

SAPO-34 crystals with nanosheet morphology synthesized by pyrophosphoric acid as new phosphorus source

Lei Zhao, Ge Yang, Haocheng Hu, Yuhao Sun, Zhuang Ma, Peng Peng, Eng-Poh Ng, Peng Tian, Hailing Guo, Mintova Svetlana

▶ To cite this version:

Lei Zhao, Ge Yang, Haocheng Hu, Yuhao Sun, Zhuang Ma, et al.. SAPO-34 crystals with nanosheet morphology synthesized by pyrophosphoric acid as new phosphorus source. Microporous and Mesoporous Materials, 2022, 333, pp.111753. 10.1016/j.micromeso.2022.111753. hal-04295906

HAL Id: hal-04295906 https://hal.science/hal-04295906

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SAPO-34 crystals with nanosheet morphology synthesized by pyrophosphoric acid as new phosphorus source

4	Lei Zhao ^a , Ge Yang ^a , Haocheng Hu ^a , Yuhao Sun ^a , Zhuang Ma ^a , Peng Peng ^a ,
5	Eng-Poh Ng ^b , Peng Tian ^c , Hailing Guo ^{*a} , Mintova Svetlana ^{*a, d}
6	
7 8 9 10 11 12 13 14 15 16	 ^a State Key Laboratory of Heavy Oil Processing Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC) China University of Petroleum (East China) Qingdao 266555, P.R. China. ^b School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. ^c National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. ^d Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France.
17 18 19	*Corresponding author. E-mail address: guohl@upc.edu.cn; *Corresponding author. E-mail address: mintova@ensicaen.fr

20 Abstract

1

2 3

21 The nanosheet SAPO-34 zeolite crystals with a diameter of 300 nm and a 22 thickness of 50 nm using a new phosphorus source (pyrophosphoric acid, $H_4P_2O_7$) were synthesized. The roles of the pyrophosphate $(P_2O_7^{4})$ species in the 23 crystallization of SAPO-34 were elucidated. The results suggested that one P atom 24 from the $P_2O_7^{4-}$ species participated in the formation of the CHA framework structure 25 while the other P atom served as a crystallization control agent, facilitating 26 preferential crystal growth in [100] crystal plane. The SAPO-34 nanosheets have 27 28 silica-rich shell and phosphorus-rich core leading to superior catalytic performance in 29 methanol-to-olefin reaction (MTO). The catalytic lifetime of the SAPO-34 nanosheets 30 was significantly improved due to the larger amount of medium-strong surface acidity 31 and short diffusion pathway in comparison to the conventional SAPO-34 catalyst 32 synthesized in the presence of the classical phosphorus source (H_3PO_4) .

- 33
- 34 Keywords: SAPO-34; Nanosheet; New phosphorus source; MTO
- 35

1 1. Introduction

SAPO-34 with CHA topology framework is a small pore zeotype material (pore 2 diameter of 0.38 nm) widely applied in catalysis, and more specifically in 3 methanol-to-olefin (MTO) process due to its excellent shape selectivity for light 4 5 olefin and moderate acidity.[1–6] One of the challenges for SAPO-34 catalysts is their 6 short lifetime due to coke formation and passivation of acid sites.[7-9] Several 7 methods are developed toward reducing the size of crystals and/or introducing hierarchical structures of zeolite catalysts to overcome the inherent diffusion 8 9 limitations and restrain bulky coke deposition.[10–15] The nanosized and hierarchical 10 SAPO-34 catalysts showed significant enhancement of mass transfer of reactants and 11 products, and decreased coke formation rate. However, hierarchical zeolite catalysts 12 often sacrifice selectivity to extend lifetime.[16,17] On the other hand, the synthesis 13 of nanosized crystals is challenging and the presence of defects may also affect the 14 catalysts lifetime and activity.[18]

The most intuitive strategy to improve the catalytic performance of zeolites is to precisely control the morphology and elemental (Si, Al, P) distribution in SAPO-34 zeolite crystals by providing short diffusion path and more accessible active sites that can maintain both high selectivity and long catalyst lifetime. [19, 20] In this respect, Yu *et al.* synthesized SAPO-34 nanosheets (diameter: *ca.* 226 nm, thickness: *ca.* 65 nm) with different silicon contents. The results showed that the sample with the lowest silicon content (0.08) exhibited the longest catalytic lifetime exceeding 1200

1	min during MTO reaction.[21] Liu et al. reported a self-assembly method for
2	preparation of microspherical aggregates composed of SAPO-34 nanosheets (diameter
3	ca. 50 nm, thickness: ca. 50 nm) using a dual templating approach
4	([3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride (TPOAC) and
5	diethylamine (DEA)). The catalytic lifetime of this material displayed twice longer
6	lifetime compared to the conventional SAPO-34.[22] Guo et al. reported the synthesis
7	of SAPO-34 nanosheets with a thickness of 7 nm by re-crystallization of an ultra-thin
8	aluminum phosphate precursor where the original lamellar morphology was preserved
9	These SAPO-34 nanosheets showed the highest conversion (42 %) and selectivity
10	(74 %) in cyclohexane oxidation to adipic acid.[23] Additionally, rapeseed
11	pollen-extract was used to prepare SAPO-34 nanosheets (thickness: 10-40 nm) with a
12	flower-like morphology (ca. 10 μ m) and the resulting material exhibited a high CO ₂
13	adsorption capacity (2.77 mmol/g at 100 kPa) and excellent CO_2/CH_4 separation
14	performance (ideal separation factor of 8.2).[24] Still the synthesis of SAPO-34
15	nanosheets is highly dependent on the synthesis methodology used. The
16	crystallization mechanism, however, is not fully understood yet. In addition, the
17	distribution of Si species together with variable diffusion path length of crystals may
18	improve their utilization in catalysis.[25] Some strategies to modulate the location and
19	distribution of Si species within zeolite framework by introducing surfactants,[26]
20	crystal seeding,[27] and use of organic templates with different charge density[28]
21	have been proposed.

