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ABSTRACT
Timed formalisms such as Timed Automata (TA), Signal Temporal

Logic (STL) and Timed Regular expressions (TRE) have been previ-

ously applied as behaviour specifications for monitoring or runtime

verification, in particular, under the form of pattern-matching, i.e.
computing the set of all the segments of a given system run that

satisfy the specification.

In this work, timed regular expressions with parameters (for tim-

ing delays and for signal values) are considered. We define several

classes of parametric expressions (based on Boolean or real-valued

signals and discrete events), and tackle the problem of computing a

parametric match-set, i.e. the parameter values and time segments

of data that give a match for a given expression. We propose effi-

cient data structures for representing match-sets (combining zones

and polytopes), and devise pattern-matching algorithms. All these

different types and algorithms are combined into a single implemen-

tation under a tool named parameTRE. We illustrate the approach

on several examples, from electrocardiograms to driving patterns.

CCS CONCEPTS
• Theory of computation→ Timed and hybridmodels; •Com-
puting methodologies→ Algebraic algorithms.

KEYWORDS
Timed Languages, Pattern Matching, Monitoring, Parametric Iden-

tification
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1 INTRODUCTION
Cyber-physical systems involving dynamic interaction between

computing devices and physical environments, often critical, have

become omnipresent in the modern world. Formal verification

thereof, i.e. checking specified properties over all possible behav-
iors of a system, is highly desirable but limited by decidability and

complexity issues. This explains a growing interest in monitoring,

runtime verification and other light-weight forms of formal verifi-

cation. These approaches involve checking properties of individual

behaviours. Also, monitoring properties of signals (or time series) is

relevant in other domains, such as to detect arrhythmia events in an

electrocardiogram (ECG) or a vehicle collision in road traffic. Using

a formal specification language one can automatically generate

property monitors. This can replace the tedious task of manually

inspecting or writing ad-hoc property monitors.

Several formalisms have been used to specify system behaviours

on the timed level, among which we can mention Timed Automata

(TA) [1], Timed Regular Expressions (TRE) [4], Metric Interval

Temporal Logic (MITL) [19]. On the level of real-valued and Boolean

signals, Signal Temporal Logic (STL) [14, 18] is often used. For

such formalisms, monitoring problems have been often phrased as

pattern-matching: given a behaviour and a specification (a pattern),

detect all the time intervals when the pattern occurs. Efficient

algorithms have been developed for matching patterns specified by

TA, or various kinds of TRE and temporal logics [8, 11, 15, 21, 22].

A further step in this research direction is introducing parame-

ters in the specifications, which has numerous advantages:

– Parametric formalisms are more expressive and flexible.

Without parameters, delays and thresholds in a specification

should be constant. It is possible to specify that within 23

seconds after braking the motor stops, or that whenever af-

ter 30 minutes of overheating (that happens if 𝑇 > 130) a

pipe explodes (event 𝐸). With parameters one can describe

a generic pattern: after 𝜃 minutes of (𝑇 > 𝜎) the event 𝐸
occurs. Thus one can describe event occurrences of signals

of particular form but with a-priory unknown scale.
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– One can learn typical values of parameters that allow pattern

matching with observed data. This problem is solved in the

framework of parametric pattern matching (see [6]).

– Parametric pattern matching can be used for quantitative

runtime verification: for example characteristics such as max-

imal or minimum response times can be specified as match-

ing parameters.

– In addition, graphs of matching parameters would provide

engineers or doctors with precious visual information on

system behaviours, which is easier to interpret and requires

less training than manual ad-hoc inspection.

Parametric specifications have already been considered in the

context of timed systems. First, parametric timed automata (PTA)

have been introduced in [2], and undecidability of empty language

and other model-checking problems has been established. Years

later, [6, 9] considered identification of timing and magnitude pa-

rameters in a parametric version of STL logic called Parametric

Signal Temporal Logic (PSTL), in the context of runtime verification.

Recently [3, 23–25], with a motivation similar to ours, considered

parametric timed patternmatchingwith respect to parametric timed

automata.

The main contribution of this article is the development and im-

plementation of algorithms of parametric timed pattern-matching

for several kinds of parametric variants of Timed Regular Expres-

sions. Before continuing with technical formalisation, let us illus-

trate parametric expressions by a simple example which concerns

two Boolean signals 𝑝 and 𝑞 depicted on Fig. 1. We consider the

𝜃1

𝑝

𝜃2

𝑞

𝜃3

𝑡 𝑡 ′

Figure 1: Matching a Parametric Timed Regular Expression
𝜙1

following expression:

𝜙1 := (⟨𝑝⟩𝜃1 · ¬𝑝) ∧ (¬𝑞 · ⟨𝑞⟩𝜃2 ) ∧ (true · ⟨𝑝 ∧ 𝑞⟩𝜃3 · true) (1)

It represents the intersection of three different expressions. The

first expression represents a signal 𝑝 of duration 𝜃1. The second one

represents a signal 𝑞 of duration 𝜃2. Finally, the third expression

represents the conjunction of 𝑝 and 𝑞 with a duration of 𝜃3. The

period from 𝑡 to 𝑡 ′ matches the parametric expressions. We are

interested in finding the match-set, that is the set of all the tuples
(𝑡, 𝑡 ′, 𝜃1, 𝜃2, 𝜃3) corresponding to such matches.

Suchmatch-sets can be computed using the parametric timed pat-

tern matching algorithms we propose in this paper. More concretely,

the algorithms take as input a timed Boolean or real-valued signal

(or event sequence), and a parametric specification. The algorithms

output a set of matching time intervals together with parameter

values (represented by a special data structure). Our algorithms

proceed by structural induction over the regular expression, in-

spired by [21], and combine two set representation technologies for

match-sets: one based on zones (a well-known data structure in the

domain of timed automata and suitable for representing intervals

of time), and another using polytopes for parameter values.

This paper is structured as follows. In Section 2 we define several

kinds of timed behaviours, and recall Timed Regular Expressions

(TRE). In Section 3 we describe several flavors of parametric expres-

sions, and for each of them characterize the match-set. In Section 4

we develop our practical pattern-matching algorithms. In Section 5

we deal with the problem of parametric identification and in Section

6 we present our experimental results, followed by a comparison

with previous work in Section 7. We conclude and outline some

perspectives on future work in Section 8.

2 PRELIMINARIES
In this section, we give some basic definitions and explain the

syntax and semantics of (non-parametric) TRE [21]. We assume a

time domain T = [0, 𝑑] which is a bounded interval of R+. Let 𝑛
and𝑚 be positive integers. In the rest of the article we consider a

set of real variables 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} and a set of propositional

variables 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑚}.
Definition 1 (Signals). A signal is a function𝑤 : T→ R𝑛 × B𝑚 .

At each time point in T the signal assigns real values to variables

𝑥 ∈ 𝑋 and Boolean values to variables 𝑝 ∈ 𝑃 . They are called

real-valued and Boolean if they are of the form 𝑥 : T → R𝑛 and

𝑥 : T→ B𝑚 respectively.

The value of 𝑥 at time 𝑡 is denoted by 𝑥 [𝑡] and its 𝑖𝑡ℎ coordinate

by 𝑥𝑖 [𝑡]. Abusing the notation, we often use the variable names

𝑥1, . . . , 𝑥𝑛, 𝑝1, . . . , 𝑝𝑚 both for the values of the signal and in the

expression.

Definition 2 (Finite Variability). Let𝑤 : T→ R𝑛 ×B𝑚 be a signal.

Let us also assume that we are given a set of atomic predicates Π
of the form (𝑥 ≥ 𝑐) or (𝑥 ≤ 𝑐) where 𝑥 ∈ 𝑋 and 𝑐 ∈ R. Each of

these predicates in Π produces a Boolean signal 𝑡 ↦→ 𝑥 (𝑡) ≥ 𝑐 . The

signal𝑤 is said to be of finite variability if for every propositional

variable/atomic predicate in 𝑃∪Π the corresponding Boolean signal

has a finite set of discontinuities (See [15] for details).

From here on, the Boolean signals we talk about are assumed

to be of finite variability. Also, the real-valued signals considered

are assumed to be piecewise affine so that the Boolean signals

they produce using atomic predicates (like 𝑥 ≥ 𝑐) are also of finite

variability.

Definition 3 (Timed Words). A timed word of length 𝑙 over an

alphabet Σ is a sequence 𝜔 = 𝑡1𝑎1 ...𝑡𝑙𝑎𝑙 with 𝑎𝑖 ∈ Σ, 𝑡𝑖 ∈ R and

0 ≤ 𝑡1 ≤ ... ≤ 𝑡𝑙 . Here, 𝑡𝑖 represents the date at which the event 𝑎𝑖
occurs.

The following definition concerns Boolean signals, that is, with

a non-empty set of Boolean variables 𝑃 and an empty set of real-

valued variables 𝑋 .

Definition 4 (Timed Regular Expressions (TRE)). The syntax of

Timed Regular Expressions is given by the grammar

𝜑 := 𝜖 | 𝑝 | 𝑝 | ⟨𝜙⟩𝐼 | 𝜙 ·𝜓 | 𝜙∗ | 𝜙 ∧𝜓 | 𝜙 ∨𝜓

where 𝑝 ∈ 𝑃 is a propositional variable and 𝐼 is an interval of R+
with integer endpoints.
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Unlike Signal Temporal Logic where satisfaction of a formula

is of the form (𝑤, 𝑡) |= 𝜑 , for TRE we define satisfaction in terms

of two time points 𝑡, 𝑡 ′. This means that (𝑤, 𝑡, 𝑡 ′) |= 𝜑 represents

the fact that𝑤 [𝑡, 𝑡 ′] (the factor of𝑤 defined over the sub-domain

[𝑡, 𝑡 ′]) satisfies the semantics of the expression 𝜑 .

