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Highlights1

A deep learning super-resolution model to speed up computations of coastal sea states2

J. Kuehn,S. Abadie,B. Liquet,V. Roeber3

• Super-resolution substitutes high-resolution results from low-resolution computations4

• The method reduces computation time by a factor of 50 while retaining good accuracy5

• Super-resolution provides a more robust alternative to surrogate models6

• Targeted data augmentation mitigates large errors in extreme sea states7
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19

In this paper, the potential of a super-resolution technique is presented in the context of20

coastal wave forecasting. The method uses a neural network to predict a high-resolution spatial21

estimation of spectral wave parameters from a lower resolution numerical computation. In this22

particular example, one year of training data is sufficient to achieve satisfying accuracy for23

practical applications. The error of this method in reproducing the results of a high-resolution24

spectral model is an order of magnitude lower than the usual accuracy of spectral models.25

Simultaneously, it reduces the computation time by a factor of up to 50. Moreover, utilizing26

complementary training data of extreme events allows for a further improvement in accuracy.27

The study also shows that super-resolution is more accurate, albeit slower, than surrogate models,28

thus providing a trade-off solution between accuracy and speed. Overall, incorporation of the29

present approach into wave forecasting systems has the potential to rapidly generate "zoomed-30

in" areas of interest or to speed up ensemble forecasts without supplementary calculations at31

higher resolution.32

33

1. Introduction34

Many coastal communities rely on daily wave height forecasts for the purpose of safety and hazard mitigation.35

Over the last decades, improvements in numerical methods have lead to more accurate predictions of sea states, which36

had a considerable influence on maritime transport, fisheries, and ocean engineering (Gopinath and Dwarakish, 2015).37

Global efforts of producing ocean observation networks paired with national ocean services (e.g., the National Oceanic38

and Atmospheric Administration), national and international buoy networks (e.g., the CANDHIS network in France -39

https://candhis.cerema.fr), and global ocean wave models like SWAN - Simulating WAves Nearshore - (Booij40

et al., 1999) and WAVEWATCH III (Tolman, 2009) provide critical information - often in real-time. However, high-41

resolution (HR) data, particularly in the coastal zone, is often missing due to computational constraints associated with42

large computational domains in combination with fine meshes. Nevertheless, the need for local HR data still exists at43

this scale, since local forecasts for wave-driven processes are increasingly based on refined computations (Camus et al.,44

2011).45

The recent rise in interest in Machine Learning and its ongoing integration into natural sciences can be largely46

attributed to its ability to rapidly perform various computational tasks after completion of an initial training phase. In47
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this article, we present a super-resolution approach to decrease computation time for spectral wave forecasts by up to 5048

times compared to traditional direct modeling of an equivalent domain at fine resolution. The concept relies on training49

a neural network to convert low-resolution (LR) coastal wave modeling results to a higher resolution for a specific study50

area. The main advantage of this approach is that the computation of a LR forecast and the subsequent conversion are51

considerably faster than an equivalent direct HR computation. This speed-up even grows for the increasingly common52

ensemble forecasting, where forecast results are based on multiple similar computational scenarios (O’Donncha et al.,53

2018). Furthermore, once trained, this model has the potential to be directly linked to the output of coastal wave models,54

thus providing local HR results on the fly without the need for costly direct calculations.55

56

Super-resolution has been an active field of research in computer vision for almost a decade. Recently, it also57

started to be used in fluid mechanics - especially in the field of turbulence (Kim et al., 2019; Gao et al., 2021). In58

ocean sciences, deep-learning-based super-resolution was already successfully applied to sea-surface temperature of59

remote sensing data (Ducournau and Fablet, 2016; Su et al., 2021; Lloyd et al., 2022) or of modeled data (Thiria60

et al., 2023). Furthermore, treating gridded bathymetry data as digital images, Sonogashira et al. (2020) enhanced the61

resolution of coarse bathymetric charts and outperformed naive interpolation. This showcased that super-resolution62

might considerably reduce the amount of measurements needed. The idea of super-resolution in our study is similar63

to downscaling, where the spatial resolution of sea state variables is increased. Usually, this is done with either a64

dynamical approach using numerical wave models (Erikson et al., 2015) or a statistical approach based on empirical65

relationships between ocean variables (Hegermiller et al., 2017). Previous papers addressed the possibility of improving66

local forecasts with neural networks, for example, by correcting the wave model outputs with a neural network or67

random forests to better fit buoy observations (Bajo and Umgiesser, 2010; Londhe et al., 2016; Callens et al., 2020).68

Conversely, Lucero et al. (2023) successfully reduced WAVEWATCH III hindcast errors at critical locations with multi-69

layer perceptron and convolutional architectures, using a combination of the WAVEWATCH III model outputs and70

additional data. Apart from only improving forecasts or hindcasts, some authors trained neural networks to substitute71

the entire wave model, using directly the spectrum (James et al., 2018), bathymetry (Jörges et al., 2023), wind (Bai et al.,72

2022), and other data to forecast sea state variables like significant wave height. These surrogate models are usually73

much faster than the wave models, albeit less accurate, since all physical calculations are substituted by relatively74

simple parameterized matrix multiplications. Our super-resolution approach tries to complement this existing toolbox75

by introducing a tool that is considerably faster than the direct computations of a wave model and, simultaneously, more76

accurate than a surrogate model. To the best of our knowledge, this is the first study where super-resolution techniques77

based on neural networks are applied to coastal wave modeling.78

79
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In the present paper, we apply the Downsampled Skip Connections Multi-Scale (DSC/MS) neural network80

introduced by Fukami et al. (2019) to convert LR SWAN computations to a 16-times higher resolution. Section 281

describes the proposed workflow with a focus on data processing. Then, we present the results for an application of the82

model to a study case for the nearshore area at Biarritz (SW France), compare it to a surrogate model and analyze the83

possibility of decreasing the error for extreme events. Lastly, we discuss our results, the presently existing limitations84

of this approach, and the potential for future improvements.85

2. Materials and Methods86

The first step to construct a framework for neural-network-based super-resolution is to obtain a training and test87

data set from a coastal wave model.88

2.1. SWAN and Data Pre-processing89

To create a data set with matching LR and HR results, we compute various quantities including significant wave90

height 𝐻𝑠, mean wave period 𝑇𝑚02, and mean wave direction 𝐷𝑖𝑟 with the third-generation spectral wave model SWAN91

for a part of the coastal area near Biarritz (see Fig. 1 left panel).

Figure 1: Left panel: Bathymetry map of the study area and the locations of the outer and the nested grid with a top left
panel showing the location of the study site on the French Atlantic coast. Note that the scale of the colorbar is not linear
to highlight bathymetric features over different scales. Right panel: Zoom-in on the nested grid. The three indicated points
show the locations where the time series are extracted for the performance analysis in section 3.