1	Herein, we report the synthesis of SAPO-34 nanosheets using pyrophosphoric
2	acid (H ₄ P ₂ O ₇) as a new phosphorus source and compared to the conventional
3	synthesis using phosphoric acid (H ₃ PO ₄). In addition, the crystallization process of
4	SAPO-34 nanosheets using $H_4P_2O_7$ was studied. Unlike the phosphoric acid, the
5	$P_2O_7^{4-}$ resulted in slow hydrolysis, and hence interrupting the overall nucleation and
6	crystallization processes, producing SAPO-34 crystals with nanosheet morphology
7	and chemical gradient. The SAPO-34 crystals had P-rich inner zone and Si-rich outer
8	zone. The SAPO-34 nanosheets exhibit high micropore volume, high specific surface
9	area and high surface medium-strong acid sites leading to excellent performance in
10	the MTO reaction. Furthermore, the lifetime of SAPO-34 nanosheets catalyst was 1.7
11	times longer than that of the conventional SAPO-34 catalyst due to low diffusion
12	limitation and low coke formation.
13	2. Experimental section
14	2.1 Chemicals
15	Phosphoric acid (H ₃ PO ₄ , 85 wt.%, Sinopharm), aluminum isopropoxide (98

15 Thosphone acid (H₃FO₄, 35 wt.%, Shiophann), addininan isopropoxide (95 16 wt.%, Alfa Aesar), aqueous silica sol (30 wt.% SiO₂, pH = 4.5, Sigma-Aldrich), 17 pyrophosphoric acid (H₄P₂O₇, 95 wt.%, Aladdin), tetraethylammonium hydroxide 18 (TEAOH, 25 wt.%, Aladdin), hydrochloric acid (HCl, 36–38 wt.%, Sinopharm), silver 19 nitrate (AgNO₃, AR, Sinopharm) and methanol (25 wt.%, Sinopharm) were purchased 20 and used without further purification.

1 2.2 Synthesis of SAPO-34

2 2.2.1 Conventional SAPO-34

Synthesis of conventional SAPO-34 was adopted from a recipe based on the 3 reference [29] with some modifications. The molar composition of the synthesis gel is 4 5 3.0 TEAOH: 0.32SiO₂: 1.0Al₂O₃: 0.9P₂O₅: 129H₂O. In a typical preparation, 1.0 g of 6 H₃PO₄ was first diluted in 5.0 g of double-distilled water (dd H₂O) before mixing with 7 2.0 g of aluminum isopropoxide. Then, 0.32 g of silica sol was added to the above 8 solution followed by an addition of 8.37 g of TEAOH template to obtain a 9 homogeneous precursor mixture. Finally, the pH value of the mixture was adjusted to 10 7.0 using HCl. The precursor mixture was then subjected to crystallization at 180 $^{\circ}$ C 11 for 72 hours. The crystalline product denoted as SAPO-34-P₁ was subjected to 12 purification and drying at 80 °C. The occluded organic template in as-synthesized SAPO-34-P₁ was removed by calcination at 550 °C for 5 h in air. 13

14 2.2.2 SAPO-34 nanosheets

Sample SAPO-34-P₂ was prepared following the synthesis procedure described above but replacing the H₃PO₄ (1.0 g) with H₄P₂O₇ (1.543 g). Special attention on the hydrolysis of H₄P₂O₇ was paid where silver was used to detect phosphorus species anions and track the hydrolysis process of H₄P₂O₇ using the following assumptions: one P₂O₇⁴⁻ could be hydrolyzed into two PO₄³⁻, and Ag⁺ reacts differently with P₂O₇⁴⁻ and PO₄³⁻ forming white or yellow precipitates, respectively. The H₄P₂O₇ aqueous solution with pH of 7.0 was transferred into a stainless steel autoclave and then placed

1	in an oven at 180 °C for various times (0 h, 1 h, 2 h, 3 h, 4 h and 5 h). Afterwards, the
2	AgNO ₃ (0.88 g) was added to the samples (1 ml) subjected to various hydrolysis time.
3	The color of the precipitates was characterized.
4	2.3 Characterizations
5	The phase of samples was measured using a Bruker D8 Advance alytical X'Pert
6	Pro diffractometer with CuKa monochromatized radiation ($\lambda = 1.5418$ Å). The
7	crystallinity of samples was calculated by integrating the corresponding XRD peaks
8	in the 20 range of 9°-32°. Crystallographic data of samples were obtained from
9	powder diffraction data based on a Le Bail profile refinement and pseudo-Voigt
10	profile function using the JANA2006 software. [30] The crystal size and morphology
11	of solids were determined by a JEOL JSM-7900F scanning electron microscope (SEM)
12	operating at 6 kV. Nitrogen adsorption/desorption isotherms were measured using a
13	Quantachrome, Autosorb iQ-AG instrument. Prior analysis, the samples were
14	activated at 300 °C for 10 hours with a heating rate 2 °C min ⁻¹ .
15	The chemical composition of samples was analyzed by an inductively coupled
16	plasma atomic emission spectrometer (ICP-AES, Leeman Lab's Prodigy High
17	Dispersion ICP instrument). Additionally, the elemental components of samples were
18	measured by X-ray fluorescence spectrometer (XRF) using a PANalytical Axios
19	PetroX. X-ray photoelectron spectral (XPS) analysis was carried out using a PHI 5000

- 20 Versaprobe system with a monochromatic Al K α radiation (hv = 1486.6 eV) to
- 21 determine the elemental content of crystal surface. The STEM-EDX analysis were

1 conducted by Thermo Fisher Scientific Talos F200x S/TEM. Thermogravimetry-Mass spectrometry (TG-MS) and Thermogravimetry differential scanning calorimetry 2 3 (TG-DSC) analysis was performed using a Netzsch TG-MS (STA449 F5) instrument in the range of 40-800 °C with a ramp rate of 5 °C min⁻¹ in a nitrogen atmosphere. 4 5 The temperature-programmed desorption of ammonia (NH₃-TPD) was 6 performed on a Micromeritics ASAP 2020C instrument. The sample (ca. 0.100 g) was first pretreated at 550 °C for 1 h in a He flow of 30 mL min⁻¹. After cooling to 70 °C, 7 8 the sample was saturated with 10 vol% NH₃/He, and then the sample was purged with 9 He for 1 h to eliminate physically absorbed NH₃. Desorption of NH₃ was carried out under heating from 70 to 600 °C with a heating rate of 10 °C min⁻¹. ³¹P NMR spectra 10 11 were recorded on a Bruker Avance 400 (9.4 T) spectrometer using 4 mm-OD zirconia 12 rotors and a spinning frequency of 12 kHz.

