ture 7: Submodular functions, lovász extension and minimization.
https://www.cs.princeton.edu/ hy2/teaching/fall22-cos521/notes/SFM.pdf
(September 2022), last accessed 19 April 2023

23. Yu, H., Yang, S., Zhu, S.: Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning (2018)

24. Yuan, X.T., Li, P.: On convergence of fedprox: Local dissimilarity invariant bounds,
non-smoothness and beyond (2022)

https://proceedings.mlr.press/v119/karimireddy20a.html
http://arxiv.org/abs/1909.04746
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://aclanthology.org/P19-1355

	Data Summarization for Federated Learning