92

The area of interest is nested inside a coarser outer grid that is forced by homogeneous spectral boundary conditions93

taken from the HOMERE hindcast database (Boudière et al., 2013), at the location of the Donostia buoy (i.e., around94

35km from Biarritz in a water depth of about 450m). On the right panel, the bathymetry of the nested grid is shown95

alongside with three locations, where we extracted time series of the sea state variables (see section 3). The locations96

were chosen to account for a bathymetry of 5m, 10m, and 15m, for P1, P2, and P3, respectively. Note that for the97

panel on the left, the colorbar is not linear, for a better visualization of the bathymetric features over different scales.98
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The wave data set considered for this work covers a two-year time period spanning from January 01, 2018 to December99

31, 2019. For the HR nested grid, we chose a grid with 160 x 160 quadratic cells (8 km in x- and y-direction with Δx100

= Δy = 50m), which enables uncomplicated downscaling by multiples of two. To verify that our chosen resolution is101

fine enough to accurately capture wave processes, we performed a quick convergence analysis. For this we computed102

a stationary run for seven grid size steps, ranging from 12.5m to 800m. We then compared the mean values over103

the whole spatial domain for significant wave height, mean wave period, and mean wave direction (see Fig. 13 in the104

appendix). The results show that the difference between the mean values of a grid size step of 25m and 50m was105

under 0.5% for each variable. Given the faster computation times and the lower computational load, we deemed 50m106

sufficient for the HR nested grid to capture most variations in the wave regime. Furthermore, given that the bathymetry107

data has only a precision of 0.001 ° ≈ 100m, a smaller grid size would not lead to a better representation of the108

seafloor. The LR grid that we convert to a higher resolution has 10 x 10 quadratic cells, with a Δx = Δy = 800m. For109

HR and LR computations, we used a directional binning of 2.5◦ for a range of 215◦ to 55◦. The frequency spectrum110

spans 0.05Hz to 0.25Hz and is divided into 25 logarithmically-spaced partitions.111

The bathymetry data were obtained from the publicly available Digital Terrain Model "MNT bathymétrique112

de façade Atlantique" provided by the French Service Hydrographique et Océanographique de la Marine (SHOM)113

(SHOM-Service Hydrographique Et Océanographique De La Marine, 2015) and interpolated with the open-source114

program Octave (Eaton et al., 2020) to the two grid sizes.115

With the objective to demonstrate the feasibility of the application of neural-network-based super-resolution to116

ocean wave modeling, we use basic, yet realistic settings for the SWAN computations. In particular, wind forcing,117

wind growth, and white-capping are not taken into account due to the strong influence of swells in the region. The118

water level was set constant and equal to the mean water level 2.25m. Depth-induced wave breaking was modeled119

with constant values 𝛼 = 1 and 𝛾 = 0.73 adapted from Battjes and Stive (1985). Bottom friction is based on Madsen120

et al. (1988) with a constant coefficient of 0.085. A link to all SWAN run files, including the one for the outer grid can121

be found in the Data Availability section.122

123

We note that the SWAN model returns NaNs (Not a Number) for cells that cross the shoreline. Since neural networks124

cannot work with NaNs, they have to be addressed separately as discussed in the workflow in subsection 2.4.125

2.2. Neural network architecture126

For our neural network architecture, we use an adapted version of the Downsampled Skip Connections Multi-Scale127

model, originally introduced by Fukami et al. (2019). We initially tested this model due to its success in reconstructing128

turbulent flows and its capability in capturing flow patterns over a wide range of scales. In the nearshore area, wave129

Kuehn et al.: Preprint submitted to Elsevier Page 4 of 30



Super-Resolution on SWAN

transformation usually also occurs over a range of spatial scales - especially where the bathymetry gradients are130

locally large. This is particularly the case at the present study site, the Basque Coast, which exhibits very localized 3D131

bathymetry features in the shoaling zone. For instance, between Saint-Jean-de-Luz and Hendaye, embayed beaches,132

headlands, and breakwaters can be found over the course of just a few kilometers (Pinault et al., 2022). A particularly133

distinct feature is the large submarine canyon in the area around Capbreton (gouf de Capbreton). All these features134

have different scales, which reflect on the wave field. We thus expect a scale-adapted model, as the one proposed by135

Fukami et al. (2019), to work better than one that is scale-agnostic. Finally, as turbulent flows generally pose complex136

challenges to numerical solutions and exhibit more variance in time and space than spectral wave model computations,137

our choice of this neural network is rather conservative.138

The DSC/MS model is composed of two parts, a submodel employing skip connections and max-pooling139

operations, that first down- and later upsamples the data; and secondly a so-called multi-scale model presented in140

Du et al. (2018). The skip connections are used to prevent degradation of deep neural networks (He et al., 2016), while141

the downsampling works effectively as a data compression, making the neural network more robust, particularly in the142

case of rotations and translations (Ngiam et al., 2010). On the other hand, the multi-scale model is composed of multiple143

convolutional filters of varying sizes to span different scales. The results of each submodel are finally concatenated144

where a final convolutional layer combines them into the reconstructed image.145

For more detailed information about the model, we refer to the original article of the authors (Fukami et al., 2019)146

and more generally some introductions to the topic of convolutional neural networks (Guo et al., 2016; Rawat and147

Wang, 2017; Aloysius and Geetha, 2017). A flowchart of the DSC/MS neural network can be found in the appendix in148

Fig. 14 and the source code to train this model, as well as the following surrogate model, can be found in the GitHub149

repository. For more information, see the link in the Data Availability Section.150

2.3. Surrogate Models151

One alternative to the super-resolution approach is, as mentioned in the introduction, to use a neural network as152

a surrogate model. In a surrogate model, the entire spectral wave computation - in our case provided by SWAN - is153

substituted by a neural network. It usually takes the same inputs and is trained to reproduce the high-resolution results.154

The idea is based on the concept that the physical equations of the spectral wave model can be well approximated by a155

large parameterized model. A few recent examples of successful implementations of surrogate models are James et al.156

(2018); Huang et al. (2022); Mahdavi-Meymand and Sulisz (2023).157

The advantage of a surrogate model over a super-resolution approach is that skipping the computation of a low-158

resolution result makes it even faster. However, the accuracy is strictly bound to the quality of the input data. Surrogate159

models have to work directly with wave spectra at the domain boundary, bathymetry, wind field, and other input data,160
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without having a first approximation of the actual wave height, period, or direction in the computation domain. Our161

super-resolution approach, on the other hand, receives exactly these features as an input or initial guess from a low-162

resolution computation of the SWAN model that, in turn, reduces the task of predicting the entire wave field from raw163

inputs to only adjusting it.164

165

There is no single way of implementing surrogate models. James et al. (2018), for example, used a dense neural166

network, whereas Bai et al. (2022) and Huang et al. (2022) base their models on convolutional layers. To guarantee167

the same input for the neural network as for the SWAN computation, we choose an approach where the spectrum168

is flattened and transformed with a dense neural network to the same dimension as the bathymetry. The spectrum is169

identical to the one that is used as a boundary condition in SWAN consisting of 32 frequency and 24 directional bins.170

With the flattening operation the spectrum is reshaped to a vector with 32 ⋅ 24 = 768 elements that serves as input171

to the dense neural network. This dense neural network essentially upsamples the spectrum to 256,000 elements that172

are then reshaped into a 160x160 matrix - the same size as the bathymetry and the final output. Then, the transformed173

spectrum and the bathymetry are concatenated and passed to the same DSC/MS model as presented in the previous174

subsection 2.2. The flowchart for this neural network architecture can be found in the appendix in Fig. 15.175

It is also possible to flatten both the spectrum and the bathymetry, to concatenate them and to pass this 32 ⋅ 24 +176

