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Skyrmion inertia in synthetic antiferromagnets
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Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France

(Received 27 November 2020; revised 5 August 2022; accepted 23 September 2022; published 5 October 2022)

We describe the dynamics of magnetic skyrmions in synthetic antiferromagnets (SAF) with a finite interlayer
coupling. Due to the opposite gyrovector of the skyrmions in the two SAF layers, the coupled skyrmions reach
a stationary regime with a spatial separation in a direction orthogonal to their velocity. As a consequence, and
contrary to the ferromagnetic situation, a transient regime necessarily occurs with a finite acceleration, related
to an inertia, and that limits its time response. The formalism developed here, based on two coupled Thiele
equations, allows a quantitative description of this phenomenon. The time constant associated with the transient
regime scales inversely with the antiferromagnetic coupling constant. We also show that the coupling force
reaches a maximal value at a finite skyrmion separation. This sets a maximum velocity limit, beyond which the
coupling force cannot stabilize the bound state.

DOI: 10.1103/PhysRevB.106.144405

I. INTRODUCTION

Magnetic solitonic textures (domain walls, vortex cores,
skyrmions, etc.) can be described as particles that can be
excited and moved by external forces. Therefore, similarly to
real particles, the question of a mass and inertia naturally rises.
It was shown by Döring [1] that a texture deformation related
to the velocity can be responsible for the inertia of magnetic
domain walls. In a Bloch domain wall, the inner magnetiza-
tion angle and the velocity appear as conjugated variables,
giving rise to inertia. Magnetic skyrmions have been attract-
ing significant interest for the last ten years, since the first
proposition of skyrmion-based spintronic applications [2].
Due to their singular topology, they obey a specific dynamics
which includes gyrotropic deflection [3,4]. The question of
a possible mass has been highly debated [5]. While several
theories and experiments have shown that topological bubbles
(stabilized without any Dzyaloshinskii Moriya interaction)
display an inertia [6–8], the possibility of a mass in chiral and
small skyrmions remains elusive and debated [5]. Some stud-
ies report the absence of a mass in ferromagnetic skyrmions
[9], while some cases observe an inertia related to a specific
excitation [10,11] or to the vicinity of magnetic defects [12].
In contrast, the recent interest in antiferromagnetic systems
[13–15] brings a type of skyrmion where a mass, intrinsic to
the texture, naturally arises from the antiferromagnetic cou-
pling [9,16–18].

Among antiferromagnetic systems, synthetic antiferromag-
nets (SAF) are quite promissing for the development of
skyrmions, since they share significant similarities with the
ferromagnetic samples, where skyrmions are now routinely
stabilized [19–23]. In SAF, two ferromagnetic layers are cou-
pled antiferromagnetically through a nonmagnetic spacer, via
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which
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allows tunable antiferromagnetic coupling. Predicted to dis-
play a vanishing skyrmion gyrotropic deflection [24,25]
similar to real antiferromagnetic skyrmions [24], they enable
the stabilization of small skyrmions [26] that can be moved
when excited by spin-orbit torques [27].

In this paper, we study the skyrmion dynamics in syn-
thetic antiferromagnets and the consequences of their natural
inertia. We derive an analytical expression of the skyrmion
coupling force, including the dependence between antiferro-
magnetic coupling strength and skyrmion size. The inertia
arises from the opposite gyrovectors in the two layers due
to the antiferromagnetic alignment, which spatially separates
the two skyrmions, in a direction perpendicular to the applied
force. The skyrmion separation therefore appears as the vari-
able conjugated to the skyrmion pair velocity. The associated
mass is inversely proportional to the coupling strength and
decreases when the skyrmion size increases. We describe
the transient regime associated with this inertia, both for the
bound-state velocity and for the skyrmion separation, with
transient times of the order of a nanosecond. Our approach
allows investigations beyond the linear approximation used in
effective models [16–18], and predicts a maximum skyrmion
velocity beyond which the bound state is destroyed under
the action of the gyrotropic forces in each layer (the two
skyrmions forming the pair behave as independent particles).

