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REDUCTION-BASED CREATIVE TELESCOPING FOR

DEFINITE SUMMATION OF D-FINITE FUNCTIONS

HADRIEN BROCHET AND BRUNO SALVY

Dedicated to the memory of Marko Petkovšek

Abstract. Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums

by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm

that computes telescopers for definite sums of D-finite functions as well as the associated certificates in
a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or

equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation
with good timings on a variety of examples.

1. Introduction

The algorithmic computation of definite sums originates in Zeilberger’s algorithm in the 1990’s [36, 38, 35].
Initially designed to deal with hypergeometric sums, his method of creative telescoping has been extended to
differential settings [1, 37, 30, 29] and next generalized to the large class of D-finite functions by Chyzak [16].
In order to compute a definite sum of F (t, x1, . . . , xm) with respect to t, where each xi is a variable with
respect to which one can apply a linear operator ∂i (generally, differentiation or shift or q-shift operator),
the creative telescoping algorithm constructs identities of the form

(1)
∑
α

cα(x1, . . . , xm)∂α(F ) = G(t+ 1, x1, . . . , xm)−G(t, x1, . . . , xm).

Here, the sum is over a finite number of multi-indices α and we use the multi-exponent notation ∂α =
∂α1
1 · · · ∂αm

m . In the original version for hypergeometric summation, the monomials ∂α(F ) are simply succes-
sive shifts F (t, n), F (t, n+ 1), F (t, n+ 2), . . . of a hypergeometric sequence F (t, n). Identities obtained that
way can often be summed over t. The right-hand side telescopes by design. Since the coefficients cα do not
depend on the variable t, the left-hand side results in an operator applied to the definite sum of F . From
there, other algorithms can be applied to compute information on the sum. The operator in the left-hand
side of Eq. (1) is called a telescoper of F and the function G in the right-hand side is the corresponding
certificate. Chyzak’s algorithm also deals with the differential analogue of Eq. (1) where the right-hand side
is a derivative; it is used to compute information on definite integrals. Chyzak’s algorithm, like Zeilberger’s,
looks for telescopers with an increasing number of monomials ∂α with indeterminate coefficients cα and
determines cα such that a certificate G exists in the vector space generated by the ∂β(F ) for β ∈ Nm+1 over
the field of rational functions. The conditions of being D-finite is that this vector space has finite dimension,
which allows for the existence of algorithms based on linear algebra. If no certificate exists, then the support
is increased and the process is iterated. This stops either when sufficiently many operators have been found
or when a prescribed bound on the orders is reached. (In the original hypergeometric case, no bound on the
order is fixed a priori and termination is guaranteed for the family of proper hypergeometric terms [35].)
Efficiency issues with this approach have led to the development of heuristics and a very useful Mathematica
implementation by Koutschan [26].

The most recent approach to deal with the efficiency issues with creative telescoping was initiated by
Bostan, Chen, Chyzak and many co-authors who developed a class of reduction-based algorithms [4, 5, 12,
7, 13, 14]. These algorithms avoid the computation of potentially large certificates. In the differential case,
where the right-hand side of Eq. (1) is replaced by a derivative ∂t(G), the principle is to use a variant of
Hermite reduction to compute an additive decomposition of each monomial in the form

(2) ∂α(F ) = Rα(t, x1, . . . , xm)F + ∂t(Gα),
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where Rα is a rational function with a certain minimality property. A telescoper is found by looking for
a linear dependency between these rational functions for a family of monomials ∂α. The computation
of the rational function Rα by Hermite reduction works by getting rid of multiple poles and isolating a
polynomial part. This was first done for the integration of bivariate rational functions [4], of hyperexponential
functions [5] and of mixed hypergeometric-hyperexponential functions [7]. In these three cases, the vector

space generated by the functions ∂β(F ) for β ∈ N2 has dimension only 1 over the rational functions.
For summation, the analogous problem for bivariate hypergeometric sequences was solved by replacing
the Hermite reduction by a modified Abramov-Petkovšek reduction, thereby providing a faster variant of
Zeilberger’s algorithm [12]. For bivariate problems of dimension larger than 1, the method was extended
to the integration of bivariate algebraic functions [13], of Fuchsian functions [14] and more recently of P-
recursive sequences [10, 20] by means of suitable integral bases. An extension to the integration of purely
differential bivariate D-finite functions in arbitrary dimension was first achieved by turning the differential
equations satisfied by the function to be integrated into first-order differential systems; then, a variant of
Hermite reduction can be designed at the level of vectors of rational functions [31]. This approach generalizes
to purely differential D-finite functions in more variables [33].

Another method relies on cyclic vectors and allows the integration of arbitrary D-finite functions [6].
Without loss of generality, we assume that F is a cyclic vector for ∂t, which means that all monomials
∂α(F ) rewrite as Mα(F ) with Mα a linear operator in ∂t only. (If F is not a cyclic vector, one finds a cyclic
vector G, F = MF (G) for some linear operator MF in ∂t only and the rest of the reasoning is unchanged.)
Next, for any rational function u and any linear operator M in ∂t, repeated integration by parts implies
Lagrange’s identity

uM(F )−M∗(u)F = ∂t(PM (F, u)),

where M∗ is the adjoint of M and PM is linear in F, ∂t(F ), . . . and u, ∂t(u), . . . . Thus, a reduction-based
algorithm is obtained by the additive decomposition of Eq. (2) with Rα a solution of the generalized Hermite
reduction

Rα = M∗α(1) mod Im(L∗).

The tools used in the reduction modulo the image of the linear differential operator L∗ are classical techniques
used when looking for rational solutions of linear differential equations.

This method of integration using generalized Hermite reduction extends to other contexts. This has been
done in high generality in a preprint by van der Hoeven [32]. Our approach here is different: we focus on
the case of summation only and give a simple self-contained presentation of the corresponding algorithm;
our algorithm returns operators of minimal order1; we make the choice to avoid algebraic extensions when
possible; we present a Maple implementation that performs well in practice. Note that while in terms of
complexity, minimal operators cannot be computed in polynomial time in general, in practice this does not
seem to be an obstacle.

2. Example

The multiplication theorem for Bessel functions of the first kind Jν states that [27, 10.23.1]

(3) Jν(λz) = λν
∞∑

n=0

(−1)n(λ2 − 1)n(z/2)n

n!
Jν+n(z).

This can be proved automatically by showing that the left-hand side and the right-hand side satisfy the same
set of mixed differential-difference equations with sufficiently many identical initial conditions.