Definition 5 (TRE Semantics). The satisfaction relation |= of a

TRE 𝜑 by a signal𝑤 , relative to start time 𝑡 and end time 𝑡 ′ ≥ 𝑡 is

defined as follows:

(𝑤, 𝑡, 𝑡 ′) |= 𝜖 ↔ 𝑡 = 𝑡 ′

(𝑤, 𝑡, 𝑡 ′) |= 𝑝 ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ 𝑡 < 𝑡 ′′ < 𝑡 ′ → 𝑝 [𝑡 ′′] = 1

(𝑤, 𝑡, 𝑡 ′) |= 𝑝 ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ 𝑡 < 𝑡 ′′ < 𝑡 ′ → 𝑝 [𝑡 ′′] = 0

(𝑤, 𝑡, 𝑡 ′) |= 𝜑 ·𝜓 ↔ ∃𝑡 ′′ · (𝑤, 𝑡, 𝑡 ′′) |= 𝜑 ∧ (𝑤, 𝑡 ′′, 𝑡 ′) |= 𝜓

(𝑤, 𝑡, 𝑡 ′) |= 𝜑 ∨𝜓 ↔ (𝑤, 𝑡, 𝑡 ′) |= 𝜑 ∨ (𝑤, 𝑡, 𝑡 ′) |= 𝜓

(𝑤, 𝑡, 𝑡 ′) |= 𝜑 ∧𝜓 ↔ (𝑤, 𝑡, 𝑡 ′) |= 𝜑 ∧ (𝑤, 𝑡, 𝑡 ′) |= 𝜓

(𝑤, 𝑡, 𝑡 ′) |= 𝜑∗ ↔ ∃𝑘 ≥ 0 · (𝑤, 𝑡, 𝑡 ′) |= 𝜑𝑘

(𝑤, 𝑡, 𝑡 ′) |= ⟨𝜑⟩𝐼 ↔ 𝑡 ′ − 𝑡 ∈ 𝐼 ∧ (𝑤, 𝑡, 𝑡 ′) |= 𝜑

Definition 6 (Match-Set). For any signal𝑤 and expression 𝜑 , we

define the match-set as:

M(𝜑,𝑤) := {(𝑡, 𝑡 ′) ∈ T × T : (𝑤, 𝑡, 𝑡 ′) |= 𝜑}

Geometrically, match-sets are subsets of the upper triangular

portion defined by 𝑡 ≤ 𝑡 ′, of the box [0, 𝑑]×[0, 𝑑]. In [21] it is shown
that for every TRE 𝜑 and a finite-variability signal 𝑤 , the match-

set can be written as a finite union of zones. A zone is of the form

(𝑡 ≺ 𝑐1)∧(𝑡 ′ ≺ 𝑐2)∧(𝑡 ′−𝑡 ≺ 𝑐3)∧(𝑐4 ≺ 𝑡 ′−𝑡)∧(𝑐5 ≺ 𝑡 ′)∧(𝑐6 ≺ 𝑡)
where 𝑐1, 𝑐2, . . . , 𝑐6 are constants and the symbol ≺ is ≤ /<.

Introducing atomic constraints such as 𝑥 ≤ 𝑐 and 𝑥 ≥ 𝑐 (where

𝑐 is a constant) in TRE leads to (non-parametric) Signal Regular

Expressions (SRE) [10]. We will introduce parametric SRE in Sub-

section 3.1.

3 PARAMETRIC TIMED REGULAR
EXPRESSIONS

In this section, we introduce parameters into three different classes

of TRE and derive properties of their parametric match-sets. The

first resulting class is a parametric version of Signal Regular Ex-

pressions (SRE) [10] which is apt for expressing behaviours of real-

valued signals. The second is a parametric version of (event-based)

Timed Regular Expressions [5] suited for time-event sequences. The

third is a parametric version of event-bounded TRE [15] which is a

hybrid formalismmixing state-based and event-based features, with

events captured as rising or falling edges of Boolean signals, com-

bined with SRE. We also introduce the notions of parametric zones

and parametric intervals and show how parametric match-sets can

be expressed using these set representations.

3.1 Parametric Signal Regular Expressions
(PSRE)

We are given a signal 𝑤 : T → R𝑛 × B𝑚 over a set of real

variables 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} and a set of propositional variables

𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑚}. At each time point in T the signal assigns real
values to variables 𝑥 ∈ 𝑋 and Boolean values to variables 𝑝 ∈ 𝑃 .

In PSRE, there are two types of parameters, magnitude parameters

denoted by a vector 𝑞 = (𝑞1, ..., 𝑞𝑔) and timing parameters denoted

by a vector 𝑠 = (𝑠1, ..., 𝑠ℎ). Their domains are polytopes Q ⊆ R𝑔
and S ⊆ [0,∞)ℎ . A syntactic description of PSRE is as follows:

Definition 7 (Parametric Signal Regular Expressions).

𝑥 ≥ 𝜆 | 𝑥 ≤ 𝜆 | 𝑝 | 𝑝 | ⟨𝜙⟩𝐼 | 𝜙 ·𝜓 | 𝜙∗ | 𝜙 ∧𝜓 | 𝜙 ∨𝜓

where 𝑥 ∈ 𝑋 is a real-valued variable, 𝜆 is either a constant or a

magnitude parameter 𝑞𝑖 , 𝑝 ∈ 𝑃 a propositonal variable, and 𝐼 stands

for an interval [𝑎, 𝑏] where each of 𝑎, 𝑏 is either a non-negative

constant (timing constant) or a timing parameter 𝑠𝑖 .

Here 𝑥 corresponds to a real-valued signal, and 𝑝 a Boolean one.

A parametric valuation (𝑢, 𝑣) ∈ Q × S converts a PSRE formula 𝜑

into a SRE formula 𝜑𝑢,𝑣 obtained by substituting the values (𝑢, 𝑣)
in the parameters (𝑞, 𝑠). We use the notations 𝜆𝑢,𝑣 and 𝐼𝑢,𝑣 to de-

note the threshold and interval respectively obtained from such a

substitution. The semantics of a PSRE 𝜑 with respect to a signal𝑤

is given in terms of a parametric match set.

Definition 8 (PSRE Semantics). The satisfaction relation |= of a

PSRE 𝜑 by a signal 𝑤 with respect to a start time 𝑡 , a end time 𝑡 ′

and a parametric valuation (𝑢, 𝑣) is defined inductively as follows:

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= (𝑥 ≤ 𝜆) ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ .𝑡 < 𝑡 ′′ < 𝑡 ′ →
𝑥 [𝑡 ′′] ≤ 𝜆𝑢,𝑣
(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= (𝑥 ≥ 𝜆) ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ .𝑡 < 𝑡 ′′ < 𝑡 ′ →
𝑥 [𝑡 ′′] ≥ 𝜆𝑢,𝑣
(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝑝 ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ .𝑡 < 𝑡 ′′ < 𝑡 ′ → 𝑝 [𝑡 ′′] = 1

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝑝 ↔ 𝑡 < 𝑡 ′ ∧ ∀𝑡 ′′ .𝑡 < 𝑡 ′′ < 𝑡 ′ → 𝑝 [𝑡 ′′] = 0

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= ⟨𝜑⟩𝐼 ↔ 𝑡 ′ − 𝑡 ∈ 𝐼𝑢,𝑣 ∧ (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑 · 𝜓 ↔ ∃𝑡 ′′ .(𝑤, 𝑡, 𝑡 ′′, 𝑢, 𝑣) |= 𝜑 ∧
(𝑤, 𝑡 ′′, 𝑡 ′, 𝑢, 𝑣) |= 𝜓

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑 ∧𝜓 ↔ (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑 and

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜓

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑 ∨𝜓 ↔ (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑 or

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜓

(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑∗ ↔ ∃𝑘 ≥ 0.(𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑𝑘

Definition 9 (Parametric Match-Set). For any signal𝑤 and PSRE

𝜑 , we define the parametric match-set

M(𝜑,𝑤) = {(𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ T × T × Q × S : (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑}

3.1.1 PSRE Example. Let us consider the following expression

which can approximately match an electrocardiogram signal.

𝜙2 :=

⟨−0.55 ≤ 𝑥 ≤ 0.29⟩𝜃1 · ⟨0.29 ≤ 𝑥 ≤ 2.0⟩𝜃2 · ⟨−0.6 ≤ 𝑥 ≤ 0.29⟩𝜃3
(2)

In 𝜙2 (see Expr (2)), the signal 𝑥 stays in the interval [−0.55, 0.29]
for a duration of 𝜃1 time units. Then, its value increases and stays

within [0.29, 2.0] for 𝜃2 time units. Finally, it decreases and stays

within [−0.6, 0.29] for 𝜃3 time units. Figure 2 illustrates a matching

signal.

3.1.2 Parametric Zones and Parametric Match-Sets. Recall that we
represent the vectors of magnitude and timing parameters with the

symbols 𝑞 and 𝑠 respectively. A parametric zone is defined by six

constraints of the following form:

T (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6) := (𝑡 ≺ 𝑐1 (𝑞, 𝑠))∧ (𝑡 ′ ≺ 𝑐2 (𝑞, 𝑠))∧ (𝑡 ′−𝑡 ≺
𝑐3 (𝑞, 𝑠)) ∧ (𝑐4 (𝑞, 𝑠) ≺ 𝑡 ′ − 𝑡) ∧ (𝑐5 (𝑞, 𝑠) ≺ 𝑡 ′) ∧ (𝑐6 (𝑞, 𝑠) ≺ 𝑡)



HSCC 2023, May 9–12, 2023, San Antonio, TX, USA Akshay Mambakam, Eugene Asarin, Nicolas Basset, and Thao Dang

−0.55

0.29

2

0.29

−0.6
𝜃1 𝜃2 𝜃3

Figure 2: ECG matching expression 𝜙2

along with a set of linear constraints𝐶𝑧𝐶𝑧𝐶𝑧 (𝑞, 𝑠) over the parameter

space, where 𝑐1, ..., 𝑐6 are piece-wise linear functions over (𝑞, 𝑠).
More precisely, 𝑐1, 𝑐2, 𝑐3 can be expressed as minima of linear func-

tions and 𝑐4, 𝑐5, 𝑐6 as maxima of linear functions. The symbol ≺ is

≤ /<.

