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Abstract

Calibration of machine learning classifiers is necessary to obtain reliable and interpretable predictions,
bridging the gap between model confidence and actual probabilities. One prominent technique, isotonic
regression (IR), aims at calibrating binary classifiers by minimizing the cross entropy on a calibration
set via monotone transformations. IR acts as an adaptive binning procedure, which allows achieving a
calibration error of zero, but leaves open the issue of the effect on performance. In this paper, we first
prove that IR preserves the convex hull of the ROC curve—an essential performance metric for binary
classifiers. This ensures that a classifier is calibrated while controlling for overfitting of the calibration
set. We then present a novel generalization of isotonic regression to accommodate classifiers with K
classes. Our method constructs a multidimensional adaptive binning scheme on the probability simplex,
again achieving a multi-class calibration error equal to zero. We regularize this algorithm by imposing a
form of monotony that preserves the K-dimensional ROC surface of the classifier. We show empirically
that this general monotony criterion is effective in striking a balance between reducing cross entropy
loss and avoiding overfitting of the calibration set.

1 INTRODUCTION

Calibration is a natural requirement for probabilistic predictions. It aligns the outputs of a classifier with
true probabilities, according with the intuition that the predictions of our models should match observed
frequencies. Several papers have demonstrated empirically that simple machine learning classifiers can
exhibit poor calibration, even on very simple datasets (Zadrozny and Elkan, 2001, 2002; Niculescu-Mizil
and Caruana, 2005). More recently Guo et al. (2017) showed that deep neural networks suffer from the
same problem, due to their tendency to overfit the training data, reviving the community’s interest in
calibration.

The interpretation of the predictions of machine learning classifiers as probabilities is not possible without
calibration. Calibration is desirable in that it provides a lingua franca for multiple users to assess the
outputs of a learning system. It also permits the use of learning systems as modules in complex prediction
pipelines—a single module can be updated independently of others if its outputs can be assumed to be
calibrated.
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1.1 Calibration

We let X and Y denote the feature space and the output space of a numerical classification problem,
respectively, with Y = {0, 1} in the binary classification setting and Y = {1, . . . ,K} in the general K-
class classification setting. We consider a probability distribution for a random variable (X,Y ) ∈ X × Y,
and a probabilistic classifier f : X → P making predictions p = f(x) in the prediction space P. In the
binary case we take P = [0, 1] and in the multi-class case P = ∆K , with ∆K the K-dimensional simplex
{p ∈ RK+ |

∑K
i=1 pi = 1}.

Definition 1.1 (Calibration, Foster and Vohra, 1998; Zadrozny and Elkan, 2002). A binary classifier
f : X → [0, 1] is said to be calibrated if P[Y = 1|f(X)] = f(X), or equivalently E[Y |f(X)] = f(X). For a
multi-class classifier f : X → ∆K , the definition is E[Y |f(X)] = f(X).

The concept of calibration has been useful in a variety of applied contexts, notably including weather
forecasting (Murphy and Winkler, 1977).

Evaluating calibration. We define a criterion that assesses the calibration of a classifier.

Definition 1.2 (Calibration error). For a classifier f , the calibration error is

K(f) = E
[
|E[Y |f(X)]− f(X)|

]
.

This error is usually referred to as the expected calibration error (ECE) (Pakdaman Naeini et al., 2015;
Guo et al., 2017).

For a discrete set of observed data points, (xi, yi)1≤i≤n, if the classifier f takes continuous values, the
expectation E[Y |f(X)] needs to be estimated. If the predictions live on a discrete grid P = [λ1, . . . , λm],
we can readily approximate this expectation. For any index i, we have f(xi) = λj for some λj in the grid.
We can use all the points for which the prediction was λj (Sj = {k ∈ J1, nK | f(xk) = λj}) to compute the
empirical expectation:

E[yi|f(xi)] '
1

#Sj

∑
k∈Sj

yk.

Plugging in such estimates the calibration error can be approximated. Predictions living on discrete
grids have been ubiquitous in the early literature on calibration. In particular, in weather forecasting,
the predictions usually live on the grid [0%, 10%, . . . , 100%]. In the continuous case of machine learning
classifiers, however, it is not clear that such discretizations make sense; in particular, it is not clear how
they interact with performance.