1Remark 5.6 in [32] seems to allude to a way of doing this, but the relevant space E may contain rational functions that are
not in the image of L. For example take L = 1/z + 1/(z − 1)σ−1, α = 0, and A = {α}, then one can check that 1/z /∈ Im(L)

but 1/z ∈ E.
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We write F for the summand in Eq. (3). It is a function of the four variables ν, n, z, λ. Basic properties
of the Bessel function give the following four equations:

(λ2 − 1)zSν(F ) + 2(n+ 1)Sn(F ) = 0,(4)

(λ2 − 1)∂λ(F )− 2nλF = 0,(5)

(1− λ2)z∂z(F ) + +2(n+ 1)Sn(F ) + (λ2 − 1)(2n+ ν)F = 0,(6)

4(n+ 1)(n+ 2)S2
n(F ) + 4(λ2 − 1)(n+ 1)(n+ ν + 1)Sn(F ) + z2(λ2 − 1)2F = 0,(7)

where Sν denotes the shift with respect to ν: Sν : G(ν) 7→ G(ν + 1) and similarly for Sn, while ∂z and
∂λ denote partial derivatives. These equations show that any shift or derivative Sa

ν∂
b
λ∂

c
zS

d
nF of F with

nonnegative integers a, b, c, d rewrites as a Q(ν, λ, z, n)-linear combination of F and Sn(F ). In particular,
this implies that F is D-finite with respect to these variables. The aim of creative telescoping is to find a
similar set of equations, in the variables ν, λ, z only, for the sum in Eq. (3).

Let ∆n be the difference operator ∆n = Sn − 1. Any product ϕ(n)SnF with ϕ ∈ Q(ν, λ, z, n) can be
rewritten ϕ(n − 1)F + ∆n(ϕ(n − 1)F ), i.e., as the sum of a rational function times F plus a difference,
that would telescope under summation. Consequently, any Sa

ν∂
b
λ∂

c
zS

d
nF with nonnegative integers a, b, c, d

rewrites in the form

(8) ∂α(F ) = RαF +∆n(Gα),

with Rα a rational function in Q(ν, λ, z, n). This reduction as a sum of a rational function plus a difference
is a general phenomenon (see Section 3.2). Reduction-based creative telescoping works by reducing this
rational function further by pulling out parts that can be incorporated into the difference ∆n(Gα). Denote
by L the recurrence operator such that Eq. (7) is LF = 0. The adjoint of L (see Proposition 2) is

L∗ = 4(n− 1)nS−2n + 4(λ2 − 1)n(n+ ν)S−1n + z2(λ2 − 1)2

where S−1n : g(n) 7→ g(n − 1). Proposition 3 shows that a rational function R is of the form ∆n(M(F ))
for a recurrence operator M(Sn) if and only if R is in the image L∗(Q(ν, λ, z, n)). This is the basis for
the computation of relations of the form (8) where Rα is now a reduced rational function (in a sense made
precise in Definition 1). The next step is to look for linear combinations of these rational functions that
yield telescopers.

The starting point is the monomial 1, which decomposes as

(9) 1 · F = 1 · F +∆n(0).

Using Eq. (5), the monomial ∂λ rewrites

(10) ∂λ(F ) =
2nλ

λ2 − 1
F +∆n(0)

and the rational function is reduced. Taking the derivative of this equation and using Eq. (5) again gives a
similar equation for ∂2

λ(F ):

∂2
λ(F ) = −2n(λ2 + 1)

(λ2 − 1)2
F +

2nλ

λ2 − 1
∂λ(F ) + ∆n(0),

= −2n(λ2 + 1)

(λ2 − 1)2
F +

(2nλ)2

(λ2 − 1)2
F +∆n(0).

This time, a reduction is possible. Indeed, Proposition 3 implies that L∗(1)F is a difference ∆(An) (where
An can be computed explicitly). Since

L∗(1) = 4λ2n2 + 4((λ2 − 1)ν − 1)n+ z2(λ2 − 1)2,

we can eliminate the term in n2 in the expression of ∂2
λ(F ) to get

(11) ∂2
λ(F ) = −2n(2ν + 1)

(λ2 − 1)
F − z2F +∆n

(
An

(λ2 − 1)2

)
.
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A simple linear combination of Eqs. (9) to (11) then eliminates the term in n, showing that F satisfies the
equation

λ∂2
λF + (2ν + 1)∂λF + λz2F = ∆n

(
−λAn

(λ2 − 1)2

)
.

The left-hand side is a telescoper. The right-hand side is a certificate. It can be written more explicitly as

−λAn

(λ2 − 1)2
= −4(nλ2 + λ2ν − ν − 1)nλ

(λ2 − 1)2
F − 4λ(n+ 1)n

(λ2 − 1)2
Sn(F ).

In general, summation and telescoping of the certificate requires verification. Here, we first observe that
the certificate does not have integer poles and thus is well defined at all points over which it is summed.
Next, the certificate evaluates to zero at n = 0. Finally, it tends to zero when n tends to infinity, as Jν+n(z)
decreases fast as n→∞ [27, 10.19.1].

In summary, we have obtained that the sum S in the right-hand side of Eq. (3) satisfies

λ∂2
λ(S) + (2ν + 1)∂λ(S) + λz2S = 0.

Proceeding similarly with Eqs. (4) and (6), one gets the equations

zλSν(S) + ∂λ(S) = 0, z∂z(S)− λ∂λ(S)− νS = 0.

Injecting T = Jν(λz)/λ
ν in these equations and using basic equations for Jν shows that it is a solution of

this system too. The proof of the multiplication theorem is concluded by checking the equality of the initial
conditions for T and for the sum on the right-hand side of Eq. (3). As ν is associated to the shift, we need
to check initial conditions for any ν satisfying 0 ≤ Re(ν) < 1. Indeed, both term of the identity equal Jν(1)
at z = 1, λ = 1, and ν ∈ [0, 1) and both their derivatives with respect to λ equal −Jν+1(1), which proves the
identity.

3. Background

In this section, we recall the basic framework for reducing creative telescoping to the generalized Abramov-
Petkovšek decomposition. Most of this section is identical to the differential case [6, Sec. 4], except for the
existence and computation of the cyclic vector and the use of the recurrence variant of Lagrange’s identity [3].
More gentle introductions to Ore algebras, creative telescoping and their applications can be found in the
references [17, 19].