II. THIELE EQUATION MODELING

We consider two antiferromagnetically coupled magnetic
layers hosting Néel skyrmions that form skyrmion pairs or
bound states. To investigate their dynamics, we explicitly
describe each skyrmion, rather than using an effective model
that represents the system on a single layer with effective
parameters [16–18]. We use the Thiele formalism, initially
developed for ferromagnetic systems, that describes the dy-
namics of a rigid texture m(r, t ) = m0(r − vt ) (m is the local
and time-dependent magnetization, v its velocity, and m0 the
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stationary texture profile) [3,28]. In the two coupled layer
system, we use two coupled Thiele equations,

G × v1 − αDv1 + F1 + F2/1 = 0 (1a)

−G × v2 − αDv2 + F2 + F1/2 = 0. (1b)

where v1 and v2 are the skyrmion velocities in each lay-
ers. This extends the Thiele formalism to a coupled system
[24,29] using the coupling forces F2/1 and F1/2 that account
for the action of the textures on one another. Note that the
action/reaction principle implies F2/1 = −F1/2. The three
other terms in the equations, similar to those in single fer-
romagnetic layers, correspond, respectively, to the gyrotropic
deflection (where G = LSt n z is the gyrovector, LS = MS/γ

the angular momentum density, MS the spontaneous magneti-
zation, γ the gyromagnetic ratio, and t the film thickness), the
energy dissipation (where αD = αLSt d and α is the Gilbert
damping parameter) and the force of an external stimulus.
Here, we consider the motion induced by a spin-orbit torque
(SOT) due to a charge current j which flows in an adjacent
layer along the x direction [30]. This charge current is con-
verted to a spin current θH j × y, via the spin Hall effect (SHE)
(θH is the spin Hall angle), polarized along the y direction
[31,32] and leads to a force F = − h̄

2e jθH f (h̄ the reduced
Plank constant and e the elementary charge). The three pa-
rameters n, d , and f are related to the texture profile, as

n =
∫∫ (

∂m0

∂x
× ∂m0

∂y

)
· m0d2r (2a)

d =
∫∫ (

∂m0

∂x

)2

d2r (2b)

f =
∫∫ (

m(x)
0

∂m(z)
0

∂x
− m(z)

0

∂m(x)
0

∂x

)
d2r, (2c)

where m(i)
0 is the components of m0. The skyrmion profile

is essentially described by four parameters—the skyrmion
radius R, the micromagnetic domain wall width parameter
� (the length scale over which the magnetization rotates
[33]), the skyrmion core polarization p, and the chirality c
(c = ±1, respectively, for clockwise and counterclockwise
spin rotation)—which leads to simple expressions for n, d ,
and f . The number n corresponds to the skyrmion topology
and only depends on the skyrmion core polarization, with
n = 4π p. The number d is similar to an exchange integral and
involves the magnetization rotation length scale. For R � �,
the skyrmion has a bubble profile [33] and d = 2πR/�

[30]. For R � �, the integral does not go to zero due to
the nontrivial skyrmion topology [34] and d → 4π for
R → 0 [29]. Over the full size range, d can be approximated
by d ≈ 4π [exp(− R

2�
) + R

2�
] to account for the two limits

[35,36]. The number f is similar to a Dzyaloshinskii-Moriya
interaction (DMI) exchange and involves the skyrmion
chirality, with f ≈ π2cR. In Eq. (1), G and D are calculated
from the texture in layer 1. Since layer 2 is aligned in the
opposite direction, the gyrovector is opposite (n is odd in
m) but the dissipation is the same (d is even in m). Even if
f is even in m, we consider the possibility of two different
SOT-induced forces since, in a SAF stack, the torques can
hardly be identical (the spin current source being an adjacent

layer, it can hardly be the same for both magnetic layers
since, for one of them, the spin current source is in the spacer
and therefore thinner than for the other one).

III. INTERLAYER COUPLING BETWEEN
TWO SKYRMIONS

The coupling between the two skyrmions originates from
the antiferromagnetic interaction between the two layers, with
the energy EAF = JAF

∫∫
(m1 · m2 + 1)d2r, where m1 and

m2 are the skyrmion profiles in each layer and JAF is the
interaction energy constant (positive to promote antiparallel
alignement). For skyrmions with opposite core magnetization,
this energy is minimized when the skyrmions are aligned in
the (x, y) plane. When separated by δR, the energy increases.