160 ⋅ 160 = 256, 768-element vector directly to a dense neural network and only work with dense layers. However,177

the amount of parameters in this implementation grows very quickly (> 100 million weights to adjust, in contrast to178

around 25 million) and we obtained inferior performances with this approach.179

Note that for the following workflow and application, both the super-resolution and surrogate model were pre-180

processed and applied in the same fashion, except that we min-max-normalized the input for the surrogate model,181

whereas the data are not normalized for the super-resolution approach.182

2.4. Workflow183

First, we obtain the data set by computing a coastal wave model over two grids - a fine and a coarse one -184

corresponding to the high-resolution ground truth and the low-resolution input. As we will discuss in subsection 3.1,185

it is possible to specifically generate extra data to mitigate the prediction errors in certain wave regimes. Then, we186

split the data into "snapshots", i.e. into files containing the spatial distribution of a variable (e.g., a 2D 𝐻𝑠 map) at187

one time step. In our case, the sampling interval is one hour in both the high- and low-resolution data set. As a next188

step, a certain fraction of the whole data set is set aside for testing purposes. The rest of the data is divided into a189

training and validation set. The former is used by the model to adjust the weights, whereas the latter is for performance190

assessment of the model after each training epoch. The NaNs resulting from the topography part of the coastal wave191
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model computations are set to zero, as the neural network handles only numbers. We train the models with ADAM192

optimization (Kingma and Ba, 2015) and early stopping after 30 epochs (Prechelt, 1998). Finally, we evaluate the193

neural networks on the test set to obtain a realistic estimation of their performance. Fig. 2 summarizes our approach.194

Figure 2: Workflow of the super-resolution approach adopted in the present study.

Note that, in contrast to Fukami et al. (2019), the networks are trained by using the L1 / mean absolute error (MAE)195

loss instead of the L2 / mean square error (MSE) loss. This is due to the fact that the L2 loss penalizes larger and tolerates196

smaller errors. In super-resolution tasks, this commonly leads to overly smooth results (Wang et al., 2020).197

Also, Fukami et al. (2019) used average- or max-pooling to artificially create the LR input. However, a model198

trained on this input will not necessarily perform well on real LR results, since in practice LR computations are rarely199

simply an average-pooled version of HR computations. Thus, we decided to train the model with real LR - HR pairs,200

stemming from practically the same SWAN computation, but at different resolutions.201

2.5. Application202

In the present study, we run a pair of high- and low-resolution SWAN computations for the two-year period between203

January 01, 2018 and December 31, 2019. We use the first year for training (80%) and validation (20%), and the second204

year solely for testing. Using a whole year for testing helps to get a realistic estimation of the performance of the model205

over various sea states. Finally, for each of the three variables - significant wave height, mean wave period, and mean206

wave direction - we train a model to convert low-resolution SWAN modeling results from a grid cell count of 10x10207

to one of 160x160.208

3. Results209

As an initial sanity test, we compare the DSC/MS model to two less adapted and simpler architectures: a Fully-210

Connected Neural Network (FCNN) and a Convolutional Neural Network (CNN).211
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Architecture # Parameters Min. MAE [cm] Max. MAE [cm] Mean MAE [cm]
LR Input - - - 11.29

CNN 19k 7.85 8.23 8.00
FCNN 286,000k 0.79 1.23 0.98

DSC/MS 134k 0.61 0.85 0.71

Table 1
Minimum, maximum, and mean MAE over 6 training runs of different neural network architectures, computed over the
test data set. For comparison, the MAE of the raw low-resolution input in comparison to the high-resolution reference is
displayed too.

We use a FCNN of two hidden layers with a Rectified Linear Unit (ReLU) activation. While deeper models are212

more common, they are computationally hard to implement in the given case, since the amount of parameters increases213

rapidly due to the desired high-resolution output. Here, with only two hidden layers, the model contains over 286 million214

parameters, requiring 3GB of memory.215

On the other hand, the CNN is composed of an initial upsampling layer, 3 hidden convolutional layers with a kernel216

of 3, a filter size of 32, padding to keep the output at the same size, and ReLU as an activation function. The last layer217

has only one filter (for the high-resolution prediction), a kernel of 3, padding, but no activation function. This simple218

architecture drastically reduces the number of parameters to only around 19 thousand. The architecture of this CNN was219

chosen to be similar to a classical baseline model for a simple machine learning task, like classifying the handwritten220

digits of the MNIST data set (Deng, 2012).221

The proposed DSC/MS model situates itself in the middle, with 134 thousand parameters and a more elaborated222

architecture. As a comparison, the model is of much more manageable size with around 2MB.223

For each architecture, we train the model six times and compute the mean absolute error over the test data set.224

The minimum, maximum, and mean performance for each architecture are presented in Table 1. A more detailed225

explanation of the implementation along with flowcharts for the FCNN and CNN can be found in the appendix in226

section A.1.227

While the CNN does have the lowest amount of parameters, it is not efficient enough for a super-resolution task,228

the results improving only slightly the low-resolution input. The FCNN and DSC/MS are much closer in performance,229

however, the latter does not only fare better, but does so with a fraction of the amount of parameters.230

Nevertheless, we note that the DSC/MS architecture is certainly not the only architecture that is capable of231

performing super-resolution. Generative Adversarial Networks (GAN) (Stengel et al., 2020) are one example of a232

potentially more powerful architecture, but they come with an increased difficulty of implementation and longer233

training times. We choose here the DSC/MS model for its balance between complexity, speed, and its problem-specific234

architecture mentioned in 2.2.235

236
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Before analyzing the performance of the super-resolution and surrogate neural networks in more detail and over237

different sea states, we compare them in terms of MAE computed over the whole test data year and over the whole238

domain. Note that due to this double-averaging operation, the obtained value is a global indicator, which hides the239

temporal and spatial variations of the error. For each variable, we trained each architecture multiple times to get a240

rough idea of the range of performances and to consequently be able to make a more robust comparison.241

Figure 3: Mean absolute errors for the super-resolution and surrogate models computed over the test year for the three
sea state variables. Each model was trained 6 times, the outlined data point is the mean of the errors.

Fig. 3 presents our results. While both approaches are on average able to predict accurately the wave parameters,242

there is a clear discrepancy between the two. The best surrogate model performs worse than the worst super-resolution243

model for each of the three variables. For example, the best𝐻𝑠 surrogate model has a MAE of 1.40 cm, in comparison to244

0.85 cm for the worst DSC/MS model. The mean errors, highlighted in black, are around 2-times lower for significant245

wave height and mean wave direction, whereas more than 4-times lower for mean wave period. While the absolute246

value changes seem relatively small - for instance, an improvement from 2 cm to 1 cm for 𝐻𝑠 - they only reflect a mean247

change, as mentioned above. Such changes usually encompass larger error reductions along the coastline, as we will248

see below.249

250

For all of the following results, we selected, for each variable, the worst training run to avoid overly optimistic251

predictions. Also, all of the figures can be found, interactively, in Jupyter notebooks (see the Data Availability section252

for more information).253

In Fig. 4, we give an example of the DSC/MS predictions of the spatial distribution of significant wave height,254

mean wave period, and mean wave direction. Given the similarities of the results of the surrogate model in this wave255

regime, we only focus on the super-resolution model results. The corresponding plot for the surrogate model can be256
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found in the appendix (Fig. 16). For comparison, the LR input and the HR ground truth are displayed as well. Here the257

chosen data instance is representative of the average wave regime, which corresponds to 𝐻𝑠 values of 1.0m to 1.5m,258