13 2.4 Evaluation of SAPO-34 catalysts in methanol to olefin (MTO) reaction

Samples SAPO-34-P1 and SAPO-34-P2 were tested in MTO reaction. Typically, 14 15 the experiments were performed in a fixed bed reactor operating in a gas phase under 16 atmospheric pressure. For each experiment, 800 mg of the catalyst (sieve fraction, 17 20-40 mesh) was loaded in the reactor and enclosed between two layers of quartz sand 18 (20-40 mesh). The samples were activated under nitrogen flow at 550 °C for 1 hour (flow $(Qv) = 90 \text{ mL min}^{-1}$) and then cooled down to the reaction temperature of 19 20 450 °C. The MTO reaction was performed with a weight hourly space velocity 21 (WHSV) of 2.0 h^{-1} . The methanol vapor (60 wt.% methanol in water) was then fed in.

1 The methanol and related oxygenate products were analyzed by an online Agilent 2 6820 gas chromatograph, which was equipped with a thermal conductivity detector 3 (TCD), while the hydrocarbon products were analyzed by an online Agilent 7820A 4 gas chromatograph equipped with a flame ionization detector (FID).

5 Since the coke deposit is primarily trapped on the acid sites located in the 6 micropore of the zeolites, the coverage of coke trapped within the deactivated 7 SAPO-34 sample was calculated following the formula reported in [31]: $\frac{V_{Coked catalyst}}{V_{Fresh catalyst}}$ 8 and $\frac{S_{Coked catalyst}}{V_{Fresh catalyst}}$

SEresh catalyst

9 **3. Results and discussion**

10 The hydrolysis of the new phosphorus source $H_4P_2O_7$ during the synthesis of 11 SAPO-34-P₂ sample was carried out under the same pH, heating temperature and time. 12 AgNO₃ was selected as a probe molecule since the Ag⁺ can react with different 13 hydrolysates (either P₂O₇⁴⁻ or PO₄³⁻) resulting in white or/and yellow precipitates, 14 respectively according to the following reactions:

15 $4Ag^+ + P_2O_7^{4-} \rightarrow Ag_4P_2O_7 \downarrow \text{ (white)}$ (Equation 1)

16
$$3Ag^{+} + PO_{4}^{3} \rightarrow Ag_{3}PO_{4} \downarrow (yellow)$$
 (Equation 2)

17 In sample SAPO-34-P₂ (Supplementary Information, Fig. S1 and Table S1), the 18 white precipitate $(Ag_4P_2O_7)$ was obtained during the aging at room temperature (RT) 19 for 2 hours (SI, Table S1, sample a). Then, the light yellow precipitate was formed 20 under heating of the precursor at 180 °C for 1 hour due to the formation of both

1	Ag_3PO_4 and $Ag_4P_2O_7$ compounds (SI: Table S1, sample b). Upon heating at 180 °C for
2	more than 2 hours (samples c-f), the color of precipitates changed to bright yellow
3	due to the presence of pure Ag_3PO_4 . The results suggest that the growth process of
4	SAPO-34-P ₂ crystals proceeds as follows: (a) the $H_4P_2O_7$ is ionized, resulting in the
5	formation of $P_2O_7^{4-}$ anion at the aging stage of the precursor mixture; the $P_2O_7^{4-}$ anion
6	reacts with the aluminate species, resulting in the formation of embryonic precursor,
7	where one P atom in P-O-P bonds of $P_2O_7^{4-}$ takes part in the formation of crystal
8	nucleus ; (b) the $P_2O_7^{4-}$ species is gradually hydrolyzed forming PO_4^{3-} during the
9	crystallization stage (2 hours at 180 °C). More Si species enter into the framework of
10	SAPO-34 by substituting P atoms during the crystal growth process after completion
11	of the $H_4P_2O_7$ hydrolysis.
12	The crystallization process of sample SAPO-34-P2 was followed by X-ray
13	diffraction. The sharp XRD diffraction peaks at 7.6° and 9.7° 20 corresponding to
14	SAPO-5 and SAPO-34, respectively, are observed after two hours of hydrothermal
15	treatment at 180 °C (Fig. 1A (b)). By increasing the synthesis time, pure SAPO-34
16	crystals are obtained at 24 h (Fig. 1 A (g)) with the splitting of diffraction peaks at
17	12.7°, 15.8° and 20.4° (Fig. 1B). The evolution of crystal shape and size of sample
18	SAPO-34-P ₂ were studied by SEM (Fig. 2). Particles less than 10 nm are formed after
19	2 hours aging as shown in Fig. 2a. After hydrothermal treatment at 180 °C for 1 h, the

20 particle size increases substantially up to 50-100 nm (Fig. 2b). After 2 hours, the

21 particles with nanosheet morphology with a thickness of 20 nm are formed (Fig. 2c).

With the time of hydrothermal treatment prolongs to 3 hours, the thickness of crystals
 increases up to 30–50 nm (Fig. 2d).

