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Abstract. Dementia with Lewy Bodies (DLB) and Alzheimer’s Disease
(AD) are two common neurodegenerative diseases among elderly people.
Gait analysis plays a significant role in clinical assessments to discrimi-
nate these neurological disorders from healthy controls, to grade disease
severity, and to further differentiate dementia subtypes. In this paper,
we propose a deep-learning based model specifically designed to evaluate
gait impairment score for assessing the dementia severity using monoc-
ular gait videos. Named MAX-GR, our model estimates the sequence of
3D body skeletons, applies corrections based on spatio-temporal gait fea-
tures extracted from the input video, and performs classification on the
corrected 3D pose sequence to determine the MDS-UPDRS gait scores.
Experimental results show that our technique outperforms alternative
state-of-the-art methods. The code, demo videos, as well as 3D skeleton
dataset is available at https://github.com/lisqzqng/Video-based-g

ait-analysis-for-dementia.

Keywords: Gait impairment score · Dementia subtypes · Human 3D
motion estimation · Geometric deep learning.

1 Introduction and related work

Through many previous studies, it is now well understood that the quanti-
tative gait impairment analysis is an established method for accessing neuro-
degenerative diseases such as Dementia with Lewy Bodies (DLB) or Alzheimer
(AD) and gauging their severity, even in the prodromal phase [20]. In order to
facilitate quantitative gait analysis, previous works have often relied on wear-
able sensors [12,27,6,17] or electronic walkways [19,22]. According to Merory et
al.’s study [22], individuals with AD and DLB show comparable spatiotemporal
gait characteristics that differ significantly from those of the normal population.
Conversely, Mc Ardle et al [19] demonstrate that the two subtype groups exhibit
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distinct pathological gait signatures. Another study [18] has shown that the en-
vironment where walking takes place has an influence on the characteristics of
gait impairment in different types of dementia. However, these studies do not
aim to automatically estimate severity scores based on the measurement data.

Numerous efforts have been made to classify or estimate the severity of a
patient’s condition and even distinguish between different dementia subtypes,
by using gait data. Muller [23] employed a decision tree [29] to analyse gait
motions of individuals with AD and DLB, and showed that walking speed and
the asymmetry in left-to-right step lengths were the two primary factors for
distinguishing between dementia subtypes and estimating the disease severity.
However, the reliance on wearable sensors equipped with tri-axial accelerometers
or electronic walkways in such studies can be cumbersome in terms of wearability,
calibration, and may not always be readily accessible.

The progress in deep learning has opened up new possibilities for vision-based
severity assessment methods. Albuquerque et al [1] have developed a spatiotem-
poral deep learning technique by producing a gait representation that combines
image features extracted through Convolutional Neural Networks (CNNs) with
a temporal encoding based on Long Short-Term Memory (LSTM) networks.
Lu et al [16] extract 3D body pose from videos, track them through time, and
classify the sequence of 3D poses based on the MDS-UPDRS gait scores by
using a temporal convolutional neural network. Similarly, Sabo et al [25] have
shown that ST-GCN models operating on 3D joint trajectories outperform al-
ternative models. Motivated by the achievements of previous studies, we adopt
a similar approach of extracting 3D pose sequences from gait videos with an
aim to enhance pathological gait analysis. However, our work distinguishes it-
self in that we introduce a new dedicated model for 3D motion estimation from
monocular gait videos. Additionally, we employ a geometric deep learning mod-
ule specially crafted for 3D skeleton-based action recognition. Consequently, our
method achieves superior performance compared to numerous state-of-the-art
techniques.

