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Introduction

Ever increasing demand of device miniaturization and low power consumption has led to shift in the research interest from conventional storage technology towards low dimensional magnetic solitons, viz. chiral domain walls, magnetic vortices, skrymions [START_REF] Skyrme | A unified field theory of mesons and baryons[END_REF], etc. Skyrmionics has drawn significant research interest in nanotechnology because of its potential in future magnetic logic and memory devices due to their topological protection, small size, and the ability to set them into motion with significantly smaller threshold current density [START_REF] Fert | Skyrmions on the track[END_REF][START_REF] Finocchio | Magnetic skyrmions: From fundamental to applications[END_REF]. Skyrmions may be used for the development of the futuristic neuromorphic and probabilistic based computers [START_REF] Zázvorka | Thermal skyrmion diffusion used in a reshuffler device[END_REF][START_REF] Song | Skyrmion-based artificial synapses for neuromorphic computing[END_REF][START_REF] Jena | Elliptical bloch skyrmion chiral twins in an antiskyrmion system[END_REF].

1 Topological textures in 2-dimensional media, like skyrmions [START_REF] Skyrme | A unified field theory of mesons and baryons[END_REF][START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF], can be classified based by a winding number (W ), an integer that counts the number of times the local magnetization rotates along a closed circuit around the texture core. [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF][START_REF] Chen | Skyrmion hall effect[END_REF]. Considering the texture core polarity p, the topological charge S is defined as S = pW [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF]. It should be noted that W = 1 represents a skyrmion , whereas it is -1 for an antiskyrmion (see fig 1) [START_REF] Camosi | Micromagnetics of antiskyrmions in ultrathin films[END_REF]. These textures are stabilized by various interactions such as (i) Dzyaloshinskii-Moriya interaction (DMI) [START_REF] Dzyaloshinsky | A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics[END_REF][START_REF] Moriya | Anisotropic superexchange interaction and weak ferromagnetism[END_REF][START_REF] Fert | Role of anisotropic exchange interactions in determining the properties of spin-glasses[END_REF], (ii) Heisenberg (frustrated) exchange [START_REF] Okubo | Multiple-q states and the skyrmion lattice of the triangular-lattice heisenberg antiferromagnet under magnetic fields[END_REF] (iii) dipolar coupling [START_REF] Lin | Bubble domains in magnetostatically coupled garnet films[END_REF][START_REF] Garel | Phase transitions with spontaneous modulation-the dipolar ising ferromagnet[END_REF] (iv) four spin exchange [START_REF] Heinze | Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions[END_REF] etc. Further these magnetic textures may have different size and energetically favored configurations [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF].

Skyrmions and antiskyrmions can be stabilized in a magnetic film in the presence of isotropic and anisotropic DMI, respectively [START_REF] Camosi | Micromagnetics of antiskyrmions in ultrathin films[END_REF][START_REF] Binz | Theory of the helical spin crystal: A candidate for the partially ordered state of mnsi[END_REF][START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF][START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF][START_REF] Yu | Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege[END_REF][START_REF] Yu | Skyrmion flow near room temperature in an ultralow current density[END_REF]. In most thin film systems, the DMI is isotropic due to the polycrystalline nature of the ferromagnetic (FM) films. Such situation leads to formation of skyrmions with a well defined chirality. In order to stabilize antiskyrmion the DMI should have opposite sign along two perpendicular directions of the film plane [START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF][START_REF] Camosi | Micromagnetics of antiskyrmions in ultrathin films[END_REF]. To incorporate an anisotropic DMI, low symmetry materials are required with two anisotropy axes, that can be obtained using expitaxial films [START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF][START_REF] Hoffmann | Antiskyrmions stabilized at interfaces by anisotropic dzyaloshinskiimoriya interactions[END_REF]. Exchange frustration, for example in the J 1 -J 2 -J 3 classical Heisenberg model (with J 1 J 2 < 0), has been shown to be a solution to enable, skyrmions and antiskyrmions as well as high topological charge (|W | > 2) solutions in the same film [START_REF] Okubo | Multiple-q states and the skyrmion lattice of the triangular-lattice heisenberg antiferromagnet under magnetic fields[END_REF]. However, this situation is rather specific to a limited combination of materials and can hardly be generalized. On the other hand, topology of a skyrmion/antiskyrmion leads to the gyrotropic force, that acts on the moving skyrmion, pointing perpendicular to its velocity [START_REF] Hoffmann | Skyrmion hall effect[END_REF]. This deviates the path of the skyrmion towards the edge of the nanotrack and this phenomenon is referred as the skyrmion Hall effect (SkHE) [START_REF] Jiang | Direct observation of the skyrmion hall effect[END_REF][START_REF] Litzius | Skyrmion hall effect revealed by direct time-resolved x-ray microscopy[END_REF]. In a synthetic antiferromagnet (an antiferromagnetically exchange-coupled FM bilayer) nanotrack, this SkHE could be suppressed without affecting the topology of the skyrmion [START_REF] Zhang | Control and manipulation of a magnetic skyrmionium in nanostructures[END_REF][START_REF] Zhang | Antiferromagnetic skyrmion: Stability, creation and manipulation[END_REF][START_REF] Göbel | Antiferromagnetic skyrmion crystals: Generation, topological hall, and topological spin hall effect[END_REF].