Calibration and model performance. Calibration has a long history in the economics and statistical
literatures (see Foster and Hart, 2021, for a recent treatment). A central result is that one can always
produce a calibrated sequence of predictions, even if the outcomes are generated by an adversarial player.
This surprising result is a consequence of the minimax theorem (Hart, 2022), and it leads to simple
strategies to generate a sequence of forecasts that is asymptotically calibrated against any possible sequence
of outcomes. This can be viewed as a positive result, but it also has a negative aspect. Let us envisage a
city where it rains every other day. Predicting a 50% chance of precipitation every day is enough to achieve
calibration even if this forecast is quite poor. This suggests that while calibration is useful, it should be
considered in the overall context of the accuracy of the forecasts (Foster and Hart, 2022).

Calibration and proper scoring rules. Bröcker (2009) proved that any proper score can be decomposed
into the calibration error and a second refinement term. In particular, for the cross entropy loss:

H(Y, f(X)) = E[KL(f(X)||P(Y |f(X))] + E[H(P(Y |f(X)))], (1)
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with H(., .) the cross entropy and H(.) the entropy. Here, we see that the calibration error is expressed in
terms of the Kullback-Leibler divergence (KL); other criteria can arise depending on the specific proper
scoring rule that is chosen. This confirms that a zero calibration error does not necessarily guarantee good
forecasts. Indeed, calibration can be achieved independently of the performance of the classifier. The
intuition is that aligning model confidence with probabilities can be done whatever the performance of
the model, and the lower the model’s accuracy, the less confident it should be in its predictions. Machine
learning classifiers are usually able to generate forecasts with good accuracy, but these forecasts are gener-
ally not calibrated. The decomposition above shows that calibrating our classifiers might help in reducing
the cross entropy loss even further.

1.2 Calibrating Machine Learning Classifiers

The machine learning literature has generally employed the following simple data-splitting heuristic to
calibrate classifiers. Given n i.i.d data points (xi, yi)1≤i≤n ∈ (X ,Y), a portion of this available data is
reserved for calibration (calibration set) and the classifier is trained on the rest of the data (training set).
After the classifier is trained, the held-out calibration set is used to evaluate and correct its calibration error.
This paradigm separates the calibration procedure from model fitting, resulting in calibration methods that
can be applied to any model. However, holding out a portion of the data for calibration can be problematic
in data-sparse applications. Moreover, in the context of online learning, every update to the model requires
running the calibration step again. New data points will either be used to improve the model performance
(training set) or reduce the calibration error (calibration set). In these cases we see that the data-splitting
paradigm sets up a trade-off between calibration and performance.

In addition, calibration procedures that use data splitting rely on the assumption that the data are identi-
cally distributed across the calibration set and the test set. The idea is that the calibration error observed
on the calibration set can be used to evaluate and correct the calibration error on the underlying data
distribution, thus calibrating the model for any point sampled from this distribution.

Continuous calibration error. Let (xi, yi)1≤i≤n denote the held-out calibration set. We first evaluate
the predictions of the model f on this set: (pi = f(xi))1≤i≤n. For a standard machine learning classifier,
these predictions do not live on a fixed grid; instead, they can take arbitrary values in [0, 1] (in the
binary case). We remember that the calibration error is intractable in this case. What is usually done in
the literature to overcome this difficulty is to discretize the predictions (pi)1≤i≤n using a regular binning
scheme: (Bj)1≤j≤m = {[0, 1

m ], . . . , [m−1m , 1]} (see, e.g., Pakdaman Naeini et al., 2015; Guo et al., 2017). The
discretized predictions are p̃i = bj , with bj the center of bin Bj such that the initial prediction pi ∈ Bj .
With these discrete forecasts, an estimate of the calibration error can be computed. However, discretizing
has some important drawbacks. In particular, it is not robust to distributions of scores f(X) that are highly
skewed on [0, 1], a behavior we often observe in practice. Recent work has tried to come up with more
suitable ways to evaluate and visualize calibration error in the case of continuous forecasts (Vaicenavicius
et al., 2019).

