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Laurent Jacques†

Abstract. Fluorescence imaging through ultrathin fibers is a promising approach to obtain high-resolution
imaging with molecular specificity at depths much larger than the scattering mean-free paths of
biological tissues. Such imaging techniques, generally termed lensless endoscopy, rely upon the
wavefront control at the distal end of a fiber to coherently combine multiple spatial modes of a
multicore (MCF) or multimode fiber (MMF). Typically, a spatial light modulator (SLM) is em-
ployed to combine hundreds of modes by phase-matching to generate a high-intensity focal spot.
This spot is subsequently scanned across the sample to obtain an image. We propose here a novel
scanning scheme, partial speckle scanning (PSS), inspired by compressive sensing theory, that avoids
the use of an SLM to perform fluorescent imaging with optical fibers with reduced acquisition time.
Such a strategy avoids photo-bleaching while keeping high reconstruction quality. We develop our
approach on two key properties of the MCF: (i) the ability to easily generate speckles, and (ii)
the memory effect that allows one to use fast scan mirrors to shift light patterns. First, we show
that speckles are subexponential random fields. Despite their granular structure, an appropriate
choice of the reconstruction parameters makes them good candidates to build efficient sensing ma-
trices. Then, we numerically validate our approach and apply it on experimental data. The pro-
posed sensing technique outperforms conventional raster scanning: higher reconstruction quality is
achieved with far fewer observations. For a fixed reconstruction quality, our speckle scanning ap-
proach is faster than compressive sensing schemes which require changing the speckle pattern for each
observation.
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1. Introduction. Nowadays, imaging and exploring the human body for clinical purposes
is quite common. Every newborn already experienced at least one imaging modality during
its fetal development through ultrasound scans. During their life, most people will encounter
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Figure 1. Lensless endoscope principle in raster scanning mode (i.e., with a focused light beam). Excitation
signal is red and backscattered fluorescence signal is blue. Source: Institut Fresnel.

medical issues and will possibly undergo physical examinations based on imaging techniques.
In vivo techniques are traditionally divided into structural and functional imaging.

Although structural imaging has been around since the early days, functional imaging has
been a field of tremendous research over the last decades in the fields of both nuclear medicine
(e.g., single photon emission computed tomography and positron emission tomography) and
optical microscopy. Photonic approaches have the advantage of being simpler to implement.
They avoid radioactive labels and can achieve better spatial resolution (submicron). However,
they usually provide limited fields-of-view (FOV) and limited penetration depth due to tissues
scattering and absorption as compared to nonoptical techniques [45, 5]. To circumvent this
latter limitation, optical endoscopy and endomicroscopy are being developed with the goal to
provide both structural and functional information.

1.1. Lensless endoscopes as ultrathin devices. For instance, endomicroscopes, already
used in clinical applications, use a fiber bundle as a waveguide [65, 48]. Recent developments in
adaptive optics, optical fibers, and computational imaging techniques have opened a new class
of imaging systems called lensless endoscopes (LE) [20, 5, 10, 50]. In these implementations,
a single fiber in combination with wavefront shaping devices is employed as an ultrathin
imaging system. The extreme miniaturization of the imaging probe (diameter ≤200µm)
offers a minimally invasive route to image at depths unreachable in microscopy. In this paper,
we focus our work on LE that use multicore fiber (MCF) [5] and are made with hundreds of
individual single core fibers arranged in a single and monolithic silica waveguide [3]. Although
the diameter of multicore LE fibers is larger than the diameter of multimode LE fibers [49],
MCF can be made resilient to fiber bending [67]. Most importantly, they exhibit a memory
effect that allows the output light pattern to be scanned by simply adding a phase tilt at the
MCF entrance [65].

As illustrated in Figure 1, an MCF LE consists of four main parts: a wavefront shaper,
an optics part, an MCF, and an optical detector. The role of the wavefront shaper is to
appropriately shape the phase of the light that is injected into the individual cores. This
results in the formation of specific illumination patterns at the distal end of the MCF. The
optics part is made of mirrors and lenses. It is used to focus the light from the wavefront
shaper into the individual cores. To collect the generated fluorescence, the MCF features a
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Figure 2. (a) Focused light beam (brightened for visualization purposes) obtained with the LE with Fermat’s
golden spiral arranged MCF, (b) speckle pattern (realization of S), (c) mean speckle field S̄, and (d) residual field
(realization of R̃). Images were simulated with the following parameters (see section 2): λ = 1µm, z = 500µm,
3σc = 3.2µm, and ϖ = 0.5µm.

double cladding that collects and brings back the fluorescent light toward a highly sensitive
detector [4]. The sample image is finally reconstructed from the scanning of the focused beam
across the sample (by applying a phase tilt at the MCF entrance) and the simultaneous signal
collection with the highly sensitive detector.