Theorem 10. For signals that are Boolean or piecewise linear, the
parametric match-set of PSRE is a finite union of parametric zones.

Proof. Let us consider the operators one by one and show that

they preserve the form when applied over parametric zones.

From the proofs in [21], it can be inferred that the parametric

match setsM(𝑝,𝑤) andM(𝑝,𝑤) for Boolean signal 𝑝 , is a set of

triangular cylinders touching the diagonal 𝑡 ≤ 𝑡 ′.
The parametric match set for (𝑥 ≥ 𝜆) is

M(𝑥 ≥ 𝜆,𝑤) = {(𝑡, 𝑡 ′, 𝜆) | 𝜆 ≤ inf

𝑡 ′′∈ (𝑡,𝑡 ′ )
𝑤𝑥 [𝑡 ′′]},

which is equivalent to the robustness support [10] for (𝑥 ≥ 0), that

is

R(𝑥 ≥ 0,𝑤) = {(𝑡, 𝑡 ′, 𝑟 ) | 𝑟 ≤ inf

𝑡 ′′∈ (𝑡,𝑡 ′ )
𝑤𝑥 [𝑡 ′′]}.

Similarly R(𝑥 ≤ 0,𝑤) is equivalent to M(𝑥 ≤ 𝜆,𝑤). In [10], it is

shown that the robustness support of 𝑥 ≤ 0 and 𝑥 ≥ 0 for piece-

wise linear and piece-wise constant signals can be represented as

a finite union of polytopes (which are indeed parametric zones).

Therefore, it follows that the parametric match-set for 𝑥 ≥ 𝜆 and

𝑥 ≤ 𝜆 is a finite union of parametric zones for these classes of

signals. Now, for the disjunction operator, we have M(𝜑 ∨𝜓,𝑤) =
M(𝜑,𝑤) ∪M(𝜓,𝑤). Note that a finite union of parametric zones

is closed under the disjunction operator.

Next, the parametric match set for conjunction isM(𝜑 ∧𝜓,𝑤) =
M(𝜑,𝑤) ∩M(𝜓,𝑤).

Let us consider two parametric zones: z1 = T (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6)
∧𝐶𝑧1𝐶𝑧1𝐶𝑧1 and z2 = T (𝑐′

1
, 𝑐′
2
, 𝑐′
3
, 𝑐′
4
, 𝑐′
5
, 𝑐′
6
) ∧𝐶𝑧2𝐶𝑧2𝐶𝑧2 .

We have, z1 ∩ z2 = T (min(𝑐1, 𝑐′
1
),min(𝑐2, 𝑐′

2
),min(𝑐3, 𝑐′

3
),

max(𝑐4, 𝑐′
4
),max(𝑐5, 𝑐′

5
),max(𝑐6, 𝑐′

6
)) ∧𝐶𝑧1𝐶𝑧1𝐶𝑧1 ∧𝐶𝑧2𝐶𝑧2𝐶𝑧2 . Finite union of

parametric zones is also closed under the conjunction operator.

For the concatenation operator, the parametric match set for

concatenation isM(𝜑 ·𝜓,𝑤) = M(𝜑,𝑤) ◦M(𝜓,𝑤). The symbol ◦
is called sequential composition which is an operation over zones

defined as z1◦z2 = T (min(𝑐1, 𝑐′
1
−𝑐4, 𝑐2−𝑐4),min(𝑐′

2
, 𝑐2+𝑐′

3
, 𝑐′
1
+𝑐′

3
),

𝑐3 + 𝑐′
3
, 𝑐4 + 𝑐′

4
,max(𝑐′

5
, 𝑐5 + 𝑐′

4
, 𝑐′
6
+ 𝑐′

4
),max(𝑐6, 𝑐′

6
− 𝑐3, 𝑐5 − 𝑐3)) ∧

𝐶𝑧1𝐶𝑧1𝐶𝑧1 ∧𝐶𝑧2𝐶𝑧2𝐶𝑧2 ∧
(𝑐5 ≺ 𝑐′

1
) ∧ (𝑐′

6
≺ 𝑐2) ∧ (𝑐4 ≺ 𝑐3) ∧ (𝑐′

4
≺ 𝑐′

3
) ∧ (𝑐5 ≺ 𝑐2) ∧ (𝑐′

6
≺

𝑐′
1
) The above equation for sequential composition is obtained by

performing Fourier-Motzkin quantifier elimination. It follows that,

a finite union of parametric zones is closed under concatenation

operator.

For duration restriction, the parametric match set is

M(⟨𝜑⟩ [𝑎,𝑏 ] ,𝑤) = M(𝜑,𝑤) ∩ {(𝑡, 𝑡 ′) : 𝑡 ′ − 𝑡 ∈ [𝑎, 𝑏]}.
For a zone z1 = T (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6) ∧𝐶𝑧1𝐶𝑧1𝐶𝑧1 , we have:

z1∧{(𝑡, 𝑡 ′) : 𝑡 ′−𝑡 ∈ [𝑎, 𝑏]} = T (𝑐1, 𝑐2,min(𝑐3, 𝑏),max(𝑐4, 𝑎), 𝑐5,
𝑐6) ∧𝐶𝑧1𝐶𝑧1𝐶𝑧1

Again, we can see that a finite union of parametric zones is closed

under duration restriction. □

3.1.3 Kleene Star and Finite Number of Concatenations. In this

subsection we prove that the parametric match-set of Kleene star of

PSRE can be computed by a finite number of concatenations under

a mild hypothesis on the set of parameters.

We start by recalling some definitions followed by Lemma 11

from [21] established for the non-parametric case. An interval [𝑡, 𝑡 ′]
is said to be unitary with respect to a signal𝑤 if 𝑡 ′ − 𝑡 < 1 and𝑤

is constant throughout its interior (𝑡, 𝑡 ′). Let 𝜎 (𝑤) be the least 𝑘
such that𝑤 can be covered by 𝑘 unitary intervals. A key property

of𝑚 = 𝜎 (𝑤) is stated in the following lemma.

Lemma 11. [21]. For any 𝑛 > 2𝑚 + 1 if (𝑤, 𝑡, 𝑡 ′) |= 𝜑𝑛 then
(𝑤, 𝑡, 𝑡 ′) |= 𝜑𝑛−1 for an SRE 𝜑 .

We define 𝑤𝑢 as the set of Boolean signals obtained by in-

troducing a magnitude parametric valuation 𝑢 in a PSRE 𝜑 . Let

𝑚′ = 2 + 2max

𝑞∈Q
𝜎 (𝑤𝑞).

Lemma 12. Kleene star can be bounded as follows: (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |=
𝜑∗ if and only if (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑𝑛 for some 𝑛 ≤ 𝑚′.

Proof. It is easy to see that for piecewise constant and piecewise

linear signals,𝑚 indeed has finite value. For the sake of contradic-

tion, let us assume the following,

∃(𝑛 > 𝑚′), 𝑡, 𝑡 ′, 𝑢, 𝑣 · (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) |= 𝜑𝑛 ∧ (𝑤, 𝑡, 𝑡 ′, 𝑢, 𝑣) ̸|= 𝜑 (𝑛−1) .

Simplifying this we get, (𝑤𝑢0
, 𝑡0, 𝑡

′
0
) |= 𝜑

𝑛0

𝑢0,𝑣0 ∧ (𝑤𝑢0
, 𝑡0, 𝑡

′
0
) ̸|=

𝜑
𝑛0−1
𝑢0,𝑣0 where 𝑛0, 𝑡0, 𝑡

′
0
, 𝑢0 and 𝑣0 are constants with 𝑛0 > 𝑚′

. From

the definition of 𝑚′
we can deduce that 𝑛0 > 2𝜎 (𝑤𝑢0

) + 2. This

contradicts Lemma 11 for the case of signal 𝑤𝑢0
and expression

𝜑𝑢0,𝑣0 . □

3.2 Parametric Timed Regular Expressions with
Event-Based Semantics

In this subsection, we consider Parametric Timed Regular Expres-

sions (PTRE) with event-based semantics that apply to timed words

rather than to signals. The vector of timing parameters (𝑠1, ..., 𝑠ℎ) is

again denoted by 𝑠 . Note that this version of PTRE does not have

magnitude parameters.

Definition 13 (Parametric Timed Regular Expressions with Even-
t-Based Semantics).

𝑎 | 𝜖 | ⟨𝜑⟩𝐼 | 𝜑1 · 𝜑2 | 𝜑1 ∪ 𝜑2 | 𝜑1 ∩ 𝜑2 | 𝜑∗

where 𝐼 = [𝛼, 𝛽] and each of 𝛼, 𝛽 is either a non-negative constant

or a timing parameter 𝑠𝑖 . For all 𝑎 ∈ Σ we define 𝑎 which represents
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an arbitrary passage of time followed by event a where Σ is the

event alphabet over which the PTRE is defined.

The domain of parameters S ⊆ [0,∞)ℎ is expressed using a

polytope. A parametric valuation 𝑣 ∈ S converts a PTRE formula

𝜑 into a TRE formula 𝜑𝑣 obtained by substituting the values 𝑣 in

parameters 𝑠 . We use 𝐼𝑣 to denote the interval obtained from such

a substitution.