𝑇𝑚02 around 7 s to 10 s, and an incoming mean wave direction in the range of 300◦ to 320◦. Furthermore, the last row259

of the figure shows the difference of the high-resolution computation and the neural network prediction for the whole260

domain.261

262

In the three cases, the high-resolution computations are well approximated by the neural networks. The prediction263

not only correctly captures most of the wave features, but also reconstructs the original coastline in a sense that the264

neural network predicts negligible values for values on land - setting values lower than a small threshold (around 0.01265

for all variables) to NaN results in a near-perfect reconstruction of the original coastline for each of the models.266

Out of the three variables, the significant wave height and the mean wave direction (MAE of 0.66 cm and 0.23◦,267

respectively) are reproduced best. The 2D error map for 𝐻𝑠 shows that there are some minor discrepancies on the scale268

of 1 cm over the whole domain, with some larger errors of around 5 cm along the coastline, usually concurrent with269

wave refraction patterns. On the other hand, the error for the mean wave direction is much more localized, being on270

the order of 10◦ for only some locations where wave direction changes quickly, but much smaller (approximately 0◦ to271

1◦) for the rest of the domain. When comparing the performance over the whole domain, the mean wave period has a272

lower absolute value of the mean average error (0.07 s) than the mean wave direction. However, these values cannot be273

compared over different variables, due to their different scales and units. The normalized root-mean-square error (see274

Equation (1) below) allows a more robust comparison, since it is based on percentage points and is normalized by the275

mean of the data instance. Here, the mean wave direction is predicted with the highest accuracy, followed by 𝐻𝑠, and276

𝑇𝑚02 (0.58%, 0.92%, and 1.21%, respectively).277

For the mean wave period, minor reconstruction errors are visible, particularly in the upper right-hand corner278

around the location of an artifact of the boundary condition and at the wave refraction patterns, which are reproduced,279

to a certain degree, by the 2D error map. At these locations, the difference reaches absolute values of 1 s, but the280

error throughout the domain is usually much lower, in the range of 0.1 s to 0.5 s. Furthermore, in contrast to 𝐻𝑠 and281

𝐷𝑖𝑟, the reconstruction is not as sharp as the ground truth. Note that this is a data instance were the neural network282

prediction is very accurate over all three variables. It is the case for the majority of the test data, but in certain conditions283

the performance of the neural network drops significantly. In the following figures we analyze in more detail these284

conditions.285

286

First, to determine the accuracy of the method over time, we extract three time series for each sea state variable287

at the three locations mentioned in subsection 2.1 over the whole year of test data. Fig. 5 shows an extract of the288
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Figure 4: Neural-network reconstructions of high-resolution computations from lower resolution SWAN calculations. The
MAE and NRMSE (see equation (1)) is shown for the predictions. Additionally, the fourth row shows 2D error maps of
the high-resolution SWAN computation and the neural network prediction. The data instance is from April 21, 2019 at
midnight.
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time series during an extreme wave event at the location P2. The whole time series and the other locations can be289

found and visualized in the Jupyter notebooks. In general, both models perform well, improve upon the low-resolution290

computation, and usually give predictions close to the reference. Nevertheless, the super-resolution approach exhibits291

a smaller discrepancy, sometimes reaching better performances on the scale of tens of centimeters, in the example of292

significant wave height. In this extract particularly, the surrogate model has difficulties correctly predicting the wave293

height at the storm peak, but also, more globally, the mean wave period and direction. An example of the advantage of294

the super-resolution approach can be seen at the prediction of the mean wave period around the 20𝑡ℎ of December. Here,295

the low-resolution input provides already a very good estimate of the high-resolution ground truth and consequently296

the super-resolution neural network only has to adjust the input slightly. The surrogate model on the other hand has to297

"deduce" all the physics by itself, which in this case, leads to a distinctly poorer prediction of almost 1.5 s of difference.298

Figure 5: A 4-day time series extracted at location P2 (located at a depth of 10m). The time series covers a storm event
around the 22𝑛𝑑 of December. The whole time series and the other locations can be found in the Juypyter notebooks.

For a more thorough comparison over the whole time series, we compare the predictions to the HR ground truth299

as well as the LR input. We also compute various commonly used quantities of interest to aid the interpretation. These300

include the root-mean-square error RMSE, the normalized root-mean-square error, also sometimes called scatter index301

NRMSE, and the bias. They are computed as follows302

RMSE =

√

∑

𝑖

(𝑦𝑖 − �̂�𝑖)2

𝑛
NRMSE = RMSE

�̄�

bias = ∑

𝑖

𝑦𝑖 − �̂�𝑖
𝑛

,
(1)

where 𝑦𝑖 the i-th point of the ground truth, �̄� the mean ground truth over the whole time series, �̂�𝑖 the corresponding303

prediction by the neural network, and 𝑛 the total number of data points. The scatter plot of the time series and their304

corresponding quantities are displayed in Fig. 6 for both the super-resolution and surrogate models.305

Kuehn et al.: Preprint submitted to Elsevier Page 12 of 30



Super-Resolution on SWAN

Starting with the left-hand column, the significant wave height is reconstructed quite accurately with a MAE of306

4 cm or less for both the DSC/MS and surrogate model, and deviates from the reference mostly only at both extremes.307

A deterioration at very low values is seen at P1 as a downward-curved tail, where the model underestimates the wave308

height. At the locations P1 and P2, the low-resolution computation diverges quite strongly from the high-resolution309

reference for larger wave heights, being up to 2m off in extreme cases, which consequently affects the super-resolution310

predictions as well. At the location P1, the significant wave height is predicted worse than with the surrogate model,311

mostly due to this large error. Nevertheless, both RMSE and NRMSE are still close to the values of the surrogate312

model. Additionally, for the other two locations the error is distinctively smaller and the super-resolution approach313

outperforms decidedly the surrogate model, approximately cutting the error in half - namely a RMSE of 1.51 cm314

compared to 3.97 cm at P2, and 2.62 cm instead of 3.98 cm at P3 for the super-resolution and surrogate approach,315

respectively.316

317

In the middle column, the results are presented for the mean wave period, which is predicted reasonably well by both318

models, the NRMSE generally being under 6%. Indeed, particularly the super-resolution model shows a significant319

improvement over the low-resolution input and exhibits for all three locations a NRMSE of only around 1%. In contrast320

to wave height, the largest spread is found mostly around the middle, with data points at both extremes being relatively321

close to the ground truth. This stands in contrast with the amount of training data, that is sparser at the extremes. We322

presume that the larger spread stems from an overall larger average value (compared to wave heights), and a larger323

amount of wave periods in the same range that, consequently, also contain statistically more data instances that are324

harder to predict. Interestingly, the surrogate model is markedly less accurate for the mean wave period, where in some325

cases the error is higher than for the LR computation. This might be due to the fact that significant wave height is326

greatly influenced by bathymetry, which thus provides a valuable input. While mean wave period (and direction) do327