3	The XRD patterns of samples SAPO-34-P ₁ and SAPO-34-P ₂ prior calcination
4	contain Bragg peaks at 9.7°, 12.7°, 15.8°, 20.4°, 24.5° and 30.4° that correspond to
5	pure CHA type zeolite (Fig. 3A). Besides, the diffraction peaks at 12.7° , 15.8° and
6	20.4° split for sample SAPO-34-P ₂ prior calcination. In the crystallization process of
7	sample SAPO-34-P ₂ , with the hydrolysis of the $P_2O_7^{4-}$ species, and more PO_4^{3-} and Si
8	atoms substitute the $P_2O_7^{4-}$ and participate in the framework structure with different
9	environment of tetrahedral T sites (T = Si, Al, P). The crystallinity of samples
10	SAPO-34-P ₁ and SAPO-34-P ₂ prior calcination calculated by integrating the XRD
11	peaks at 9.7°, 12.7°, 15.8°, 20.4°, 24.5° and 30.4° is the same [32], while sample
12	SAPO-34-P ₂ prior calcination presents obvious preferential growth orientation along
13	[100] crystal plane (see the Bragg peak at $2\theta = 9.7^{\circ}$). The XRD patterns of calcined
14	samples do not change indicating their high thermal stability (Fig. 3B). Sample
15	SAPO-34-P ₁ prior calcination contains intergrown cubic crystals with a size of $1-4$
16	μ m (Fig. 4a). As shown in Fig. 4c, fairly uniform particles with nanosheet
17	morphology with a length of 300 ± 50 nm and a width of 40 ± 10 nm were obtained in
18	sample SAPO-34-P ₂ prior calcination. The morphology and size of crystals in both
19	SAPO-34-P ₁ and SAPO-34-P ₂ samples after calcination do not show obvious changes
20	(Fig. 4b, d). The formation mechanism of nanosheets in sample SAPO-34-P ₂ is
21	suggested taking into account the Löwenstein's rule.[33] The P-O-P bonds do not

1	exist in molecular sieve framework, which means that only one P atom in $P_2O_7^{4-}$ could
2	participate in the molecular sieve skeleton, while another P atom serves as the inert
3	terminal tail, facilitating crystal growth towards [100] crystal plane. The unit cell
4	parameters were determined by Le Bail refinement and pseudo-Voigt profile function
5	(Table 1). Both unit cell parameters and volume of SAPO-34-P ₂ are smaller than those
6	for SAPO-34-P ₁ , inferring shorter P-O bond length in the framework of sample
7	SAPO-34-P ₂ . [34]
8	The bulk chemical composition of both samples was determined by ICP-AES
9	and XRF while the chemical composition of the crystals surface was characterized by
10	XPS spectroscopy and the results are summarized in Table 2. The bulk Si/P ratio
11	(determined by ICP-AES) and surface Si/P ratio (determined by XPS) of sample
12	SAPO-34-P ₁ are similar, i.e., 0.20 and 0.19, respectively, indicating uniform Si
13	distribution. In contrast, a distinctive chemical distribution within the bulk and outer
14	surface for sample SAPO-34-P ₂ is measured. The Si/P ratios in the bulk and on the
15	surface of sample SAPO-34- P_2 are 0.13 and 0.33, respectively, indicating that the Si
16	species are mainly concentrated at the outer zone (shell) of the zeolite crystals.
17	Scanning transmission electron microscopy energy-dispersive X-ray (STEM-EDX)
18	analysis was performed on sample SAPO-34- P_2 . The results are shown in Fig. 5,
19	images were collected over areas containing agglomerates of Si and P. The outer zone
20	of the nanosheets show an apparent higher Si/P ratio compared to the bulk (Fig.5b).
21	This suggests that the $H_4P_2O_7$ can interfere and tune the distribution of Si species

within SAPO-34 crystals. During the initial crystallization stage, more P atoms in P₂O₇⁴⁻ participate in the nucleation process resulting in the formation of inner P-rich before the hydrolysis of H₄P₂O₇ is complete and cannot be substituted by Si species. As a result, the Si species are forced to be bound and locate at the outer zone of the crystals, forming Si-rich surface in sample SAPO-34-P₂ upon completion of H₄P₂O₇ hydrolysis (Scheme-1).

The porosity of the samples was further studied by N₂ physisorption 7 measurements. Both samples exhibit type I isotherm at low P/P_0 and type IV with 8 9 very narrow hysteresis loop at $P/P_0 = 0.45-0.99$, indicating the typical microporous 10 structure with small amount of mesopores (Fig. 6 and Table 3). The specific surface area, micropore volume and external surface area of sample SAPO-34- P_1 are 449 m² 11 g^{-1} , 0.17 cm³ g^{-1} and 49 m² g^{-1} , respectively. While sample SAPO-34-P₂ exhibits 12 higher specific surface area (586 m² g⁻¹), higher micropore volume (0.22 cm³ g⁻¹) and 13 similar external surface area (48 m² g⁻¹) to the sample SAPO-34-P₁. 14

TG-MS analysis of CO_2 mass signal of samples SAPO-34-P₁ and SAPO-34-P₂ prior calcination are presented in Fig. 7. As shown in Fig. 7a, the first peak at 320 °C is associated with the release of CO_2 coming from the occluded TEA⁺ template in SAPO-34-P₁, hence indicating that the template starts decomposing at 320 °C. Another template decomposition peak is located at 470 °C. For sample SAPO-34-P₂, the first peak due to CO_2 release from TEA⁺ appears at 290 °C (Fig. 7b). Four different decomposition temperatures in the TG-MS profile are also found in Fig. 6b.

