N
N

N

HAL

open science

Classifier Calibration with ROC-Regularized Isotonic
Regression

Eugene Berta, Francis Bach, Michael I Jordan

» To cite this version:

Eugene Berta, Francis Bach, Michael I Jordan. Classifier Calibration with ROC-Regularized Isotonic
Regression. 27th International Conference on Artificial Intelligence and Statistics (AISTATS), May

2024, Valence, Spain. pp.1972-1980. hal-04295601v2

HAL Id: hal-04295601
https://hal.science/hal-04295601v2

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04295601v2
https://hal.archives-ouvertes.fr

Classifier Calibration with ROC-Regularized Isotonic Regression

Eugéne Berta
Inria, Ecole Normale Supérieure,
PSL Research University

Abstract

Calibration of machine learning classifiers is
necessary to obtain reliable and interpretable
predictions, bridging the gap between model
outputs and actual probabilities. One promi-
nent technique, isotonic regression (IR), aims
at calibrating binary classifiers by minimiz-
ing the cross entropy with respect to mono-
tone transformations. IR acts as an adaptive
binning procedure that is able to achieve a
calibration error of zero but leaves open the
issue of the effect on performance. We first
prove that IR preserves the convex hull of the
ROC curve—an essential performance met-
ric for binary classifiers. This ensures that
a classifier is calibrated while controlling for
over-fitting of the calibration set. We then
present a novel generalization of isotonic re-
gression to accommodate classifiers with K-
classes. Our method constructs a multidi-
mensional adaptive binning scheme on the
probability simplex, again achieving a multi-
class calibration error equal to zero. We reg-
ularize this algorithm by imposing a form of
monotony that preserves the K-dimensional
ROC surface of the classifier. We show em-
pirically that this general monotony criterion
is effective in striking a balance between re-
ducing cross entropy loss and avoiding over-
fitting of the calibration set.

1 INTRODUCTION

Calibration is a natural requirement for probabilistic
predictions. It aligns the outputs of a classifier with
true probabilities, according with the intuition that
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the predictions of our models should match observed
frequencies. Several papers have demonstrated em-
pirically that simple machine learning classifiers can
exhibit poor calibration, even on very simple datasets
(Zadrozny and Elkan, 2001, 2002; Niculescu-Mizil and
Caruana, 2005). More recently Guo et al. (2017)
showed that deep neural networks suffer from the same
problem, due to their tendency to over-fit the training
data, reviving the community’s interest in calibration.

The interpretation of the predictions of machine learn-
ing classifiers as probabilities is not possible without
calibration. Calibration is desirable in that it provides
a lingua franca for multiple users to assess the outputs
of a learning system. It also permits the use of learning
systems as modules in complex prediction pipelines—a
single module can be updated independently of others
if its outputs can be assumed to be calibrated.

1.1 Calibration

We let X and ) denote the feature space and the
output space of a numerical classification problem, re-
spectively, with )V = {0,1} in the binary classifica-
tion setting and Y = {1,...,K} in the general K-
class classification setting. We consider a probability
distribution for a random variable (X,Y) € X x ),
and a probabilistic classifier f : & — P making pre-
dictions p = f(x) in the prediction space P. In the
binary case we take P = [0,1] and in the multi-class
case P = Ak, with Ag the K-dimensional simplex
{peRE|TL pi =1}

Definition 1.1 (Calibration, Foster and Vohra, 1998;
Zadrozny and Elkan, 2002). A binary classifier f :
X — [0, 1] is said to be calibrated if P[Y = 1|f(X)] =
f(X), or equivalently E[Y|f(X)] = f(X). For a
multi-class classifier f : X — Ak, the definition is

E[Y[f(X)] = f(X).

The concept of calibration has been useful in a va-
riety of applied contexts, notably including weather
forecasting (Murphy and Winkler, 1977).

Evaluating calibration. We define a criterion that
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assesses the calibration of a classifier.

Definition 1.2 (Calibration error). For a classifier f,
the calibration error is K(f) = E[|[E[Y]f(X)]— f(X)]].

This error is usually referred to as the expected cali-
bration error (ECE) (Pakdaman Naeini et al., 2015).

For a discrete set of observed data points,
(i, Yi)1<i<n, if the classifier f takes continuous
values, the expectation E[Y|f(X)] needs to be es-
timated. If the predictions live on a discrete grid
P = [M,...,An], we can readily approximate this
expectation. For any index 4, we have f(z;) = A; for
some A; in the grid. We can use all the points for which
the prediction was \; (S; = {k € [1,n] | f(zr) = \;})
to compute the empirical expectation:

Elyil f(z:)] > 75 Yes, Un-

Plugging in such estimates, the calibration error can
be approximated. Predictions on grids have been ubig-
uitous in the literature on calibration. In particular,
in weather forecasting, the predictions usually live on
the grid [0%,10%, ...,100%)]. In the continuous case
of machine learning classifiers, however, it is not clear
that such discretizations make sense; in particular, it
is not clear how they interact with performance.