also depend on bathymetry, the influence is less strong and the input is less valuable, leading to a deterioration in the328

predictions.329

Finally, in the case of the mean wave direction, the large absolute values of the deviations, of up to 10◦ to 15◦,330

and the multiple loop-like structures, give the impression that the neural networks had the largest difficulties with331

this variable. It should be noted, however, that larger deviations are also partly due to larger overall values and the332

comparatively large range of values that it spans (more than 60◦, compared to only 6m in the case of significant wave333

height). In fact, the NRMSE is the smallest of the three variables, with a maximum NRMSE of less than 0.6%, pointing334

to a very good performance of the neural networks for the reconstruction of the mean wave direction. Nonetheless,335

the time series do exhibit some clear discrepancies, usually induced by inaccurate inputs for the super-resolution (SR)336

approach, as in the case of the plot for the location P1, for example, where the input is almost constantly deviating337
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by 10◦ to 20◦. All plots show the occurrence of loop-like structures at larger mean wave directions in the data, that338

correspond to specific events in the time series. Accordingly, those structures in the input are reflected in the model339

prediction and lead to a collection of data points that are reconstructed less accurately. These loop-like events occur340

when the whole spatial domain is dominated by incoming waves from uncommon directions. Given that these events341

are rare (and relatively short in time) in our domain, the neural networks do not have enough similar data to correctly342

reconstruct these cases.343

344

To have a more quantitative view on the reconstruction errors and performances in different regimes, we divide345

each range of values of the variables into 12 bins and compute the normalized root-mean-square error (NRMSE) like346

in equations (1) and mean difference 1
𝑛
∑𝑛

𝑖 |𝑦𝑖 − �̂�𝑖| for each bin. This is done for the three locations P1, P2, and P3.347

In Fig. 7, we display the NRMSE, the mean differences and their standard deviations and, for an easier interpretation,348

the distribution of the training samples that the neural networks trained on. To better illustrate the variations of the349

NRMSE over the three variables, the y-axes are not scaled. It is however important to bear in mind that the magnitudes350

of the error, i.e., the maximal NRMSE of significant wave height, is considerably greater than the size of the maximal351

NRMSE of the mean wave direction. The figure presented in the main text is based on the results of the super-resolution352

model. An equivalent plot for the surrogate model can be found in the appendix in Fig. 17.353

354

For the significant wave height, we confirm exactly the same pattern as in Fig. 6. The overall error is quite low,355

especially for the locations P2 and P3, where the mean difference does not even exceed 20 cm, even for larger wave356

heights. Overall, the error grows generally inversely proportional to the available training data, namely increasing357

for larger wave heights and, to a certain extent, for very low wave heights. Noteworthy is that the NRMSE has its358

minimum for the three locations at around 3m to 4m, which does not coincide with the maximum amount of training359

data. This can be explained by the fact, that the mean difference stays constant for a large range of values. Thus, with360

larger or smaller values of 𝑦𝑖, the error decreases or increases as well, without the model necessarily being more or361

less accurate. More specifically, even though the NRMSE values are relatively high for lower wave heights, the actual362

difference between the prediction and the high-resolution reference stays still negligibly small over the whole range of363

lower wave heights.364

The trends are not as clear for the mean wave period, where a large amount of training data does not always correlate365

with low differences or errors. Given the rather large standard deviations, however, it is difficult to reach a conclusion,366

especially due to the fact that the amplitudes of the variations of the differences are only on the order of 0.05 s, except367

for the location P3.368
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Figure 6: Scatter plots of low-resolution input and predictions of the two neural networks. Each subplot shows the result of
the low-resolution computation (orange), prediction of the super-resolution model (blue), and prediction of the surrogate
model (red) against the high-resolution reference for each variable (𝐻𝑠 - first column, 𝑇𝑚02 - second column, 𝐷𝑖𝑟 - third
column), at each location P1 (5m depth, top-row), P2 (10m depth, middle), and P3 (15m depth, bottom-row). The black
diagonal corresponds to an absolute match with the high-resolution reference.

As for the mean wave direction, the trend of the difference seems to generally agree well with the training data369

distribution. The drop at the far end of the curves, where both the NRMSE and mean difference drop again after an370

initial rise is an unexpected pattern, given the low number of observations. This might again be due to large standard371

deviations or patterns that are easy to pick up for the neural network even with a small amount of training data.372
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Note that altogether the error is low for all three variables over a large range of values. In the case of 𝐻𝑠 the NRMSE373

is less than 2% for more than 95% of the data - for 𝑇𝑚02 and 𝐷𝑖𝑟 this amounts even to 100% of the test set. Indeed, in374

the case of the mean wave direction, the mean difference is smaller than the resolution of the SWAN computation in375

itself. We elaborate this point further in the discussion.376

Figure 7: Normalized root-mean-square errors and mean differences with their standard deviations over 12 bins. The three
colors indicate the different locations P1, P2, and P3.

3.1. Data augmentation377

With the help of the two previous figures, we found that especially for significant wave height, a lack of data of378

the extreme cases seems to be linked to worse predictions of those sea states. We tried to improve the predictions of379

the super-resolution approach by artificially increasing the size of the data set by adding new data of extreme cases to380

the training set. This Data Augmentation approach is a common procedure, especially in the area of image recognition381

(Perez and Wang, 2017). Usually, to enhance the size of the data set and to improve the robustness of the neural network,382

images are transformed in various ways and then added to the original data set. As an example, a picture of an object383

can be mirrored horizontally or the brightness and contrast of the image can be changed, but the object in the picture384

would still be the same. These artificial modifications help the neural network generalize better and consequently boost385

performance (Shorten and Khoshgoftaar, 2019).386

In this study, we increased the number of training data at extreme wave heights by running complementary387

stationary LR and HR SWAN computations. The following thresholds are strongly dependent on the study case and388
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should be used with caution and chosen accordingly to the given data set - we achieved good results with the following389

procedure as summarized in the flowchart 8:390

Figure 8: Flowchart for the proposed data augmentation workflow.

First, we compute the significant wave height that is larger than 95% of all wave heights. We then compute the391

range of the corresponding wave period, and wave direction at those extreme wave heights. Using these three variables,392

we can parameterize a JONSWAP (Joint North Sea Wave Project) spectrum in SWAN to run a stationary computation.393

As we are here focusing on improving the prediction of significant wave height, we vary this parameter the most - 60394

values ranging from 4.5m to 9.0m. Wave period ranges from 13 s to 16 s in 5 values, and lastly, wave direction from395

300◦ to 330◦ in 3 values, resulting in a total of 900 extra data points, which is a little more than 10% of the original396

data set size.397

To detect the differences in performance for wave heights in various regimes, we compare the data augmentation398

approach to the previous scatter and error plots. In the case of the scatter plot, we focus especially on the larger399

wave heights, by zooming into the window with the 5% largest wave heights. Fig. 9 shows that the effect of the400

data augmentation depends strongly on the location. At the first location (left-hand subplot), the data augmentation401

approach decreases by a factor of three to four the bias, RMSE, and NRMSE, as can be verified in table 2. A slight402

improvement is seen also at the two other locations, even though the effect is much subtler - a decrease of only a few403

percentage points in NRMSE - partly due to the already good results. Even when compared over all wave heights, data404

augmentation still improves overall performance, although less significantly (see appendix Table 3).405

For a more nuanced picture of the error in different wave regimes, we recompute an error plot, again dividing the406

range into 12 bins. The result is shown in Fig. 10. We find similar trends as for the scatter plot (Fig. 9). At location P1,407

the improvement with data augmentation is clearly visible, the mean difference reduces from almost 60 cm to 5 cm.408

On the other hand, at P2 and P3 the decrease is less distinctive. Interestingly, at P1 the error decreases even for small409

wave heights, even though no additional data were used in this regime. Conversely, the error slightly increased for P3410
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Figure 9: Scatter plot of the neural network 𝐻𝑠 predictions against the high-resolution SWAN results for networks trained
with and without Data Augmentation (DA) at different locations. Only the 5% highest wave heights are shown. Note that
the points without data augmentation (in red) correspond to the predictions of the super-resolution approach in the first
column in Fig. 6.