Definition 14 (Parametric Match-Set). The parametric match-set

of a PTRE expression 𝜑 (with event-based semantics) for a timed

word 𝜔 = 𝑡1𝑎1 ...𝑡𝑛𝑎𝑛 is defined inductively as follows (𝑡0 = 0 by

default):

M(𝑎,𝜔) := {(𝑡, 𝑡 ′, 𝑣) : ∃𝑖 ∈ [1...𝑛] ·𝑎 = 𝑎𝑖∧𝑡 = 𝑡𝑖−1∧𝑡 ′ = 𝑡𝑖 }
M(𝜖, 𝜔) := {(𝑡, 𝑡, 𝑣) : ∃𝑖 ∈ [1...𝑛] · 𝑡 = 𝑡𝑖−1 ∧ 𝑡 = 𝑡𝑖 }
M(⟨𝜑⟩𝐼 , 𝜔) := {(𝑡, 𝑡 ′, 𝑣) : 𝑡 ′ − 𝑡 ∈ 𝐼𝑣 ∧ (𝑡, 𝑡 ′, 𝑣) ∈ M(𝜑,𝜔)}
M(𝜑 · 𝜓,𝜔) := {(𝑡, 𝑡 ′, 𝑣) : ∃𝑡 ′′ .(𝑡, 𝑡 ′′, 𝑣) ∈ M(𝜑,𝜔) ∧
(𝑡 ′′, 𝑡 ′, 𝑣) ∈ M(𝜓,𝜔)}
M(𝜑 ∧𝜓,𝜔) := {(𝑡, 𝑡 ′, 𝑣) : (𝑡, 𝑡 ′, 𝑣) ∈ M(𝜑,𝜔) ∧ (𝑡, 𝑡 ′, 𝑣) ∈
M(𝜓,𝜔)}
M(𝜑 ∨𝜓,𝜔) := {(𝑡, 𝑡 ′, 𝑣) : (𝑡, 𝑡 ′, 𝑣) ∈ M(𝜑,𝜔) ∨ (𝑡, 𝑡 ′, 𝑣) ∈
M(𝜓,𝜔)}
M(𝜑∗, 𝜔) := {∃𝑘 ≥ 0.(𝑡, 𝑡 ′, 𝑣) ∈ M(𝜑𝑘 , 𝜔)}

3.2.1 Parametric Intervals and ParametricMatch-Sets. Aparametric

interval is defined by constraints of form 𝑡 = 𝑐1, 𝑡
′ = 𝑐2 and𝐶𝑦𝐶𝑦𝐶𝑦 (𝑟 )

which is a set of linear constraints over the parameter set 𝑟 . Given

constants 𝑐1 and 𝑐2, the constraints 𝑡 = 𝑐1 and 𝑡
′ = 𝑐2 represent the

beginning and ending of a time interval. Theorem 15 shows that

the parametric match-sets of PTRE can be expressed as unions of

parametric intervals and its proof provides a constructive procedure

for match-set computation.

Theorem 15. For a timed word the parametric match-set of a
PTRE is a finite union of parametric intervals.

Proofs of the above Theorem 15 and that of Theorem 16 (in

Section 3.3) are given in Appendix B.

3.2.2 PTRE Example. Let us consider the following PTRE which

has both concatenation and intersection operators:

𝜙3 := (⟨𝑎 · 𝑏⟩𝜃1 · 𝑐) ∧ (𝑎 · ⟨𝑏 · 𝑐⟩𝜃2 ) (3)

Recall that 𝑎 represents an arbitrary passage of time followed

by the event 𝑎. This can be represented as 𝑟 · 𝑎, where 𝑟 represents
passage of time and 𝑎 is an event. Therefore we can write the

semantics of 𝑎 as, [[𝑎]] := {𝑟 · 𝑎 : 𝑟 ∈ R+}.
The semantics of 𝜙3 (Expr (3)) containing parameters 𝜃1 and

𝜃2 can be deduced as follows: {𝑟1 · 𝑎 · 𝑟2 · 𝑏 · 𝑟3 · 𝑐 : (𝑟1 + 𝑟2 =

𝜃1) ∧ (𝑟2 + 𝑟3 = 𝜃2)}.

3.3 Parametric Event-Bounded Timed Regular
Expressions

We now consider another parametric extension of TRE called event-

bounded TRE (E-TRE). We are given a signal𝑤 defined exactly the

same as in Section 3.1. The signal𝑤 assigns to each propositional

variable 𝑝 ∈ 𝑃 a Boolean value at each time point 𝑡 in the time

domain T. So, for each 𝑝 ∈ 𝑃 we have a corresponding Boolean

signal. A parametric E-TRE (PE-TRE) is of form ↑ 𝑝 , 𝜓1 · 𝜑 · 𝜓2,

𝜓1 ∨𝜓2, or𝜓1 ∧𝜑 where 𝑝 ∈ 𝑃 , ↑ 𝑝 stands for a rising edge of 𝑝 ,𝜓1
and𝜓2 are PE-TRE and 𝜑 stands for a PSRE. Note that falling edge

can be defined as ↓ 𝑝 :=↑ 𝑝 .

Theorem 16. For Boolean, piecewise linear and piecewise constant
signals the parametric match-set of PE-TRE is always a finite union
of parametric intervals.

3.3.1 PE-TRE Example. 𝜙4 (Expression (4)) denotes the pattern of

a brake control signal 𝑏 for a vehicle under heavy braking situation.

It is a parameterized version of the brake control signal pattern of

the anti-lock brake system example given in [15]. It starts with a

rise edge of 𝑏 followed by a braking period of duration less than 𝜃1.

It continues with one or more pulses with duration less than 𝜃2. It

ends with a falling edge of 𝑏. In Figure 3, we can see an illustration

of the braking pattern 𝑏.

𝜙4 := ↑ 𝑏 · ⟨𝑏⟩ [0,𝜃1 ] · ⟨¬𝑏 · 𝑏⟩+[0,𝜃2 ] · ↓ 𝑏 (4)

𝑡

𝑏

≤ 𝜃1

≤ 𝜃2

Figure 3: Braking Pattern

4 PARAMETRIC MATCH-SET COMPUTATION
In this section, we discuss how to compute parametric match-sets.

As stated in Theorems 10, 15, 16, the match-sets can be represented

using unions of parametric zones or parametric intervals. The ab-

stract procedures for their construction is given in the proofs of

these theorems. In this section we focus on concrete computational

algorithms for performing the required operations: intersection

and concatenation in Subsections 4.1, transitive closure in Subsec-

tion 4.3.

4.1 Binary Operations of PSRE and PE-TRE
We remark that some sub-expressions of PE-TRE have paramet-

ric match-sets that are unions of parametric zones, and all sub-

expressions of PSRE have parametric match-sets that are unions of

parametric zones. Therefore, for both PE-TRE and PSRE the para-

metric match-sets for sub-expressions are represented as unions of

polytopes. We inductively perform binary zone operations (inter-
section and concatenation) over unions of polytopes. The resulting
final match-set for the whole expression will also be a union of

polytopes. A naive implementation of intersection and concate-

nation operations would involve O(𝑛2) of polytope intersections
and sequential compositions respectively. However, if we exploit

the inherent temporal ordering between parametric zones, this can

be avoided. Indeed, using the plane-sweep idea, we need only to

consider pairs of polytopes which potentially overlap. Note that

this idea was also used in [21].

We first define the functions 𝜋+
1
, 𝜋−

1
, 𝜋+

2
, 𝜋−

2
over parametric

zones as below:

𝜋+
1
(z) = {max(𝑡) : (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ z}
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𝜋−
1
(z) = {min(𝑡) : (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ z}

𝜋+
2
(z) = {max(𝑡 ′) : (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ z}

𝜋−
2
(z) = {min(𝑡 ′) : (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ z}

They can be computed using convex optimization over paramet-

ric zones (polytopes). With the values of these functions we can

bound each zone inside a rectangular cylinder over the timed di-

mensions 𝑡, 𝑡 ′. For intersection, Algorithm 1, we sort the lists 𝑍 and

𝑍 ′
according to 𝜋−

1
. We keep two active lists 𝑌 and 𝑌 ′

that contain

the candidates for intersection. Wemove elements one by one to the

active lists and remove them when we deduce that they will not par-

ticipate in further non-empty intersections. We can remove a 𝑧 ∈ 𝑌

if 𝜋+
1
(𝑧) < 𝜋−

1
(𝑧′) for every 𝑧′ ∈ 𝑌 ′

and vice versa. For concatena-

tion, Algorithm 2, we sort 𝑍 by 𝜋−
2
and 𝑍 ′

by 𝜋−
1
. We then compute

all pairs 𝑧◦𝑧′ such that [𝜋−
2
(𝑧), 𝜋+

2
(𝑧)]∩ [𝜋−

1
(𝑧′), 𝜋+

1
(𝑧′)] ≠ ∅. This

means that we discard the combinations where the end interval for

𝑧 ∈ 𝑍 does not intersect the begin interval for 𝑧′ ∈ 𝑍 ′
. Note that

first(Z) denotes the first element of the ordered list Z.

Algorithm 1 INTERSECT(𝑍, 𝑍 ′)
𝑎𝑠𝑠𝑢𝑚𝑒 𝑍, 𝑍 ′ 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝜋−

1

1: for each 𝑧 ∈ 𝑍 do
2: Compute 𝜋+

1
, 𝜋−

1
, 𝜋+

2
, 𝜋−

2

3: for each 𝑧′ ∈ 𝑍 ′ do
4: Compute 𝜋+

1
, 𝜋−

1
, 𝜋+

2
, 𝜋−

2

5: 𝑌 := 𝑌 ′
:= 𝑍 ′′

:= ∅
6: while 𝑍 ≠ ∅ ∨ 𝑍 ′ ≠ ∅ do
7: 𝑧 := first(𝑍 ); 𝑙 := 𝜋−

1
(𝑧)

8: 𝑧′ := first(𝑍 ′); 𝑙 ′ := 𝜋−
1
(𝑧′)

9: if 𝑙 < 𝑙 ′ then
10: Move 𝑧 from 𝑍 to 𝑌

11: 𝑌 ′ = {𝑧′ ∈ 𝑌 ′
: 𝜋+

1
(𝑧′) ≥ 𝑙}

12: for each 𝑧′ ∈ 𝑌 ′ do
13: 𝑧′′ := 𝑧 ∩ 𝑧′ ⊲ Polyhedra intersection

14: 𝑍 ′′
:= 𝑍 ′′ ∪ 𝑧′′ ⊲ Check emptiness before adding

15: else
16: Move 𝑧′ from 𝑍 ′

to 𝑌 ′

17: 𝑌 = {𝑧 ∈ 𝑌 : 𝜋+
1
(𝑧) ≥ 𝑙 ′}

18: for each 𝑧 ∈ 𝑌 do
19: 𝑧′′ := 𝑧 ∩ 𝑧′

20: 𝑍 ′′
:= 𝑍 ′′ ∪ 𝑧′′ ⊲ Check emptiness before adding

21: return 𝑍 ′′

4.2 Binary Operations in PTRE (with
Event-Based Semantics)

All sub-expressions of PTRE (Event-Based) have parametric match

sets that are union of parametric intervals. To efficiently perform

the intersection and concatenation operations over unions of para-

metric intervals, sorting and binary search algorithms can be used.