3.1. Telescoping ideal.

Ore algebras. Let k be a field of characteristic 0, x0, . . . , xm be variables used to form the fields of rational
functions K = k(x1, . . . , xm) and K̂ = K(x0). The Ore algebra A = K̂⟨∂0, . . . , ∂m⟩ is a polynomial ring

over K̂, with ∂i∂j = ∂j∂i, and a commutation between the ∂is and the elements of K̂ ruled by relations

(12) ∂iR = σi(R)∂i + δi(R), R ∈ K̂,

with σi a ring morphism of K̂ and δi a σi-derivation, which means that δi(ab) = σi(a)δi(b)+δi(a)b for all a, b

in K̂ [9, 19]. The typical cases are when ∂i is the differentiation d/dxi (then σi is the identity and δi = d/dxi)
and the shift operator xi 7→ xi + 1 (then σi(a) = a|xi←xi+1 and δi = 0).

Annihilating and D-finite ideals. For a given function f in a left A-module, the annihilating ideal of f is the
left ideal ann f ⊆ A of elements of A that annihilate f . A left ideal I of A is D-finite when the quotient A/I
is a finite dimensional K-vector space. A function is called D-finite when its annihilating ideal is D-finite.

Telescoping ideal. As we focus here on summation, from now on, when we use n and Sn, they stand for x0

and the corresponding shift operator ∂0 : x0 7→ x0 + 1.
The telescoping ideal TI of the left ideal I ⊂ A with respect to n is

TI = (I +∆n(A)) ∩K⟨∂1, . . . , ∂m⟩, where ∆n = Sn − 1.

In other words, if I = annF , the telescoping ideal TI is the set of operators T ∈ K⟨∂1, . . . , ∂m⟩ such that
there exists G ∈ A such that T +∆nG ∈ I, or equivalently, such that Eq. (1) holds (with t = n).

3.2. Cyclic vector and Lagrange identity.
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Cyclic vector. Let I be a D-finite ideal of A and let r be the dimension of the K̂-vector space B := A/I.
An element γ ∈ B is called cyclic with respect to ∂0 if {γ, . . . , ∂r−1

0 γ} is a basis of B. In the differential case
(∂0 = d/dx0), such a vector always exists and can be computed efficiently when I is D-finite [15]. In the
shift case (∂0 : x0 7→ x0 + 1), even for a D-finite ideal I, it is not the case that there always exists a cyclic
vector: in general, B decomposes as the sum of a vector space where ∂0 is nilpotent and a part where it is
cyclic [24]. However, we have the following.

Proposition 1. [23, Thm. B2] With the notation above, in the case when ∂0 is the shift operator x0 7→ x0+1,

let E = (e1, . . . , er)
T be a basis of the vector space B = A/I and A0 ∈ K̂r×r be defined by ∂0E = A0E. If

A0 is invertible, then there exists a cyclic vector with respect to ∂0 of the form v = a1e1 + · · · + arer with
polynomial coefficients ai ∈ Z[x0] of degree at most r − 1, and coefficients all in {0, . . . , r}.

Sufficient conditions for the matrix A0 to be invertible are that I = ann f with f in a K̂[∂0, ∂
−1
0 ]-

module [23] or that I be a reflexive ideal [32]. In practice, this condition on A0 can be checked from
the input and appears to be always satisfied in the examples we have tried. From this proposition, the
computation of a cyclic vector follows the same lines as that of the differential case [15]. Most often, e1 = 1
is a cyclic vector, which simplifies the rest of the computation.

Lagrange’s identity. For our purpose, the shift version of Lagrange’s identity can be viewed as giving an
explicit form of the result of the left Euclidean division by the difference operator ∆n, when applied to a left
multiplication by a rational function.

Proposition 2. [3] Let u ∈ K̂ and let L =
∑r

i=0 aiS
i
n be an operator of order r with ai in K̂. The adjoint

operator L∗ of L is defined as L∗ =
∑r

i=0 ai(n− i)S−in and it satisfies

(13) uL− L∗(u) = ∆nPL(u)

where

(14) PL(u(n)) =

r−1∑
i=0

 r∑
j=i+1

aj(n+ i− j)u(n+ i− j)

Si
n.

Note that the term L∗(u) denotes the evaluation of the operator L∗ at the rational function u, rather
than the product of L∗ by u.

Let γ be a cyclic vector. Then any element of B is of the form Aγ with A ∈ K̂⟨Sn⟩. Applying Lagrange’s
identity with u = 1, L = A and multiplying on the right by γ shows that this is a rational multiple of γ up
to a difference:

(15) Aγ = A∗(1)γ +∆nPA(1)γ.

As in the differential case, all computations in B then reduce to K̂-linear operations on single rational
functions, rather than vectors of them, by the following analogue of [6, Prop. 4.2].

Proposition 3. With the notation above, let γ be a cyclic vector of B = A/I and for all i = 0, . . . ,m, let

Bi ∈ K̂⟨Sn⟩ be such that ∂iγ = Biγ. Then for all R ∈ K̂,

∂iRγ = φi(R)γ +∆nQi(R)γ,(16)

with

{
φi(R) = B∗i (R(xi + 1)), Qi(R) = PBi

(R(xi + 1)) if ∂i : xi 7→ xi + 1;

φi(R) = B∗i (R) + d
dxi

(R), Qi(R) = PBi
(R(xi)) if ∂i = d/dxi.

Proof. Multiplying Eq. (12) by γ on the right and using the definition of Bi gives

∂iRγ = σi(R)Biγ + δi(R)γ.

The conclusion follows from Lagrange’s identity (13) applied with L = Bi and u = σi(R). □
5



Algorithm 1 Creative Telescoping Algorithm

Input Generators of a D-finite ideal I
Output A basis of the telescoping ideal TI of I

γ ← a cyclic vector of B := A/I with respect to Sn {See Section 3.2}
L← a minimal order operator in Sn annihilating γ {See Section 3.3}
φ1, . . . , φn the maps described in Proposition 3
Initialize CanonicalForm {See Section 4}
R0 ← CanonicalForm(A∗1(1), L

∗) {See Section 3.4}
L ← [1] {List of monomials in ∂1, . . . , ∂m to visit}
G ← {} {Gröbner basis}
Q ← {} {Basis of the quotient}
R ← {} {Set of reducible monomials}
while L ≠ ∅ do
Remove the first element ∂α of L
if ∂α is not a multiple of an element of R then

if ∂α ̸= 1 then
Take i such that ∂α/∂i ∈ Q; Rα ← CanonicalForm(φj(R∂α/∂i

), L∗)
if there exists a K-linear relation between Rα and {Rβ | Rβ ∈ Q} then
(λβ)Rβ∈Q ← coefficients of the relation Rα =

∑
Rβ∈Q λβRβ

Add ∂α −
∑

Rβ∈Q λβ∂
β to G; Add ∂α to R

else
Add ∂α to Q
for j = 1 to m do Append the monomial ∂j∂

α to L
return G

3.3. Canonical Form. Proposition 3 shows how, given a cyclic vector γ, all elements of B can be reduced to
the product of γ by a rational function, up to a difference in ∆nB. The starting point of the reduction-based
creative telescoping is that one can actually identify those multiples that belong to ∆nB.