2 Method

2.1 Our patient data

The videos of patients undergoing the MDS-UPDRS gait examination at a neu-
rology clinic have been used in our study. The patient walks along a GAITRite
(https://www.gaitrite.com/) electronic walkway with dimensions of 0.6m ×
8m, from one end to the other end. Three views have been interchangeably cho-
sen for the RGB camera, without calibration: a side view from the mid-way of the
walkway, a front view as the patient walks towards the camera, and a back view
as the patient walks away from the camera. In the two latter cases, the distance
between the camera and the patient varied from 1 meter to 9-10 meters. The
recorded images had a resolution of 480× 640 pixels, and the frame rate was set

https://www.gaitrite.com/
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at 30Hz. A total of 92 sequences have been recorded from 44 subjects, including
41 patients with AD and DLB. In addition, each video has been annotated with
the personal data including the height and age of the person, dementia type and
the severity, and the gait parameters measured by the GAITRite system, such
as walk speed, step lengths of each leg, times of contact, etc. 3D joint positions
were not available.

2.2 MAX-GRNet for 3D Pose estimation

The first component of our work is the 3D human motion estimation from the
2D RGB video. Like many others, we base our 3D pose estimator on the SMPL
[15] model, thus the estimated poses are represented in the form of a sequence of
SMPL pose parameters [15]. Our proposed 3D gait reconstructor, named MAX-
GRNet, is illustrated in Fig. 1.

Fig. 1. The architecture of MAX-GRNet, the proposed 3D gait motion reconstructor.
P ′s denote the parameters whereas F ′s denote the features. LFC stands for locally-
connected linear layers. In LFC, pose parameter of each body joint is regressed by an
individual linear layer [10].

In our patient video, challenging scenarios can arise due to truncations or
reduced visual clarity. To mitigate the impact of truncation and enhance the
overall accuracy, we employ the Part Attention mechanism [10], encouraging the
model to focus on more credible visual features. As illustrated in Fig. 1, the visual
features extracted by the HRNet-W32 [10] at each frame are fed into the Body
Part Attention module, to generate joint-specific features. The subject-camera
distance, frequently observed to be fairly long in our video (up to more than 10
meters when the patient and the camera is at either ends of the walkway), can
also significantly decrease reconstruction accuracy, leading to unrealistic poses
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with distorted walking patterns, perturbed foot swings, and illogical step lengths.
To tackle this issue, we introduce our Pose Correction Network (PoseCorr-Net),
which incorporates several gait characteristics as additional controls and employs
the spatio-temporal encoding along with attention mechanism. To address dif-
ferent aspects of the gait motion, we combine average parameters and per-frame
parameters as the gait characteristics. The average parameters ensure consis-
tency in the reconstructed walking patterns, while the per-frame parameters
accommodate the variations across different gait phases. To regress these pa-
rameters, we introduce a GRU-based module named as GaitFeat-Net. The gait
parameters PG are subsequently mapped into a higher-dimensional feature space
to enable the fusion with the pose feature F ′

P . To further enhance the integration
of estimated PG with F ′

P , we introduce a Transformer-based encoder [28] which
we refer to as MAX Encoder, to capture the intra-dependencies across different
time steps and among the body joints, respectively, before their final merging.

GaitFeat-Net: We feed the pose feature F ′
p and camera feature Fcam into an

one-layer GRU to estimate a number of gait parameters. The effectiveness of
gait parameter estimation using a GRU-based network from per-joint 3D po-
sition has been previously demonstrated in QuaterNet [24], in the context of
generating plausible locomotion given previous poses and locomotive parame-
ters as controls. Differently from Quaternet, our approach uses per-joint feature
as the input, instead of per-joint 3D positions. This allows us to capture more
detailed information and potentially improve the accuracy of gait parameter es-
timation. Additionally, we utilize Fcam obtained from camera parameters Pcam

([s, t], t ∈ R2 defined by a weak-perspective camera model) as additional input.
As depicted in Fig. 1, we construct a patch of 224 × 224 pixels from each of
the initial video frames based on the bounding box, before feeding the patch
sequence into the reconstructor. By incorporating the parameters of the bound-
ing box Pbox, Fcam can effectively capture the position of the patient within
the original video frame, and the dynamic information regarding the motion in
the video. Based on the available locomotive parameters in our patient data
(Sec. 2.1), we have selected gait parameters PG = [V,D,Φ], where V = ∥v∥ is
the speed amplitude averaged over the sequence, D = [lleft, lright] is the average
left/right step lengths, and Φ = [cos(ϕleft), sin(ϕleft), cos(ϕright), sin(ϕright)]
encodes the phase of the left/right gait cycle.