Location Bias [cm] RMSE [cm] NRMSE [%]
P1 With DA -0.9 2.1 0.5

Without DA -4.1 6.5 2.9
P2 With DA -3.2 4.2 0.9

Without DA 1.5 4.6 1.0
P3 With DA -4.1 6.5 1.3

Without DA 0.0 8.0 1.6

Table 2
Bias, RMSE, and NRMSE for time series computed at locations P1, P2, and P3 for neural networks trained with and
without data augmentation, for the 5% largest wave heights.

at small wave heights, which can be explained by the fact that the neural network tries to generalize over a large range411

of wave heights and thus performs slightly worse in certain ranges.412

3.2. Depth-dependent errors413

Given that our study area is strongly influenced by bathymetric features, we analyze the variation of the absolute414

difference of 𝐻𝑠 between the neural network predictions and the high-resolution reference dependent on water depth.415

To achieve this, we split the range of bathymetry values into 20 equal bins and compute the mean absolute difference416

in each of these bins, over the whole test year. This is done not only for both the SR and surrogate model, but also for417

the low-resolution input for comparison. The results are displayed in Fig. 11 along with binned mean 𝐻𝑠 values of the418

high-resolution computation (error bars represent the minimal and maximal 𝐻𝑠 value over the test year), as well as a419

water depth histogram to aid interpretation.420

In low water depths, both architectures exhibit very small mean differences in the range of 0.5 cm to 1.5 cm. At a421

water depth of around 5m, the curves start to diverge. While the super-resolution curve peaks at approximately 1.7 cm422
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Figure 10: Normalized root-mean-square errors and mean differences of the significant wave height predictions, compare
with Fig. 7. The left column shows the values with and the right column without the data augmentation approach. Note
that the right column is identical to the first column in Fig. 7

after which it falls almost continuously, the surrogate model curve stays relatively constant at a difference of 2 cm,423

dropping only slightly at much larger water depths. While the order of magnitude is much larger, the low-resolution424

curve resembles somewhat the one of the super-resolution model. It starts at a peak of around 80 cm, before decreasing425

drastically to roughly 1 cm, with a small upward dip towards the end.426

The very low differences along the coastline can be explained by two factors: First, the significant wave height has427

smaller overall mean values very close to land, as can be seen in the lower-left panel of Fig. 11, and consequently the428

differences are smaller as well. Second, the neural network learns the coastline through the repeated exposure, since429

it is one of the constant features throughout the data set, and is able to reconstruct it exceptionally well. However, the430

errors start increasing quickly, due to high biases through the low-resolution input, but also due to larger variances (note431

how the maximal 𝐻𝑠 values increase until around 27m) and more complex phenomena like shoaling and refraction432

that have to be taken into account by the neural networks. The large discrepancy at greater water depth between the433

two models is interpreted by taking the type of input into account. Although the surrogate model has the full spectrum434

and the bathymetry as an input, the neural network needs to do the physical conversion itself, which is inherently more435

difficult than the SR model’s work of adjusting the - at lower water depths - already accurate low-resolution input. Both436

models exhibit an improved performance offshore, due to a reduced variance of the wave heights, but also owing to437

the much less complex wave field.438
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Figure 11: Mean absolute differences of neural network 𝐻𝑠 predictions and high-resolution ground truth in dependency
on water depth for both model architectures. For comparison, the difference is also shown for the low-resolution input.
Additionally, as support for interpretation, the mean 𝐻𝑠 values of the high-resolution computation for a certain depth are
given, with minimal and maximal values as error bars, as well as a water depth bin count.

Lastly, while the frequency of how often a certain water depth exists could have an influence on the results,439

especially for the surrogate model that uses the bathymetry directly as an input, there seems to be no such apparent440

link. The shape of the histogram follows somewhat loosely certain variations of the mean differences of the surrogate441

model, but the similarities are too small to deduce a clear correlation between them. We still provide the water depth442

histogram as additional information about our study area.443
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3.3. Comparison of Computation Time444

For a better evaluation of the computational performance, we compare each needed step in a surrogate model445

and our super-resolution approach to the computation time of a traditional direct HR SWAN calculation. The SWAN446

computations were run with 12 parallel threads on an Intel Core i7-9750H processor with 6 cores and 12 threads. For447

pre-processing, we used the same processor without parallel threading and for training and prediction of the neural448

network, a NVIDIA GeForce RTX 2070 Max-Q was used.449

As a first step, the outer grid of the SWAN model was computed over the time range of 2 years, which took450

approximately 7.5 h. Similarly, computing the same time range in the nested high-resolution 160x160 grid took also451

7.5 h. Calculation of the same nested grid in lower resolution (10x10) required only 8min.452

Training times of the neural network can change significantly for the same model if the algorithm gets stuck in a453

local minimum. For the models presented, the times required were around 2 h to 4 h, which adds up to approximately454

9 h for all three variables - that is, more than the HR SWAN computation. Another factor that has to be included, is the455

time required to create the training (and potentially test) data set, which with the outer grid, HR, and LR computation456

included, sums up in this case to a bit more than 7.5 h+7.5 h+8min ≈ 15 h. This is already more than twice the high-457

resolution computation time itself, without yet taking into account the training time. One has to note, however, that both458

setting up the data set and the actual training of the neural network are only a one-time cost, as the models can be reused459

multiple times after the one-time training. Additionally, if available, it is possible to use an existing high-resolution460

hindcast, so that only the complementary low-resolution data set has to be created, resulting in a distinctive reduction461

of the upfront computation costs. In the following, when addressing the matter of an improvement in computation time,462

we refer solely to the execution of the neural network, when it is already trained, i.e., without the upfront computational463

costs.464

The actual prediction by the models is computed very fast, since once the weights are determined after training,465

predictions are mainly a form of matrix multiplications. Converting two years of data on the GPU required only around466

30 s, both with the surrogate and super-resolution model. In our approach, together with the time of running the LR467

SWAN computations, the overall time amounts to 8.5min. Compared to the 7.5 h for modeling the domain directly468

in high-resolution, the gain in computation time is more than 50-fold. Even if the prediction of the neural network469

is done on a CPU, in a case where the model is already trained, but no GPU is available for prediction, the increase470

in computation time is considerable. On the CPU converting 2 years of data takes around 9min, which with the LR471

SWAN computation of roughly 8min results in around 17min - still a more than 25-fold speed-up.472