Proposition 4. With the same hypotheses as in Proposition 3, let L be a minimal-order operator in K̂⟨Sn⟩
annihilating γ, ie, the product Lγ is 0 in A/I, L has order r and no operator of order r−1 has that property.

Then for all R ∈ K̂, Rγ ∈ ∆n(B)⇐⇒ R ∈ L∗(K̂).

Proof. First, if R = L∗(R′) with R′ ∈ K̂, Lagrange’s identity (13) with u = R′ and Lγ = 0 implies that

Rγ = L∗(R′)γ = ∆nGγ for G = −PL(R
′). Conversely, if Rγ ∈ ∆n(B), there exists M ∈ K̂⟨Sn⟩ such

that Rγ = ∆nMγ. The operator ∆nM − R annihilates γ. By minimality of L, there exists N ∈ K̂⟨Sn⟩
such that ∆nM − R = NL. Taking the adjoint and evaluating at 1 gives R = M∗∆∗n − L∗N∗ and finally
R = −L∗(N∗(1)). □

This proposition motivates the following.

Definition 1. [6] A canonical form associated to L∗ is a K-linear map [·] : K(n) → K(n) such that for
all R ∈ K(n), [L∗(R)] = 0 and R − [R] ∈ L∗(K(n)). A rational function R ∈ K(n) is called reduced when
[R] = R.

The computation of canonical forms is the object of Section 4.

3.4. Creative Telescoping Algorithm via Canonical Forms. With the notation above, the creative
telescoping algorithm from [6] applies verbatim. It is given in Algorithm 1. Its principle is to iterate on every
monomial of the form ∂α1

1 . . . ∂αm
m by increasing order for some monomial order, e.g., the grevlex order, and

to compute the reduced rational functions Rα such that

(17) ∂α = Rαγ +∆nGα mod I.
6



The rational function Rα is obtained by

(18)

{
R0,...,0 = [A∗1(1)],

Rα = [φi(Rβ)] if ∂α = ∂i∂
β,

where A∗1 is the adjoint of the operator A1 verifying 1 = A1(γ). When a monomial α is dealt with, two
situations are possible. The corresponding Rα can be a linear combination of the previous Rβ. In that case,

that linear combination makes the corresponding linear combination of ∂α and the ∂β a newly discovered
element of the telescoping ideal TI and then it is not necessary to visit the multiples of this monomial.
Otherwise, ∂α is free from the previous ones and thus a new generator of B has been found. The algorithm
terminates when there are no more monomials to visit.

The only difference with the differential case lies in the definition of the canonical form [·] associated to
the adjoint L∗ of the minimal-order operator L ∈ K(n)⟨Sn⟩ annihilating γ. By Propositions 3 and 4 and the
definition of canonical form, Eq. (17) is satisfied and the following equivalence holds:

(19) a1R1 + · · ·+ asRs = 0 iff a1D
1 + · · ·+ asD

s ∈ TI .

The following result follows, with the same proof as in [6].

Theorem 1. Given as input the generators of a D-finite ideal I and a cyclic vector γ for Sn, Algorithm 1
terminates if and only if TI is D-finite. Then, it outputs a Gröbner basis of TI for the grevlex order.

As in the differential situation [6], one can modify the algorithm to compute all elements of TI up to
a given bound on their degree, or to return as soon as one telescoper is found, thus allowing to recover a
generating family of a sub-ideal of TF .

4. Generalized Abramov-Petkovšek decomposition

The main contribution of this article is an algorithm for the computation of canonical forms as in Defini-
tion 1 for the operator

L∗ =

r∑
i=0

pi(n)S
−i
n

with polynomial coefficients pi ∈ K[n]. The modified Abramov-Petkovšek decomposition [12] is a special
case of this reduction when L has order 1 and once the shell [12] has been removed [6, Sec. 3.5.3].

The starting point is a decomposition of any rational function R ∈ K(n) in the form

(20) R(n) = P∞(n) +
∑
i,h

ci,h(n)

Qi(n+ h)ℓi,h
,

with ℓi,h ∈ N∗, polynomials P∞, Qi and ci,h in K[n] such that deg ci,h < ℓi,h degQi and gcd(Qi(n +
k), Qj(n)) = 1 for all k ∈ Z when i ̸= j. This is discussed in Section 4.1.

The vector spaces

KQi(n)
def
= VectK

(
nℓ

Qi(n+ h)j
| h ∈ Z, j ∈ N∗, ℓ < j deg(Qi)

)
are in direct sum for distinct Qi and are left invariant by L∗ modulo K[n]. This allows the reduction
algorithm to operate in each of the KQi

(n) independently. This is described in Sections 4.2 and 4.3, before
the reduction of the remaining polynomial part in Sections 4.4 and 4.5.

Notation 1. For two integers a, b with a ≤ b, we write Ja; bK for the set {a, a+ 1, . . . , b}.

4.1. Decomposition of rational functions. Recall that a polynomial Q is square-free when it does not
have multiple nontrivial factors. It is shift-free when gcd(Q(n), Q(n+ k)) = 1 for all k ∈ Z∗.

A shiftless decomposition of a polynomial Q is a factorization of the form

Q =

v∏
i=1

ni∏
j=1

Qi(n+ hi,j)
ei,j ,

7



Algorithm 2 Weak reduction of poles [·]Q
Input R,Q
Output a reduced form of R
while there exists j < 0 (minimal) such that Q(n− j) | den(R) do

R← R− L∗
(

A(n)

Q(n−j)ordj(den(R))+ordj(p0)

)
with A as in Eq. (22)

while there exists j ≥ r (maximal) such that Q(n− j) | den(R) do

R← R− L∗
(

A′(n+r)

Q(n−j+r)ordj(den(R))+ordj(pr)

)
with A′ as in Eq. (23)

return R

with ei,j ∈ N∗, hi,j ∈ Z, and Qi ∈ K[n] are such that each Qi is square-free and gcd(Qi(n + k), Qj(n)) = 1
for all i, j and all k ∈ Z unless i = j and k = 0. Such a factorization can be computed using only gcds,
resultants and integer root finding [21].