Nonparametric model calibration. In an early paper on calibration for machine learning models,
Zadrozny and Elkan (2001) introduced the method we discussed above—using a fixed binning scheme
to discretize the outputs of any probabilistic classifier—in the context of various calibration schemes.
They note in particular that it is easy to correct the prediction of the model on each bin by replacing it
with the actual observed frequency of outcomes on the calibration set. Under the i.i.d. assumption, this
method is trivially calibrated. It adapts very poorly, however, to skewed distributions of the forecasts, and
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while achieving calibration it can be very detrimental to the performance of the model. This led to the
development of adaptive binning methods that preserve the calibration guarantees of regular binning while
trying to set bin boundaries that are less detrimental to performance. In particular, isotonic regression
was employed for adaptive binning by Zadrozny and Elkan (2002), and Bayesian binning schemes have also
been proposed (Pakdaman Naeini et al., 2015).

Parametric model calibration. On the other end of the spectrum, a rich literature has arisen using
parametric procedures to correct calibration errors. For example, Platt scaling (Platt, 2000) consists in
fitting a sigmoid to the forecasts of the classifier on the calibration set to minimize the cross entropy with the
calibration labels. Further developments in the parametric vein include the beta calibration method (Kull
et al., 2017). Unlike binning methods, these methods have the appeal of learning continuous calibration
functions, but they provide no guarantees on calibration. With continuous methods, the calibration error
can only be estimated with discretization, which is very limiting. On the other hand, the calibration
function lives in a restricted class of functions that is characterized by shape constraints, which yields a
regularization prior that mitigates performance degradation arising from overfitting the calibration set.

2 BINARY CALIBRATION WITH ISOTONIC REGRESSION

The previous section raises the question of whether it is possible to achieve calibration guarantees while
preserving the performance of the initial classifier. The decomposition of proper scoring rules in (1) suggests
that setting the calibration error to zero can improve the cross entropy of the classifier. We will see that
isotonic regression actually achieves this twofold objective in the setting of binary classification.

2.1 Isotonic Regression

Isotonic regression (see Robertson et al., 1988 for a complete treatment) was first proposed as a non-
parametric method to calibrate the probabilities of a binary classifier by Zadrozny and Elkan (2002).

Definition 2.1 (Isotonic regression). Let n ∈ N∗+, (pi, yi)1≤i≤n ∈ (R2)n and (wi)1≤i≤n ∈ (R+)n a set of
positive weights. Assuming the indices are chosen such that p1 ≤ p2 ≤ · · · ≤ pn, isotonic regression solves

min
r∈Rn

1

n

n∑
i=1

wi(yi − ri)2 such that r1 ≤ r2 ≤ · · · ≤ rn,

where r can be viewed as a n-dimensional vector or a function from P = R to Y = R with r(pi) = ri.

This corresponds to finding the increasing (isotonic) function r of inputs (pi)1≤i≤n that minimizes the
squared error with respect to the labels (yi)1≤i≤n, under a certain weighting (wi)1≤i≤n of each data sample
(pi, yi)1≤i≤n.

Remark. The problem established by Definition 2.1 is a convex optimization problem.

Remark. Robertson et al. (1988) (Theorem 1.5.1) showed that IR minimizes any Bregman loss function,
in particular, the KL divergence. In the framework of supervised-learning, where the target distribution
y is fixed, KL is equal to cross entropy up to a constant factor, so IR minimizes the cross entropy loss.

Pool adjacent violators algorithm (PAV). The solution of the isotonic regression (IR) problem can
be found via the acclaimed PAV algorithm (Ayer et al., 1955). This algorithm is a very simple procedure
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(see Algorithm 1) that has O(n) computational complexity. A proof that PAV solves the IR problem can
be found in Robertson et al. (1988).

