Metal-free Photocatalytic Cross-Electrophile Coupling enables C1 Homologation and Alkylation of Carboxylic Acids with Aldehydes
Résumé
In contemporary drug discovery, enhancing the sp3-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters (RAEs) with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp3)−C(sp3) cross-coupling platform. We demonstrate its synthetic value as a safer, broadly applicable C1 homologation of carboxylic acids, offering an alternative to the traditional Arndt-Eistert reaction. Additionally, our method provides direct access to cyclic and acyclic β-arylethylamines using diverse aldehyde-derived sulfonyl hydrazones. Notably, the methodology proves to be compatible with the late-stage functionalization (LSF) of peptides on solid-phase, streamlining the modification of intricate peptides without the need for exhaustive de-novo synthesis.
Fichier principal
metal-free-photocatalytic-cross-electrophile-coupling-enables-c1-homologation-and-alkylation-of-carboxylic-acids-with-aldehydes.pdf (1.11 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|