Note that shiftless decompositions are not unique in general. One can be refined when a Qi is not
irreducible, by splitting this factor further. In particular, the linear factors of the Qi can be isolated and
dealt with more easily.

A polynomial Q is refined with respect to a polynomial P when it is such that for each h ∈ Z, there
exists ℓ ∈ N such that gcd(P,Q(n + h)ℓ+1) = Q(n + h)ℓ. A shiftless decomposition is called refined with
respect to P when each Qi is. This refinement can be computed using gcds only and will be used with P = p0
and P = pr, the extreme coefficients of L∗.

From a shiftless decomposition, the partial fraction decomposition of Eq. (20) is then obtained by standard
algorithms [34, 5.11].

4.2. Weak reduction of the polar part.

Lemma 1. Let Q ∈ K[n] be square-free, shift-free and refined with respect to the coefficients p0 and pr of L∗.
Given a rational function R ∈ KQ(n), Algorithm 2 computes a rational function [R]Q ∈ KQ(n) with all its
poles at zeros of Q(n − j) such that j ∈ J0; r − 1K and R − [R]Q = P + L∗(T ) for some P ∈ K[n] and
T ∈ KQ(n). The algorithm is K-linear.

Proof. Assume that R decomposes as

(21) R =
∑
j∈J

λj(n)

Q(n− j)sj
with deg(λj(n)) < sj deg(Q).

Let jm = min(J) and ordj(p0) be the largest integer ℓ such that Q(n− j)ℓ | p0. Then,

Q(n− jm)sjmL∗
(

1

Q(n− jm)sjm+ordjm (p0)

)
= p̃0(n) mod Q(n− jm)sjm ,

where p̃0(n) is the remainder in the Euclidean division of p0/Q(n− jm)ordjm (p0) by Q(n− jm)sjm . The poles

of this rational function are at zeros of Q(n− j) with j ∈ Ĵ := J \ {jm} ∪ (jm + J1, r − 1K).
Since Q is reduced with respect to p0, the polynomial p̃0(n) is relatively prime with Q(n − jm). Thus,

there exist polynomials A and B such that

(22) λjm(n) = A(n)p̃0(n) +B(n)Q(n− jm)sjm .

Then
A(n)p̃0(n)

Q(n− jm)sjm
=

λjm(n)

Q(n− jm)sjm
−B(n),

so that

R− L∗
(

A(n)

Q(n− jm)sjm+ordjm (p0)

)
is equivalent to R modulo L∗(KQ(n)) and with all its poles at zeros of Q(n− j) with j ∈ Ĵ . This operation
can be repeated a finite number of times until all poles are at zeros of Q(n− j) with j ≥ 0.

8



Similarly, let jM = max(J) and ordjM+r(pr) be the largest integer ℓ such that Q(n−jM )ℓ divides pr(n−r).
Then

Q(n− jM )sjM L∗
(

1

Q(n− jM + r)sjM +ordjM+r(pr)

)
= p̃r(n) mod Q(n− jM )sjM ,

where p̃r(n) is the remainder in the Euclidean division of pr/Q(n − jM )ordjM+r(pr) by Q(n − jM )sjM . The

poles of this rational function are at zeros of Q(n − j) with j ∈ Ĵ ′ := J \ {jM} ∪ (jM − J1, r − 1K). Again,
since Q is reduced with respect to pr, the polynomial p̃r is relatively prime with Q(n − jM ). Thus there
exist two polynomials A′ and B′ such that

(23) λjM (n) = A′(n)p̃r(n) +B′(n)Q(n− jM )sjM

so that

R− L∗
(

A′(n+ r)

Q(n− jM + r)sjM +ordjM+r(pr)

)
is equivalent to R modulo L∗(KQ(n)) and with all its poles at zeros of Q(n− j) with j ∈ Ĵ ′. This operation
can be repeated a finite number of times until all poles are at zeros of Q(n− j) with j ∈ J0, r − 1K.

Each step being K-linear, so is the algorithm. □

Example 1. Let

R = 8nx+
n(8x2 + x)− 16x− 1

2(n− 1)2
− 4(x− 1)x2

n

− (4x3 + 8x2 − 31x− 32)n+ 4x3 − 31x− 32

2(n+ 1)2
+

4x(x2 − x− 8)

n+ 2
+

2x3

n+ 3

and

L∗ = x2(n− 2)S−3n − n(4n2 − x2 − 4n)S−2n + n(4n2 − x2 − 4n)S−1n − x2(n+ 2).

The poles of R are at {1, 0,−1,−2,−3}. We take Q = n+ 1 and follow the steps of the algorithm.
The pole at −3 is easy: from

L∗
(

1

n+ 3

)
= −x2 + 4n+

−x2 + 8

n+ 1
+

2x2 − 16

n+ 2
+

x2

n+ 3

and the coefficient 2x3 of (n+ 3)−1 in R, the algorithm performs the subtraction

R← R− 2xL∗
(

1

n+ 3

)
=

n(8x2 + x)− 16x− 1

2(n− 1)2
+

4x2

n
− (8x2 + x− 32)n+ x− 32

2(n+ 1)2
− 4x2

n+ 2
.

Next, the pole −2 is a simple root of the constant coefficient of L∗, leading to the computation of

L∗
(

1

(n+ 2)2

)
=

x2(n− 2)

(n− 1)2
+

x2

n
− n(x2 − 4)− 4

(n+ 1)2
− x2

n+ 2

so that the pole is removed by

(24) R← R− 4L∗
(

1

(n+ 2)2

)
=

x

2(n− 1)
− x

2(n+ 1)
.

R now has all its poles in {−1, 0, 1} and the weak reduction is finished.

4.3. Strong reduction of the polar part. By Corollary 1, the weak reduction produces rational functions
all whose poles differ from those of Q by an integer in J0, r−1K. The next step of the reduction is to subtract
rational functions in L∗(KQ(n)) that have this property.

It turns out to be possible to focus on a finite-dimensional subspace of L∗(KQ(n)) thanks to the following.