Algorithm 1 Pool Adjacent Violators

Require: p1 ≤ p2 ≤ · · · ≤ pn
∀i ∈ J1, nK, ri ← yi
while not r1 ≤ r2 ≤ · · · ≤ rn do . Until r is monotone

if ri < ri−1 then . Find adjacent violators
ri ← wiri+wi−1ri−1

wi+wi−1
. Pool

wi ← wi + wi−1 . Pool
Remove ri−1 and wi−1 from the list. . Pool

end if
end while

2.2 Isotonic Regression is Calibrated

In practice, we use our classifier f to generate non-calibrated forecasts on the calibration set (pi =
f(xi))1≤i≤n. We then fit IR with these non-calibrated forecasts in input and calibration labels (yi)1≤i≤n
as targets with constant weights ∀i, wi = 1. This gives us a new set of calibrated forecasts (ri)1≤i≤n.

When IR was introduced in the context of probability calibration (Zadrozny and Elkan, 2002), it was
presented as an alternative to binning and Platt scaling. We see from Algorithm 1 that IR produces a
piece-wise constant function. Moreover, on each constant region the value of the function is the mean of
the labels yi for all pi falling in this region. Theses two simple observations show that IR produces an
adaptive binning scheme for which the bin boundaries are set so that the resulting function is increasing.
This binning-like property allows us to recover interesting guarantees from the nonparametric calibration
methods that we presented earlier.

Proposition 2.1. The isotonic regression (ri)1≤i≤n of one-dimensional inputs (pi)1≤i≤n ∈ R to binary
labels (yi)1≤i≤n ∈ {0, 1} achieves zero calibration error, that is, K(r, y) = 0.

Proof. The value of r at any point can be written:

r(p) =
1

#{pi ∈ Bj}
∑
pi∈Bj

yi,

for some bin Bj in a finite set of bins (Bj)1≤j≤m, such that p ∈ Bj . Moreover, r is increasing and takes
only m distinct values [b1, . . . , bm]. For any p ∈ R, the events {p ∈ Bj} and {r(p) = bj} are equivalent.
Thus,

E[Y |r(p) = bj ] =
1

#{r(pi) = bj}
∑

r(pi)=bj

yi

=
1

#{pi ∈ Bj}
∑
pi∈Bj

yi.

So, ∀p ∈ R,E[Y |r(p)]− r(p) = 0, and the calibration error is zero.
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This proof formalizes the idea that generalized binning schemes provide calibration guarantees and it
applies for any binning scheme in an input space of any dimension.

Considering r as a piece-wise constant function, we obtain a mapping that we can apply to any future
forecast to correct the inherent mis-calibration bias of our initial classifier. Under the assumption that the
data are i.i.d across the test set and calibration set, we can thus bound the calibration error on the test
data (cf. Zhang, 2002).

2.3 Isotonic Regression Preserves ROC-AUC

As discussed in the context of evaluating calibration error, a large binning scheme makes coarse approxi-
mations of the original function which might result in less accurate predictions. On the other hand, a thin
binning scheme can approximate well the initial function but it reduces the number of points per bin and
it can lead to overfitting of the calibration set (it also reduces the calibration guarantee that we obtain).
We thus obtain a trade-off between overfitting the calibration set and sacrificing initial model performance.
Given that IR behaves as an adaptive binning scheme, let us explore how it performs vis-a-vis this trade-off.

One essential assumption that we make with isotonic regression is that the calibration function f is increas-
ing. Taking (pi)1≤i≤n to be the outputs of our original binary classifier and the resulting (ri)1≤i≤n to be
the calibrated version of these probabilities, this implies that (ri)1≤i≤n preserves the ordering of (pi)1≤i≤n.
Thus, under this assumption, we obtain a first guarantee that isotonic regression preserves the quality of
the original predictions.