This imaging scheme is known as raster scanning (RS) [50, 59]. It consists in scanning
at a constant rate each (discretized) position in the highly sensitive FOV. For each position,
the fluorescence signal is measured by the single pixel detector. The image is then readily
reconstructed, pixel by pixel, without any extra postprocessing step. As mentioned before,
this scanning technique requires preliminary calibration of the spatial light modulator (SLM)
to generate a focus beam at the MCF output. A focused illumination pattern is displayed in
Figure 2(a). This specific focused beam can be obtained when the fiber cores in the MCF are
arranged in a Fermat’s golden spiral shape. It provides a larger FOV for the LE [60] than
periodically arranged cores.

1.2. Current challenges and related works. RS acquisition provides fast image recon-
struction but at the cost of some drawbacks, for instance: (i) the SLM needs to be calibrated
to get a focused beam, (ii) imperfections of the focused beam are not corrected, and (iii) it is
necessary to collect as many observations as the number of pixels in the discrete representa-
tion of the image. These considerations highlight constraints on the usage of LE in realistic
situations: (i) the device is sensitive to perturbations during the calibration and imaging, and
(ii) the slow update rates of conventional SLMs limit the imaging speed [3].

Hence, the core question of this paper is the following: can we achieve accurate image
reconstruction compared to RS using fewer measurements while keeping a short acquisition
time? Without SLM calibration, the observed illumination pattern is a speckle, a pattern
with multiple bright grains of light and dark regions with no well-defined global peak (see
Figure 2(b)). Such a pattern results from the interference of the multiple coherent light
beams produced by each single mode core when they are configured with arbitrary phases. In
some applications, the presence of a speckle pattern is considered an issue and methods were
developed to suppress it or at least to minimize its effects [34]. But in some other imaging
modalities, its random structure is appealing as it makes LE closer to recent compressive
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sensing (CS) and computational imaging procedures, e.g., indirectly observing images with
random sensing strategies [15, 24, 10, 50].

Back in 1996, Bolshtyansky and Zel’dovich studied an acquisition scheme very similar to
ours [9] but involving a single multimode fiber (MMF). Pseudothermal ghost imaging also
relies on a similar approach but uses a rotating diffuser to generate speckle patterns [38].
Speckles have also been extensively used to perform superresolution fluorescence microscopy,
most often in a blind context [44, 43, 39]. To compensate the fact that the patterns may be
unknown, some works exploit the statistical properties of the speckles [44, 39] or consider weak
assumptions on the original fluorophores distribution [43]. Bertolotti et al. studied a blind
framework where the diffuser is completely opaque and prevents access to both the sample
and the generated speckle [7]. To cover up this inaccessibility, they exploit the memory effect
summarized as follows: a small change in the incident angle of the light leads to a translation
of the speckle pattern. In speckle scanning microscopy, Stasio, Moser, and Psaltis also took
advantage of this effect with an MCF fiber [62]. Except in superresolution, the fluorescence
signal in the aforementioned applications is measured with a single pixel detector (or a similar
device). The image of interest is estimated via a weighted sum of the speckle patterns [9], via
the correlations of the observation vector with the illumination patterns [38, 56], or via the
autocorrelation of the measurement vector [7, 62].

While the abovementioned works consider a number of measurements at least equal to the
number of pixels in the final image, several authors reported the development of compressive
optical imaging techniques requiring far fewer observations. These techniques are based on
the seminal work of Candès and Wakin [15] and Donoho [23] on CS. The pseudorandomness of
the speckles and their easy generation make them interesting for building an efficient sensing
matrix. Katz, Bromberg, and Silberberg proposed a proof of concept for the CS approach
to pseudothermal ghost imaging including information about the image structure in the re-
construction algorithm [38]. A compressive approach was used in superresolution microscopy
[47] where the authors reach higher resolution by using saturated illumination with speckle
patterns. This type of superresolution compressive imaging was studied theoretically, in a
noiseless framework, by Lochocki et al. in 2021 [42]. They provide insights on the required
number of measurements and the ultimate resolution limits. CS was also exploited in exper-
imental setups involving an MCF and/or an MMF, e.g., in fluorescence microscopy [57, 16],
optical photoacoustics [16], or microendoscopy [19]. Authors assume small total variation
(TV) [57] or sparsity in some wavelet basis [19] as prior information on the image struc-
ture. In these three works, speckles patterns are recorded. This recording can be seen as a
calibration step. However, as mentioned by [16], this step is simpler than the conventional
calibration via wavefront shaping because it only requires measuring the speckle intensities,
while beamforming requires speckle field measurements before the experiment.

For the wide deployment of CS based endoscopes outside a lab environment, we need to
address key issues such as acquisition rate, robustness, and a low barrier to device development
(technical complexity and cost). In the literature, fast acquisition is typically satisfied by
using a digital-micromirror device as a light-shaping device capable of reaching up to 22 kHz
[2, 57, 16]. Nevertheless, these devices are inherently lossy and require a specialized skill set
to realize high-fidelity shaping in conjuction with optical fiber [68]. Since MMFs are highly
sensitive to bending, the resilience to minor perturbation is pursued by the use of fiber bundles
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or MCFs. The common strategy is to illuminate the sample by launching light into one core
at a time at the proximal end and using either a scattering layer [57] or a photonic lantern
[19] at the distal end to generate a unique speckle pattern. Addressing only one single-mode
fiber core at a time ensures a high degree of robustness to perturbation. However, it imposes
limitations on the total number of patterns that can be generated (the number of cores) and,
importantly, the illumination power that can be delivered to the sample [28].