Calibration and model performance. There is
a significant literature establishing theoretical bounds
for calibration (see Foster and Hart, 2021, for a re-
view). A central result is that one can always produce
a calibrated sequence of predictions, even if the out-
comes are generated by an adversarial player. This
surprising result is a consequence of the minimax the-
orem (Hart, 2022), and it leads to simple strategies to
generate a sequence of forecasts that is asymptotically
calibrated against any possible sequence of outcomes.
This is a positive result, but it also reflects the fact
that calibration is a weak constraint. Consider a lo-
cale where it rains every other day. Predicting a 50%
chance of precipitation every day is enough to achieve
calibration even if this forecast is quite poor. This
suggests that while calibration is useful, it should be
considered in the overall context of the accuracy of the
forecasts (Foster and Hart, 2022).

Calibration and proper scoring rules. Brocker
(2009) proved that any proper score can be decom-
posed into the calibration error and a second refine-
ment term. In particular, for the cross-entropy loss:

H(Y, f(X)) = E[KL(f(X)[[P(Y]f(X))]

CEHEYFX),

with H(.,.) the cross entropy and H(.) the entropy.
Here, we see that the calibration error is expressed in
terms of the Kullback-Leibler (KL) divergence; other

criteria can arise depending on the specific proper scor-
ing rule that is chosen. This confirms that a zero
calibration error does not necessarily guarantee good
forecasts. Indeed, calibration can be achieved inde-
pendently of the performance of the classifier. The
intuition is that aligning model confidence with prob-
abilities can be done whatever the performance of the
model, and the lower the model’s accuracy, the less
confident it should be in its predictions. Machine
learning classifiers are usually able to generate fore-
casts with good accuracy, but these forecasts are gen-
erally not calibrated. The decomposition above shows
that calibrating our classifiers might help in reducing
the cross-entropy loss even further.

1.2 Calibrating machine learning classifiers

The machine learning literature has generally em-
ployed the following simple data-splitting heuristic
to calibrate classifiers. Given n i.i.d data points
(24, Yi)1<i<n € (X,)), a portion of this available data
is reserved for calibration (calibration set) and the
classifier is trained on the rest of the data (training
set). After the classifier is trained, the held-out cali-
bration set is used to evaluate and correct its calibra-
tion error. This paradigm separates the calibration
procedure from model fitting, resulting in calibration
methods that can be applied to any model. How-
ever, holding out a portion of the data for calibration
can be problematic in data-sparse applications. More-
over, in the context of online learning, every update to
the model requires running the calibration step again.
New data points will either be used to improve the
model performance (training set) or reduce the cali-
bration error (calibration set). In these cases we see
that the data-splitting paradigm sets up a trade-off
between calibration and performance.

In addition, calibration procedures that use data split-
ting rely on the assumption that the data are identi-
cally distributed across the calibration set and the test
set. The idea is that the calibration error observed on
the calibration set can be used to evaluate and correct
the calibration error on the underlying data distribu-
tion, thus calibrating the model for any point sampled
from this distribution.

Continuous calibration error. Let (z;,¥:i)1<i<n
denote the held-out calibration set. We first evalu-
ate the predictions of the model f on this set: (p; =
f(x:))1<i<n. For a standard machine learning classi-
fier, these predictions do not live on a fixed grid; in-
stead, they can take arbitrary values in [0,1] (in the
binary case). We remember that the calibration error
is intractable in this case. What is usually done in the
literature to overcome this difficulty is to discretize the
predictions (p;)1<i<n using a regular binning scheme:
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(Bi)i<j<m = {[0,2],..., 2L 1]} (see, e.g., Pak-
daman Naeini et al., 2015; Guo et al., 2017). The
discretized predictions are p; = b;, with b; the cen-
ter of bin B; such that the initial prediction p; € B;.
With these discrete forecasts, an estimate of the cali-
bration error can be computed. However, discretizing
has some important drawbacks. In particular, it is not
robust to score distributions that are highly skewed on
[0,1], a behavior we often observe in practice. Recent
work has proposed new ways to evaluate and visual-
ize calibration error in the case of continuous forecasts
(Vaicenavicius et al., 2019).

Nonparametric model calibration. In an early
paper on calibration for machine learning models,
Zadrozny and Elkan (2001) introduced the method we
discussed above—using a fixed binning scheme to dis-
cretize the outputs of any probabilistic classifier—in
the context of various calibration schemes. They note
in particular that it is easy to correct the prediction
of the model on each bin by replacing it with the ac-
tual observed frequency of outcomes on the calibra-
tion set. Under the i.i.d. assumption, this method is
trivially calibrated. It adapts very poorly, however, to
skewed distributions of the forecasts, and while achiev-
ing calibration it can be very detrimental to the per-
formance of the model. This led to the development
of adaptive binning methods that preserve the cali-
bration guarantees of regular binning while trying to
set bin boundaries that are less detrimental to per-
formance. In particular, isotonic regression was em-
ployed for adaptive binning by Zadrozny and Elkan
(2002), and Bayesian binning schemes have also been
proposed (Pakdaman Naeini et al., 2015).