MAXEncoder: By developing this encoder based on a multi-head self-attention
mechanism (MSA) [28], we aim to overcome the limitations of recurrent models
that struggle to capture long-range relationships in the sequence. Fig. 2 de-
picts its detailed architecture. We devise an attention-based block that builds
upon the MSA variants MSA-T and MSA-S of Spatial-Temporal Encoder (STE)
[30]. To incorporate the gait parameters PG obtained from GaitFeat-Net, and
accommodate the joint-wise nature of the pose feature F ′

P , we construct differ-
ent inputs F̃T

gf and F̃S
gf for our temporal (TAE) and spatial attention (SAE)

blocks. Unlike MSA-S, which focuses on modeling the intra-dependencies within
each feature map, the proposed SAE explicitly captures the dependencies among
each body joint while leveraging the corresponding gait feature. To merge the
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Fig. 2. Architecture of the MAX Encoder.

TAE and SAE blocks, we adopt the parallel connection method as described
in [30]. Additionally, we replace the Feed-Foward Network (FFN) in the stan-
dard Transformer and the Vision Transforer (ViT) [3] with a Joint-Wise Feed
Forward network (JWFF). JWFF employs separate linear layers for each joint,
contrary to the global FC layers in FFN. Ablation studies in Sec. 3.3 clearly
demonstrate the efficacy of such JWFF approach. The total loss of our proposed
MAX-GRNet is:

L = w1 · L2D + w2 · L3D + w3 · LSMPL + w4 · LGaitFeat, (1)

where wi is the weight assigned to each loss, more details on these weight values
can be found in Sec. 3.2. LSMPL, L3D and L2D denote respectively the loss
term associated with the Euclidean distances calculated on SMPL parameters,
3D joint positions and projected 2D joint positions. LGaitFeat is designed to
supervise the gait parameters regressed by the GaitFeat-Net.

2.3 Geometric deep learning for severity assessment

In the second part of our study, we employ the KShapeNet [5], a geometric deep
learning model on Kendall’s shape space specially developed for skeleton-based
human action recognition. It has demonstrated favorable performances on the
two large scale skeleton datasets NTU-RGB+D [26] and NTU-RGB+D120 [13]
datasets. Initially, skeleton sequences are modeled as trajectories on Kendall’s
shape space by filtering out the scale and rigid transformations. Next, the se-
quences are mapped to a linear tangent space and the resulting structured data
are fed into a deep learning model, KShapeNet. Notably, it includes a unique
layer that learns the optimal rigid and nonrigid transformation to be applied
to the 3D skeletons, thereby enhancing the precision of action recognition. This
layer is followed by a Conv Block and an LSTM layer that captures the tem-
poral dynamics of the sequences. A subsequent fully connected block generates
the corresponding action class as the output. In this work we utilized only the
optimization over the rigid transformation layer.
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3 Experiments

3.1 Datasets

We utilized Human3.6M motion capture data [2,7] consisting of synchronized
3D joint positions, 2D joint positions, and RGB video frames recorded at 50Hz.
We selected 6 subjects to create a set of 79 sub-sequences of walking motions
to train and validate the reconstructors. The GPJATK gait dataset [11] was
used for the evaluation. It contains Vicon mocap data with video recordings
of 4 calibrated RGB cameras. We estimated 3D poses from their videos, which
have been time-aligned with the 3D poses computed from their marker data,
allowing us to obtain consistent 2D-3D (video and the 3D pose sequence) pairs.
To train and test the classifiers, we combine our patient data with a subset of the
Toronto Older Adults Gait Archive [21], where we randomly selected 22 walking
sequences from 5 subjects.