For a small separation as compared to R and �, i.e., when
there is a significant overlap between the areas where the
magnetization rotates (skyrmion periphery), m2 ≈ −m1 −
δR∂um1 − 1

2δR2∂2
u m1 (where δR is the magnitude of the

skyrmion separation and u the coordinate along the separation
direction), the interaction energy can be developed as

E small
AF ≈ JAF

2
δR2

∫∫ (
∂m1

∂u

)2

d2r = JAF

2
d δR2, (3)

where the geometrical parameter d [Eq. (2b)], also involved
in the dissipation, is naturally found, since it represents an ex-
change energy. The coupling force derives from this energy, as

Fsmall
2/1 ≈ −JAFd δR. (4)

In this linear approach, the antiferromagnetic interaction
induces a spring force between the two skyrmions with
k = JAFd the spring constant. Note that since d increases with
the skyrmion radius, the spring constant increases with the
skyrmion size (in the limit of R � �, k varies linearly with
the skyrmion size).

For a large separation as compared to �, the overlap be-
tween skyrmion peripheries is negligible. For R � �, the
antiferromagnetic energy essentially corresponds to the over-
lap between the skyrmion cores, considering rigid skyrmions
as circular, homogeneously magnetized domains. The associ-
ated energy

E large
AF ≈ 2JAFR2

[
π − 2 acos

(
δR

2R

)
+ δR

R

√
1 −

(
δR

2R

)2]
for δR < 2R (5a)

≈ 2JAFR2π for δR > 2R (5b)

leads to the coupling force

Flarge
2/1 ≈ −8RJAF

√
1 −

(
δR

2R

)2

u for δR < 2R (6a)

≈ 0 for δR > 2R. (6b)

Contrary to the first approximation, this force strength
monotonously decreases with δR. Note that for δR > 2R the
overlap vanishes and the coupling energy is constant, the
coupling force is zero, and therefore the skyrmion pair is bro-
ken. The two approximations are compared with a numerical
evaluation [see Fig. 1(a)]. A micromagnetic calculation of

144405-2



SKYRMION INERTIA IN SYNTHETIC … PHYSICAL REVIEW B 106, 144405 (2022)

FIG. 1. (a) Skyrmion coupling force vs. skyrmion separation for different skyrmion radii. The force is normalized to the antiferromagnetic
coupling constant and the skyrmion radius. The dots correspond to a numerical evaluation using two rigid skyrmions described by the profile
obtained from the ansatz in Ref. [37]. The full lines correspond to the small skyrmion separation approximation [Eq. (4)], and the dashed
lines correspond to the large skyrmion separation approximation [Eq. (6)]. Note that for R/� > 10 and for the smallest separations, F2/1/R
is independent of the skyrmion size since, in this range, d ≈ 2πR/� (therefore, F2/1 ≈ 2πJAFRδR/�). (b) Maximum coupling force and
(c) corresponding skyrmion separation vs. skyrmion size. In (c), the full line corresponds to δRmax = R, valid for small skyrmions.

the coupling force versus the skyrmion separation is difficult
since, at a finite separation, the situation is not at equilibrium.
Complex numerical approaches such as nudged elastic band
methods [38,39] could be used, but are too time consum-
ing to scan a broad range of parameters. Instead, under the
approximation of two rigid skyrmions, the force is easily
calculated by translating equilibrium profiles. In the absence
of an analytical skyrmion profile, we consider the following
ansatz [37]:

tan
θ (r)

2
= R

r
exp

(
R − r

�

)
, (7)

where θ is the angle of the magnetization with the sample
normal direction, and r is the skyrmion radial coordinate. This
formula has been shown to provide good results, whatever
R/�. Covering different skyrmion sizes (R/� from 0.1 to
1000), the two different regimes described above are clearly
visible with a good agreement with Eqs. (4) and (6). Only
for small skyrmions (R/� � 1), the large skyrmion separation
regime underestimates the coupling strength since, at such
small sizes, skyrmions cannot be approximated by circular ho-
mogeneous domains. A maximum coupling force is observed
[slightly larger in the numerical evaluation (|F2/1,max| = 9 to
10RJAF) than the one anticipated from the two approximations
(8RJAF)], as plotted in Fig. 1(b). The skyrmion separation
δRmax that corresponds to this force maximum is of a few �

for the largest skyrmions, and of the skyrmion radius for the
smallest skyrmions [Fig. 1(c)].