473
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The speed-up of the surrogate model is even greater, since no low-resolution computation is needed. Given that474

the computation only takes 30 s on a GPU for the two years, the model is 900-times faster. On the CPU the prediction475

takes around 10min, which still is equivalent to a 45-fold speed-up.476

4. Discussion477

Our adaptation of the DSC/MS model proposed by Fukami et al. (2019) is able to reconstruct high-resolution478

features of various sea state variables with only a low-resolution SWAN calculation as input. It is a considerable479

alternative to surrogate models, acting as a middle ground between speed and accuracy. We found that even though480

surrogate models are indeed faster, they can lack accuracy, especially in cases where bathymetry plays a less481

controlling role. The super-resolution approach mitigates these errors due to its input that stems from an actual physical482

computation and thus reduces the prediction to an adjustment. Furthermore, while super-resolution and surrogate483

models share some overlapping applications, they are not fully identical. Super-resolution could be used to increase484

the resolution of wave maps or databases, where no spectral information is available. Indeed, if trained on wave maps485

of an external provider, the prediction time and thus the speed-up is similar to the surrogate model, but with better486

accuracy than the latter.487

Overall, we found that super-resolution has the potential to considerably reduce computation time for forecasts.488

As seen in subsection 3.3, in certain cases the initial computational costs of the method are quite high. Especially for489

shorter hindcasts those costs have to be considered. Taking the previously presented times, we can roughly estimate490

at which hindcast length 𝑥years, the lower computation times compensate the upfront calculations. On one hand of the491

equation, we have 𝑥years times the duration of a HR SWAN computation of one year 𝑇HR. On the other hand, we have492

the sum of the training time for one year 𝑇train, the computation of one year of HR results 𝑇HR, 𝑥years + 1 times the LR493

SWAN computation 𝑇LR (the +1 is due to the creation of the data set), and finally 𝑥years times the conversion time of494

the neural network 𝑇NN. Thus, our estimate for how long a hindcast should be to balance the initial costs is:495

𝑥years𝑇HR = 𝑇HR + 𝑇LR + 𝑇train + 𝑥years(𝑇LR + 𝑇NN)

⇔ 𝑥years =
𝑇HR + 𝑇LR + 𝑇train
𝑇HR − 𝑇LR − 𝑇NN

≈ 4 (years) ,

(with 𝑇HR = 3.75 h, 𝑇LR = 4min, 𝑇train = 9 h, and 𝑇NN = 15 s). Note that the values given here are normalized to a 1496

year duration, i.e., 1 year of HR results, 1 year of conversion, etc., whereas most of the values in subsection 3.3 refer to497

our total study time of 2 years (that is, 2 years of HR results, 2 years of conversion). In summary, if the super-resolution498

approach is applied to a hindcast computation, the desired duration should be at least 4 years long to compensate the499

upfront computation time, but is especially interesting for 10 years and more, where the gain in computation time is500
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already more than double. Naturally, this estimate is only a rough indicator and is based on our computations. Different501

hardware, other grid sizes, and other wave models and regions, all influence the estimate for any given study. While this502

shows that super-resolution is a viable approach for long-term hindcasts, we still see its main application in operational503

forecasts, particularly in ensemble forecasts or other situations where some accuracy might be sacrificed for faster504

outputs. Indeed, we showed that after training the neural network, predictions can be obtained 50-times faster with505

good accuracy with reference to a standard high-resolution SWAN computation. The errors are often negligible in506

comparison to the accuracy of spectral wave models and lower than for surrogate models. Commonly, NRMSE of507

SWAN computations, when compared with buoy measurements, are on the order of 10% to 20% for significant wave508

height, mean wave period, and mean wave direction (see, e.g. Akpınar et al. (2012); Gonçalves et al. (2018); Delpey509

et al. (2021)). As seen in Fig. 7, in our predictions neither 𝑇𝑚02 nor 𝐷𝑖𝑟 have a NRMSE larger than 1.5%. Even for the510

significant wave height the error stays below 2% for the majority of the reconstructed data.511

Apart from that, also in cases of larger errors the neural network improves upon the LR input. It implies that it512

still is more informative and accurate than a LR computation, even when in some situations the predictions might not513

replace a direct HR computation. Furthermore, the speed and accuracy presented here are likely lower bound estimates514

and could be improved with a more elaborate pre-processing routine, a refined model architecture and careful training515

data sampling. Additionally, different loss equations and other neural network architectures like GANs could boost the516

results substantially, with a potential loss of training / prediction speed and of facility of implementation.517

Also, as seen in subsection 3.1, the largest errors at extreme wave heights can be mitigated by adding data from518

stationary runs to the data set. This is a particularly exciting result, since usually the data of most interest are exactly519

these extreme cases. By only adding approximately 10% of additional data, we managed to reduce the mean difference520

in certain locations by half. While the error slightly increased for lower values of 𝐻𝑠, in practice a difference of around521

1 cm is negligible and much smaller than the resolution of the spectral wave model itself.522

For a more thorough data selection, existing hindcast databases could be used to train the model extensively by523

constructing a large and well-sampled data set that covers many possible wave conditions and that would likely improve524

the results considerably. Here, we focused on a simple approach with only one year of training data, to demonstrate525

that, even with relatively small training sample sizes, we achieve a robust prediction for various wave conditions.526

However, there are some disadvantages of our approach, and of using data-dependent algorithms in general. Here,527

we trained one model for each wave variable, which increases the training time considerably. Direct HR SWAN528

computations can output multiple variables in one go, with only a minor effect on the overall run time. Nevertheless,529

for the neural networks, running the prediction for the three variables affects the overall computation time only slightly530

and training is a one-time cost. Training one model to predict all variables is feasible, however, it deteriorates the results531

as commonly reported in the literature (Schultz et al., 2021).532
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Another possible drawback stems from our implementation of data augmentation. Wave height, period, and533

direction are iterated over in self-defined ranges, sometimes resulting in combinations of parameters that produce534

computations that are out of distribution at best and non-physical at worst. We found that if the ranges are chosen535

inaptly, there is a good chance that the extra data will degrade the overall performance.536

537

Future research can explore various directions of improving the super-resolution approach. For instance, in spite of538

the fact that convolutional neural networks have the advantage to work on an arbitrary input size, preliminary results539

show that the trained models are location-specific, even if bathymetry is added as an input, so that for now, a new model540

has to be trained for each new region. However, thanks to the flexibility regarding the input size, the neural network541

could be trained on multiple locations at the same time, effectively reducing the number of neural networks needed.542

While a deeper inspection of this question is out of the scope of this paper, it might be an interesting lead for future543

investigation.544

More generally, given that our approach is data-dependent, the performance of the neural network might degrade545

rapidly in regions or situations where the wave climate and the corresponding distribution of sea state variables change546

over small time scales. In such cases, other methods might be more suitable. Nonetheless, the re-calibration time of547

the model can be reduced considerably with transfer learning (Pan and Yang, 2010).548

Another recent approach builds on incorporation of physical equations into the training process to produce so-called549