However, we only enforce ri ≤ ri+1 and not ri < ri+1. The ordering is only partially preserved as we can
set consecutive pi 6= pi+1 to take the same value ri = ri+1. The PAV algorithm starts with the perfect fit,
nonincreasing in general, such that ri = yi,∀i ∈ J1, nK. It then merges consecutive values where the current
approximation of the target function is decreasing, ri+1 < ri, which means that the original ordering of pi
and pi+1 was wrong. Setting ri+1 = ri in this case actually corresponds to solving an ordering issue of the
original sequence and might well improve the quality of our predictions. To formalize this simple intuition,
we need the following definition:

Definition 2.2 (Symmetric ROC curve). The simplex ∆2 can be reduced to the [0, 1] interval on R. For
different values of threshold γ ∈ [0, 1], we can split the simplex in two parts R0 = [0, γ] and R1 = ]γ, 1]
and evaluate p0(γ) = P(X ∈ R0|Y = 0), p1(γ) = P(X ∈ R1|Y = 1). We define the symmetric ROC curve
(SROC) as the two-dimensional graph

{(
p0(γ), p1(γ)

)
, γ ∈ R

}
.

Remark. The symmetric ROC curve is exactly the classical ROC curve up to an inversion of the x-axis
(Fawcett, 2006). Our definition exposes a symmetry that will lead to a natural generalization in the next
section. The area under the ROC curve (AUC) is the same under the two conventions.

Provost and Fawcett (2001) and Bach et al. (2006) described how one can convexify the ROC curve of
a classifier by taking convex combinations of decision rules corresponding to different thresholds γ (in
particular, averaging between the points forming the convex hull of the ROC curve). Moreover, they
showed that the convex hull of the ROC curve is a more robust performance criterion than the initial ROC
curve.

Theorem 2.1. The ROC curve of isotonic regression is the convex hull of the ROC curve of the initial
classifier.

6



Proof. IR finds the left derivative of the greatest convex minorant (GCM) of the cumulative sum diagram
(CSD) (Robertson et al., 1988, Theorem 1.2.1):

{( j∑
i=1

wi,

j∑
i=1

wiyi
)
, j ∈ J1, nK

}
.

Thus, IR has a convex CSD that is the GCM of the original CSD. This property is illustrated with a simple
example in Figure 1. PAV has a natural interpretation as an iterative procedure to build the GCM of a
discrete graph. In terms of cumulative probabilities, the CSD can be interpreted as:{(

P(X ≤ pj),P(X ≤ pj ∩ Y = 1)
)
, j ∈ J1, nK

}
.

By a simple affine transformation of the axes, a1 = a1−a2
P(Y=0) and a2 = 1 − a2

P(Y=1) , we recognize the SROC
graph: {(

P(X ≤ pj |Y = 0),P(X ≥ pj |Y = 1)
)
, j ∈ J1, nK

}
.

This graph re-writing preserves convex sets, so the ROC curve of IR is the convex hull of the ROC curve
of the initial classifier, as illustrated in Figure 1.

Figure 1: Illustrative problem with points spread across two classes blue (y = 0) and red (y = 1). Left:
model predictions, CSD, SROC curve. Right: IR (equal to left derivative of the GCM), GCM of the CSD,
SROC curve of IR (equal to the convex hull of the initial SROC curve).

A link between IR and the ROC convex hull algorithm was noted previously by Fawcett and Niculescu-Mizil
(2007). To the best of our knowledge, our proof is the first that establishes this link formally.

IR minimizes the cross entropy on the calibration set but the monotony assumption acts as a regularizer
that prevents the calibration function from improving performance further beyond the convex hull of the
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initial ROC curve. This regularization achieves an optimal trade-off by guaranteeing that we are not
hurting performance of the initial model (the AUC is improved or preserved) and prevents overfitting of
the calibration set. To illustrates this trade-off, we fit a logistic regression on the first two classes of the
Covertype dataset (Blackard, 1998) and we calibrate our classifier with IR and a recursive binning scheme
that makes no monotony assumption.We fit IR using isotonic recursive partitioning (IRP) (Luss et al.,
2012; Luss and Rosset, 2014), a recursive procedure that creates new regions in an iterative manner. We
plot the cross entropy on the calibration set and on the test set depending on the number of bins created;
see Figure 2. We see that unlike the standard binning procedure that overfits the calibration set when the
grid gets too fine, the monotony regularization of IR prevents overfitting, and the algorithm stops when
the cross entropy is minimized on the test set. Moreover, the extra freedom that IR can set adaptive bin
boundaries results in lower cross entropy with fewer bins than for the standard binning procedure.