Lemma 2. If j < 0, s > ordj(p0) and ℓ < sdeg(Q) or if j ≥ 0, s > ordj+r(pr) and ℓ < s deg(Q) then[
L∗

(
nℓ

Q(n− j)s

)]
Q

= 0.
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Algorithm 3 Weak reduction of polynomials [·]∞
Input P and (σ,p) from Eq. (25)
Output a reduced form of P
a← 0
while deg(P ) ≥ σ do
if deg(P )− σ is a root of p then a← a+ lt(P ); P ← P − lt(P )

else P ← P − lc(P )
p(deg(P )−σ)L

∗(ndeg(P )−σ)

return a+ P

Proof. Let j, s, ℓ be three integers that satisfy the first assumption. Then L∗(nℓ/Q(n− j)s) has a denomi-
nator that is divisible by Q(n− j) with j < 0 by assumption. No smaller k is such that Q(n− k) divides the
denominator. Thus the first pass through the first loop of the weak reduction subtracts L∗(nℓ/Q(n− j)s)
to itself and reduces it to zero. When the second assumption is satisfied, then L∗(nℓ/Q(n− j)s) has a
denominator that is divisible by Q(n − (j + r)) with j + r ≥ r by assumption. No larger k is such that
Q(n− k) divides the denominator. Thus again, the second loop reduces that fraction to 0. □

Corollary 1. Let I0 := {j ∈ Z<0 | gcd(p0(n), Q(n−j)) ̸= 1} and Ir := {j ∈ Z≥0 | gcd(pr(n), Q(n−j)) ̸= 1}.
The K-vector space [L∗(KQ(n))]Q is generated by the fractions

[
L∗

(
nℓ

Q(n− j)sj

)]
Q

, with


j ∈ I0 and 1 ≤ sj ≤ ordj(p0) and 0 ≤ ℓ < sj degQ

or

j ∈ Ir and 1 ≤ sj ≤ ordj+r(pr) and 0 ≤ ℓ < sj degQ.

Corollary 1 gives a generating family of the finite dimensional K-vector space [L∗(KQ(n))]Q. These
rational functions can be written in the basis (ni/Q(n− j)k)i,k∈N,j∈Z and one can then compute an echelon
basis of this finite-dimensional space. This precomputation step corresponds to the computation of the BQi

’s
in Algorithm 4. The strong reduction of a rational function R ∈ KQ then consists in reducing [R]Q with this
echelon basis. By this process, we obtain the following.

Proposition 5. Strong reduction reduces every rational function R ∈ L∗(KQ(n)) to a polynomial in K[n].

Example 2. With the same notation as in example 1, Corollary 1 shows that [L∗(Kn+1(n))]n+1 is generated
by [

L∗
(

1

n− 2

)]
n+1

= 4n+
x2

n+ 1
− x2

n− 1
,

[
L∗

(
1

n− 1

)]
n+1

= 4n+
x2

n− 1
− x2

n+ 1
.

Thus the strong reduction of the rational function R from Eq. (24) is the polynomial

R+ L∗((n− 2)−1)/(2x) = −2n/x,
concluding the reduction.

4.4. Weak reduction of polynomials. The weak reduction of polynomials is a direct adaptation of the
differential case [6]. The indicial polynomial of L∗ at infinity is the polynomial p ∈ K[s] defined by

(25) L∗(ns) = ns+σ(p(s) +O(1/n)),

with σ ∈ N. The ensuing weak reduction is presented in Algorithm 3.

Example 3. In Examples 1 and 2, the indicial equation at infinity is

L∗(ns) = ns+2(8 + 4s+O(1/n)).

The polynomial −2n/x found in Example 2 cannot be reduced further by weak reduction since its degree in n
is smaller than 2.

The following properties are proved exactly as those for weak reduction at a pole.

Lemma 3. Algorithm [·]∞ terminates and is K-linear. For all P ∈ K[n], there exists Q ∈ K[n] such that
P − [P ] = L∗(Q). If s ∈ N is not a root of p, then [L∗(ns)]∞ = 0.
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Algorithm 4 PrecomputeBases

Input Q1, . . . , Qv polynomials that occur in the shiftless decomposition of p0pr
Output The echelon bases BQ1

, . . . , BQv
, Bpol

Bpol ← {}
for i = 1 to v do

BQi ← Echelon

({[
L∗

(
nl

Q(n−j)s

)]
Qi

| l, j, sj as in Cor.1

})
Bpol ← Bpol ∪ (BQi

∩K[n])
Bpol ← Echelon(Bpol ∪ {[L∗(ns)]∞ | s integer root of p})
return BQ1 , . . . , BQv , Bpol

Algorithm 5 Reduction of rational functions [·]
Input R and BQ1

, . . . , BQv
, Bpol computed by Algorithm 4

Output a reduced form of R by L∗(K(n)).
Decompose R as P∞ +

∑v
i=1 Ri with Ri ∈ KQi

for i = 1 to v do RQi ← StrongReduce([Ri]Qi , BQi)
R← P∞ +

∑s
i=1 RQi

Write R = P + R̃ with P a polynomial and deg(R̃) < 0
P ← StrongReduce([P ]∞, Bpol)

return P + R̃

4.5. Strong reduction of polynomials. The final step is to subtract polynomials in L∗(K(n)). Here
again, a finite number of generators can be obtained thanks to the following.

Lemma 4. Let Q1, . . . , Qv be the polynomials that occur in a shiftless decomposition of p0pr and let P be a
polynomial in L∗(K(n)). Then

P ∈ Epol
def
= L∗(K[n]) +

v∑
i=1

[L∗(KQi(n))]Qi ∩K[n].

Proof. If R ∈ K(n) is such that L∗(R) is a polynomial, then the poles of R must be cancelled by the zeros
of p0pr or their shifts. It follows that R decomposes as

R = R∞ +

v∑
i=1

Ri

with Ri ∈ KQi
(n) and R∞ ∈ K[n]. Each L∗(Ri) has to be a polynomial and thus invariant by [·]Qi

. This
concludes the proof. □

By Lemma 4, the vector space [L∗(K[n])]∞ is generated by {[L∗(ns)]∞ | s ∈ N and p(s) = 0} with p the
indicial polynomial of L∗ at infinity. Generators of each [L∗(KQi

)]Qi
∩ K[n] are obtained from the echelon

basis used in the strong reduction with respect to Qi. This gives a finite set of generators for [Epol]∞,
which is easily transformed into a basis by a row echelon computation. Strong reduction consists in reducing
modulo this basis. The following consequence is as in the polar case.

Lemma 5. The strong reduction of polynomials reduces every polynomial P ∈ L∗(K(n)) to zero.

Example 4. Continuing Examples 1 to 3, the polynomial p(s) = 8+4s has no positive integer root therefore
[L∗(K[n])]∞ = {0}. A basis of [L∗(Kn+1)]n+1 ∩K[n] is {n} according to example 2. Therefore 2n/x reduces
to 0.

4.6. Canonical Form. Algorithm 4 and Algorithm 5 combine the previous algorithms to produce a canon-
ical form.

Theorem 2. Algorithm 5 computes a canonical form.