Physics-Informed Neural Networks (PINNs) (Gao et al., 2021). Commonly, this is done by adding particular terms,550

like the constraint of zero divergence for incompressible fluids in the loss equations (Raissi et al., 2019). This forces551

the neural network to not only produce more physically plausible results, but also helps it generalize better. Recent552

articles also implemented neural networks directly in a partial differential equations solver, improving accuracy at a553

lower computational cost than a direct numerical solution (Um et al., 2020; De Avila Belbute-Peres et al., 2020). For554

a thorough overview of PINNs, see for example Willard et al. (2020). While similar approaches appear difficult to555

implement in a spectral wave model like SWAN, it might be suitable for other wave models relying on less complex556

governing equations.557

Another outstanding question is how the model performs in terms of wind versus swell seas, which will be looked558

more deeply into in future research.559

The study area exhibits strong bathymetric features, which highly influence the sea state, leading to clearly560

identifiable wave refraction zones that are relatively easy for the neural network to pick up. Other study areas with561

less clear features might be more difficult to reconstruct and results could be less coherent in time. Furthermore, the562

range of angles of the incoming waves is relatively narrow in the study area, leading to a limited number of directional563

values, which facilitates the model’s task. Particularly in the open ocean, this restriction is not given and the model’s564
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performance might be worse or would have to be trained much more extensively to accurately reconstruct all possible565

temporal and spatial variations.566

Lastly, we considered only rectangular, uniform grids for the sake of the simplicity for finding and computing high-567

and low-resolution pairs and its straightforward implementation into neural networks. Given that many studies use568

more complex grid structures, more research has to be undertaken to generalize this approach to any type of grid. One569

promising approach applied in recent fluid mechanics articles is to employ graph neural networks (Sanchez-Gonzalez570

et al., 2020; Chen et al., 2021; Pfaff et al., 2021). These are based on vertices and edges and thus lend themselves571

naturally to work with unstructured data, including the irregular meshes commonly found in spectral wave models572

(Delpey et al., 2021).573

5. Conclusions574

This study presents a super-resolution method based on a Downsampled Skip-Connection / Multi-Scale neural575

network. With a total of two years of a high- and low-resolution SWAN computation, we were able to train and576

evaluate the ability of the network to reconstruct high-resolution results from a coarse input and compare it to the577

usually proposed surrogate models.578

More specifically, the neural network:579

• Performed overall very well on the whole year of test data. Even with the worst training run it had a mean580

absolute error of 0.7 cm, 0.04 s, and 0.3◦, for significant wave height, mean wave period, and mean wave direction,581

respectively. Those errors are negligible in comparison to the resolution of spectral wave models.582

• Outperformed the accuracy of surrogate models, while still being 50-times faster than a direct high-resolution583

SWAN computation, after an initial one-time training cost.584

• Showed limitations in ranges with small amounts of training data. This is particularly apparent in the case of585

significant wave height where the difference to the ground truth can be in some instances more than 50 cm.586

However, errors can be mitigated considerably with targeted data augmentation.587

We are convinced that this approach will be a valuable tool in the future in coastal wave modeling. It complements588

the toolbox by providing an important alternative to surrogate models, offering a balance between speed and accuracy.589

It can be used for locally "zoomed-in" global wave models or, like surrogate models, for reducing drastically the590

computational demands of ensemble forecasting.591
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6. Open Research592

6.1. Data Availability593

The SWAN, pre-processing and training scripts along with Jupyter notebooks for the figures are available through594

GitHub under https://github.com/janfer95/SR_on_SWAN (Kuehn et al., 2022).595
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A. Appendix723

A.1. Implementation of Fully-Connected and Convolutional Neural Networks724

Subsection 2.2 shortly explores some less complex alternatives to the DSC/MS model and shows that even though725

FCNNs have a similar, albeit slightly worse performance, they tend to have a cumbersome amount of parameters, easily726

reaching 200-300 million, i.e., model sizes of about 3GB. Another disadvantage that was not discussed in the main727

text is that FCNNs are inherently not applicable to other study regions, due to their structure. The input of a FCNN728

needs to always have the exact same size (i.e., here 10x10), whereas CNNs and the DCS/MS model are more flexible729

in this regard and can accept different input sizes. This is due to the fact that convolutional layers learn the weights of730
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Location Bias [cm] RMSE [cm] NRMSE [%]
P1 With DA -0.4 1.7 1.0

Without DA -0.5 3.1 1.8
P2 With DA -0.3 1.3 0.8

Without DA 0.2 1.5 0.9
P3 With DA -0.1 2.0 1.2

Without DA -1.2 2.6 1.5

Table 3
Same as Table 2, but for the whole time series, i.e., all wave heights.

a kernel, that runs over the input image. FCNNs on the other hand, have weights that are fixed to an exact input node,731

and are thus only able to work with inputs of the exact same size.732

733

The training procedure of the three neural networks is the same as described in the Workflow (subsection 2.4).734

This means that all runs used an ADAM optimizer, with early stopping and a patience of 30, and minimized on a mean735

average error loss function.736

We implement the FCNN with an initial flattening layer, converting the size of the input from (10x10) to (100x1).737

It follows two hidden dense layers of size 3000 and 10 000 and ReLU activation functions, before using a dense layer738

of size 25 600 without activation function that is reshaped to the same format (160x160) as the high-resolution ground739

truth. The left flowchart in Fig. 12 summarizes this.740

For the convolutional neural network we use an initial nearest-neighbor upsampling layer with a factor of 16,741

bringing the LR input to (160x160). Consequently, three convolutional layers with 32 filters each, a kernel of 3x3, and742

padding follow. Each of them is activated by a ReLU function. Lastly, a similar convolutional layer combines the 32743

filters into 1, without using any activation function. A summarizing flowchart can be found on the right-hand side of744

Fig. 12.745

746

We want to emphasize that this comparison does not aim to show the superiority of the DSC/MS model in super-747

resolution over all possible neural network architectures. Quite on the contrary, we highlight that it is certainly feasible748

to find more performant architectures, especially with large models like Generative Adversarial Networks or ResNet-749

50. However, our proposed approach is easy to implement, is adapted to our case, has a small number of parameters750

and can be run and trained on commodity hardware in a reasonable amount of time, while having an accuracy that is751

more than enough for general wave model use cases (see the discussion in section 4 for a more in-depth analysis of752

this point).753

A.2. Tables754

A.3. Additional Figures755
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Figure 12: Flowchart for the neural network architectures of the Fully-Connected Neural Network and the Convolutional
Neural Network that were compared to the DSC/MS model in subsection 2.2.
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Figure 13: Simple convergence analysis of stationary SWAN runs for different grid size steps. For each grid size step, the
mean value over the whole spatial domain for a stationary run is computed. Differences between 25m and 50m grid size
steps are negligible for all three variables, being on the order of less than 0.5%
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Super-Resolution on SWAN

Figure 14: Flowchart of the neural network architecture of the DSC/MS model used in this study.
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Super-Resolution on SWAN

Figure 15: The network architecture of the surrogate model used in this study. The spectrum is transformed by dense
layers and is passed together with the bathymetry to the DSC/MS model.
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Super-Resolution on SWAN

Figure 16: The same Figure as Fig. 4 in the main text, but for the surrogate model. Note that the low-resolution input is
missing, since for this neural network the input is a spectrum and the bathymetry.
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Super-Resolution on SWAN

Figure 17: The same Figure as Fig. 7 in the main text, but for the surrogate model.
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