Remark. Standard IR on binary labels starts with a 0-valued bin and ends with a 1-valued bin which can
cause the test cross entropy to be infinite in case of misclassification. We regularize IRP by adding Laplace
smoothing when computing the means on each bin. This new regularized mean minimizes an entropy
regularized cross entropy H(p, y)−λlog(p) for some regularization strength λ depending on the amount of
Laplace smoothing. On the calibration set, we plot that regularized cross entropy, which is minimized by
our algorithm. On the test set however, we plot the standard cross entropy.

3 MULTI-CLASS IR

The previous section presented some of the appealing properties of IR calibration in the binary setting.
We now investigate the possibility of building a similar tool for the more general multi-class calibration
setting. The definition we use for multi-class calibration requires that predictions are calibrated on every
class. This definition is overly restrictive for problems with a large number of classes (typically K > 5), for
which it is natural in practice to ask that the model is calibrated only on the top classes. For simplicity, we
simply focus on low-dimensional classifiers in this paper and leave extensions to high-dimensional classifiers
for future work.

Let K ∈ N,K ≥ 3. In the general K-class setting, we have P = ∆K and Y = {0, 1, · · · ,K}. For
convenience, we use the one-hot encoding of the labels Y = ∆K .

3.1 Multi-Class ROC Surface

In the binary case, our increasing function naturally preserves the ordering of the initial forecasts, which
leads us to conclude that it preserves the ROC curve of the initial classifier. In the multi-class setting, a
similar notion of ordering is harder to define. Many definitions of multidimensional monotony exist and
behave as different regularization hypothesis for our calibration function. To mimic the binary case, we
are interested in preserving the ROC curve of the non-calibrated forecasts on the calibration set. To carry
out this programme, we first require a definition of the ROC curve in any dimension.

Let AK = {x ∈ RK |
∑K

k=1 xk = 1} denote an affine combination of the unit vectors in RK , and let γ ∈ AK
denote a multi-dimensional threshold. In a similar fashion to the binary case, we can split ∆K into K
regions, R1, R2, . . . , RK , around γ and define K probabilities p1(γ) = P(X ∈ R1|Y = 1), . . . , pK(γ) =
P(X ∈ RK |Y = K). Varying γ allows us to build a K-dimensional ROC surface. For a given γ ∈ A3,
Figure 3 illustrates a natural symmetric splitting of the simplex ∆3.
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Figure 2: Calibration and test cross entropy and AUC, IRP versus nonmonotone recursive binning.
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Figure 3: Natural splitting of the simplex ∆3 into class-specific regions R1, R2, R3.

This splitting strategy can be extended to build partitions of the simplex around any point γ ∈ AK in
dimension K:

Rk = {r ∈ ∆K | arg max
J1,KK

(r − γ) = k}, (2)

for all k ∈ J1,KK. For any point r ∈ ∆K and γ ∈ AK , the vector r − γ is necessarily associated with a
maximum-valued axis k such that rk − γk ≥ ri − γi, for all i ∈ J1,KK. The boundaries correspond to ties
in the argmax, and the ties can be broken with any strategy that ensures that each point belongs to only
one region, such that (2) defines a partition of the simplex.

We also define the subset Sk of points p that belong to region Rk for a given split γ: Sk(p, γ) = {pi ∈ Rk(γ)}.

Equipped with this partition of the simplex, we extend the standard definition of the ROC curve to an
arbitrary dimension.

Definition 3.1 (ROC surface). For a random experiment with outputs Y ∈ ∆K , we define the ROC
surface of forecasts P ∈ ∆K as the K-dimensional graph:{(

p1(γ), p2(γ), . . . , pK(γ)
)
,∀γ ∈ AK

}
,

where pk(γ) = P
(
P ∈ Rk(γ)|Y = k

)
, for all k ∈ J1,KK, and Rk(γ) was defined above.