Parametric model calibration. On the other end of
the spectrum, a rich literature has arisen using para-
metric procedures to correct calibration errors. For
example, Platt scaling (Platt, 2000) consists in fitting
a sigmoid to the forecasts of the classifier on the cal-
ibration set to minimize the cross entropy with the
calibration labels. Further developments in the para-
metric vein include the beta calibration method (Kull
et al., 2017). Unlike binning methods, these meth-
ods have the appeal of learning continuous calibration
functions, but they provide no guarantees on calibra-
tion. With continuous methods, the calibration er-
ror can only be estimated with discretization, which
is very limiting. On the other hand, the calibration
function lives in a restricted class of functions that
is characterized by shape constraints, which yields a
regularization prior that mitigates performance degra-
dation arising from over-fitting the calibration set.

2 BINARY CALIBRATION WITH
ISOTONIC REGRESSION

The previous section raises the question of whether it
is possible to achieve calibration guarantees while pre-
serving the performance of the initial classifier. The
decomposition of proper scoring rules in (1) suggests
that setting the calibration error to zero can improve
the cross entropy of the classifier. We will see that
isotonic regression actually achieves this twofold ob-
jective in the setting of binary classification.

2.1 Isotonic regression

Isotonic regression (see, e.g., Robertson et al., 1988)
is a nonparametric statistical methodology for the fit-
ting of monotone functions that has been adapted for
the calibration of the probabilities of a binary classifier
by Zadrozny and Elkan (2002).

Definition 2.1 (Isotonic regression). Let n € N7,
(Pisyi)i<i<n € (R?)™ and (wi)1<i<n € (Ry)"™ a set of
positive weights. Assuming the indices are chosen such
that p;1 < ps < --- < py,, isotonic regression solves

1o )
T:rrel]g% -~ lel(yl —1;)° such that 11 <rg <--- <y,
i—

where r can be viewed as an n-dimensional vector or
a function from P =R to Y = R with r(p;) = ;.

This corresponds to finding a nondecreasing function
r of inputs (p;)1<i<n that minimizes the squared error
with respect to the labels (y;)1<i<n, under a certain
weighting (w;)1<i<n of each data point (p;, yi)1<i<n-

Remark. The problem established by Definition 2.1 is
a convex optimization problem.

Remark. Robertson et al. (1988) (Theorem 1.5.1)
showed that IR can be used to minimize any Bregman
loss function, in particular, the KL divergence. In the
framework of supervised learning, where the distribu-
tion of y is fixed, the KL divergence is equal to cross
entropy up to a constant factor, so IR minimizes the
cross-entropy loss.

Pool adjacent violators algorithm (PAV). The
solution of the isotonic regression (IR) problem can
be found via the efficient PAV algorithm (Ayer et al.,
1955). We present the algorithm in Algorithm 1, and
note that it has O(n) computational complexity. A
proof that PAV solves the IR problem can be found in
Robertson et al. (1988).

2.2 Isotonic regression is calibrated

In practice, we use our classifier f to generate non-
calibrated forecasts on the calibration set (p; =
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Algorithm 1 Pool Adjacent Violators
Require: p; <ps < < pn
Vi € [1,n],r; < y;
while not ry <r; <---<r, do
monotone
if Ty < Ti—1 then

WiTi+Wi—1Ti—1
T & ——

> Until r is

> Find adjacent violators
P > Pool
W; — W; + W1 > Pool
Remove r;_1 and w;_7 from the list. > Pool
end if
end while

f(x:))1<i<n. We then fit IR with these non-calibrated
forecasts as inputs and calibration labels (y;)1<i<n as
targets with constant weights w; = 1,V:. This gives
us a new set of calibrated forecasts (7;)1<i<n.

When IR was introduced in the context of probability
calibration (Zadrozny and Elkan, 2002), it was pre-
sented as an alternative to binning and Platt scaling.
We see from Algorithm 1 that IR produces a piece-wise
constant function. Moreover, on each constant region
the value of the function is the mean of the labels y; for
p; falling in this region. These observations show that
IR produces an adaptive binning scheme for which the
bin boundaries are set so that the resulting function
is increasing. This binning-like property allows us to
recover interesting guarantees from the nonparametric
calibration methods that we presented earlier.

Proposition 2.1. The isotonic regression (1;)1<i<n
of one-dimensional inputs (p;)1<i<n € R to binary la-
bels (yi)1<i<n € {0,1} achieves zero calibration error,
that is, K(r,y) = 0.