Given a parametric interval y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ 𝐶𝑦𝐶𝑦𝐶𝑦) we
define the functions 𝜋−

and 𝜋+ as 𝜋− (y) = 𝑑1 and 𝜋+ (y) = 𝑑2
respectively.

Algorithm 2 CONCAT(𝑍, 𝑍 ′)
𝑎𝑠𝑠𝑢𝑚𝑒 𝑍 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝜋−

2
, 𝑍 ′ 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝜋−

1

1: for each 𝑧 ∈ 𝑍 do
2: Compute 𝜋+

1
, 𝜋−

1
, 𝜋+

2
, 𝜋−

2

3: for each 𝑧′ ∈ 𝑍 ′ do
4: Compute 𝜋+

1
, 𝜋−

1
, 𝜋+

2
, 𝜋−

2

5: 𝑌 := 𝑌 ′
:= 𝑍 ′′

:= ∅
6: while 𝑍 ≠ ∅ ∨ 𝑍 ′ ≠ ∅ do
7: 𝑧 := first(𝑍 ); 𝑙 := 𝜋−

2
(𝑧)

8: 𝑧′ := first(𝑍 ′); 𝑙 ′ := 𝜋−
1
(𝑧′)

9: if 𝑙 < 𝑙 ′ then
10: Move 𝑧 from 𝑍 to 𝑌

11: 𝑌 ′ = {𝑧′ ∈ 𝑌 ′
: 𝜋+

1
(𝑧′) ≥ 𝑙}

12: for each 𝑧′ ∈ 𝑌 ′ do
13: 𝑧′′ := 𝑧 ◦ 𝑧′ ⊲ Polyhedra renaming, intersection and

quantifier elimination

14: 𝑍 ′′
:= 𝑍 ′′ ∪ 𝑧′′ ⊲ Check emptiness before adding

15: else
16: Move 𝑧′ from 𝑍 ′

to 𝑌 ′

17: 𝑌 = {𝑧 ∈ 𝑌 : 𝜋+
2
(𝑧) ≥ 𝑙 ′}

18: for each 𝑧 ∈ 𝑌 do
19: 𝑧′′ := 𝑧 ◦ 𝑧′
20: 𝑍 ′′

:= 𝑍 ′′ ∪ 𝑧′′ ⊲ Check emptiness before adding

21: return 𝑍 ′′

For intersection, in Algorithm 3, we sort the second list 𝑅′ us-
ing lexicographical ordering over (𝜋−, 𝜋+). Then, for each para-

metric interval 𝑟 in 𝑅 we perform a binary search on 𝑅′ using
(𝜋− (𝑟 ), 𝜋+ (𝑟 )). After this search, using a simple iteration, we find

the set of parametric intervals 𝑌 that might have a non-empty in-

tersection with 𝑟 . For concatenation, in Algorithm 4, we sort the

second list 𝑅′ using 𝜋−
. Then, for each parametric interval 𝑟 in 𝑅 we

perform binary search on 𝑅′ using 𝜋+ (𝑟 ). Thus, we find the set 𝑌 ′

of parametric intervals that start where 𝑟 ends. The use of sorting

combined with binary search makes the Algorithms 3,4 efficient.

Hence a lot of redundant polytopic operations can be avoided. It is

also important to note that the number of variables involved in the

polytopes is also reduced by two (beginning and ending of intervals

can be stored as constants).

Algorithm 3 INTERVAL_INTERSECTION(𝑅, 𝑅′)
𝑎𝑠𝑠𝑢𝑚𝑒 𝑅′ 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 (𝜋−, 𝜋+) 𝑙𝑒𝑥𝑖𝑐𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙𝑙𝑦
1: 𝑅′′ := ∅
2: for each 𝑟 ∈ 𝑅 do
3: (𝑙, 𝑙 ′) := (𝜋− (𝑟 ), 𝜋+ (𝑟 ))
4: 𝑌 = {𝑧 ∈ 𝑅′ : (𝜋− (𝑧) = 𝑙) ∧ (𝜋+ (𝑧) = 𝑙 ′)} ⊲ using binary

search

5: for each 𝑧 ∈ 𝑌 do
6: 𝑧′′ := 𝑟 ∩ 𝑧′

7: 𝑅′′ := 𝑅′′ ∪ 𝑧′′

8: return 𝑅′′
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Algorithm 4 INTERVAL_CONCAT(𝑅, 𝑅′)
𝑎𝑠𝑠𝑢𝑚𝑒 𝑅′ 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝜋−

𝑅′′ := ∅
for each 𝑟 ∈ 𝑅 do

𝑙 ′ := 𝜋+ (𝑟 )
𝑌 ′ = {𝑧 ∈ 𝑅′ : 𝜋− (𝑧) = 𝑙 ′} ⊲ using binary search

for each 𝑧 ∈ 𝑌 ′ do
𝑧′′ := 𝑟 ◦ 𝑧′
𝑅′′ := 𝑅′′ ∪ 𝑧′′

return 𝑅′′

4.3 Transitive Closure for Kleene Star
For computing the transitive closure (required for matching Kleene

star) over both a union of parametric zones and a union of paramet-

ric intervals, we can directly use the squaring based algorithm given

in [21] (see Appendix A), by choosing the concatenation operation

specific to unions of parametric zones or of parametric intervals

described in Subsections 4.1 and 4.2.

5 PARAMETRIC IDENTIFICATION FOR PSRE
In this section we deal with a PSRE parametric identification prob-

lem stated as follows: given labelled signals, find parameter values

in a PSRE that produce the matches corresponding to the labels.

A computational problem arises when the expression contains

atomic predicates of form 𝑥 ≤ 𝑞 or 𝑥 ≥ 𝑞with themagnitude param-

eter 𝑞. For a given signal𝑤 , the parametric match-setsM(𝑥 ≤ 𝑞,𝑤)
and M(𝑥 ≥ 𝑞,𝑤) contain a number of parametric zones approxi-

mately equal to the number of samples in 𝑤 , which can be large

in practice. Unlike STL that involves absolute time, TRE is more

specific to relative time and we can thus exploit this specificity to

decompose the signal horizon into non-overlapping time intervals

and then perform the computation separately on each interval. To

explain this idea, we first need the concept of decisive region.

5.1 Decisive Regions
Let us assume we are given a PSRE𝜓 over magnitude parameters 𝑞

and timing parameters 𝑠 . The expression𝜓 is defined over a signal

𝑤 . We use vectors 𝑢 and 𝑣 to represent the parametric valuations

for magnitude and timing parameters respectively. Given a time

interval 𝐼 = [𝑎, 𝑏], the decisive region D(𝐼 ) corresponding to the
interval 𝐼 is defined as follows:

D(𝐼 ) := {(𝑡, 𝑡 ′, 𝑢, 𝑣) : (𝑎 ≤ 𝑡) ∧ (𝑡 ′ ≤ 𝑏) ∧ (𝑡 ≤ 𝑡 ′)}

The aim is to compute the intersection of the parametric match-set

for𝜓 and𝑤 with the decisive region, that isM(𝜓,𝑤) ∩ D(𝐼 ).
As an illustration we show in Figure 4 interval 𝐼1 with the cor-

responding decisive region D(𝐼1) in green. Consider Interval 𝐼𝑜𝑢𝑡
which is outside D(𝐼1). It goes to the left by left concatenation and

upwards for right concatenation, to points 𝐼𝑙𝑐 and 𝐼𝑟𝑐 respectively.

It becomes clear that the intervals outside the decisive region can

never come inside it by application of concatenation operation.

Therefore, we can safely ignore the points outside the decisive

region.

Now, we show some equivalences that will allow us to compute

the above intersection efficiently in an inductive manner. Let us

𝑡

𝑡 ′

𝐼1

𝐼𝑜𝑢𝑡𝐼𝑙𝑐

𝐼𝑟𝑐

D(𝐼1)

Figure 4: Points outside will be pushed further outside with
concatenation

consider the PSRE 𝜑1,𝜑2. It is easy to see that

M(𝜑1∨𝜑2,𝑤) ∩D(𝐼 ) = (M(𝜑1,𝑤) ∩D(𝐼 )) ∪ (M(𝜑2,𝑤) ∩D(𝐼 ));

M(𝜑1∧𝜑2,𝑤) ∩D(𝐼 ) = (M(𝜑1,𝑤) ∩D(𝐼 )) ∩ (M(𝜑2,𝑤) ∩D(𝐼 ));
M(⟨𝜑1⟩𝐼 ,𝑤) ∩ D(𝐼 ) = (M(𝜑1,𝑤) ∧ D(𝐼 ))∩
{(𝑡, 𝑡 ′, 𝑢, 𝑣) : 𝑡 ′ − 𝑡 ∈ 𝐼𝑢,𝑣};

Now for the final case of 𝜑1 · 𝜑2, we need to prove the equality

M(𝜑1 · 𝜑2,𝑤) ∩ D(𝐼 ) =
(M(𝜑1,𝑤) ∩ D(𝐼 )) ◦ (M(𝜑2,𝑤) ∩ D(𝐼 )) ∩ D(𝐼 );

The following inclusion is straightforward:

(M(𝜑1,𝑤) ∩ D(𝐼 )) ◦ (M(𝜑2,𝑤) ∩ D(𝐼 )) ∩ D(𝐼 ) ⊆
M(𝜑1 · 𝜑2,𝑤) ∩ D(𝐼 );

Let (𝑡0, 𝑡 ′
0
, 𝑢, 𝑣) ∈ M(𝜑1 · 𝜑2,𝑤) ∩ D(𝐼 ). This implies there ex-

ists 𝑡 ′′
0
such that (𝑡0, 𝑡 ′′

0
, 𝑢, 𝑣) ∈ M(𝜑1) and (𝑡 ′′

0
, 𝑡 ′
0
, 𝑢, 𝑣) ∈ M(𝜑2).