Remark. A technical subtlety is that we are using γ ∈ AK and not γ ∈ ∆K . In the binary case, taking
γ ∈ ∆2 is enough to build the full ROC curve but this is not true in general. The splitting point must
be allowed to take values in the affine plane outside the simplex. Without this additional freedom, for
K = 3 for example it would not be possible to put all the points in the same region, and the points
(0, 0, 1), (0, 1, 0), (1, 0, 0) would not belong to the ROC surface.

This ROC surface illustrates how well our classifier can separate the K classes in the data for any choice
of multi-dimensional threshold γ. The volume under the ROC surface (VUS) can be computed in any
dimension to provide an indication of the performance of a multi-class classifier.

3.2 Generalized Monotony

This extension of the ROC curve to arbitrary dimensions allows us to define a new monotony criterion that
aims at preserving the ROC surface of the initial model. We seek to define constraints on the values of
our multidimensional calibration function so that the ROC surface of the calibrated forecasts r is the same
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as the ROC surface of non-calibrated forecasts p. In the binary case, each possible threshold γ ∈ [0, 1]
generates a split between points S0(r, γ) and S1(r, γ). The fact that the function is monotone guarantees
that the same partition of the samples can be found with another split on the non-calibrated forecasts.
That is, for all γ ∈ [0, 1], there exists γ′ ∈ [0, 1] such that (S0(p, γ

′), S1(p, γ
′)) = (S0(r, γ), S1(r, γ)), with

γ 6= γ′.

Remark. This property is not reciprocal as IR is not strictly monotone. IR merges values of consecutive
points together, deleting a possible split in the calibrated function. This removes a point from the ROC
curve, which explains that the ROC curve after calibration contains fewer points than the ROC curve
before calibration. IR is optimal as it keeps only the points that form the convex hull of the ROC curve.

In a similar fashion, we want the splits that we can make on our calibration function to exist also in the
non-calibrated forecasts. In other words, the points that we allow on the calibrated ROC surface are the
points from the non-calibrated ROC surface.

Definition 3.2 (ROC monotony). Let p = (pi)i∈J1,nK denote non-calibrated forecasts and r = (ri)i∈J1,nK
the image of these forecasts through our calibration function. Our function is said to be ROC monotone if

∀γ ∈ AK ,∃γ′ ∈ AK | Sk(r, γ) = Sk(p, γ
′),∀k ∈ J1,KK.

As for the binary case we will average labels on bins, which will delete many points from our initial ROC
surface. Many of theses points are sub-optimal (not on the ROC convex hull), so our method should choose
to preserve optimal points to preserve the convex hull of the initial ROC surface.

3.3 Recursive Splitting Algorithm

We need to split the K-dimensional simplex into a finite set of bins to guarantee calibration. On each of
these bins, the value of our calibration function will be the mean label for the samples of the calibration
set that fall into the bin. A simple idea is to start with a constant function on the simplex and recursively
split it into smaller regions. Every time we make a new split, we recompute the value of our function on
the newly defined regions by taking the mean of the labels from the calibration set for the points that fall
in each of these regions. This procedures guarantees that our function stays calibrated.

We also need to enforce our ROC monotony criterion. Every time we make a new split on the simplex,
we can make sure that our function is still monotone, and otherwise reject the split. ROC monotony gives
us a natural way to split the simplex, recursively employing the orthogonal split that we defined earlier in
(2). After a split, we only need to check the label’s means in the K new regions to make sure that the
function is still ROC monotone. The algorithm we just described is very similar to IRP, that solves IR in
the binary case. We thus adopt the same splitting strategy as in the standard IRP. Given a region R we
select the optimal splitting point γ ∈ R by solving:

MR(γ) = max
γ∈R

K∑
k=1

#Sk(γ)|ȳR − ȳRk(γ)|,

with ȳB the mean label for samples falling in bin B.

The algorithm converges when it finds no split that leaves the function ROC monotone in any region.
At each iteration, we split the region with the largest MR(γ). The resulting Algorithm 2 works in any
dimension. For K = 2 it coincides with IRP and solves IR. For K ≥ 3 it builds a multi-dimensional
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adaptive ROC preserving binning scheme. To our knowledge, this is the first method that provides multi-
class calibration guarantees without resorting to regular binning schemes.