IV. STEADY-STATE REGIME AND MAXIMUM VELOCITY

A. Skyrmion separation in the steady state

In a steady-state regime, a bound state is formed with v1 =
v2 = v. The solution of Eq. (1) is obtained by summing the
two Thiele equations. In the resulting equation, the coupling
force disappears and the bound-state velocity is independent
of the coupling strength. Additionally, the bound state dis-
plays no gyrotropic deflection in agreement with established
results [24,25,40,41]. Therefore, the skyrmion pair moves
along the total force Ftot = F1 + F2 direction at a velocity
v = Ftot/2αD.

At the steady-state velocity, the two skyrmions are sep-
arated, so that at the single-layer level, the coupling force
compensates the gyrotropic force. In the large separation
regime, the coupling force strength monotonically decreases
with δR, so a larger separation is unable to further compen-
sate gyrotropic effects. Therefore, only the small separation
regime is explored, with a separation limit δRmax as dis-
cussed before. If the two SOT forces are not identical, the
skyrmion with the larger applied force drags the second
one via the interlayer coupling, another source of skyrmion
separation. From the Thiele equations, the steady-state
skyrmion separation is

δR = G × v − 1
2�F

k
, (8)
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FIG. 2. (a) Micromagnetic simulation of the skyrmion separation as a function of the SOT-induced force repartition. The separation is
calculated in the steady-state regime for a given current jθH = 3 × 1011 A/m2, as a function of the repartition between the two layers. The
velocity (-60 m/s, not shown in the graphs) is independent of the repartition of the force. The skyrmion separation is in good agreement with
Eq. (8), and only the separation along the applied force depends on the force repartition. (b) Scaled skyrmion separation as a function of the
skyrmion radius for different interlayer coupling constants and equal force repartition (η = 0). The line corresponds to the expected value from
the model. The parameters used in the simulation are those of a CoFeB-based SAF [42]. In (a) the coupling constant is 0.2 mJ/m2 and the
skyrmion radius is 9.2 nm (D = 2.5 mJ/m2). A rather large damping constant α = 0.3 has been used to enhance the influence of the force
difference, as opposed to more realistic values. In (b), the skyrmion radius is varied by changing the DMI from −1.4 to − 2.8 mJ/2.

where �F = F2 − F1 is the SOT force difference. Compari-
son with a micromagnetic simulation on CoFeB-based SAF
[42] is shown in Fig. 2 with a very good agreement. The
skyrmion separation is found to be inversely proportional to
the spring constant, and therefore to the antiferromagnetic
coupling constant. In the specific case where F1 = F2 [η =
0 in Fig. 2(a)], δR is orthogonal to the velocity, since the
skyrmion separation would only compensate the gyrotropic
effects in each layer. Similarly, neglecting the gyrotropic vec-
tor, the separation would be along �F, and therefore along
v, since the skyrmion separation only compensates the force
difference. It is interesting to note that, in the general case,
even if the skyrmion separation depends on the gyrotropic
effect and the force difference, the bound-state velocity is
independent of the SOT force difference, as anticipated by
summing the two Thiele equations.

The relative importance of the effect due to the force differ-
ence decreases at a low damping constant. For a given applied
total SOT force Ftot, varying the force repartition between the
two layers, Eq. (8) becomes

δR = G × Ftot

2kαD
− ηFtot

2k
, (9)

with η defined such that �F = ηFtot and where the result of
the steady-state velocity v = Ftot/2αD bas been used. As a
consequence, the smaller the dissipation, the closer δR from
the direction perpendicular to the applied force.

The skyrmion separation is sensitive to the skyrmion size,
in particular through the dependence of k. For a given current
density, the variation is not monotonic, since k, D, and F all
vary with the size. This is described in Fig. 2(b), in the case
of a current equipartition (η = 0). For the smallest skyrmions,
the separation varies linearly with R: in this regime, d ≈ 4π

so the increase of δR is only due to the increase in velocity
(for small skyrmions, Ftot increases linearly with R). The
separation reaches a maximum as d starts to vary significantly
(R > �). For the large skyrmion size, d ∝ R, as well as k, D,
and Ftot , which leads to δR ∝ 1/R.