Since (𝑡0, 𝑡 ′
0
, 𝑢, 𝑣) ∈ D(𝐼 ) it implies that (𝑡0, 𝑡 ′′

0
, 𝑢, 𝑣) ∈ D(𝐼 ) and

(𝑡 ′′
0
, 𝑡 ′
0
, 𝑢, 𝑣) ∈ D(𝐼 ). Therefore, the following inclusion is also true:

M(𝜑1 · 𝜑2,𝑤) ∩ D(𝐼 ) ⊆
(M(𝜑1,𝑤) ∩ D(𝐼 )) ◦ (M(𝜑2,𝑤) ∩ D(𝐼 )) ∩ D(𝐼 );

which establishes the equality we need to prove. □
Now, we consider how to efficiently computeM(𝜓,𝑤) ∩ D(𝐼 ).

Note that the intersection with the decisive region trickles right

down to the leaves of the parse tree till it reaches the atomic pred-

icates. Using the four aforementioned equivalences, to compute

M(𝜓,𝑤) ∩D(𝐼 ) we only need to handleM(𝑥 ≤ 𝑝,𝑤) ∩D(𝐼 ). We

can see now the interest of the concept of decisive region since the

number of parametric zones to consider is reduced to the number

of samples in the part of the signal between time units 𝑎 and 𝑏 i.e. in

𝑤 [𝑎, 𝑏]. This is particularly useful when the signal𝑤 is very large.

5.2 Parametric Identification using Decisive
Regions

We consider the following scenario: signals with labelled intervals

are provided to us by some expert, (e.g. temperature records and

heat waves, road traffic records and dangerous overtakings, etc.).

Our aim is to automatise the labelling of the signal (e.g. finding

heat waves in unlabelled temperature curves) by pattern matching.

To do so, we try to find (aka. identify) parameter valuations for a
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given parametric formula so that matches of the formula over the

signals corresponds to the labelled intervals of the expert.

Given a PSRE 𝜓 , a signal 𝑤 and a list I of 𝑛 intervals 𝐼1 =

[𝑎1, 𝑏1], . . . , 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛], we want to compute the set of parame-

ters that produce a match at each of these 𝑛 intervals that is the set

P(𝜓,𝑤,I) of all (𝑢, 𝑣) such that∧
1≤𝑘≤𝑛

(∃𝑡, 𝑡 ′ (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ M(𝜓,𝑤) ∧ 𝑡 = 𝑎𝑘 ∧ 𝑡 ′ = 𝑏𝑘 )}

We call P(𝜓,𝑤,I) the solution set of 𝜓 , 𝑤 and I. Note that

(𝑡, 𝑡 ′, 𝑢, 𝑣) ∈ M(𝜓,𝑤)∧𝑡 = 𝑎𝑘∧𝑡 ′ = 𝑏𝑘 is equivalent to (𝑡, 𝑡 ′, 𝑢, 𝑣) ∈
(M(𝜓,𝑤) ∩ D(𝐼𝑘 )) ∧ 𝑡 = 𝑎𝑘 ∧ 𝑡 ′ = 𝑏𝑘 . Therefore, the previously

described concept of decisive region can be applied for parametric

identification.

5.3 Combining Booleanization and Parametric
Matching

While the concept of decisive region can help reducing the number

of parametric zones to be handled at a time, this number can still

be large, often due to the magnitude parameters. In order to further

reduce time complexity, it is of interest to separate magnitude pa-

rameters and performmatching expressions containing only timing

parameters. This can be done by Booleanizing the signals where the

Booleanization involves magnitude variables. Such Booleanization

can be done using various operations over signals. In this work,

we illustrate the use of extended STL [8] which is particularly ap-

propriate for this purpose since this formalism allows expressing

quantitatively shapes of signals. Indeed, combining with this speci-

fication language we can avoid the use of magnitude parameters in

several cases. For instance to detect a peak with unknown height

one could be tempted to use a magnitude parameter 𝜃 and write

𝑥 ≥ 𝜃 . With extended STL it suffices to detect the maximum over a

window as illustrated below. Another example is the stabilisation

of a signal around an unknown value 𝜃 within a tolerance 𝜖 , that is,

𝜃−𝜖 ≤ 𝑥 ≤ 𝜃+𝜖 . We can avoid the use of themagnitude parameter 𝜃

by saying that the difference between the maximum and minimum

on a window 𝐼 is within the tolerance 𝜖 , that is, max

𝐼
𝑥 −min

𝐼
𝑥 ≤ 𝜖 .

In Figure 2, the ECG pulse is shown as having a maximum be-

tween two minima. We can Booleanize an ECG signal 𝑥 to get two

Boolean signals 𝑏𝑚𝑎𝑥 , 𝑏𝑚𝑖𝑛 for the approximate maximum and

minimum respectively using the operators defined in [8] as below:

(𝑏𝑚𝑎𝑥 := max

[−150,150]
𝑥 − 𝑥 ≤ 0.05), (𝑏𝑚𝑖𝑛 := 𝑥 − min

[−10,10]
𝑥 ≤ 0.05)

(5)

The Boolean signals 𝑏𝑚𝑎𝑥 and 𝑏𝑚𝑖𝑛 are true at time points where

there are approximate maxima and minima respectively. More pre-

cisely, 𝑏𝑚𝑎𝑥 is true at time points where the current value is within

0.05 of the maximum value in the time interval [−150, 150] around
it. Similarly, 𝑏𝑚𝑖𝑛 is true at time points where the current value

is within 0.05 of the minimum value in the time interval [−10, 10]
around it. Now we have an abstraction of an ECG in the form of

𝜙10 (see Expr (6)).

𝜙10 := 𝑏𝑚𝑖𝑛 · ⟨true⟩ [0,𝜃1 ] · 𝑏𝑚𝑎𝑥 · ⟨true⟩ [0,𝜃2 ] · 𝑏𝑚𝑖𝑛 (6)

6 EXPERIMENTAL RESULTS
We implemented the algorithms discussed in Section 4 in C++, into a

tool named parameTRE.We represent parametric zones as polytopes.

Parametric intervals are represented as a specialized C++ class with

the beginning and end of the interval stored as member variables.

Constraints on parameters are stored as a member polytope. For

PSRE and PE-TRE, we maintain a parametric match set as a union

of polytopes. For event-based PTRE, we maintain it as a union of

parametric intervals. To handle polytopes, the tool uses the Parma

Polyhedra Library (PPL) [7]. We evaluate the performance of the

tool using various kinds of expressions, signals and timed words. All

experiments have been performed on a laptop with a Core i7-8665U

and 16GB RAM. We first show experimental results for synthetic

examples to evaluate the correctness of the implementation and the

performance of the proposed algorithms. Then, we show how we

can match or detect interesting behaviours in real-life scenarios.

6.1 Synthetic Examples
We first describe the data (signals and timed words) and expressions

we are dealing with and then give the experimental results.

6.1.1 Signals and Timed Words. We use four different types of

signals and a single timedword. The signal𝑤𝑠𝑦𝑛𝑡ℎ
1
for𝜙1 (Expr (1))

consists of signal 𝑝 which is a square wave of period 14 and 𝑞 which

is 𝑝 shifted by 3 time units. Both 𝑝 and 𝑞 are repeated 1000 times.

The signal𝑤𝑏𝑟𝑎𝑘𝑒 for 𝜙4 (Expr (4)) consists of the signal 𝑏 which

represents the braking pattern. The signal𝑤𝑠𝑦𝑛𝑡ℎ
2
for 𝜙5 (Expr (7))

consists of signal 𝑝0 which is a square wave of period 200 time units.

We get 𝑝1 and 𝑝2 by shifting 𝑝0 by 35 and 45 time units respectively.

All of 𝑝0, 𝑝1 and 𝑝2 are repeated 1000 times. The timed word𝑤𝑜𝑟𝑑1
for 𝜙6 (Expr (8)) consists of alternating occurrences of 𝑏 and 𝑎 with

a total of around 1000 events.

6.1.2 Expressions. The expressions 𝜙1 and 𝜙4 have already been

discussed in Sections 1 and 3. The expressions𝜙5 and𝜙6 given below

are simple examples of Kleene closure operation for state-based

and event-based paradigms respectively.

𝜙5 := 𝑝0 · (⟨𝑝1⟩𝜃1 · ⟨𝑝2⟩𝜃2 )
+

(7)

𝜙6 := ⟨𝑎 · ⟨𝑏 · 𝑎⟩∗[𝜃2,𝜃3 ] · 𝑏⟩𝜃1
(8)

The experimental results are summarized in Table 1. The column

“Data" gives the type of the signal or timed word. The column “Size"

expresses the number of samples for signals and number of events

for timed words. The column “Matches" expresses the number of

parametric zones in a match-set. The “Time" column gives the total

time taken to find matches in the given data. In Table 1 and also in

Table 2, we mentioned the number of parametric zones/intervals in

the column “Matches” since it can serve as an empirical measure of

geometric complexity of match sets.