1	Compared with two decomposition temperatures shown in the TG-MS curve of
2	sample SAPO-34-P ₁ , sample SAPO-34-P ₂ has four decomposition temperatures of
3	TEA ⁺ template which may be caused by the inner and outer zones of the crystals with
4	heterogeneous chemical composition; the TEA ⁺ template in the inner part is more
5	difficult to be removed. As a result, the different inner and outer compositions of
6	SAPO-34-P ₂ crystals lead to a multi-stage decomposition of the template (TEA ⁺). The
7	decomposition peaks located at 310 $^{\rm o}C$ and 470 $^{\rm o}C$ (63% TEA ⁺) represent the TEA ⁺
8	environment using the PO_4^{3-} as the phosphorus source (outer Si-rich zone) and the
9	decomposition peaks at 375 $^{\circ}C$ and 540 $^{\circ}C$ (37% TEA ⁺) represent the TEA ⁺
10	environment using $P_2O_7^{4-}$ as the phosphorus source (inner P-rich zone). As shown in
11	Fig. 8A (b), the peak at about 430 $^{\circ}$ C in DSC curve corresponds to the major
12	decomposition step of the template in sample SAPO-34-P ₁ . The weight loss (1.32%)
13	of sample SAPO-34-P ₁ before 320 $^{\circ}$ C is attributed to physically adsorbed water, while
14	the weight loss (13.33 wt.%) between 320 and 470 $^{\circ}$ C corresponds to the decomposed
15	organic template (Fig. 8A (a)).[35] The weight loss of 0.70% at 290 °C is attributed to
16	physically adsorbed water, and the weight loss of 14.20% corresponds to the organic
17	template decomposition in the sample SAPO-34-P ₂ (Fig. 8B (a)). The amount of
18	physically adsorbed water in SAPO-34- P_2 is less than that in SAPO-34- P_1 due to its
19	hydrophobic Si-rich surface. The four decomposition peaks at 305 °C, 375 °C, 430 °C
20	and 520 °C present in the DSC curve (Fig. 8B (b)) correspond to the different
21	environments of the template (TEA ⁺), which is in line with the TG-MS results.

1	The distribution of phosphorus in the samples was evaluated by ³¹ P NMR
2	spectroscopic study. The ^{31}P spectra of samples SAPO-34-P1 and SAPO-34-P2 are
3	shown in Fig. 9. Sample SAPO-34- P_1 exhibits one strong peak at -28.6 ppm, which is
4	assigned to 4-coordinated P species in the zeolite framework.[36] While sample
5	SAPO-34-P ₂ contains two peaks ranging from c.a30 to -26.7 ppm, which separately
6	reflect four-coordinated P species originated from outer and inner zone.[37] these
7	results are in good agreement with the TG-MS and TG-DSC results.
8	The acidity of samples SAPO-34-P $_1$ and SAPO-34-P $_2$ was measured by
9	NH ₃ -TPD technique (Fig. 10 and Table 4). The peaks located in the temperature range
10	100–250 $^{\rm o}{\rm C}$ are attributed to the weak acids corresponding to P-OH, Si-OH and/or
11	Al-OH groups that are not fully linked to AlO ₄ tetrahedra.[38] The peaks located at
12	temperature higher than 250 °C could be assigned to medium-strong acid site
13	originated from bridge hydroxyl in the framework structure. The weak and
14	medium-strong acid sites for sample SAPO-34-P ₁ are 0.22 and 0.23 mmol g^{-1} , and for
15	sample SAPO-34-P ₂ are 0.23 and 0.19 mmol g^{-1} , respectively. Meanwhile, the total
16	acid site density of samples SAPO-34-P ₁ and SAPO-34-P ₂ are 0.45 and 0.42 mmol g^{-1} ,
17	respectively. The density and strength of medium-strong acid sites of SAPO-34-P ₁ is
18	slightly higher than that of the sample SAPO-34- P_2 (Si/P =0.13) due to more Si atoms
19	substituting the P and forming acidic site in the SAPO-34-P ₁ (Si/P =0.2), but the latter
20	are concentrated on the surface of the crystals with Si-rich zone. The efficiency of
21	acid active sites located on the external surface of the crystals is higher and they do

not easily form coke as previous reported.[39] As known, strong acid sites can easily
promote hydrogen transfer reaction, thereby leading to rapid coke formation resulting
in fast catalyst deactivation. Decreasing the acid strength and increasing the acid sites
accessibility can slow down the rate of inactive carbon formation responsible for the
carbon deposition, and thus extending the catalyst lifetime.

6 The catalytic performance of samples SAPO-34-P₁ and SAPO-34-P₂ in the MTO 7 reaction using fix bed reactor was evaluated. As shown in Fig. 11, the initial 8 conversion of methanol over sample SAPO-34-P₁ is 100% and maintained for 90 min. 9 The conversion rapidly decreases to 80% after 120 min. The highest total selectivity 10 of light olefin (C2-C4) is 93.7% at the conversion of 100% of methanol, where 11 ethylene, propylene and butene selectivities are 56.1%, 30.6%, and 7.0%, respectively. 12 On the other hand, sample SAPO-34-P₂ exhibits longer lifetime (150 min) compared 13 to sample SAPO-34-P₁. Moreover, the coking rate is significantly slower for sample 14 SAPO-34-P₂; the conversion only decreased to 80% after 270 min. The highest 15 selectivity to light olefin (C2-C4) for SAPO-34-P2 at the conversion of 100% of 16 methanol is almost similar to the SAPO-34-P₁ (92.0% vs 93.7%). The selectivity for ethylene, propylene and butene are 57.2%, 28.8% and 6.0%, respectively. The 17 ethylene to propylene ratio are 1.83 and 1.99 for samples SAPO-34-P₁ and 18 SAPO-34- P_2 , respectively. The coke is evenly distributed within the whole crystals of 19 20 sample SAPO-34-P₁, while, coke is mainly trapped in the outer zone of the crystals where the acid sites of sample SAPO-34-P₂ are primarily located. Compared with 21

1	ethylene, the products with larger diameter like propylene and butane undergo
2	additional diffusion resistance from the trapped coke species in the SAPO-34-P ₂ . [40]
3	Thus the SAPO-34-P ₂ has higher ethylene to propylene ratio selectivity. The main
4	reasons for SAPO-34-P ₂ with long catalytic lifetime and high selectivity for C2–C4 in
5	the MTO reaction are as follows: (1) the introduction of $H_4P_2O_7$ as phosphorus source
6	into SAPO-34 framework promotes the chemical composition gradient in the CHA
7	structure with Si-rich surface and more medium-strong acid sites; (2) the crystals with
8	nanosheet morphology with a thickness of 50 nm provide shorter diffusion path length,
9	and thus improves molecular diffusion efficiency. It thereby inhibits the formation of
10	polycyclic aromatic compounds; (3) the high specific surface area of the sample is
11	favorable resulting in improved diffusion efficiency.
12	The feed was stopped when the conversion of methanol decreased to 80%, and
13	the used SAPO-34-P $_1$ and SAPO-34-P $_2$ catalysts were characterized, i.e. the coke
14	deposition and porosity were determined. The content of carbon deposition for
15	samples SAPO-34-P $_1$ and SAPO-34-P $_2$ is 13.02 wt.% and 10.68 wt.%, respectively
16	(Fig. S2). The porosity of the catalysts after carbon deposition was determined by $N_{\rm 2}$
17	adsorption-desorption measurement (Fig. 12 and Table S3). The remained micropore
18	specific surface area and micropore volume of SAPO-34-P ₁ are almost neglected. It
19	means that the carbon deposition trapped inside the pore covers 100% of microporous
20	surface and occupies nearly 100% micropore pore volume. In contrast, the remained
21	specific micropore surface area and micropore pore volume of SAPO-34-P ₂ are 78 m^2