In this work, we have considered a bilayer synthetic antiferromagnet (SAF) with top and bottom layers consisting of anisotropic and isotropic DMI, respectively (schematically represented in fig 1).

A bound state, that consists of two coupled textures in each layers, necessarily imply a frustration in the interlayer exchange energy or DMI. This mimics the frustrated Heisenberg exchange discussed earlier. We present coexistence of 6 novel elliptical skyrmionic states with different topological charges as a function of the interlayer coupling.

Methodology

We have performed micromagnetic simulations by using the Object-Oriented Micromagnetic Framework (OOMMF) software [START_REF] Donahue | The object oriented micromagnetic framework (oommf ) project at itl/nist[END_REF]. It solves the time dependent spin dynamics governed by Landau-Lifshitz-Gilbert (LLG) equation. Details about the micromagnetic simulations is discussed in the supplementary information. The system consists of two FM layers antiferromagnetically coupled by Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling. The two layers present the same spontaneous magnetization, isotropic Heisenberg exchange and perpendicular magnetic anisotropy (PMA). In the top layer the DMI constant D iso is isotropic, whereas in the bottom layer the DMI constant has opposite sign along x and y direction, but with the same absolute value D aniso . The spins of top and bottom layers point downward (blue color) and upward (red color) directions, respectively, as shown in fig 1 .     In this work, we have simulated a 100 × 100 × 3 nm 3 sample with a 2 × 2 × 1 nm 3 cell size and open boundary conditions. The 3 nm thickness considered here incorporates 1 nm thick top and bottom magnetic layers and 1 nm thick metallic spacer layer to introduce RKKY coupling.

The simulation parameters are spontaneous magnetization M S = 1.2 × 10 6 A/m, exchange constant A = 16 × 10 -12 J/m, PMA K = 0.16 × 10 5 J/m 3 and Gilbert damping constant α = 0.1. In the bottom layer the DMI is isotropic with a strength D iso = 0.0025 J/m 2 . In the bottom layer, the DMI is anisotropic with a stength D aniso = 0.0025 J/m 2 along x and -D aniso along y. These parameters are similar to the values taken in reference [START_REF] Camosi | Micromagnetics of antiskyrmions in ultrathin films[END_REF]. We have varied the strength of the RKKY interaction J RKKY from -8 × 10 -3 to -1 × 10 -5 J/m 2 . Magnetic configurations have been relaxed solving the LLG equation up to a stopping criterion | dm dt | ≤ 0.001 degree/ns.

Results and discussion

When the top and bottom layers containing their natural textures (i.e. antiskyrmion and skyrmion, respectively) are antiferromagnetically coupled, the interlayer coupling cannot completely be in energetically favourable condition in all directions. Hence, there will be an energy frustration in the system. We have simulated the proposed model to explore the effect of the strength of the RKKY coupling on the textures by relaxing 9 different initial textures combining W = 1, 0 and -1 in both the layers, We have denoted the states as (W bottom , W top ), where W bottom and W top are the winding numbers of the bottom and top layers, respectively.

At low coupling strength, from -8 × 10 -5 to -1 × 10 -5 Jm -2 , the relaxed states show no significant change as compared to the system having no inter-layer coupling. Here, only the formation of skyrmion-antiskyrmion pair was obtained in the two layers.

Nevertheless, in an intermediate coupling range, from -8 × 10 -4 to -2 × 10 -4 Jm -2 , new stable textures were obtained. In this coupling limit, three states: (-1, 1), (0, 1), and (-1, 0), exhibit to texture collapse after relaxation. These states are neither in an energetically favorable condition in terms of the interlayer coupling nor do they satisfy the symmetry of the DMI in their respective layers. The other 6 meta-stable states ((0, 0), (0, -1), (1, 1), (1, -1), (1, 0), and (-1, -1)) are shown in the fig 2. Three states among them ((0, 0), (1, 1), and (-1, -1)) present the same texture in each layer (fig. 2(a-c)), which satisfy the interlayer coupling, however, costs some DMI energy.

It should be noted that surprisingly, a (0, 0) texture is stable, which satisfies none of the DMI symmetries, however is stable solely due to the interlayer coupling, similarly to exchange frustrated systems [START_REF] Rózsa | Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film[END_REF]. Fig. 2(d-f) show the three remaining configuration where textures from the two layers with different winding numbers are coupled. Among them, the (1, -1) texture naturally satisfies The textures obtained after relaxation are elliptical in shape in the presence of interlayer coupling, in contrary to the circular textures in its absence. This can be qualitatively explained since the DMI strength in both layers are the same along the x axis, but have opposite signs along the y axis.