A parametric zone in the parametric match set for 𝜙1 and

𝑤𝑠𝑦𝑛𝑡ℎ
1
is: (𝑡 ′ −𝜃2 = 3) ∧ (𝑡 +𝜃1 = 7) ∧ (𝜃3 ≤ 4) ∧ (𝑡 ′ ≤ 10) ∧ (𝑡 ≤

3) ∧ (𝜃3 ≥ 1) ∧ (𝑡 ≥ 0) ∧ (𝑡 ′ ≥ 7).
Another parametric zone which comes from the parametric

match set for𝜙5 and𝑤𝑠𝑦𝑛𝑡ℎ2: (𝜃1 ≥ 1)∧(𝜃2 ≥ 1)∧(𝜃2 ≤ 100)∧(𝑡 ≥
20)∧(𝑡 ′ ≤ 200)∧(𝑡 ′−𝑡−𝜃1−𝜃2 ≥ 0)∧(𝑡 ′−𝜃2 ≤ 135)∧(𝑡 ′−𝜃1−𝜃2 ≤
120) ∧ (𝑡 ′ − 𝜃2 ≥ 45) ∧ (𝑡 ′ − 𝜃1 − 𝜃2 ≥ 35).
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Expression Data Size Matches Time

𝜙1 (Expr 1) 𝑤𝑠𝑦𝑛𝑡ℎ
1

4000 1000 90s

𝜙4 (Expr 4) 𝑤𝑏𝑟𝑎𝑘𝑒 16 9 1.3s

𝜙5 (Expr 7) 𝑤𝑠𝑦𝑛𝑡ℎ
2

6000 8000 87s

𝜙6 (Expr 8) 𝑤𝑜𝑟𝑑1 1002 125251 77s

Table 1: Experiments With Synthetic Data

6.2 Real-Life Scenarios
We now describe how we can use PSRE to find matches for real-life

behaviours of interest. Electrocardiogram is a simple test that can

be used to check the heart’s rhythm and electrical activity. The

signals 𝑤𝑒𝑐𝑔205, 𝑤𝑒𝑐𝑔221 and 𝑤𝑒𝑐𝑔123 correspond to the Electro-

cardiograms (ECG) 205, 221 and 123 respectively taken from the

MIT-BIH Arrhythmia Database [16, 20]. First, we consider the prob-

lems of matching and parametric identification for ECG pulses.

Then, we show how we can utilize Booleanization of signals to

aid with PSRE matching. Finally, we describe how we can detect

marine traffic rule violations involving ships crossing each other.

6.2.1 Matching ECG Pulses Using Expression With Only Timing
Parameters. Consider 𝜙2 (Expr (2)) that has only timing parameters.

The ECG signals are denoted by the symbol 𝑥 in 𝜙2. The experi-

mental results for matching of 𝜙2 for the three ECG signals are in

Table 2. The “Error” column in Table 2 gives an estimate of the error

involved when detecting ECG pulses using 𝜙2 when compared to

an expert doctor.

Expression Data Size Matches Time Error

𝜙2 (Expr 2) 𝑤𝑒𝑐𝑔205 650000 2646 9s 2.83%

𝜙2 (Expr 2) 𝑤𝑒𝑐𝑔221 650000 2638 9s 23%

𝜙2 (Expr 2) 𝑤𝑒𝑐𝑔123 650000 1518 9s 0.2%

Table 2: ECG Matching Experiments

Aparametric zone in the parametric match set for𝜙2 and𝑤𝑒𝑐𝑔205
is: (𝑡 + 𝜃1 = 227) ∧ (𝜃2 = 6) ∧ (𝑡 ′ − 𝜃3 = 233) ∧ (220 ≤ 𝑡 ≤
226) ∧ (234 ≤ 𝑡 ′ ≤ 283)

Projecting it on to the parameter space gives the following rec-

tangle: (1 ≤ 𝜃1 ≤ 7) ∧ (𝜃2 = 6) ∧ (1 ≤ 𝜃3 ≤ 50). Figure 5 shows
an illustration for 𝜙2 and 𝑤𝑒𝑐𝑔205. We take two points from the

aforementioned rectangle and plot the corresponding matches in

the signal.

6.2.2 Parametric Identification for Labelled ECG-205 ( Mini). Let us
consider the sub-signal𝑤𝑒𝑐𝑔𝑚𝑖𝑛𝑖205 of𝑤𝑒𝑐𝑔205 containing the first

ten pulses.𝑤𝑒𝑐𝑔𝑚𝑖𝑛𝑖205 has the size of 2500 time units. For each of

these ten pulses we are given ten intervals of length 80 time units.

These intervals are denoted by I205. The expressions 𝜙7, 𝜙8 and 𝜙9
(Expressions 9,10,11) have 4, 5 and 6 parameters respectively some

of them being magnitude parameters. We would like to compute the

solution sets for these three expressions with respect to𝑤𝑒𝑐𝑔𝑚𝑖𝑛𝑖205

and I205. The solution sets for all expressions contain exactly 75

polytopes. The computation times for 𝜙7, 𝜙8 and 𝜙9 are 478s, 888s

and 1881s respectively and increase exponentially with the number

of parameters. The original ECG-205 contains around 2000 pulses

and it becomes intractable to do parametric identification for all

these 2000 pulses. Therefore, in the next subsection, to reduce

the time complexity, we use Booleanization of signals as a pre-

processing step, as shown in Subsection 5.3

𝜙7 := ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞2 ] ·
⟨𝑞1 ≤ 𝑥 ≤ 𝑞0⟩ [0,𝑞3 ] · ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞2 ]

(9)

𝜙8 := ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞3 ] ·
⟨𝑞1 ≤ 𝑥 ≤ 𝑞2⟩ [0,𝑞4 ] · ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞3 ]

(10)

𝜙9 := ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞3 ] ·
⟨𝑞1 ≤ 𝑥 ≤ 𝑞2⟩ [0,𝑞4 ] · ⟨−𝑞0 ≤ 𝑥 ≤ 𝑞1⟩ [0,𝑞5 ]

(11)

6.2.3 Booleanization and Matching for ECGs. Booleanization de-

scribed by (5) in Subsection 5.3 has been used to obtain the Boolean

signals 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 . We do matching using 𝜙10 (Expr (6)) in

which the time delay between the first minimum and the maxi-

mum is bounded by the parameter 𝜃1 ∈ [0, 20]. And the time delay

between the maximum and the second minimum is bounded by

𝜃2 ∈ [0, 20]. Note that we have multiple matches per pulse, and the

number of computed matches of 𝜙10 with respect to ECGs 205, 221

and 123 are 8726, 8144 and 1971 respectively computed under 33s,

51s and 29s respectively.

6.2.4 Detecting Marine Traffic Rule Violations on Florida Coast.
Here, we deal with finding marine traffic rule violations when

two ships are crossing each other. We use scenarios from Marine

Cadastre dataset
1
preprocessed

2
by [17]. From the preprocessed

datawe generate Boolean signals denoted by propositional variables

𝑝1 and 𝑝2. The variable 𝑝1 is true at time points when the ego ship

detects a crossing with another ship. The variable 𝑝2 is true at

time points where a maneuver appropriate for crossing scenario is

executed.

𝜙11 := 𝑝1 · (⟨true⟩𝑑𝑡 · ⟨𝑝1⟩𝜃𝑟 −𝑑𝑡 · true ∧ ⟨𝑝2⟩𝜃𝑟+𝜃𝑚 · true)∨
𝑝1 · (⟨true⟩𝑑𝑡 · ⟨𝑝1⟩𝜃𝑟 −𝑑𝑡 · true ∧ ⟨true⟩𝜃𝑟 · ⟨𝑝1⟩2𝜃𝑚 · true)

(12)

We formalise traffic rule violation for crossing ships as match-

ing of 𝜙11 (Expr (12)) where the constant 𝑑𝑡 = 1 is the time step,

parameter 𝜃𝑟 ∈ [6, 20] is the reaction time and 𝜃𝑚 ∈ [6, 20] is the
maneuver time. The expression captures two kinds of rule viola-

tions. The first being that a crossing detection is maintained until

𝜃𝑟 time and no maneuver is observed for the duration of the sum of

reaction time and maneuver time. The second being that a crossing

is detected like before but the crossing situation is maintained for

the duration of twice the maneuver time. The formulation has been

heavily inspired by the STL formula for traffic rule 𝑅3 (related to

crossing ships) in Table 1 of [17]. We introduce parameters 𝜃𝑟 and

𝜃𝑚 as they can serve to estimate the reaction and maneuver time

while matching. We did matching for 370 signals obtained from

scenarios on the Florida coast. Each signal contains two compo-

nents corresponding to crossing and maneuvering represented by

𝑝1 and 𝑝2 respectively. Each signal contains between 100 to 500

time steps. Out of the 370 signals, we detected a violation/matching

1
https://marinecadastre.gov/ais/

2
doi.org/10.24433/CO.8258454.v2
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(6, 6, 40)
(3, 6, 25)

(1, 6, 1)

(7, 6, 50)

(a) Parameter set (rectangle) from matching of 𝜙2 and 𝑤𝑒𝑐𝑔205

(b) (𝑡, 𝑡 ′ ) = (221, 273) for (𝜃1, 𝜃2, 𝜃3 ) = (6, 6, 40) (c) (𝑡, 𝑡 ′ ) = (224, 258) for (𝜃1, 𝜃2, 𝜃3 ) = (3, 6, 25)

Figure 5: Matching ECG-205 signal (𝑤𝑒𝑐𝑔205) with 𝜙2

in one signal and none in the others. The detected violation in-

volves a crossing situation of duration 5 time units followed by no

maneuver for more than 12 time units. This violation is found in

the scenario with the tag USOCEAN_Florida-20190103_7_T-1 and

occurs at around 98 time units from the start of the signal. The

matching time combined for all the 370 signals took around 1.26

seconds.

7 RELATEDWORK
The closest work to ours is on PSTL and PTA. First, we compare

with PSTL. We have seen in Subsection 6.2.2 that exact parametric

identification for PSRE containing both magnitude and timing pa-

rameters is intractable except for very small signals. Similarly, for

PSTL, solving the parametric identification problem exactly is in-

surmountably difficult except for small signals. For PSTL, to reduce

the complexity of the problem, two alternative approaches have

been explored. The first approach involves making the assumption

that the PSTL formulae are monotonic and exploit it to efficiently

compute approximate validity domains as in [6, 13]. The second

approach is to restrict the focus to formulae with only magnitude

parameters and utilize specialized algorithms as in [9]. Both these

approaches can be modified and applied also to PSRE but we leave

this to future work. A comprehesive survey on methods for para-

metric identification for PSTL and general approaches that learn

the structure as well as parameter values of STL formulae can be

found in [12].