1.3. Proposed approach and contributions. The literature covered in the previous sec-
tion shows that speckle illumination seems to be a promising way to face one of the main
constraints preventing the use of LE: it removes the need for interferometric stability and a
costly calibration step before each acquisition, and it can possibly be used in a blind context.
Experimental studies show that sensing matrices based on speckles are valid candidates to
acquire measurements in a compressive framework while still providing good reconstruction
results [69, 57, 42]. In fluorescence imaging, more than a low number of measurements, a
short acquisition time is highly desirable to preserve the biological sample of photo-bleaching.
Photo-bleaching is irreversible damage resulting from light exposure and leading to a com-
plete loss of fluorescence. If the MCF has a low coupling between the cores, this time can
be substantially reduced by exploiting the memory effect of the fiber thanks to scan mirrors
(e.g., galvanometric mirrors) [4]. According to Andresen et al., only strategies exploiting this
effect will be able to satisfy the speed and resolution requirements for in vivo imaging with
LE, as moving such mirrors is much faster than changing an SLM configuration [5].

In this paper, we study a novel acquisition strategy named partial speckle scanning (PSS).
It combines elements of compressive sensing with the specific properties of the considered LE,
namely its robustness to spatial and temporal distortion, its extremely low coupling between
the cores of the fiber, and its memory effect. In particular, we generate only P ≤ M dis-
tinct speckles and we shift each of them MP = M/P ≤ M times, thus achieving a partial
scanning of the object, to acquire a total of M = PMP observations. We thus achieved a
versatile parametrization where, for P =M , we observe the sample with M different speckle
illuminations, while if P = 1, a unique speckle pattern is shifted M times.

Using this shifting (that is for MP > 1) has two interesting effects. First, by adjusting P
and MP , a trade-off can be found between the refreshing rate of the SLM and the faster scan
mirror rate to reduce the global acquisition time. Second, scanning the speckle also allows for
faster imaging procedures—a critical aspect for future high-resolution LE applications. Since
the sensing model is computed numerous times inside most iterative image reconstruction
methods, this scanning reduces both the complexity and the storage of the sensing model,
with a direct impact on the global computational time (including the reconstruction).

The first contribution of this paper consists in characterizing an accurate linear sensing
model of PSS. In particular, we deduce its equivalent sensing matrix, explaining the relation
between the fluorescent sample and the collected observations. We then justify the possibility
to estimate an image from PSS observations by establishing links with CS theory. This
requires us to first analyze the nonasymptotical distribution of a speckle random field as well
as its autocorrelation. The second contribution consists in optimizing the sampling parameters
(MP , P , and the induced speckle shift between two consecutive scanning mirror orientations
in a line scanning mode) to get the best reconstruction quality for a given acquisition time
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or a prescribed number of measurements M . These demonstrations indicate the potential
of MCFs in conjunction with computational reconstruction to be viable building blocks for
robust and fast lensless endoscopy.

1.4. Outline. The rest of the paper is structured as follows. In section 2, we first deter-
mine a model for the illumination produced by the MCF in the object plane. We provide a
far-field approximation of this illumination pattern in subsection 2.1 in function of the elec-
tromagnetic field emitted by each core. We explain in subsection 2.2 how we can shift this
pattern by using scan mirrors. The formation of a focused illumination (used in RS; see Fig-
ure 1) is explained in subsection 2.3 before we introduce and (statistically) characterize in
subsections 2.4 and 2.5 the speckle patterns produced by randomly setting the core fields. In
section 3, we focus on fluorescent imaging with LE. We detail how we can, in general, image
a sample by recording the light emitted under illumination. We first develop a continuous
forward model in subsections 3.1 and 3.2 relating the illuminated sample—i.e., the original flu-
orophore density—to the recorded observations. In subsection 3.3, we detail the discretization
of this model, a mandatory step for any computational imaging method. In subsection 3.4,
we then show how this discrete forward model is classically inverted in RS imaging, before we
describe in subsection 3.4.2 a general image estimation algorithm. It inverts the (possibly ill-
conditioned) discrete forward model by regularizing the produced image estimate (e.g., using
TV or more advanced priors). This algorithm can be solved with iterative proximal methods
(subsection 3.4.3), and we describe in subsection 3.4.4 a cross-validation strategy to automati-
cally balance the fidelity to the observations with this regularization. In section 4, we develop
two compressive imaging strategies for LE, namely speckle imaging (SI) in subsection 4.1,
where a distinct random speckle pattern is generated for each observation, and PSS in sub-
section 4.2, where the sample is observed from partial scanning of a few randomly generated
speckles. These strategies, their respective formulations as inverse problems, and the results
of the simulations are also presented in subsections 4.1 and 4.2, respectively. Finally, section 5
presents the experimental setup designed to compare different acquisition strategies on real
fluorescent samples. We compare our compressive approaches, SI and PSS, to RS and explain
how PSS allows us to reduce the acquisition time compared to SI while providing a similar
reconstruction quality. Equivalently, we show that PSS permits us to image the sample under
a limited acquisition time budget when SI fails. We conclude in section 6 and provide there
possible future improvements for compressive LE imaging.