Proof. The value of r at any point can be written:

_ 1
r(p) = E{pm€B,T meegj Yi

for some bin B; in a finite set of bins, (Bj)i<j<m.,
such that p € B;. Moreover, r is increasing and takes
only m distinct values [by,...,b;,]. For any p € R, the
events {p € B;} and {r(p) = b;} are equivalent. Thus,

E[Y|r(p) =bj] = #{r(pi):bj} Zr(m):bj Yi
_ 1
— #{pieB;} Zpiij Yi-
So, Vp € R,E[Y|r(p)] — r(p) = 0, and the calibration

error is zero. O

This proof formalizes the idea that generalized binning
schemes provide calibration guarantees and it applies
for any binning scheme in an input space of any di-
mension.

Considering r as a piece-wise constant function, we
obtain a mapping that we can apply to any future

forecast to correct the inherent mis-calibration bias of
our initial classifier. Under the assumption that the
data are i.i.d across the test set and calibration set,
we can thus bound the calibration error on the test
data (cf. Zhang, 2002).

2.3 Isotonic regression preserves ROC-AUC

As discussed in the context of evaluating calibration
error, a coarse binning scheme yields a low-resolution
approximations of the original function which might
result in less accurate predictions. On the other hand,
a fine-grained binning scheme can approximate the ini-
tial function well but it reduces the number of points
per bin and it can lead to over-fitting of the calibra-
tion set (it also reduces the calibration guarantee that
we obtain). We thus obtain a trade-off between over-
fitting the calibration set and sacrificing initial model
performance. Given that IR behaves as an adaptive
binning scheme, let us explore how it performs vis-a-
vis this trade-off.

One essential assumption that is made in an isotonic
regression approach is that the calibration function f is
increasing. Taking (p;)1<i<n to be the outputs of our
original binary classifier and the resulting (7;)1<i<n
to be the calibrated version of these probabilities,
this implies that (r;)1<i<n preserves the ordering of
(pi)i<i<n. Thus, under this assumption, we obtain a
first guarantee that isotonic regression preserves the
quality of the original predictions.

However, we only enforce r; < 7,11 and not r; < r;41.
The ordering is only partially preserved as we can set
consecutive p; # p;41 to take the same value r; = r;41.
The PAV algorithm starts with the perfect fit, non-
increasing in general, such that r; = y;,Vi € [1,n].
It then merges consecutive values where the current
approximation of the target function is decreasing,
ri+1 < T, which means that the original ordering of
p; and p;11 was wrong. Setting r; 11 = r; in this case
actually corresponds to solving an ordering issue of the
original sequence and might well improve the quality
of our predictions. To formalize this simple intuition,
we need the following definition:

Definition 2.2 (Symmetric ROC curve). The sim-
plex Ay can be reduced to the [0,1] interval on
R. For different values of threshold v € [0,1], we
can split the simplex in two parts Ry = [0,7] and
Ry =]v,1] and evaluate py(y) = P(X € Ro|Y =0),
pi(y) = P(X € R]Y =1). We define the symmet-
ric ROC curve (SROC) as the two-dimensional graph
{(p0(7)7p1(7))77 € R}

Remark. The symmetric ROC curve is exactly the
classical ROC curve up to an inversion of the x-axis
(Fawcett, 2006). Our definition exposes a symmetry
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that will lead to a natural generalization in the next
section. The area under the ROC curve (AUC) is the
same under the two conventions.

Provost and Fawcett (2001) and Bach et al. (2006)
presented a procedure for convexifying the ROC curve
of a classifier by taking convex combinations of deci-
sion rules corresponding to different thresholds + (in
particular, averaging between the points forming the
convex hull of the ROC curve). Moreover, they show
that the convex hull of the ROC curve is a more robust
performance criterion than the initial ROC curve.

Theorem 2.1. The ROC curve of isotonic regression
is the convex hull of the ROC curve of the initial fore-
casts.

Proof. Let us define the cumulative sum diagram
(CSD) of the labels (y;)1<i<n With weights (w;)1<i<n:

{(Zzﬁ wi, Zle w;y;),j € [1,n]}.

Keeping in mind that indices are chosen so that p; <
p2 < -+- < py, if all weights are taken to be w; =
%, the CSD can be written in terms of cumulative
probabilities as follows:

{(B(X <p)P(X <p;nY=1)j€[Ln]}. (2

In their Theorem 1.2.1, Robertson et al. (1988) show
that IR finds the left derivative of the greatest convex
minorant (GCM) of the CSD. This property is illus-
trated with a simple example in Figure 1. On the first
line we plot a set of forecasts and the corresponding
labels (left), with the IR of forecasts to labels (right).
On the second line, we plot the CSD (left) and its
GCM (right). We observe that the left derivative of
the GCM matches the IR.

Remark. PAV has a natural interpretation as an iter-
ative procedure to build the GCM of a discrete graph.