Proof. Algorithm 5 is linear as every step is linear. By Proposition 5 and Lemma 5, [L∗(K(n)] reduces to 0
and [R]−R ∈ L∗(K(n)) as only functions in this image were subtracted to R. □
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5. Certificates

Reduction-based creative telescoping algorithms allow to find a telescoper without having to compute
an associated certificate. This has led to faster algorithms as certificates are known to be larger than
telescopers [8]. This approach makes sense in the differential case when it is known in advance that the
integral of a certificate over a cycle that avoids singularities is equal to zero. The framework is not as
favorable for sums. Indeed, it is necessary to detect whether the certificate has poles in the range of
summation and it is often unclear whether the certificate becomes 0 at the boundaries of the summation
interval.

It is however possible to compute the certificates in a compact way during the execution of our algorithm,
with almost no impact on the execution time. The idea is to make the computation and storage of certificates
efficient by storing them as directed acyclic graphs (dags) rather than operators with normalized rational
function coefficients. These dags have a number of internal nodes of the same order as the number of opera-
tions performed when computing the telescoper, so that their computation does not burden the complexity.
They can then be evaluated at the endpoints of the range of summation, or expanded in Laurent series there.

5.1. Computation and structure of certificates. Equations (17) and (18) show how one can compute
telescopers without computing certificates. We now show how to compute the certificates simultaneously.
These are obtained as sums of monomials in the ∂i multiplied by rational functions. These rational functions
have denominators of the form Q(n − j)s, with integers j, s and polynomials Q that occur either in the

shiftless decomposition of p0pr or in the denominator of the operator A1 ∈ K̂⟨Sn⟩ such that 1 = A1γ, or in
the denominator of one of the operators Bi from Proposition 3. Those sums are not reduced to a common
denominator. They share many common coefficients and denominators that are efficiently compacted into
dags by sharing common subexpressions (this is how Maple stores them by default).

The starting point is the cyclic vector γ ∈ A/I and the operator A1 ∈ K̂⟨Sn⟩ such that 1 = A1γ. By
Euclidean division by ∆n on the left,

A1 = R0 +∆ng0.

In general, the certificate Gα in Eq. (17) is stored as an (unreduced) element gα of A such that Gα =
gαγ mod I. The computation is incremental. It is initialized with R0 and g0 as above, corresponding to
α = 0. In many cases, the vector 1 is cyclic, so that one can take γ = 1 = A1 = R0 and g0 = 0. Otherwise,
the denominators of R0 and g0 are shifts of the denominator of A1.

Next, Eq. (18) leads to the computation of the canonical form of the rational function ϕi(Rβ). This
computation is performed via a sequence of reductions which consist of subtractions of elements in L∗(K(n)).
Keeping track of these rational functions (without normalizing them) gives the canonical form Rα as

ϕi(Rβ) = Rα − L∗(cα)

for some rational function cα ∈ K̂. Both Rα and cα have denominators that are shifts of those of Rβ or of
factors of p0pr. In view of Eq. (16), it follows that

∂α = ∂i∂
β = Rαγ +∆n (∂iGβ + PBi

(σi(Rβ))γ + PL(cα)γ) mod I.
Thus, the certificate Gα is obtained as gαγ with

(26) gα = ∂igβ + PBi
(σi(Rβ)) + PL(cα).

This proves the claim concerning the structure of the certificates and the factors of their denominators. In
our implementation, ∂i is commuted with the coefficients of the certificate gβ only. If desired, one can further
use ∂i = Bi mod I so as to write gα as an operator in Sn only.

5.2. Evaluation of the certificates. The output of Algorithm 1 is a set of elements T of the telescoping
ideal, which means that

T (F ) = g(F )(n+ 1, x1, . . . , xm)− g(F )(n, x1, . . . , xm),

with g a certificate as described above. Summing over n, the right-hand side telescopes and only the values
of the certificate g(F ) at the endpoints are needed.

It is possible to prove that these evaluations are zero without any evaluation in two important cases.
First, if the summand F has finite support (e.g., binomial sums), then the sum of any certificate over Z
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will be zero provided it has no pole in the summation range. The second case is when one can prove that
R(n)γ(F ), . . . , R(n)Sr−1

n γ(F ) tend to zero as n tends to ±∞ for any rational function R ∈ K[n] (as in the
introductory example). Then again the sum of any certificate over Z will be zero provided it has no pole in
the summation range.

5.3. Integer pole detection. By its very nature, the method of creative telescoping requires the certificate
not to have poles in the range of summation, so that telescoping can occur. The structure of the certificates
described above does not allow the efficient computation of its denominator exactly. However it is possible to
compute a multiple of it by taking the least common multiple of the denominators of every rational function
in the representation. This can be done efficiently by performing the computation on the dag representation
of the certificates.

From this multiple of the denominator of the certificate, one can compute the set of roots that lie in the
summation range; this amounts to computing the roots that differ from the endpoints of the summation
range by an integer. If that set is not empty, then one can compute a Laurent series expansion of the
certificate at any point to check whether it is a pole or not, again by exploiting the dag representation of
the rational function coefficients.

5.4. Examples.

5.4.1. Neumann’s Addition Theorem for Bessel functions. On input S(x) =
∑∞

n=1 Jn(x)
2 where Jn(x) is the

Bessel function of the first kind, Algorithm 1 outputs the telescoper ∂x and a certificate G in dag form that
exhibits poles at n ∈ {−1, 0, 1, 2}. Our implementation produces the polynomial n(n + 1)(n − 2)(n − 1)
containing this information. In this example, the certificate is small enough that it can easily be normalized
and one gets its value as

− x

4 (n+ 1)
S2
n +

n+ 1

x
Sn −

8n2 − x2 + 8n

4x (n+ 1)
,

showing that the poles at 1 and 2 vanish in the normalization. Without normalizing the certificate, one
can still evaluate the series expansions of the certificate at those points to establish that it has a finite limit
there, making the summation legitimate. At n = 1, the evaluation is found to be

−J0(x)J1(x) =
1

2
(J0(x)

2)′.

Thus we have proved
d

dx
(
1

2
J2
0 (x) + J1(x)

2 + J2(x)
2 + · · · ) = 0.

This shows that the sum is constant and the value is revealed by its value at 0, which follows from Jk(0) = 0
for k > 0 and J0(0) = 1, so that in the end, we recover the classical identity [27, 10.23.3]

1 = J0(x)
2 + 2

∑
k≥1

Jk(x)
2.