1.5. Conventions and notation. We find it useful to introduce here the conventions and
notation used throughout this work. Light symbols are used for scalars and functions, while
bold symbols are used for vectors and matrices. The “dot” notation f(·; η) refers to the
variability of the function f relative to the pointed parameter with other parameters (in
η) fixed. The uniform distribution on a set S (e.g., S = [a, b] ⊂ R or the unit ball S =
B2 ⊂ R2) is U(S). P(µ) and N (µ, σ2) are the Poisson distribution with mean µ > 0 and
Gaussian distribution with mean µ and variance σ2, respectively. We also use the index
set [J ] := {1, . . . , J}; the Kronecker symbol δj,k; the vectors of ones and zeros 1d and 0d,
respectively (the subscript d is omitted when clear from the context); the scalar product
⟨a, b⟩ = a⊤b between two vectors a and b; the ℓ2-norm ∥a∥ =

√
⟨a,a⟩ of a vector a; the

relation a ⪰ 0 as shorthand for ai ≥ 0 for all components i; the identity matrix Id in Rd;
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Frobenius norm ∥M∥F and spectral norm ∥M∥ of a matrix M ; the function disk(x) equal
to 1 if ∥x∥ ≤ 1 and 0 otherwise; the symbols “∗” and “⋆” for complex conjugation and
Legendre–Fenchel conjugate, respectively; the notation A ≲ B for meaning that A ≤ cB for
some constant c > 0 independent of A and B; and finally, the Fourier transform of f defined
as f̂(k) := F [f ](k) =

∫
R2 f(x) e

−ik⊤x dx, with inverse F−1[g](x) = 1
(2π)2

∫
R2 g(k)e

ik⊤x dk.

2. Illumination modeling. Before going into the details of the acquisition modeling and
subsequent sensing strategies, let us have a close look at the models and principles explaining
the illumination produced by the considered MCF. We first study how we can set the elec-
tromagnetic field of each MCF core to focus the illumination on a small spot on the object
plane, before we consider the speckle illumination formed by randomly configuring the core
field. We also provide a statistical analysis of speckle illumination by studying the first- and
second-order statistics of this random pattern as well as a characterization of its distribution.
Our conclusions will serve the sensing models developped in section 3.

2.1. Principles and approximations. Given a laser beam of wavelength λ injected into
an MCF with J cores (as illustrated in Figure 1), we consider an illumination pattern S in a
plane Z, parallel to the planar MCF endface Z0, and at a distance z > 0 from it.

This pattern results from the interferences of the electromagnetic fields radiated by the
J cores, each centered on a location qj ∈ R2 (j ∈ [J ]) in Z0. The field of the jth core in
fiber endface is well described by a complex amplitude αj with |αj | = 1 multiplied by a
narrow Gaussian envelope [59]. These amplitudes are collectively represented by the vector
α := (α1, . . . , αJ)

⊤.
In this context, the pattern S is the intensity of the electromagnetic field Ez radiated from

Z0 to the plane Z. Fourier optics tells us that, at each location x ∈ Z ⊂ R2, Ez is obtained
via the angular spectrum representation1 [33]:

(2.1) Ez(x;α) = (E0(·;α) ∗Hz)(x),

where E0(·;α) is the electromagnetic field emanating from the MCF endface,

(2.2) E0(x;α) =
[
U0 ∗

∑J
j=1 αjδ(·− qj)

]
(x),

andHz is the inverse Fourier transform of the angular spectrum propagator defined as Ĥz(k) =
exp(−iz(k2 − ∥k∥2)1/2) with k = 2π/λ [33]. The vector k = (kx, ky)

⊤ is the two-dimensional
(2-D) coordinate in the reciprocal space of x and U0 is the field emitted by a single core. The
field U0 is approximately Gaussian, i.e., U0(x) ≈ exp(−∥x∥2/(2σ2c )), with standard deviation
σc depending on wavelength λ and related experimentally to mode-field diameter d through
d = 2.35σc [59].

The illumination pattern on a plane located at a distance z of the fiber distal end is
therefore

(2.3) S(x;α) := |Ez(x;α)|2 =
∣∣∑J

j=1 αjUz(x− qj)
∣∣2

1Assuming an optical field in a homogeneous, isotropic, linear, and source-free medium [33].
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with Uz(x) := (U0 ∗Hz)(x). This last expression can be simplified with the far-field assump-
tion. This assumption considers that the illumination pattern is far from the MCF endface,
i.e., z ≫ 2Dµ

λ with D the diameter of the MCF distal end and µ the complex coherence factor
of the fiber [35], which is approximately the mode-field waist of a single fiber core, d. In this
case, the Fraunhofer approximation holds [33]. Combined with the paraxial approximation
which supposes a narrow FOV compared to z, i.e., ∥x∥ ≪ z, we express Ez as a modulated
scaling of the Fourier transform Ê0 (computed relatively to x) [22],

(2.4) Ez(x;α) ≈ − e−ikz

iλz e
− ik

2z
∥x∥2Ê0

(
− k

zx;α
)
.