B. Maximum velocity

The preceding description, with a steady-state regime, is
valid as long as the coupling force can compensate the gy-
rotropic force. Since the coupling force displays a maximum
at finite skyrmion separation, a too large velocity implies
a gyrotropic force that cannot be compensated. This leads
to skyrmion decoupling: their separation increases with time
and the skyrmion dynamics is described by two independent
Thiele equations. At the maximum velocity vmax, the strength
of the gyrotropic force reaches the maximum coupling force
so that

vmax = |F2/1,max|
|G| ∝ RJAF

|G| , (10)

where the proportionality factor varies slightly only with the
skyrmion size [from 10 for the smallest skyrmions to 9 for
the largest skyrmions – see Fig. 1(b)]. Note that a similar
formula can be obtained using the small separation cou-
pling force approximation, and using the maximum skyrmion
separation [Fig. 1(c)] instead of the maximum force (vmax =
kδRmax/|G|). However, this approach leads to an overesti-
mation, since at the separation maximum the coupling force
exact result deviates from the linear approximation, as can
be observed in Fig. 1(a). Equation (10) summarizes the
physical origin of the velocity limitation in SAF skyrmions:
the maximum velocity is proportional to the antiferromagnetic
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FIG. 3. Micromagnetic simulation of the maximum velocity for
a skyrmion in a CoFeB-based SAF [42], as a function of the an-
tiferromagnetic coupling constant and for different skyrmion radii.
The dots correspond to the simulations and the lines to the model
[Eq. (10)]. The SOT-induced force is identical in both layers.

coupling constant which aligns the two skyrmions and is in-
versely proportional to the gyrovector strength which pushes
the two skyrmions away. Additionally, vmax is proportional
to the skyrmion radius, which shows that pairs of larger
skyrmions are better coupled (see Fig. 3).

A situation with two different driving forces F1 and F2

(η �= 0) is another source of skyrmion separation. Therefore,
a reduction of the maximum velocity can be anticipated with

|v|max = |F2/1,max|√
G2 + η2(αD)2

. (11)

The maximum velocity is the highest for equal forces (η =
0) and minimum when the driving force is applied to one
layer only (|η| = 1). However, the correction, proportional
to (αD)2, is small as compared to the gyrotropic effect one,
except for very large skyrmions (typically, for R/� = 10 and
α = 0.1, the maximum velocity is expected to decrease by
10% between the two extreme force repartition cases).

V. TRANSIENT REGIME

To reach the stationary regime with spatially separated
skyrmions, a transient regime is expected with independent
skyrmion velocities v1 and v2, as shown in the simulations
reported in Fig. 4. Within the small separation approximation,
combining the two Thiele equations provides two independent
equations for the bound-state velocity v and the skyrmion
separation δR:

Ftot − 2αDv = G2 + (αD)2

k
v̇ (12a)

G2 + (αD)2

2kαD
˙δR + δR = G × Ftot

2kαD
− �F

2k
. (12b)

The first equation is similar to a single Thiele equation, but
with an additional term which adds an inertia to the system,

FIG. 4. Transient regime for skyrmions in a CoFeB-based SAF
[42]. (a) Skyrmion pair velocity and (b) separation vs. time after
application of the current ( jθH = 5 × 109 A/m2) for different inter-
layer coupling constants. The skyrmion radius is 9.2 nm (D = 2.5
mJ/m2). The dotted line corresponds to the maximum skyrmion sep-
aration according to our model. For JAF = 10−4 J/m2, the skyrmion
coupling is not sufficient to establish a steady-state regime at this
current density. Note that the velocity is negative since the skyrmion
chirality is left-handed.

with a mass

M = G2 + (αD)2

k
. (13)

This inertia, which arises from the deformation of the
skyrmion pair through its separation, is similar to the Döring
mass of domain walls (in the case of the Bloch wall, the
deformation corresponds to the rotation of the domain wall
magnetization). It is mostly due to the gyrotropic effect that
separates the skyrmions, and a small correction is due to the
energy dissipation. Note that the deformation due to the force
difference, which is in fact static, does not affect the inertia.
This shows that a deformation induces inertia only if it is
directly related to the velocity. The second equation describes
the skyrmion separation dynamics. Here, the force difference
is involved in the equation. However, it has no influence on the
transient regime time scale and only affects the steady-state
value, as described in Eq. (8). The two equations imply a time
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FIG. 5. Transient time vs. interlayer coupling constant for dif-
ferent skyrmion radii in a CoFeB-based SAF [42]. The points
correspond to the simulation and the lines to the model [Eq. (14)].
The result is valid for any current densities, as long as the bound
state is stable.