By a simple affine transformation of the axes, a3 =
sir=0y and az = 1 — 72y, the graph (2) matches

the SROC graph:

{(P(X < p;|Y =0),P(X >p,|Y =1)),5 € [1,n]}.

This graph re-writing preserves convex sets. The
SROC graph is thus a simple affine transformation of
the CSD. Given that IR is the left derivative of a con-
vex graph, its CSD is a convex graph. More precisely,
its CSD is the GCM of the CSD of initial forecasts.
Using our graph transformation allows us to conclude
that the SROC curve of IR is the convex hull of the
SROC curve of the initial forecasts, as illustrated in
the last line of Figure 1. By definition, this also holds
for the traditional ROC curve. O

p
p p
0 +O-0-0— O-0-O > 0 O-0-O >
J J
A Z w;Y; A Z w;Y;
i=1 i=1
o
o
csb oooo - oo z
Z w; o Z wj
o = =
i 1 1
yp1(7) Am(7)
eco0o0o0
° o
° )
SROC coo0o o000
o
o
o DPo(7) po(7)
Figure 1: Illustrative example with points spread

across two classes blue (y = 0) and red (y = 1). Left:
model predictions, CSD, SROC curve. Right: IR
(equal to the left derivative of the GCM), GCM of
the CSD, SROC curve of IR (equal to the convex hull
of the initial SROC curve).

A link between IR and the ROC convex hull algorithm
was noted previously by Fawcett and Niculescu-Mizil
(2007). To the best of our knowledge, our proof is the
first that establishes this link formally.

2.4 Experiments

We fit a logistic regression on the first two classes of
the Covertype dataset (Blackard, 1998) and we cal-
ibrate this classifier with IR and a baseline recursive
binning scheme that makes no monotony assumption.!
We fit IR using isotonic recursive partitioning (IRP)
(Luss et al., 2012; Luss and Rosset, 2014), a recur-
sive procedure that creates new regions in an iterative
manner. Our baseline procedure consists in splitting
the simplex between two regions of equal size in a re-
cursive manner. First we split the simplex at v = 0.5,
then we split the first region obtained at v = 0.25 and
the second at v = 0.75, and so on. This procedure
mimics the behavior of IRP but the new bins created
are not adaptive, and they are not constrained to leave
the calibration function monotone. Using this baseline
allows us to compare IR with fixed binning schemes of
varying sizes, and to observe the over-fitting effect of
standard binning when the grid gets finer. We plot
the cross entropy on the calibration set and on the
test set for the two methods depending on the num-
ber of bins created; see Figure 2. We see that unlike

LAll experiments and figures of the paper can be
reproduced with the code available at github.com/
eugeneberta/Calibration-ROC-IR.



Classifier Calibration with ROC-Regularized Isotonic Regression

the standard binning procedure that over-fits the cali-
bration set when the grid gets too fine, the monotony
regularization of IR prevents over-fitting, and the al-
gorithm stops when the cross entropy is minimized on
the test set. Moreover, the extra freedom that IR can
set adaptive bin boundaries results in lower cross en-
tropy with fewer bins than for the baseline binning
procedure. This experiment draws a clear link between
IR and regular binning, showing that setting adaptive
boundaries to preserve the monotony of the calibra-
tion function prevents over-fitting the calibration set,
with the same calibration guarantees.

Remark. Luss et al. (2012) and Luss and Rosset (2014)
showed that with many data points, IR can still over-
fit the training set. They introduce IRP as an iterative
procedure to fit IR, which allows early-stopping (limit-
ing the number of bins in IR) to avoid over-fitting. In
our experiment, we use a limited number of points for
calibration and we don’t observe over-fitting but early
stopping IRP provides a natural solution to avoid over-
fitting when the calibration set is large.

Remark. Standard IR on binary labels starts with a
0-valued bin and ends with a 1-valued bin which can
cause the test cross entropy to be infinite in case of mis-
classification. We regularize IRP by adding Laplace
smoothing when computing the means for each bin.
This new regularized mean minimizes an entropy reg-
ularized cross entropy,H (p, y) — Alog(p), for some reg-
ularization strength A depending on the amount of
Laplace smoothing. On the calibration set, we plot
that regularized cross entropy, which is minimized by
our algorithm. On the test set however, we plot the
standard cross entropy.

3 MULTI-CLASS IR

Calibration of multi-class classifiers has been stud-
ied extensively in the parametric calibration litera-
ture. Guo et al. (2017) and Kull et al. (2019) intro-
duced Temperature Scaling and Dirichlet calibration
as multi-class extensions for Platt scaling and Beta
calibration, respectively. Parametric methods provide
no guarantee on calibration, and they need to be eval-
uated with expected calibration error. This evaluation
depends on the grid chosen and is inherently noisy, as
discussed in the first section. As a solution, Vaice-
navicius et al. (2019) proposed using statistical tests
to make the evaluation of calibration more robust.