Therefore, using (2.2) and the convolution theorem, the far-field approximation of the illumi-
nation S reads

(2.5) S(x;α) ≈ 1
(λz)2

∣∣Û0

(
− 2π

λz x
)∣∣2∣∣∣∑J

j=1 αje
2πi
λz

q⊤
j x
∣∣∣2.

We introduce now a convenient rewriting of (2.3). We first define the mean intensity S̄
corresponding to noninteracting fields, i.e., to the sum of all intensity fields produced by each
core in Z:

(2.6) S̄(x) :=
∑J

j=1 |Uz(x− qj)|2 =
[
|Uz|2 ∗AF

]
(x),

where AF(x) :=
∑J

j=1 δ(x−qj) is the array factor (AF) related to the spatial arrangement of

the cores [59]. Quantity |Uz|2 only depends on wavelength λ, the diameter of each core, and
distance z. Figure 2(c) represents S̄ for a Fermat’s spiral core arrangement. Regarding (2.5),
an approximation for the mean intensity is

(2.7) S̄(x) ≈ J
(λz)2

∣∣Û0

(
− 2π

λz x
)∣∣2.

From (2.3), since the illumination S amounts to summing S̄ and all the cross-terms∑J
j,k=1;j ̸=k αjα

∗
kUz(x− qj)U

∗
z (x− qk), we can study the variations of S around S̄ by defining

the residual field

(2.8) R̃(x;α) := S̄(x)−1
(
S(x;α)− S̄(x)

)
such that S(x;α) = S̄(x)

(
1 + R̃(x;α)

)
.

This field accounts for the (constructive and destructive) interferences between the individual
fields emitted by the cores. Under the Fraunhofer approximation, (2.5) and (2.7) provide

(2.9) R̃(x;α) ≈ 1
J

∑J
j,k=1 αjα

∗
ke

2πi
λz

(qj−qk)
⊤x − 1.

As expressed in (2.8), S̄ acts like a vignetting window, an envelope on the intensity variations
encoded in R̃ for any configurations of α (see Figure 2(c) and (d)). Moreover, (2.9) shows
that |R̃(x;α)| = O(J) and we prove in subsection 2.5 that, for random complex amplitudes
α, i.e., when S is a speckle pattern, the probability that |R̃(x;α)| strongly deviates from a
threshold t > 0 decays exponentially fast when t increases.
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2.2. Translating the illumination. We can translate any illumination pattern produced
by the MCF in the object plane Z by leveraging the low coupling between the J MCF cores,
i.e., the MCF memory effect [3]. This expresses the fact that, up to an additive constant term
depending on intrinsic properties of the core, the phase of the light emitted from jth core
is the same as the phase of the input light [5]. Therefore, by modulating the light incident
to the MCF—by using galvanometric scan mirrors, as in Figure 1—we act on the complex
amplitude of each core field at the distal end of the fiber, and we can shift the illumination
pattern at distance z of the fiber. In particular, we can translate the residual field R̃ defined
in (2.8) within the intensity vignetting imposed by the mean speckle field S̄.

This effect, which is valid for any configuration of the complex amplitudes, is easily ex-
plained as follows. A relative tilt θ = (θx, θy)

⊤ of the scan mirrors modifies the light optical
path on the different core locations and induces a phase ramp2 2π

λzθ
⊤x on the complex ampli-

tude. The vector α is modified as

(2.10) α′ := diag(γ(θ))α with γk(θ) := e
2πi
λz

θ⊤qk , k ∈ [J ].

Therefore, considering the far-field approximation of the residual field (2.9), which is valid
using the Fraunhofer and paraxial approximations, this amplitude modulation changes the
residual field into

R̃(x;α′) ≈ 1
J

∑J
j,k=1 α

′
jα

′
k
∗e

2πi
λz

(qj−qk)
⊤x − 1

= 1
J

∑J
j,k=1 αjα

∗
ke

2πi
λz

(qj−qk)
⊤(x+θ) − 1 ≈ R̃(x+ θ;α),(2.11)

so that, from (2.8), the speckle field becomes

(2.12) S(x;α′) ≈ S̄(x)(1 + R̃(x+ θ;α)).

Thus, provided that the far-field conditions are respected, i.e., if ∥x∥ ≪ z and z ≫ D0µ/λ,
a nonzero tilt θ induces a shift −θ of the residual field, but the vignetting window remains
unchanged.