g⁻¹ and 0.03 cm³ g⁻¹, respectively. The carbon deposition trapped inside the pores
covers 86% of surface and occupies about 86% of the micropore volume. In summary,
the SAPO-34-P₂ shows less carbon deposits on the surface and in the pores in
comparison to the SAPO-34-P₁.

5 **4.** Conclusion

In conclusion, pyrophosphoric acid $(H_4P_2O_7)$ has been used as a new phosphorus 6 7 source for the synthesis of SAPO-34 zeolite nanosheets. Before the completion of $H_4P_2O_7$ hydrolysis, one of the P atoms in $P_2O_7^{4-}$ species participates in the 8 9 construction of CHA framework structure while the other P atom serves as the inert 10 terminal tail, facilitating the preferential growth along [100] crystal plane. The slow hydrolysis of $P_2O_7^{4-}$ during the crystallization process results in the formation of 11 12 SAPO-34 crystals with nanosheet morphology with P-rich inner zone and Si-rich 13 outer zone. The prepared SAPO-34 nanosheets exhibit high micropore surface area 14 and micropore volume compared to conventional SAPO-34 synthesized using H₃PO₄ 15 as P source. The short diffusion path length, slow coking rate and Si-rich outer surface 16 of SAPO-34 nanosheet crystals significantly increase their catalytic lifetime in MTO reaction while maintaining high selectivity for light olefin. 17

18 Acknowledgements

The authors gratefully acknowledged, the National Natural Science Foundation
of China (Grant No. 21975285, No. U1862118, No.21991091, No. 21991090), the
Fundamental Research Funds for the Central Universities (No. 21CX06024A),

1	Postgraduate Innovation Projects (China University of Petroleum (East China)) (Grant
2	No. YCX2021053), Shandong Provincial Natural Science Foundation (Grant No.
3	ZR2021QB082), and China Postdoctoral Science Foundation (Grant No.
4	2021M703583).
5	References
6	[1] C. Niu, X. Shi, F. Liu, K. Liu, L. Xie, Y. You, H. He, High hydrothermal stability
7	of Cu-SAPO-34 catalysts for the NH3-SCR of NOx, Chem. Eng. J. 294 (2016)
8	254–263.
9	[2] J. Zhou, M. Gao, J. Zhang, W. Liu, T. Zhang, H. Li, Z. Xu, M. Ye, Z. Liu, Directed
10	transforming of coke to active intermediates in methanol-to-olefins catalyst to boost
11	light olefins selectivity, Nat. Commun. 12 (2021) 17.

12 [3] B. Gao, M. Yang, Y. Qiao, J. Li, X. Xiang, P. Wu, Y. Wei, S. Xu, P. Tian, Z. Liu, A

- low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their
 application in the methanol-to-olefins (MTO) reaction, Catal. Sci. Technol. 6 (2016)
 7569–7578.
- 16 [4] G. Yang, Y. Wei, S. Xu, J. Chen, J. Li, Z. Liu, J. Yu, R. Xu, Nanosize-Enhanced
- 17 Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions, J. Phys. Chem. C.
 18 117 (2013) 8214–8222.
- 19 [5] C.-Y. Di, X.-F. Li, P. Wang, Z.-H. Li, B.-B. Fan, T. Dou, Green and efficient dry
- 20 gel conversion synthesis of SAPO-34 catalyst with plate-like morphology, Pet. Sci. 14
- 21 (2017) 203–213.

1	[6] S. Askari, R. Halladj, Ultrasonic pretreatment for hydrothermal synthesis of
2	SAPO-34 nanocrystals, Ultrason. Sonochem. 19 (2012) 554–559.
3	[7] P. Peng, D. Stosic, A. Blal, A. Vimont, P. Bazin, X. Liu, ZF. Yan, S. Mintova, A.
4	Travert, Unraveling the Diffusion Properties of Zeolite-Based Multicomponent
5	Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR), ACS Catal.
6	10 (2020) 6822–6830.
7	[8] P. Peng, XH. Gao, ZF. Yan, S. Mintova, Diffusion and catalyst efficiency in
8	hierarchical zeolite catalysts, Natl. Sci. Rev. 7 (2020) 1726–1742.
9	[9] P. Peng, D. Stosic, XM. Liu, ZF. Yan, S. Mintova, Strategy towards enhanced
10	performance of zeolite catalysts: Raising effective diffusion coefficient versus
11	reducing diffusion length, Chem. Eng. J. 385 (2020) 123800.
12	[10]Q. Sun, Z. Xie, J. Yu, The state-of-the-art synthetic strategies for SAPO-34
13	zeolite catalysts in methanol-to-olefin conversion, Natl. Sci. Rev. 5 (2018) 542-558.
14	[11] A.Z. Varzaneh, J. Towfighi, S. Sahebdelfar, Carbon nanotube templated synthesis
15	of metal containing hierarchical SAPO-34 catalysts: Impact of the preparation method
16	and metal avidities in the MTO reaction, Micropor. Mesopor. Mat. 236 (2016) 1-12.
17	[12]G. Chen, Q. Sun, J. Yu, Nanoseed-assisted synthesis of nano-sized SAPO-34
18	zeolites using morpholine as the sole template with superior MTO performance,
19	Chem. Commun. 53 (2017) 13328–13331.
20	[13]B. Yang, P. Zhao, J. Ma, R. Li, Synthesis of hierarchical SAPO-34 nanocrystals

21 with improved catalytic performance for methanol to olefins, Chem. Phys. Lett. 665

1 (2016) 59–63.