The previous section presented some of the appealing
properties of IR for binary calibration. We now in-
vestigate the possibility of building a similar tool for
the more general multi-class calibration setting. Gen-
eralizing IR would give us a nonparametric multi-class
calibration method, with calibration guarantees, which

K=2, Calibration AUC K=2, Test AUC

08

0.7

AUC
AUC

0.6

-0~ Recursive binning
<@~ IRP
—— AUC before calibration
0.5 L n n n 0.5

I~@-Recursive binning
~@-IRP
|~ AUC before Calibration

0 10 20 30 40 0 10 20

30 40
Number of bins Number of bins

K=2, Calibration Cross Entropy

0.75 r ~@-Recursive binning ~@-Recursive binning
-0~ IRP ~0-IRP
|~ CE before calibration |~ CE before Calibration

K=2, Test Cross Entropy

regularized CE
CE

0 10 20 30 40 [ 10 20 30 40
Number of bins Number of bins

Figure 2: Calibration and test cross entropy and AUC,
IRP versus non-monotone recursive binning.

alleviates the burden of calibration evaluation.

The definition we use for multi-class calibration re-
quires that predictions are calibrated on every class.
This definition is overly restrictive for problems with
a large number of classes (typically K > 5), for which
it is natural in practice to ask that the model is cal-
ibrated only on the top classes. For simplicity, we
focus on low-dimensional classifiers in this paper and
leave extensions to high-dimensional classifiers for fu-
ture work.

Let K € NJK > 3. In the general K-class setting,
we have P = Ak and Y = {0,1,--- ,K}. For con-
venience, we use the one-hot encoding of the labels
Y =Agk.

3.1 Multi-class ROC surface

In the binary case, our increasing function naturally
preserves the ordering of the initial forecasts, which
leads us to conclude that it preserves the ROC curve
of the initial classifier. In the multi-class setting, a
similar notion of ordering is harder to define. Many
definitions of multidimensional monotony exist and be-
have as different regularization hypothesis for our cal-
ibration function. To mimic the binary case, we are
interested in preserving the ROC curve of the non-
calibrated forecasts on the calibration set. To carry
out this programme, we first require a definition of
the ROC curve in any dimension.
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Let Ax = {z € RK|ZkK:1 x = 1} denote an affine
combination of the unit vectors in R¥, and let v € Ax
denote a multi-dimensional threshold. In a similar
fashion to the binary case, we can split Ag into K
regions, Ry, Ry, ..., Rk, around « and define K prob-
abilities p1(y) = P(X € Ri|Y = 1),...,px(y) =
P(X € Rk|Y = K). Varying v allows us to build
a K-dimensional ROC surface. For a given v € As,
Figure 3 illustrates a natural symmetric splitting of
the simplex Ag.

/\
// \
/ Ry
/ <>\
o \\
/ \
// v \\
a \\
/// Rl R3 \\\
/ \
/ \

Figure 3: Natural splitting of the simplex Aj into
class-specific regions Ry, Ry, R3.

This splitting strategy can be extended to build par-
titions of the simplex around any point v € Ak in
dimension K:

Ri(v) = {r € Ag|argmaxp, g(r — ) =k}, (3)

for all ¥ € [1,K]. For any point r € Ak and
v € Ak, the vector r —y is necessarily associated with
a maximum-valued axis k such that ry — v > 7, — v,
for all ¢ € [1, K]. The boundaries correspond to ties
in the argmax, and the ties can be broken with any
strategy that ensures that each point belongs to only
one region, such that (3) defines a partition of the
simplex. We also define the subset Si(p,7) of points
p that belong to region R(y) for a given split +:
Sk(p,v) = {pi € Rik(v)}. Equipped with this parti-
tion of the simplex, we extend the standard definition
of the ROC curve to an arbitrary dimension.

Definition 3.1 (ROC surface). For a random exper-
iment with outputs Y € Ak, we define the ROC sur-
face of forecasts P € Ak as the K-dimensional graph:

pr (7)), ¥ € Ak},

where py(y) = P(P € Ry(7)|Y = k), for all k €
[1, K], and Ry (y) was defined above.

Remark. A technical subtlety is that we are using
v € Ak and not v € Ag. In the binary case, tak-
ing v € Ay is enough to build the full ROC curve
but this is not true in general. The splitting point
must be allowed to take values in the affine plane out-
side the simplex. Without this additional freedom,
for K = 3 for example it would not be possible to
put all the points in the same region, and the points

{(pl(V)aP2(7)a-~-

(0,0,1),(0,1,0),(1,0,0) would not belong to the ROC
surface.

This ROC surface illustrates how well our classifier can
separate the K classes in the data for any choice of
multi-dimensional threshold . The volume under the
ROC surface (VUS) can be computed in any dimension
to provide an indication of the performance of a multi-
class classifier.