2.3. Focused illumination. For some arrangements of the fiber cores, such as the Fermat’s
spiral configuration [59], we can focus the intensity pattern S on a narrow intensity spot (see
Figure 2(a)). From a convenient calibration of the optical system [58], this focused beam is
obtained by programming the SLM so that each core field has unit complex amplitude in
the fiber endface. This induces constructive interferences of the propagated core fields in the
origin of the object plane Z. Mathematically, this can be seen by adapting (2.3), or (2.4) in
the Fraunhofer approximation, to this particular unit amplitude configuration, which provides

Sfoc(x) := S(x;1J) = |
∑J

j=1 Uz(x− qj)|2 ≈ 1
(λz)2

∣∣Û0

(
− 2π

λz x
)∣∣2 ∣∣∣∑J

j=1 e
2πi
λz

q⊤
j x
∣∣∣2

= 1
(λz)2

∣∣Û0

(
− 2π

λz x
)∣∣2 ∣∣F [AF](2πλzx)

∣∣2
= J−1 S̄(x)

∣∣F [AF](2πλzx)
∣∣2.(2.13)

In the far-field, the focused beam Sfoc(x) is thus also vignetted by S̄; it is given by the energy
spectral density of the array factor of the fiber cores, as represented in Figure 2(a) for the
focused beam achieved by Fermat’s spiral core arrangement [59].

2The phase ramp is normalized by 2π
λz

to ease our next developments; the actual tilt is θ′ = λz
2π

θ.
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2.4. Speckle illumination. Speckle patterns were observed for the first time at the end of
the 19th century from astronomical observations [26, 34]. They result from the interferences
between coherent light components with random relative delays, as induced by light reflection
on a rough surface. In this work, we propose to generate a speckle pattern with the MCF by
randomly configuring the complex amplitudes α of the intensity field S(x,α) in (2.3). We set
these amplitudes so that their phases follow a uniform distribution on the complex circle, i.e.,
αj ∼i.i.d. exp

(
iU([0, 2π])

)
for j ∈ [J ]. This random configuration can be reached by properly

shaping the laser beam thanks to the SLM (see Figure 1).
In this random configuration, we easily show that, from (2.3), the mean intensity S̄ is also

the expectation of S since Eαjα∗
k = δjk, i.e.,

(2.14) ES(x,α) = E
∣∣∑J

j=1 αjUz(x− qj)
∣∣2 =∑J

j=1

∣∣Uz(x− qj)
∣∣2 = S̄(x).

The residual field R̃ (defined in (2.8)) of such a speckle pattern exhibits a spatial granular
structure indicating that, for two points x,x′ close to each other, the two r.v.’s R̃(x;α) and
R̃(x′;α) are correlated. Given the diameter D of the MCF fiber, we show below that such a
correlation exists as soon as ∥x−x′∥ ≲ λz/D, which shows that the size of a “speckle grain”
scales like O(λz/D). This is achieved by studying the second-order statistics of the random
field R̃: the spatial autocorrelation defined as

(2.15) ΓR̃(x,x+ τ ) := E[R̃(x;α)R̃∗(x+ τ ;α)]

with τ := (τx, τy)
⊤. Using the approximation (2.9), E[αjα∗

k] = δjk, and E[αjα∗
kα

∗
l αm] =

δjkδlm + δjlδkm − δjklm, we find

ΓR̃(x,x+ τ ) ≈ 1
J2

∑
j,k,l,m E[αjα∗

kα
∗
l αm]e

2πi
λz

(qj−qk)
⊤xe−

2πi
λz

(ql−qm)⊤(x+τ ) − 1

= 1
J2

∑J
j,l=1 1 +

1
J2

∑J
j,k=1 e

− 2πi
λz

(qj−qk)
⊤τ − 1

J2

∑J
j=1 1 − 1

= 1
J2

∣∣∑J
j=1 e

− 2πi
λz

q⊤
j τ
∣∣2 − 1

J

= 1
J2

∣∣∣F[AF](2πλzτ)∣∣∣2 − 1
J ≈ ΓR̃(0, τ ) =: ΓR̃(τ ).(2.16)

Therefore, the Fraunhofer approximation shows us that the autocorrelation ΓR̃(x,x + τ ) ≈
ΓR̃(τ ) does not depend on x anymore. We also see that, in the far-field, ΓR̃ is directly related
to the Fourier transform of the array factor AF, and it displays a peak on the origin with
ΓR̃(0) = 1 − J−1 ≤ 1. Note that the Fermat’s spiral configuration is designed for ensuring
small variations of ΓR̃ far from the origin, thus keeping only a dominant peak in 0 [59].