Algorithm 2 multi-class IRP

procedure split(R, p, r, y)
splitfound← False
M ← 0
for γ ∈ R do
∀k,Rk ← Rk(γ) . Compute split
∀k, Sk ← Sk(γ) . Compute split
∀k, ∀pi ∈ Sk, r̂i = ȳSk

. Compute split
if r̂ ROC monotone and M(γ) > M then

r ← r̂ . Update function
M ←M(γ) . Update max
splitfound← True . Update status

end if
end for

end procedure

r ← y . Initialize calibration function
regions← [∆K ] . Initialize regions list
while #regions > 0 do . Recursive splitting

bestsplit← arg maxregions(M)
R← popat(regions, bestsplit)
splitfound, r̂, R1, . . . , RK ← split(R, p, r, y)
if splitfound then

r ← r̂ . Update calibration function
regions← push(regions, [R1, . . . , RK ])

end if
end while

Remark. In practice, we evaluate ROC monotony only on the splitting points we introduced and not on the
full simplex. This means that all the splits we create correspond to points from the initial ROC surface.
Artifacts of the multidimensional space make full ROC monotony too restrictive for any split to exist.

Remark. The original IRP can be solved exactly, with the optimal partition of a region found by solving
a linear program. We run our algorithm by choosing splitting points on a grid.

Remark. As in the binary case, we use Laplace smoothing when computing the region means.

The result of our algorithm is illustrated for K = 3 and K = 4 in Figure 6 and Figure 8 in the appendix.
In Figure 7 we plot the non-calibrated and calibrated ROC surfaces obtained for the three-class problem.
As expected, the surface of our calibrated function contains far fewer points that the initial ROC surface,
but these points belong to the initial ROC surface. Our algorithm seems to make our calibration function
optimal in the sens that our calibrated ROC surface covers the initial ROC surface.

On the three and four, respectively, top classes of the Covertype UCI dataset (Blackard, 1998), we fit a
logistic regression classifier that we calibrate with multi-class IRP and a non-regularized recursive binning
scheme. Figure 4 and Figure 5 show that, as in the binary case, IRP finds a sweet spot between overfit-
ting the calibration set and sacrificing model performance. Our monotony criterion guarantees that the
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calibration VUS is majorized by the initial VUS of our classifier. Unlike the binary case, our calibration
function does not necessarily reach that upper bound. Still, we see empirically that our adaptive binning
outperforms regular binning in terms of bin efficiency. Moreover, as in the binary case, our algorithm
naturally stops when the test cross entropy is minimized. This illustrates the efficiency of our multi-class
ROC monotony regularization.

Figure 4: For K = 3, calibration and test cross entropy and VUS, IRP versus nonmonotone recursive
binning.
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Figure 5: For K = 4, calibration and test cross entropy and VUS, IRP versus nonmonotone recursive
binning.
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A Additional figures

Figure 6 illustrates results for the three-class IRP Algorithm 2 on a synthetic dataset presented in the top-
left corner of the figure. The non-calibrated predictions are generated by a uniform distribution of points
on the three-dimensional simplex. The corresponding labels are chosen to be the argmax of the predictions
plus some with noise, the labels are represented on the figure by the color of the dots. We represent the
calibration function obtained by setting the color of the points to be the value of the three-dimensional
function in RGB (top right corner). On the bottom line, we represent the splits made by our algorithm on
the simplex and the resulting regions obtained, with the value of the region corresponding to the mean of
the labels on each region, represented again by the RGB color.

Figure 6: Multi-class IRP on a three-class synthetic calibration set.

Figure 7 displays the resulting three-dimensional ROC surfaces obtained before and after calibration.

Figure 8 illustrates the result of the four-class IRP Algorithm 2 on the output of a logistic regression clas-
sifier trained on the first four classes of the Covertype UCI dataset (Blackard, 1998). The four-dimensional
simplex is plotted as the regular pyramid in three dimensions.
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Figure 7: Initial ROC surface (blue dots) and calibrated ROC surface (orange dots) after multi-class
IRP on a 3-class synthetic calibration set.

Figure 8: Multi-class IRP on a 4-class calibration set.
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