3.2 Implementation details

3D Pose Estimator: We begin by training the GaitFeat-Net module separately
on the gait sequences from Human3.6M, to enhance the stability of the overall
MAX-GRNet training. Only LGaitFeat in Eq. 1 has been used in this pre-training
stage, with gait parameters computed by analyzing the 3D joint positions. We
apply L1 loss for V ,D and Φ, with distinct weight assignments: wV =250, wD=50,
wΦ=100. During the integral training of MAX-GRNet, we use distinct weights
for the losses in Eq. 1, specifically w2D=100, w3D=100, wθ=60, wβ=0.01, where
θ and β denote the pose and shape parameters in SMPL. LGaitFeat is applied
only for the initial 20 epochs with weights different from the previous training:
wV =100, wD=20, wΦ=50, and the subsequent training continues without any
supervision on the GaitFeat-Net. The metadata from the electronic walkway
only provides the average locomotive parameters in the patient data such as the
duration of the left/right gait cycle. Thus, we apply a fast Fourier transform to
obtain the spectrogram from the reconstructed gait, to effectively supervise the
estimated Φ. Given the average frequency f̄ , the phase loss on the patient data is

formulated as LΦ = wΦ′ · ( 1β ·Af̄ +β ·
n∑

i=0

Afi |fi− f̄ |), where wΦ′=0.05 and β=0.2

are weighting coefficients, and Af denotes the amplitude of f in the spectrogram.
The estimation of SMPL parameters on the Human3.6M dataset is performed
by using MoSh [14] on the available 3D marker data, and each pose parameter
is subsequently represented as a 6D vector [31]. The models were trained on 1
Nvidia RTX 3090 GPU using a batch size of 4 and an Adam optimizer with a
learning rate of 5 × 10−5. Optimal hyperparameters were chosen through grid
search.

Motor Severity Assessment: As outlined in Sec. 3.1, we train the classifiers
using the estimated skeleton sequences from both healthy and diseased older
adults. To obtain the required number of frames for analysis, which has been
set to 100 frames, we utilized a sliding window approach. It involved traversing
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the original video, extracting subsequences consisting of 100 frames each, and
maintaining an overlap of 50 frames between adjacent subsequences. The last
frames fewer than 50 frames were not used. We refrained from time-warping the
sequences in order to preserve the velocity of the gait motion.

Each subsequence obtained by this way has been assigned the same label as
the original video. This sliding window protocol was applied after dividing the
dataset into training and testing sets to prevent the occurrence of subsequences
from the same video being present in both sets. Note that this increases the
total number of sequences used for training and testing, thereby augmenting the
limited amount of our patient data.

3.3 Results

Evaluation criteria: The reconstructor model has been validated and evalu-
ated by measuring the 3D per-joint position error respectively on Human3.6M
and GPJATK datasets. The classification accuracy has been used to evalu-
ate the overall performance and to compare with other SOTA methods. Dif-
ferent variations of severity assessment tasks has been tested: normal/patient,
3-class diagnosis with normal/Alzheimer/DLB, and 3-class gait scoring (normal-
0, moderate-1, and severe-2). All evaluations have used a 10-fold cross-validation
scheme. Due to the limited size of the data, we opted to perform a train-test
split.

Table 1. Comparison of performance with different model configurations, measured on
mean per-joint position error (MPJPE) (mm), and classification accuracy (%). Num-
bers in boldface indicate the top-1 performance, with the top-2 denoted as underlines.

MPJPE MPJPE Normal Normal Gait Score
(valid) (test) /Patient /AD/DLB (0,1,2)

VIBE [9] 70.40 131.52 94.60 71.37 63.69
Baseline 70.61 103.78 90.11 68.94 62.57
+ MAX Encoder /wo JWFF 70.35 101.83 88.05 59.28 60.20
+ MAX Encoder /with JWFF 68.90 106.40 86.76 58.03 65.24
+ Avg.+ MAX Encoder /wo JWFF 71.13 102.43 85.54 57.74 58.43
+ Avg.+ MAX Encoder /with JWFF 70.38 102.27 87.36 61.58 59.33
+ PoseCorr-Net /wo JWFF 66.47 101.78 87.38 66.03 60.37
+ PoseCorr-Net /with JWFF (Ours) 67.17 103.77 96.22 75.39 65.41