constant

τ = M

2αD
= G2 + (αD)2

2kαD
. (14)

The skyrmion pair mass and the time constant are inversely
proportional to the antiferromagnetic coupling constant, in
good agreement with the simulations shown in Fig. 5. Con-
sequently, the larger the antiferromagnetic coupling strength,
the smaller the inertia and the time constant. Note that, while
the dependence of the mass on the antiferromagnetic coupling
has been established in Ref. [16], our approach also shows
a significant dependence on the skyrmion size. Neglecting
the dissipation term in the mass (αD � |G|), the mass is
proportional to �/R for large skyrmions (for small skyrmions,
it does not diverge and tends to M = G2/4πJAF ). The time
constant is even more affected, being proportional to (�/R)2.

The time-dependent equations also enable understanding
of the mechanics of the skyrmions in synthetic antiferro-
magnets. Combining Eqs. (4) and (12) in the absence of a
dissipation, we obtain Hamiltonian-like equations,

Ẋ = 1

G

∂E

∂δY
(15a)

˙δY = − 1

G

∂E

∂X
, (15b)

where E is the system total energy, X the skyrmion pair
position, δY the separation in the direction perpendicular to
the direction of motion, and G = G · z. These equations show
that the skyrmion pair position in one direction is conjugated
to the skyrmion pair separation in the other direction.

The inertia obtained from the transient regime can be
compared with the skyrmion energy variation during the mo-

tion. Within the small skyrmion separation approximation, the
skyrmion pair energy in the stationary regime is

EAF = 1

2

[
�F2

4k
+ G2

k
v2

]
. (16)

The first term is independent of the skyrmion velocity and
only depends on the force difference. This underlines that
the force difference does not affect the skyrmion inertia. The
second term, proportional to v2, is similar to a kinetic energy.
However, the associated mass, G2/k, is only one part of the
inertial mass since the inertia due to the dissipation does not
affect the kinetic energy. A similar fact is obtained for the
domain wall mass, when comparing Döring’s original theory
[1], which ignores damping, with more elaborated approaches
[43].

The model is compared with simulations of synthetic anti-
ferromagnets [42] (see Fig. 4). The steady-state velocity is in
perfect agreement with the expected one and is independent of
the interlayer coupling constant [see Fig. 4(a)]. The transient
regime observed in the simulation is more complex than what
is expected from the model, as observed in Fig. 4. While a
first-order transition for the velocity and the skyrmion sepa-
ration is generally observed, additional oscillations are also
visible. These are induced by the magnetic precession of the
regions surrounding the skyrmions when subjected to SOT. In-
deed, SOT not only pushes magnetic textures but also acts on
homogeneous regions [31,32], tilting magnetic domains [44].
This transition, described by the Landau—Lifshitz—Gilbert
(LLG) equation, induces a precession of the magnetization
around the new equilibrium direction. As a consequence, in
the simulation, two transient regimes simultaneously occur,
one for the surrounding regions and one for the skyrmion pair,
and interact together. A first-order law fit on the velocity or
the skyrmion separation, therefore neglecting the oscillations,
yields a transient time which is close to our model expec-
tation, in particular with a 1/JAF dependency (see Fig. 5).
However, we note that the dependency on the skyrmion size
is not perfectly reproduced by the simulations, except for the
smallest coupling constants. It indicates that the two transient
times are of the same order of magnitude. While the transient
time associated with the domain tilt is obviously independent
on the skyrmion size, the one associated with the skyrmion
acceleration is expected to decrease with R. Therefore, for the
largest sizes, the transient regime is dominated by the slowest
time constant, independent of the skyrmion size.

VI. CONCLUSION

We have described the skyrmion dynamics in synthetic
antiferromagnets through the dynamics of two coupled rigid
skyrmions. With a finite interlayer coupling, the opposite
gyrotropic forces tend to spatially separate the skyrmions,
which creates an inertia inversely proportional to the
antiferromagnetic coupling strength. The skyrmion coupling
force displays a maximum at a finite skyrmion separa-
tion, and therefore a bound-state maximum velocity is
observed, beyond which the skyrmions are decoupled and
behave independently. This approach can be extended to
any antiferromagnetic situation that can be split into two
antiferromagnetically aligned lattices. Note that in some
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cases (SAF with different materials and/or thicknesses, rare-
earth/transition metal ferrimagnetic alloys, etc.), the two
lattices are not identical but the equations can still be solved
(see Appendix A ) with minor corrections to the inertia. The
main difference between synthetic antiferromagnets and real
antiferromagnets or ferrimagnets is the strength of the antifer-
romagnetic coupling constant. In synthetic antiferromagnets,
the interfacial antiferromagnetic coupling constant is of the
order of 1 mJ/m2. In antiferromagnets or ferrimagnets, the
volume antiferromagnetic coupling constant is larger than 108