The most widely used multi-class generalisation of
ROC AUC was introduced by Hand and Till (2001).
It is not based on a multi-dimensional ROC surface.
In contrast, our construction is similar to the one pro-
posed by Ferri et al. (2003), up to axis directions. As
highlighted by Kleiman and Page (2019), our argmax
splitting criterion is a natural choice to evaluate multi-
class forecasts. However, methods based on multi-
dimensional ROC surfaces are computationally heavy
and require using stochastic sampling methods to com-
pute the VUS. In this paper, we are not interested
in computing the VUS efficiently, but we derive a
monotony criterion from this natural generalisation of
the binary ROC curve.

3.2 Generalized monotony

This extension of the ROC curve to arbitrary dimen-
sions allows us to define a new monotony criterion
that aims at preserving the ROC surface of the initial
model. We seek to define constraints on the values
of our multidimensional calibration function so that
the ROC surface of the calibrated forecasts r is the
same as the ROC surface of non-calibrated forecasts p.
In the binary case, each possible threshold v € [0, 1]
generates a split between points So(r,y) and Sy (r, 7).
The fact that the function is monotone guarantees that
the same partition of the samples can be found with
another split on the non-calibrated forecasts. That
is, for all v € [0, 1], there exists v € [0,1] such that
(So(p:7"), S1(p,7)) = (So(r, ), S1(r, 7)), with 7 # .

Remark. This property is not reciprocal as IR is not
strictly monotone. IR merges values of consecutive
points together, deleting a possible split in the cali-
brated function. This removes a point from the ROC
curve, which explains that the ROC curve after cali-
bration contains fewer points than the ROC curve be-
fore calibration. IR is optimal as it keeps only the
points that form the convex hull of the ROC curve.

In a similar fashion, we want the splits that we can
make on our calibration function to exist also in the
non-calibrated forecasts. In other words, the points
that we allow on the calibrated ROC surface are the
points from the non-calibrated ROC surface.

Definition 3.2 (ROC monotony). Let p = (p;)ic[1,n]
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denote non-calibrated forecasts and r = (7;);e[1,n] the
image of these forecasts through our calibration func-
tion. Our function is said to be ROC monotone if

Vv € Ak, 3y € Ak Sk(r,v) = Sk(p,'),Vk € [1, K].

As for the binary case we will average labels on bins,
which will delete many points from our initial ROC
surface. Many of theses points are sub-optimal (not on
the ROC convex hull), so our method should choose
to preserve optimal points to preserve the convex hull
of the initial ROC surface.

3.3 Recursive splitting algorithm

We need to split the K-dimensional simplex into a
finite set of bins to guarantee calibration. On each of
these bins, the value of our calibration function will be
the mean label for the samples of the calibration set
that fall into the bin. A simple idea is to start with a
constant function on the simplex and recursively split
it into smaller regions. Every time we make a new
split, we recompute the value of our function on the
newly defined regions by taking the mean of the labels
from the calibration set for the points that fall in each
of these regions. This procedures guarantees that our
function stays calibrated.

We also need to enforce our ROC monotony criterion.
Every time we make a new split on the simplex, we
can make sure that our function is still monotone, and
otherwise reject the split. ROC monotony gives us a
natural way to split the simplex, recursively employ-
ing the orthogonal split that we defined earlier in (3).
After a split, we only need to check the label’s means
in the K new regions to make sure that the function is
still ROC monotone. The algorithm we have described
is very similar to IRP, in that it solves IR in an iter-
ative manner in the binary case. We thus adopt the
same splitting strategy as in the standard IRP. Given
a region R we select the optimal splitting point v € R
by solving:

Mp(y) = maxyer Yopey #S:(M|Tr — Tre(v)|s

with yp the mean label for samples falling in bin B.

The algorithm converges when it finds no split that
leaves the function ROC monotone in any region. At
each iteration, we split the region with the largest
Mg(v). The resulting Algorithm 2 works in any di-
mension. For K = 2 it coincides with IRP and solves
IR. For K > 3 it builds a multi-dimensional adap-
tive ROC preserving binning scheme. To the best of
our knowledge, this is the first method that provides
multi-class calibration guarantees without resorting to
regular binning schemes.

Algorithm 2 multi-class IRP
procedure split(R, p, 7, y)
splitfound + False
M<+0
for v € R do
Vk‘, Ry < Ry, ('y)

> Compute split
Yk, Sk < Sk(7) > Compute split
Vk,Vp; € Sk, i = Us, > Compute split
if # ROC monotone and M () > M then

T 7T > Update function
M + M(v) > Update max
splitfound < True > Update status
end if
end for

end procedure

> Initialize calibration function
> Initialize regions list
while #regions > 0 do > Recursive splitting
bestsplit < arg max,;,y,s(M)
R + popat(regions, bestsplit)
splitfound, #, Ry, ..., Rk <+ split(R, p,7,y)
if splitfound then

Ty
regions < [Ak]

T 7T > Update calibration function
regions < push(regions, [Ry, ..., Rk])
end if
end while

The result of our algorithm is illustrated for K = 3 and
K =4 in Figure 6 and Figure 8 in the supplementary
material. In Figure 7 we plot the non-calibrated and
calibrated ROC surfaces obtained for the three-class
problem. As expected, the surface of our calibrated
function contains far fewer points that the initial ROC
surface, but these points belong to the initial ROC sur-
face. Our algorithm appears to make the calibration
function optimal in the sense that our calibrated ROC
surface covers the initial ROC surface.