5.4.2. Apéry’s Sequence. The classical sum

(27) An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

,

used by Apéry in his proof of the irrationality of ζ(3), has telescoper

(28) T := (n+ 2)
3
S2
n − (2n+ 3)

(
17n2 + 51n+ 39

)
Sn + (n+ 1)

3
.

The singularities of the certificate obtained by our implementation are at k ∈ {n + 1, n + 2}. Indeed, once
normalized, the certificate is found to be

C := 4 (3k − 4n− 8) k4

(k − n− 2)
2 Sn −

4k4 (3k + 4n+ 4)

(k − n− 1)
2 .

Let Un,k denote the product of binomials in the sum. Summing T Un,k from k = 0 to k = n+2 gives T (An).
If telescoping is legitimate, then the values of the endpoints are the values of CUn,k at k = 0 and k = n+ 3,
that are both easily checked to be 0. For this to allow to conclude that T (An) = 0, it is then sufficient to
check that CUn,k is not singular at k = n + 1 and k = n + 2, even though C is. Indeed, a series expansion
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HF-CT HF-FCT redctsum
easy examples 6.7s 7s 0.9s
Eq. (30) 101s 49s 0.8s
Eq. (31) 52s 4s 1.4s
Eq. (32) 62s 1.7s 5.7s
Eq. (33) 4.9s 1.4s 10.3s
Eq. (34) 4.9s 1.4s 13.5s
Eq. (35) 1200s 13s 205s
Eq. (36) > 6h 108s 3338s
Eq. (37) 1703s 4.7s 580s
Eq. (38) > 1h 3.2s(∗) > 1h
Eq. (39) > 1h > 1h 0.4s

Table 1. Timings. The notation (∗) means that we could not check whether the telescopers
returned by HF-FCT were minimal.

of the evaluation of CUn,k at k = n + 1 and k = n + 2 is possible for our implementation, and finds that
the sequence has a finite limit there, which concludes the proof that the telescoper Eq. (28) cancels the sum
Eq. (27); see also [18] for more on these issues.

5.5. A larger example. The computation of telescoper and certificate for the sum

(29)

∞∑
n=0

(4n+ 1)(2n)!

n!222n
√
x

J2n+1/2(x)P2n(u)

takes less than 15 sec. with our current implementation (see Table 1). The telescopers are quite small:

(1− u2)∂u + xu∂x, (u3 − u)∂2
u + (1 + u2)∂u − u3x2.

In this example, not normalizing the certificates during their computation has a cost. The actual certificates,
once reduced by the Gröbner basis of the annihilating ideal of the summand, are not very large. They are
easily computed by Koutschan’s program. Still, the corresponding dags are large. Nonetheless, it takes less
than 1 sec. to compute a multiple of the denominators of the certificates and detect that they do not have
integer roots. Evaluating the certificates at n = 0 using their dag representation takes less than 2 min. and
proves that the telescopers cancel the sum in Eq. (29).

6. Implementation

This algorithm is implemented in Maple2. Table 1 gives a comparison of our code with Koutschan’s
heuristic (HF-FCT) and Chyzak’s algorithm (HF-CT)3. They are both implemented in Koutschan’s Holo-
nomicFunctions package in Mathematica [25]. The column ‘redctsum’ corresponds to our algorithm.

These programs have been executed on a list of 21 easy examples that were compiled by Koutschan, as
well as more difficult ones given in Eqs. (30) to (39) below. Eq. (30) comes from recent identities involving
determinants [2], Eqs. (31), (32), (37) and (38) have been chosen because they looked natural to experiment
with, Eq. (34) is a harder example found in Koutschan’s list, Eq. (33) as well as Eq. (36) and it special case
Eq. (35) come from the classical book of integral and series by Prudnikov et al. [28], and finally Eq. (39) is
an example where Koutschan’s heuristic does not stop as it does not guess correctly the form of the ansatz
to use [11].

2The implementation is available at https://github.com/HBrochet/CreativeTelescoping.git, together with sessions of
examples.

3The code was run on a Intel Core i7-1265U with 32 GB of RAM.
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HF-CT HF-FCT redctsum
S6 11s 64s 0.4s
S7 32s 331s 0.6s
S8 106s 1044s 1.0s
S9 325s 3341s 2.5s
S10 1035s >1h 5.7s

Table 2. Timings on the family Sr from Eq. (40).

n∑
j=1

(
m+ x

m− i+ j

)
cn,j where cn,j satisfies recurrences of order 2 [2, p. 6](30)

∞∑
n=0

C(k)
n (x)C(k)

n (y)
un

n!
(31)

∞∑
n=0

Jn(x)C
(k)
n (y)

un

n!
(32)

∞∑
k=0

(−1)k(4k + 1)J2k+1/2(w)P2k(z)(33)

∞∑
n=0

(4n+ 1)(2n)!

n!222n
√
x

J2n+1/2(x)P2n(u)(34)

∞∑
k=0

(b+ 3/2)k
(3/2)k(b+ 1)k

J
(1/2,b)
k (x)J

(1/2,b)
k (y)(35)

∑
k

(a+ b+ 1)k
(a+ 1)k(b+ 1)k

J
(a,b)
k (x)J

(a,b)
k (y)(36)

∞∑
n=0

Pn(x)Pn(y)Pn(1/2)(37)

∞∑
n=0

Pn(x)Pn(y)Pn(z)(38)

∑
y

4x+ 2

(45x+ 5y + 10z + 47)(45x+ 5y + 10z + 2)(63x− 5y + 2z + 58)(63x− 5y + 2z − 5)
(39)

The family (Sr) is defined by [22]

(40) Sr =

n∑
k=0

(−1)k(rn− (r − 1)k)!(r!)k

(n− k)!rk!
.

For any r, our algorithm produces a minimal telescoper of order r and degree r(r − 1)/2. The timings are
reported in Table 2. It is unclear why the heuristic HF-FCT does not perform well on this family.

On most of these examples, the main part of the time of the computation is spent in the reductions in
the call to CanonicalForm in Algorithm 1. For the two similar sums of Eqs. (33) and (34), almost half of the
time is spent in Algorithm 4 performing the reductions needed to compute the bases for the strong reduction.
This step is crucial to ensure that the minimal order elements in the telescoping ideal are found.

There are cases, like Eq. (36) and the family Sr, where the intermediate rational functions Rα in Eq. (17)
become much larger than the telescopers found after linear algebra on them. In such situations, the direct,
non-incremental approach taken by HF-CT and HF-FCT can be more efficient, by avoiding an unnecessarily
large basis of rational functions.
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