J/m3. This volume interaction should be integrated along the
sample thickness to be used in Eq. (4). A sample thickness of
a few nanometers leads to an interaction strength 100 times
larger than in SAF and therefore to a time constant 100 times
smaller, which can generally be neglected.
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APPENDIX A: INERTIA IN UNBALANCED SITUATIONS

The calculations in the paper concern the inertia for a
system where the two antiferromagnetically coupled lattices
are identical (except for the SOT-induced forces). For an
unbalanced SAF (e.g., different layer thicknesses) or a rare-
earth/transition metal ferrimagnetic alloy, the situation is
different since the gyrovectors and dissipation parameters are
not the same in the two lattices. With minimal approxima-
tions, the two Thiele equations can still be solved.

We consider the following pair of Thiele equations:

G1 × v1 − α1D1v1 + F1 − kδR = 0 (A1a)

G2 × v2 − α2D1v2 + F2 + kδR = 0, (A1b)

where the indices refer to each lattice. Neglecting the terms in
α1D1 − α2D2, i.e., considering that the dissipation in the two
lattices are close, the velocity is given by

Gtot × v − 2αDv + Ftot = (�G)2 − G2
tot + (2αD)2

4k
v̇

− αD

2k
Gtot × v̇. (A2)

where Gtot = G1 + G2, �G = G1 − G2, and Ftot = F2 + F1.
Note that in an antiferromagnetic situation, G1 and G2 are

antiparallel so |�G| � |Gtot|. However, contrary to the bal-
anced antiferromagnetic situation, the two gyrovectors do not
compensate and a finite deflection remains in the equation.
The inertia is more complex than for the balanced situation,
with an additional term. This term differs from a simple mass,
as defined in classical mechanics, since it involves a cross
product between the total gyrovector and the skyrmion pair
acceleration. Since the gyrovector is related to the skyrmion
topology, this additional inertia can be considered as a topol-
ogy induced inertia. Note, however, that this term is small as
compared to the first one and can generally be neglected, so
that the skyrmion pair time constant is

τ ≈ (�G)2 − G2
tot + (2αD)2

8kαD
, (A3)

close to that of a balanced SAF.

APPENDIX B: SPIN TRANSFER TORQUE INDUCED
SKYRMION MOTION

Another possibility to move skyrmions in magnetic multi-
layers is the spin-transfer torque (STT), although it is expected
to be less efficient than spin-orbit torques [30]. The calculation
derived from Eq. (1) can also be performed with this other
excitation. The coupled coupled Thiele equations become

G × (v1 − u) − D(αv1 − βu) − kδR = 0 (B1a)

−G × (v2 − u) − D(αv2 − βu) + kδR = 0, (B1b)

where the effect of a current flowing in the magnetic layers
through the magnetic textures is represented by u (uniform
to a velocity and proportional to the current density) and a
nonadiabaticity parameter β [30,45]. In the limit of the linear
interaction regime, these equations lead to

−2D(αv − βu) = G2 + (αD)2

k
v̇ (B2a)

G2 + (αD)2

2kαD
˙δR + δR = 1

k

(
β

α
− 1

)
G × u. (B2b)

The first equation for the average velocity corresponds to the
motion of a nontopological magnetic texture under STT, with
a mass M = 1

k [G2 + (αD)2]. The second equation describes
the dynamics of the skyrmion separation. Both equations dis-
play the same time constant τ = M/2αD. In the stationary
regime, v = β

α
u, a typical result for nontopological textures

(including domain walls) moved under STT [45] and δR =
1
k ( β

α
− 1)G × u. This result shows that the inertial concepts

derived from SOT excitation are general and not specific to
a single excitation: the mass is the same and has its origin
from the opposite gyrotropic effect in both layers due to the
antiferromagnetic coupling.
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