The decay of ΓR̃ when τ = ∥τ∥ increases can be further estimated by assuming the
core locations homogeneously distributed over the 2-D fiber endface. Following [34], assuming
these locations distributed uniformly at random over a 2-D fiber endface of diameter D, i.e.,
qj ∼i.i.d. U(12DB2) with B2 the unit ball in R2, we find, for J large and q, q′ ∼i.i.d. U(12DB2),

ΓR̃(τ ) ≈
1
J2

∑J
j,k=1;j ̸=k e

− 2πi
λz

(qj−qk)
⊤τ

≈ J−1
J Ee−

2πi
λz

(q−q′)⊤τ = J−1
J

∣∣2(πDλz τ)−1J1(
πD
λz τ)

∣∣2,(2.17)
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Figure 3. Autocorrelation of field R̃ for three cases: (i) using Fraunhofer approximation (solid line),
(ii) using Fraunhofer approximation and assumption of a circular aperture (dashed cyan line), and (iii) by
empirically computing mean (over 25 trials) autocorrelation based on 1,000 realizations of R̃ (dotted line). The
fiber core arrangement is a Fermat’s golden spiral with J = 120 cores, diameter D = 113µm, and 3σc = 3.2µm.
Experiment parameters are λ = 1µm, z = 500µm, and ϖ = 2µm.

where J1 is the first-order Bessel function of the first kind, and lims→0 J1(s)/s = 1/2. Follow-
ing [34], we define the average area of a speckle grain as A :=

∫∫∞
−∞

(
ΓR̃(τ )/ΓR̃(0)

)
dτ . For a

circular aperture as considered above, A is obtained using Parseval’s identity and the average
radius is defined as r :=

√
A/π, which gives

(2.18) A = (λz)2

π(D/2)2
and r = λz

π(D/2) .

We thus get r ∝ λz/D. For the parameters of the simulation in Figure 3, the radius of a
speckle grain is 2.8µm.

Remark 2.1. Quantities (2.17) and (2.18) are easily computable since they only depend
on the experiment parameters J , D, λ, and z. Figure 3 shows ΓR̃ as a function of τ (with
τ = τe1 and e1 the unit vector aligned with the horizontal axis of the 2-D image) obtained with
Fraunhofer approximation and the stronger assumption of a circular spot. Mean empirical
estimations of ΓR̃ based on 1,000 realizations of the residual field are also displayed for x = 0.
Both theoretical approximations explain well the main peak of the autocorrelation, which is
similar to the peak observed when the light beam is focused (see Figure 2(a)). Even if distant
side lobes are absent with circular aperture assumption, (2.17) still provides a reliable closed
form expression for the radius of a speckle grain.

Remark 2.2. Interestingly, (2.16) shows us that the focused beam (2.13) is actually related
to the autocorrelation ΓR̃ of a random speckle, i.e., Sfoc(x)/S̄(x) ≈ JΓR̃(x)+1 since J2ΓR̃(τ )+
J ≈ |F [AF](2πλzτ

)
|2.

2.5. Speckle distribution. In [34], Goodman derives the probability density function of
a speckle with a number of phasors that tends to infinity (corresponding, for instance, to
the use of a diffuser). In this asymptotic case, applying the central limit theorem is relevant
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and leads to an intensity S(x;α) distributed according to an exponential law [34, Chapter 3].
However, assuming such an asymptotic behavior is not appropriate when we work with a small
number of cores like in the MCF described in this work. In this section, we show that the
(nonasymptotic) distribution of S(x;α) is subexponential when we choose independent and
identically distributed (i.i.d.) complex amplitudes αj , no matter their distribution. Recently,
Bender et al. demonstrated methods to tailor more specifically the speckle intensity statis-
tics (and not only the tail decay) by appropriately choosing the distribution of the complex
amplitudes [6].

Following [70, 71], a subexponential (or sub-Gaussian) r.v. X ∈ C is characterized by a
rapidly decaying tail bound P{|X| ≥ t} ≤ 2e−ct/K (resp., P{|X| ≥ t} ≤ 2e−ct

2/K2
) when t ≥ 0

increases. In this bound, the constant c > 0 is universal, and K > 0 depends only on the
distribution of X. This characterization naturally includes Laplacian (resp., Gaussian) r.v.’s,
which explains the name of this distribution class.

Equivalently, a subexponential (or sub-Gaussian) r.v. X has a finite subexponential (resp.,
sub-Gaussian) norm ∥X∥ψ1 (resp. ∥X∥ψ2), with

(2.19) ∥X∥ψp
:= supq≥1 q

−1/p(E|X|q)1/q, p ∈ {1, 2}.

In fact, for p ∈ {1, 2}, the tail bound constant K is proportional to ∥X∥ψp , so that one is
finite if and only if the other is.

We can show that for the complex amplitudes αj both norms are finite, i.e., ∥αj∥ψ1 ≤ 1
and ∥αj∥ψ2 ≤ 1 for j ∈ [J ]; if an r.v. X is bounded (|X| ≤ C), then ∥X∥ψp ≤ C for p ∈ {1, 2}.

Proposition 2.3. Given a location x and J i.i.d. complex random amplitudes {αj , j ∈ [J ]}
with unit modulus, both the speckle intensity S(x;α) and the residual field R̃(x;α) are sub-
exponential, and

(2.20) ∥S(x;α)∥ψ1 ≲ S̄(x) and ∥R̃(x;α)∥ψ1 ≲ 1.