Now, we compare with PTA. Similar to 𝜙6 (Expr (8)) is the

BLOWUP PTA from [3]. For this example, using parametric in-

tervals, we could outperform their approach. PTRE matching takes

77s whereas matching with BLOWUP PTA has been reported to

take 940.74s in [3]. PTRE (event-based) is strictly less expressive

than PTA. On the other hand, parametric timed pattern matching

of [25] does not handle state-based semantics and magnitude pa-

rameters while PSRE does. We defer to future work, automated

translation and comprehensive comparison of PTRE and PTA. If we

consider event-based semantics, matching is faster using PTRE than

PTA. The reason is that handling parametric intervals with sorting

and binary search in the matching algorithms is more time-efficient

than handling parameters and variables in the same polytopic space.

Finally, in terms of usage, PSTL and PTA have their own advantages.

PSTL easily supports notions of false positive and negatives while

PTA is more expressive than PTRE.

8 CONCLUSION AND FUTUREWORK
In this paper, we explore parametric versions of different types of

timed regular expressions. We show that the parametric match sets

can be computed and represented using parametric zones and para-

metric intervals, which can be seen as two particular types of poly-

topes that can be handled more efficiently than general polytopes.

Indeed, the constraints over time variables in these polytopes have a

simple form. To perform operations on unions of parametric zones,

we slightly modify the existing algorithms for non-parametric case.

For operations on unions of parametric intervals, we devise effi-

cient algorithms that have a number of polyhedral operations either

log-linear in input or linear in output. As experimental results, we

first deal with various synthetic examples. And then, we present

real-life scenarios involving matching/parametric identification of

Electrocardiogram (ECG) pulses and detecting marine traffic rule

violations by ships.

As future work, atomic predicates involving integrals of the form∫ 𝑡 ′

𝑡
𝑥 .𝑑𝑡 ≤ 𝑐 can be introduced. Consider the expression ⟨𝜑⟩ [2−𝛿,3] ,

we can examine how inserting timing parameters like 𝛿 is related

to measuring timed robustness [10]. Additionally, we can restrict

the scope to expressions with only magnitude parameters and ef-

ficiently handle them using a data structure that combines zones

and boxes. Finally, we can explore how parametric identification

of PSRE with monotonicity property can be efficiently performed

using queries as it has been done for PSTL in [6, 13].
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A TRANSITIVE CLOSURE
Here, we present the incremental and squaring methods for com-

puting the transitive closure in Algorithms 5 and 6 respectively.

Algorithm 5 CLOSURE(𝑍 ) 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙

1: 𝑋 := 𝑍

2: 𝑌 := CONCAT(𝑍, 𝑍 )
3: while 𝑌 @ 𝑋 do
4: 𝑋 := 𝑌 ∪ 𝑋

5: 𝑌 := CONCAT(𝑌, 𝑍 )
6: return 𝑋

Algorithm 6 CLOSURE2(𝑍 ) 𝑠𝑞𝑢𝑎𝑟𝑖𝑛𝑔
1: 𝑋 := 𝑍

2: 𝑌 := CONCAT(𝑍, 𝑍 )
3: while 𝑌 @ 𝑋 do
4: 𝑋 := 𝑌 ∪ 𝑋 ∪ CONCAT(𝑌,𝑋 )
5: 𝑌 := CONCAT(𝑌,𝑌 )
6: return 𝑋

B PROOFS OF CHARACTERIZATION OF
PARAMETRIC MATCH-SETS

Theorem (Theorem 15 (recap)). For a timed word the parametric
match-set of a PTRE is a finite union of parametric intervals.

Proof. Let y
1
:= (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ 𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) and y

2
:= (𝑡 =

𝑒1 ∧ 𝑡 ′ = 𝑒2 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 ) be two parametric intervals where 𝑑1, 𝑑2, 𝑒1, 𝑒2
are constants. We prove the theorem by considering the various

cases in the definition of PTRE.

For 𝑎 and 𝜖 , one can see that there exist a finite number of

intervals in the match set.

If we apply duration restriction operation ⟨𝜑⟩ [𝛼,𝛽 ] on y
1
the

resulting parametric interval y can be written as follows,

y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ 𝛼 ≤ 𝑡 ′ − 𝑡 ≤ 𝛽 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 )
It can be further simplified as,

y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ (𝛼 ≤ 𝑑2 − 𝑑1 ≤ 𝛽 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ))
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Finite unions of parametric intervals are closed under Boolean

and concatenation operations. For concatenation operation 𝜑 ·𝜓 ,
let us consider the sequential composition y := y

1
◦ y

2
,

y := ∃𝑡 ′′ · (𝑡 = 𝑑1 ∧ 𝑡 ′′ = 𝑑2 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) ∧ (𝑡 ′′ = 𝑒1 ∧ 𝑡 ′ = 𝑒2 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 )
The resulting parametric interval y is non-empty only when

𝑑2 = 𝑒1. We can further simplify the equation for the resulting y as

follows:

y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑒2 ∧ (𝐶𝑦1𝐶𝑦1𝐶𝑦1 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 ))
For intersection operation 𝜑 ∧𝜓 , let us consider y := y

1
∩ y

2
,

i.e.,

y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) ∧ (𝑡 = 𝑒1 ∧ 𝑡 ′ = 𝑒2 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 )
The resulting parametric interval y is non-empty only when

𝑑1 = 𝑒1 and 𝑑2 = 𝑒2. For this case, we can further simplify the

equation for y as follows: y := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ (𝐶𝑦1𝐶𝑦1𝐶𝑦1 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 ))
For union operation 𝜑 ∨𝜓 , we simply concatenate the two lists

of parametric intervals that correspond to the expressions.

For the case of Kleene star the reasoning to show that the match

set is finite union of parametric intervals is as follows. Let us con-

sider a timed word 𝜔 = 𝑡1𝑎1 ...𝑡𝑛𝑎𝑛 . From the semantics in Def-

inition 14 it follows that for any parametric interval 𝑦1 := (𝑡 =

𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) the start value 𝑡 = 𝑑1 and the end value 𝑡 = 𝑑2
both take values only from {𝑡1, ..., 𝑡𝑛}. They cannot take values in

the dense space in between these discrete points. From this it fol-

lows that the number of possible values for (𝑡, 𝑡 ′) in the parametric

match-set is at most quadratic in 𝑛. The exception is when one of

the parametric intervals involved in sequential composition is of

time length zero. Let us assume that in the sequential composition,

the first parametric interval is 𝑦1 := (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) and
the second one 𝑦2 := (𝑡 = 𝑑2 ∧ 𝑡 ′ = 𝑑2 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 ) is of time length zero.

It follows that y := y
1
◦ y

2
:= (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ (𝐶𝑦1𝐶𝑦1𝐶𝑦1 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 )). One

can notice that y ⊆ y
1
. So, y can be safely ignored when computing

the transitive closure. Similar reasoning also applies when y
1
is of

time length zero. Therefore, the parametric match-set for Kleene

star contains a finite number of parametric intervals. □

Theorem (Theorem 16 (recap)). For Boolean, piecewise linear
and piecewise constant signals the parametric match-set of PE-TRE is
always a finite union of parametric intervals.

Proof. Let y
1
= (𝑡 = 𝑑1 ∧ 𝑡 ′ = 𝑑2 ∧ 𝐶𝑦1𝐶𝑦1𝐶𝑦1 ) and y

2
= (𝑡 =

𝑒1 ∧ 𝑡 ′ = 𝑒2 ∧𝐶𝑦2𝐶𝑦2𝐶𝑦2 ) be two parametric intervals where 𝑑1, 𝑑2, 𝑒1, 𝑒2
are constants. Let z = (𝑡 ≺ 𝑐1) ∧ (𝑡 ′ ≺ 𝑐2) ∧ (𝑡 ′ − 𝑡 ≺ 𝑐3) ∧ (𝑐4 ≺
𝑡 ′ − 𝑡) ∧ (𝑐5 ≺ 𝑡 ′) ∧ (𝑐6 ≺ 𝑡) ∧𝐶𝑧𝐶𝑧𝐶𝑧 be a parametric zone. We prove

the theorem by considering the various cases in the definition of

PE-TRE.

For ↑ 𝑝 , given a Boolean signal 𝑝 , there exists a finite number of

time points with a rising edge. One can see that these time points

can be represented as parametric intervals.

For 𝜓1 · 𝜑 ·𝜓2, we iterate and perform sequential composition

operation over y
1
∈ M(𝜓1,𝑤), z ∈ M(𝜑,𝑤) and y

2
∈ M(𝜓2,𝑤),

where𝑤 is a signal, y
1
,y
2
are parametric intervals and z is a para-

metric zone. The sequential composition y
1
◦ z ◦ y

2
can be written

as:

∃𝑠, 𝑠′ · 𝑡 = 𝑑1 ∧ 𝑠 = 𝑑2 ∧𝐶𝑦1𝐶𝑦1𝐶𝑦1 ∧ (𝑠 ≺ 𝑐1) ∧ (𝑠′ ≺ 𝑐2) ∧ (𝑠′ − 𝑠 ≺
𝑐3) ∧ (𝑐4 ≺ 𝑠′−𝑠) ∧ (𝑐5 ≺ 𝑠′) ∧ (𝑐6 ≺ 𝑠) ∧𝐶𝑧𝐶𝑧𝐶𝑧 ∧𝑠′ = 𝑒1∧𝑡 ′ = 𝑒2∧𝐶𝑦2𝐶𝑦2𝐶𝑦2

One can see that, after performing quantifier elimination over 𝑠

and 𝑠′ the result will be a parametric interval.

For𝜓1 ∪𝜓2, we simply concatenate the two lists of parametric

intervals that correspond to 𝜓1 and 𝜓2. And for 𝜓1 ∩ 𝜑 , we need

to perform intersection of a parametric interval with a parametric

zone. One can easily see that the result of this intersection is also a

parametric interval. □
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