2	[14]C. Wang, M. Yang, W. Zhang, X. Su, S. Xu, P. Tian, Z. Liu, Organophosphorous
3	surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology
4	and improved MTO performance, RSC Adv. 6 (2016) 47864-47872.
5	[15]X. Chen, A. Vicente, Z. Qin, V. Ruaux, JP. Gilson, V. Valtchev, The preparation
6	of hierarchical SAPO-34 crystals via post-synthesis fluoride etching, Chem. Commun.
7	52 (2016) 3512–3515.
8	[16] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, L. Xu, Aromatization and isomerization
9	of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability, Appl.
10	Catal. A Gen. 338 (2008) 100–113.
11	[17]M.S. Holm, E. Taarning, K. Egeblad, C.H. Christensen, Catalysis with
12	hierarchical zeolites, Catal. Today. 168 (2011) 3–16.
13	[18]S. Mintova, J. Grand, V. Valtchev, Nanosized zeolites: Quo Vadis?, Comptes
14	Rendus Chim. 19 (2016) 183–191.
15	[19] B. Shen, X. Chen, X. Fan, H. Xiong, H. Wang, W. Qian, Y. Wang, F. Wei,
16	Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by
17	identifying light atoms and bonds, Nat. Commun. 12 (2021) 2212.
18	[20] L. Xuan, X. Wang, Y. Zhu, Z. Li, Synthesis of low-silica SAPO-34 at lower
19	hydrothermal temperature by additional pressure and its enhanced catalytic
20	performance for methanol to olefin, Micropor. Mesopor. Mat. 323 (2021) 111218.
21	[21]Q. Sun, Y. Ma, N. Wang, X. Li, D. Xi, J. Xu, F. Deng, K.B. Yoon, P. Oleynikov, O. 20

1	Terasaki, J. Yu, High performance nanosheet-like silicoaluminophosphate molecular
2	sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies, J. Mater.
3	Chem. A. 2 (2014) 17828–17839.
4	[22]C. Wang, M. Yang, P. Tian, S. Xu, Y. Yang, D. Wang, Y. Yuan, Z. Liu, Dual
5	template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability
6	in the methanol to olefins reaction, J. Mater. Chem. A. 3 (2015) 5608–5616.
7	[23] X. Guo, M. Xu, M. She, Y. Zhu, T. Shi, Z. Chen, L. Peng, X. Guo, M. Lin, W.
8	Ding, Morphology-Reserved Synthesis of Discrete Nanosheets of CuO@SAPO-34
9	and Pore Mouth Catalysis for One-Pot Oxidation of Cyclohexane, Angew. Chemie Int.
10	Ed. 59 (2020) 2606–2611.
11	[24]J. Gong, C. Wang, C. Zeng, L. Zhang, Hydrothermal preparation of hierarchical
12	SAPO-34 constructed by nano-sheets using rapeseed pollen extract as water and its
13	CO ₂ adsorption property, Micropor. Mesopor. Mat. 221 (2016) 128–136.
14	[25] M. Ahma, C. Cheng, P. Bhuyar, A.E. Atabani, A. Pugazhendhi, N. Chi, T. Witoon,
15	J. Lim, J. Juan, Effect of reaction conditions on the lifetime of SAPO-34 catalysts in
16	methanol to olefins process–A review, Fuel 283 (2021) 118851.
17	[26]T. Blasco, A. Chica, A. Corma, W.J. Murphy, J. Agúndez-Rodríguez, J.
18	Pérez-Pariente, Changing the Si distribution in SAPO-11 by synthesis with surfactants
19	improves the hydroisomerization/dewaxing properties, J. Catal. 242 (2006) 153-161.
20	[27]X. Wang, Z. Li, F. Gong, M. Ma, Y. Zhu, Synthesis of SAPO-34 with modifying
21	Si distribution by seed-assisted method and its excellent catalytic performance for 21

- 1 methanol to olefins, Mol. Catal. 499 (2021) 111312.
- 2 [28]L. Ye, F. Cao, W. Ying, D. Fang, Q. Sun, Effect of different TEAOH/DEA
- 3 combinations on SAPO-34's synthesis and catalytic performance, J. Porous Mater. 18
- 4 (2011) 225–232.
- 5 [29] Y. Cao, D. Fan, D. Zhu, L. Sun, L. Cao, P. Tian, Z. Liu, The effect of Si
- 6 environments on NH3 selective catalytic reduction performance and moisture stability
- 7 of Cu-SAPO-34 catalysts, J. Catal. 391 (2020) 404–413.
- 8 [30] V. Petříček, M. Dušek, L. Palatinus, Crystallographic Computing System
- 9 JANA2006:General features, Z. Kristallogr. 229 (2014) 345–352.
- 10 [31] P. Magnoux, P. Cartraus, S. mignrd, M. Guisnet, Coking, Aging, and
- 11 Regeneration of Zeolites, J. Catal. 106 (1987) 235-241.
- 12 [32] L. Zhao, C. Xu, S. Gao, Effects of concentration on the alkali-treatment of
- 13 ZSM-5 zeolite: a study on dividing points, J. Mater. Sci. 45 (2010) 5406–5411.
- 14 [33]W. Loewenstein, The distribution of aluminum in the tetrahedra of silicates and
- 15 aluminates, Am. Mineral. 39 (1954) 92–96.
- 16 [34] P.A. Jacobs, E.M. Flanigen, J.C. Jansen, H. van Bekkum, Introduction to zeolite
- 17 science and practice, Elsevier, 2001.
- 18 [35]B.R. Vieira dos Santos, M. Montoya Urbina, M.J.B. Souza, A.M. Garrido Pedrosa,
- 19 A.O.S. Silva, E. V Sobrinho, R. Velasco Castedo, Preparation and characterization of
- 20 Pt-dealuminated Y zeolite by TG/DTA and TPR, J. Therm. Anal. Calorim. 119 (2015)
- 21 391–399.