Therefore, an effective DMI is induced in the system due to the interlayer coupling which can be estimated by adding the individual DMI contributions of the two layers. It is maximum along the x axis and minimum along the y axis, leading to an elliptical distortion of the structure. It is noted that, the formation of similar elliptical skyrmions have been observed experimentally in samples with anisotropic DMI [START_REF] Jena | Elliptical bloch skyrmion chiral twins in an antiskyrmion system[END_REF][START_REF] Peng | Real-space observation of a transformation from antiskyrmion to skyrmion by lorentz tem[END_REF]. The emergence of elliptical skyrmions in such systems has been corroborated to either the effect of dipole-dipole interaction [START_REF] Jena | Elliptical bloch skyrmion chiral twins in an antiskyrmion system[END_REF], or to the consequence of in-plane applied magnetic field [START_REF] Peng | Real-space observation of a transformation from antiskyrmion to skyrmion by lorentz tem[END_REF]. In order to understand the mechanism of formation of elliptical textures in this work, we considered three different cases: (i) finite RKKY coupling, zero dipolar coupling; (ii) finite RKKY coupling, finite dipolar coupling; (iii) zero RKKY coupling, finite dipolar coupling. We observe that the occurrence of the elliptical shape depends solely on the presence of a finite RKKY coupling irrespective of the dipolar coupling. Different contribution of the DMI energies i.e E Diso , E Daniso , and E Dtotal for all the six energetically favorable states have been extracted from the simulations and are presented in fig 3(a-c). We observe a three fold degeneracy in total energy (E T otal ) among the (0, 0), (1, 1) and (-1, -1) states.

Further, a two fold degeneracy is also observed between (0, -1) and (1, 0) states. Fig. 3(d) shows the degenerate energy levels arising from the sole contribution of RKKY coupling.

In order to check the validity of our discussion in the intermediate coupling limit, we have performed a systematic scan of DMI and K values where stable textures can be obtained. Fig 4 shows the acceptable range of DMI and K values for J RKKY = -8 × 10 -4 J/m 2 . The blue circles and red crosses represent the set of DMI and K where the textures are stable and not-stable, respectively. In our work, we have chosen a value of DMI and K which can stabilize the textures and are experimentally realized in real samples.

In a strong coupling limit (J RKKY from -8 × 10 -3 to -2 × 10 -3 Jm -2 ), we have also observed It is well known that the SkHE is suppressed in SAF systems. In this context, we have studied the dynamics of the (0, 0) state under spin transfer toque. We observed a maximum velocity of 1700 m/s at a current density of 8 × 10 12 A/m 2 with zero SkHE(refer to supplementary figure S2). The velocity of the skyrmions exhibit a linear behavior with the applied current density, indicating the flow regime. The details can be found in the supplementary information.

conclusion

We have successfully modelled a SAF thin film system in which equivocation in DMI interaction between two antiferromagnetically coupled layers leads to spin frustration in both the FM layers. We have studied three different: (i) low (ii) intermediate and (iii) strong RKKY coupling limits. When the RKKY coupling strength is very low, no sign of frustration in the system has been observed.

However, at intermediate and high coupling, we obtained textures with energy frustration. The dynamics of W = 0 skyrmion (0, 0) reveals zero SkHE. Our work shows that frustration can be crucial in determining the different degenerate skyrmionic states. Future work should be focused to replicate these results experimentally. In this context, one may consider the top layer to be Fe/W(110) thin film which could give rise to anisotropic DMI, that is necessary for stabilization of antiskyrmion [START_REF] Hoffmann | Antiskyrmions stabilized at interfaces by anisotropic dzyaloshinskiimoriya interactions[END_REF]. Further, the effect of Gilbert damping on current induced motion of the skyrmionic states needs to be elucidated [START_REF] Akosa | Phenomenology of chiral damping in noncentrosymmetric magnets[END_REF][START_REF] Akosa | Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices[END_REF][START_REF] Jué | Chiral damping of magnetic domain walls[END_REF][START_REF] Yuan | Gilbert damping in noncollinear ferromagnets[END_REF]. Our results show that the simultaneous presence of skyrmions and antiskyrmions in a SAF could give an extra degree of freedom for developing novel devices in the context of nanotechnology.

Figure 1 :

 1 Figure 1: Schemetic of a texture (antiskyrmion-skyrmion pair) in a SAF system where the top and bottom FM layers have anisotropic, and isotropic DMI, respectively.

Figure 2 :

 2 Figure 2: (a-f) Metastable elliptical ground state at intermediate coupling limit (J RKKY = -8×10 -4 J/m 2 ). In each layers the initial and relaxed textures are represented.W bottom and W top are the winding numbers of the bottom and top layers, respectively.

Figure 3 :

 3 Figure 3: Energy distribution of six metastable states ((0, 0), (1, 1), (-1,-1), (1,0), (0,-1) and (1,-1)) as a function of (a) E Diso , E Daniso ; (b) E T otal ; (c) E T otalDM I ; (d) E RKKY , at J RKKY = -8 × 10 -4 J/m 2 .

Figure 4 :

 4 Figure 4: DMI and K phase diagram of skyrmionic textures at J RKKY = -8 × 10 -4 J/m 2 . The blue circles and red cross represent the combination of DMI and K where the textures could be stabilized and not stabilized, respectively.

Figure 5 :

 5 Figure 5: Energy distribution of three states (0, 0), (1, 1) and (-1, -1) at J RKKY = -2 × 10 -3 J/m 2 .
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