Remark. In practice, we evaluate ROC monotony only
on the splitting points we introduced and not on the
full simplex. This means that all the splits we create
correspond to points from the initial ROC surface. Ar-
tifacts of the multidimensional space make full ROC
monotony too restrictive for any split to exist.

3.4 Experiments

To illustrate our multi-class algorithm, we run an ex-
periment similar to the binary case in the previous sec-
tion. On the three and four top classes, respectively, of
the Covertype dataset (Blackard, 1998), we fit a logis-
tic regression classifier that we calibrate with multi-
class IRP and a baseline recursive binning scheme.
Our baseline consists in recursively splitting the sim-
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plex on regions centers using the same splitting strat-
egy as for IRP. We first split the simplex at its center,
then split the three resulting regions and so on. As
in the binary case, this baseline allows us to compare
our algorithm with regular (multidimensional) binning
schemes of varying sizes. Figure 4 and Figure 5 show
that, as in the binary case, IRP finds a sweet spot
between over-fitting the calibration set and sacrific-
ing model performance. Our monotony criterion guar-
antees that the calibration VUS is majorized by the
VUS of the convex hull of our initial forecast’s ROC
surface. Unlike the binary case, we have no guaran-
tee that our calibration function will reach that upper
bound. Still, we see empirically that our adaptive bin-
ning outperforms regular binning in terms of bin effi-
ciency. Moreover, as in the binary case, our algorithm
naturally stops when the test cross entropy is mini-
mized. This illustrates the efficiency of our multi-class
ROC monotony regularization.

Remark. The original IRP can be solved exactly, with
the optimal partition of a region found by solving a
linear program. In our experiments, we approximate
our algorithm by choosing splitting points on a grid.

Remark. As in the binary case, we use Laplace
smoothing when computing the region means.

Remark. As IRP in the binary case, our algorithm
builds a monotone calibration function in an iterative
manner. In our experiments, we used a limited number
of points in our calibration sets and observed no over-
fitting. However, as in the binary case, our method
allows for early-stopping (limiting the number of bins
on the multi-dimensional simplex) if the calibration set
is large and over-fitting is suspected.

An important topic for future work is to compare our
multi-class algorithm against existing parametric cali-
bration methods. This will require overcoming some of
the limitations of current benchmarks for calibration
methods.

4 CONCLUSIONS

In this paper, we have presented new results on bi-
nary calibration with IR, providing theoretical justi-
fication for the procedure and supporting a call for
wider adoption of IR as a performance-preserving cal-
ibration method. We have also shown how to ex-
tend IR to multi-class calibration by generalizing IRP
to any dimension. Our algorithm builds an adaptive
multi-dimensional binning scheme while preserving the
ROC-surface of the initial classifier. This marks a first
step towards calibrating multi-class classifiers with
nonparametric methods.
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Figure 4: For K = 3, calibration & test cross entropy
and VUS, IRP versus non-monotone recursive binning.
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Figure 5: For K = 4, calibration & test cross entropy
and VUS, IRP versus non-monotone recursive binning.
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Supplementary Materials

Figure 6 illustrates results for the three-class IRP (Algorithm 2) on a synthetic dataset presented in the top-left
corner of the figure. The non-calibrated predictions are generated by a uniform distribution of points on the
three-dimensional simplex. The corresponding labels are chosen to be the argmax of the predictions plus some
withe noise, the labels are represented on the figure by the color of the dots. We represent the calibration
function obtained by setting the color of the points to be the value of the three-dimensional function in RGB
(top right corner). On the bottom line, we represent the splits made by our algorithm on the simplex and the
resulting regions obtained, with the value of the region corresponding to the mean of the labels on each region,
represented again by the RGB color.
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Figure 6: Multi-class IRP on a three-class synthetic calibration set.

Figure 7 displays the resulting three-dimensional ROC surfaces obtained before and after calibration.
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Figure 7: Initial ROC surface (blue dots) and calibrated ROC surface (orange dots) after multi-class IRP on
a 3-class synthetic calibration set.

Figure 8 illustrates the result of the four-class IRP (Algorithm 2) on the output of a logistic regression classifier
trained on the first four classes of the Covertype UCI dataset Blackard (1998). The four-dimensional simplex is
plotted as the regular pyramid in three dimensions.
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Figure 8: Multi-class IRP on a 4-class calibration set.