1	[36]D. Hasha, L. Sierra de Saldarriaga, C. Saldarriaga, P.E. Hathaway, D.F. Cox, M.E.
2	Davis, Studies of silicoaluminophosphates with the sodalite structure, J. Am. Chem.
3	Soc. 110 (1988) 2127–2135.
4	[37] Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, FS. Xiao,
5	Solvent-Free Synthesis of Silicoaluminophosphate Zeolites, Angew. Chemie Int. Ed.
6	52 (2013) 9172–9175.
7	[38] W. Shen, X. Li, Y. Wei, P. Tian, F. Deng, X. Han, X. Bao, A study of the acidity of
8	SAPO-34 by solid-state NMR spectroscopy, Micropor. Mesopor. Mat. 158 (2012)
9	19–25.
10	[39]Z. Li, J. Martínez-Triguero, P. Concepción, J. Yu, A. Corma, Methanol to olefins:
11	activity and stability of nanosized SAPO-34 molecular sieves and control of
12	selectivity by silicon distribution, Phys. Chem. Chem. Phys. 15 (2013) 14670-14680.
13	[40] H. Huang, H. Wang, H. Zhu, S. Zhang, Q. Zhang, C. Li, Enhanced ethene to
14	propene ratio over Zn-modified SAPO-34 zeolites in methanol-to-olefin reaction,
15	Catal. Sci. Technol. 9 (2019) 2003.

1 Figures

2

Scheme 1. Schematical representation of the crystal growth process of SAPO-34-P₂ along (100) plane: (a) one P atom participates in the framework formation (yellow balls) and the other P atom controls preferential crystal growth (green balls); (b) the inner P-rich zone contains $P_2O_7^{4-}$ and the outer Si-rich zone contains PO_4^{3-} in the SAPO-34-P₂ structure.

- 2 Fig. 2 SEM pictures of samples from the series SAPO-34-P₂ obtained for 2 hours RT
- 3 aging (a), and hydrothermal synthesis for 1 hour (b), 2 hours (c), and 3 hours (d).
- 4

- **Fig. 3** XRD patterns of sample SAPO-34-P₁ (a), SAPO-34-P₂ (b) prior calcination (A)
- 3 and after calcination (B).

2 Fig. 4 SEM pictures of sample SAPO-34-P₁ prior calcination (a) and after calcination

3 (b), and sample SAPO-34-P $_2$ prior calcination (c) and after calcination (d).

- **Fig. 5** STEM-EDX elemental analysis representing the distribution of P and Si species
- 3 (A) and line scan profile (B) in the sample SAPO-34- P_2 .

Fig. 6 Nitrogen adsorption-desorption isotherms of samples SAPO-34-P₁ (a)and
SAPO-34-P₂ (b).

Fig. 7 TG-MS signals of SAPO-34- P_1 (a) and SAPO-34- P_2 (b) where both lines represent molecular weight of m/z 44.

Fig. 9 31 P NMR spectra of samples SAPO-34-P₁ (a) and SAPO-34-P₂ (b).

Fig. 10 NH₃-TPD profiles of samples SAPO-34-P₁ (a) and SAPO-34-P₂ (b).

Fig. 11 Catalytic lifetime (A) and production selectivity (B) over samples
SAPO-34-P₁ (a) and SAPO-34-P₂ (b).

Fig. 12 Nitrogen sorption of used catalysts containing carbon deposits: SAPO-34-P₁
(a) and SAPO-34-P₂ (b).

1 **Table 1** Crystallographic data of samples SAPO-34-P₁ and SAPO-34-P₂ obtained

2 from powder diffraction data based on a Le Bail profile refinement and pseudo-Voigt

-	Samples	a (Å)	b (Å)	c (Å)	Unit cell volume ($Å^3$)	Space group
-	SAPO-34-P ₁	13.828	13.828	14.849	2459.1	R-3m
_	SAPO-34-P ₂	12.662	12.662	14.011	2103.4	R-3m
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						

3 profile function using the JANA2006 software.

- **Table 2** Chemical composition of samples SAPO-34-P₁ and SAPO-34-P₂ synthesized
- 2 using different phosphorus sources.

	Sample		Si/Al/P (Molar ratio)				
		Phosphorus source	ICP	XRF	XPS		
	SAPO-34-P ₁	H ₃ PO ₄	0.18:1.0:0.90	0.16:1.0:0.75	0.14:1.0:0.75		
	SAPO-34-P ₂	$H_4P_2O_7$	0.14:1.0:1.12	0.12:1.0:0.90	0.30:1.0:0.91		
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							

1 Table 3 Physicochemical properties of samples SAPO-34- P_1 and SAPO-34- P_2

Sampla	$\mathbf{S}_{\mathrm{BET}}$	\mathbf{S}_{mic}	V_{mic}	S _{ext}	V_{tot}
Sample	(m ² /g)	(m^2/g)	(cm^3/g)	(m^2/g)	(cm^3/g)
SAPO-34-P ₁	498	449	0.17	49	0.25
SAPO-34-P ₂	634	586	0.22	48	0.48

 $2 \quad \ \ determined from N_2 \ \ sorption \ measurements.$

					Total acid
	Position of	Position of	Position of	Position of	sites
Sample	peak 1	peak 2	peak 3	peak 4	51005
	(ΔSD)	(ΔSD)	(ΔSD)	(ΔSD)	density
	(ASD)	(ASD)	(ASD)	(ASD)	$(\text{mol } g^{-1})$
SAPO-34-P ₁	137(1.04)	175(1.14)	304(2.03)	359(0.24)	4.46
SAPO-34-P ₂	136(0.86)	169(1.47)	256(1.78)	345(0.13)	4.25

Table 4 Fit peaks location and acid sites density (ASD) $(10^{-4} \text{ mol g}^{-1})$ of samples SAPO-34-P₁ and SAPO-34-P₂.