Ablation study: We assessed six model configurations es well as VIBE model
[9] based on the mean per-joint position error (MPJPE) and the classification
accuracy. The design of MAX Encoder has been tested with and without joint-
wise forward feedback (JWFF). To validate the design of the GaitFeat-Net, we
performed three distinct configurations. First, we conducted tests without it,
followed by tests using its estimation of only the average parameters V and D
(referred to as Avg.), and finally, with the complete estimation PG. The results
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are shown in Table 1. In general, utilizing gait parameters by GaitFeat-Net and
subsequently regularizing the 3D pose estimation improves the reconstruction
on GPJATK dataset, which predominantly contains regular walking of young
and normal people, but reduces the overall classification accuracy. This some-
what aligns with the observations by [19], who pointed out that gait asymmetry
and variability are significant factors for differentiating between disease subtypes
and the patient group from the normal one. JWFF tends to improve the clas-
sification accuracy both in gait scores and dementia subtypes, especially when
gait parameters are used with it, indicating its efficacy of extracting informative
features from the estimated locomotive parameters.

Table 2. Comparison of classification accuracy with state-of-the-art methods (% ac-
curacy). Numbers in boldface indicate the top-1 accuracy, while the top-2 is denoted
with underlines.

Normal Normal Gait Score
/Patient /AD/DLB (0,1,2)

VIBE[9] + OF-DDNet[16] 89.60 72.78 60.43
VIBE[9] + KShapeNet 94.60 71.37 63.69
MAX-GRNet + OF-DDNet[16] 89.60 69.92 64.68
MAX-GRNet + ST-GCN [25] 94.24 66.67 72.31
MAX-GRNet + FSA-CNN[8] 93.02 72.19 66.74
MAX-GRNet + PoseC3D[4] 92.95 66.59 62.27
Ours (MAX-GRNet + KShapeNet) 96.22 75.39 65.41

Comparison with the state-of-the-art: We compare our method with two
closely related studies, which focus on vision-based gait analysis of parkinsonism
severity in dementia [16,25]. Additionally, we include two state-of-the-art mod-
els proposed in the vision-based action recognition community [4,8] for further
comparison. To evaluate the classifier based on a ST-GCN [25], we evaluate their
classifier using solely skeletons as input, excluding the spatio-temporal gait fea-
tures originally utilized in their work. This is due to the inability to compute
these features from the skeleton data reconstructed with MAX-GRNet, as it does
not provide the root. Results shown in Table 2 demonstrate that our method
achieves favorable performance compared to others, and remains competitive
with the CNN-based action recognition approach, which demonstrates superior
performance in differentiating dimentia subtypes.

Limitations: Our reconstructor struggles to estimate 3D poses in videos ex-
hibiting severe cases where the patient’s gait pattern is highly irregular. The
classifier incurs an additional time cost and requires separate processing for the
projection of skeleton data onto the tangent space, which hinders its seamless
integration with the reconstructor in an end-to-end manner.
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4 Conclusion

We have presented a new model aimed at evaluating gait impairment score for
assessing the dementia severity using monocular gait videos. Our model fea-
tures a gait motion reconstructor, which is specifically designed for 3D motion
estimation from gait videos based on a gait parameter estimator and a multi-
head attention Transformer. Additionally, we employ a geometric deep neural
network tailored for the specific task of 3D skeleton-based classification. Our
method improves the performance over state-of-the-art techniques in both 3D
pose estimation and classification, thus demonstrating significant advancements
in the field. In the future, we plan to improve the precision of both 3D pose
estimation and classification by effectively leveraging image evidences and gait
parameters, respectively.

Prospect of application. In addition to its clear applications in clinical envi-
ronments, where the computed gait scores from gait videos can be presented to
clinicians, our research could also be used in the realm of care robots assisting
elderly individuals in residential settings. Specifically, they could identify early
signs or variations in the pathological condition through video analysis.
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