Proof. Defining u(x) :=
(
Uz(x − q1), . . . , Uz(x − qJ)

)∗ ∈ CJ , we can rewrite (2.3) as
S(x;α) = |⟨α,u(x)⟩|2. From [70, Lemma 5.14], ∥X∥2ψ2

≤ ∥X2∥ψ1 ≤ 2∥X∥2ψ2
, therefore,

∥|⟨α,u(x)⟩|2∥ψ1 ≤ 2∥⟨α,u(x)⟩∥2ψ2
. Moreover, from [70, Lemma 5.9], for J i.i.d. sub-Gaussian

r.v.’s Xj , we have the approximate rotation invariance ∥
∑J

j=1Xj∥2ψ2
≲
∑J

j=1 ∥Xj∥2ψ2
. Note

that, for Xj := αju
∗
j (x), ⟨α,u(x)⟩ =

∑J
j=1Xj , using ∥αj∥ψ2 ≤ 1 and the fact that ∥ · ∥ψ2 is a

norm, this involves that

∥⟨α,u(x)⟩∥2ψ2
≲
∑J

j=1 ∥Xj∥2ψ2
=
∑J

j=1 ∥αj∥2ψ2
|uj(x)|2 ≤

∑J
j=1 |uj(x)|2 = S̄(x),

which proves the first inequality in (2.20). Regarding the second inequality, since ∥ · ∥ψ1 is a
norm, it respects the triangular inequality, and from (2.8), we get

∥R̃(x;α)∥ψ1 = ∥S̄(x)−1(S(x;α)− S̄(x))∥ψ1

≤ ∥S̄(x)−1S(x;α)∥ψ1 + 1 = S̄(x)−1∥S(x;α)∥ψ1 + 1 ≲ 1.
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Figure 4. Estimation of P
(
|R̃(0;α)| ≥ t

)
as a function of t ≥ 0 based on 10,000 simulated speckle patterns

of size 128 × 128 (solid line) and 4,096 experimentally measured speckle patterns of size 256 × 256 (dotted
line). The fiber core arrangement is a Fermat’s golden spiral. In both cases, we do observe an exponential
decay of the tail of the distribution (t ≥ 1). Simulation parameters are J = 120, D = 113µ, 3σc = 3.2µm,
λ = 1µm, z = 500µm, and ϖ = 2µm. The experimental setup used to acquire real observations is described in
subsection 5.1.

Proposition 2.3 informs us that the tail of the distribution of R̃(x;α) decreases exponen-
tially fast with a threshold t ≥ 0, i.e., for some universal constants C, c > 0,

P
(∣∣R̃(x;α)

∣∣ ≥ t
)
≤ Ce−ct.

Figure 4 displays approximations of P(|R̃(0;α)| ≥ t) as a function of t based on both
simulated and experimental discretized speckle patterns. For t ≥ 1 (corresponding to the
tail), we do observe an exponential decay of the distributions. The difference in the decay
rates is due to slightly different simulation and experiment parameters (e.g., λ and ϖ).

3. From illumination to fluorescent imaging. In this section, we first describe the fluo-
rescence phenomenon, i.e., the physical process underlying the generation of observations in
lensless endoscopy. Second, we describe the model of photons collection by the fiber. Then,
based on those previous models, we propose a forward model explaining how the observations
are related to the original fluorophore density map. Finally, we formulate the imaging process
as the solving of an inverse problem, i.e., the minimization of an objective function made of a
data fidelity term combined with regularizing priors on the expected density map, and explain
how to solve it numerically.

More formally, we consider a sample—either a synthetic phantom or a very thin slice of
an ex vivo biological sample—containing some molecules of interest that have been tagged
with fluorescent dyes. For the sake of simplicity, we assume that this sample is restricted to
a 2-D FOV, also called object space Ω ⊂ R2. A density function f0 : Ω× R → R+ associates
a fluorophore density f0(x, t) with each location x ∈ Ω at time instant t.

3.1. Fluorescence model. Fluorescent molecules possibly absorb light and emit photons
under illumination by a light pattern with static intensity S(x). The observed and measured
photon flux φ : Ω × R → R depends on the intensity of the incident light but also on the
fluorophore density f0. In this section, we derive the expression of the photon flux φ(x, t)
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at time t emitted by the fluorophores located at x ∈ Ω as a function of f0, S and physical
parameters. In the next section, we will relate this expression to the measurements obtained
with the optical device.

The main phenomena controlling the number of emitted photons are singlet state and
triplet state saturations, photo-bleaching, and background fluorescence [66]. We refer the
reader to [61, 66] for detailed explanations about the physics of fluorescence emission.

In the context of LE, we formulate the following assumptions about the illumination dura-
tion and intensity, both tunable acquisition parameters: (i) illumination duration tacq is short
compared to the time needed to reach triplet excited steady state but long enough for singlet
excited state to reach steady state, and (ii) intensity S at each x is low and, consequently,
far from saturation level. The first assumption allows us to consider only singlet excited state
saturation and its corresponding flux. The second assumption amounts to considering that
S(x) ≪ kd/σ, where kd is the constant rate associated with the return to the ground state
and σ is a parameter depending on laser wavelength λ and on the chosen dye [18, 66]. In this
case, the photon flux emitted at x depends linearly on the product of S(x) and f0(x),

(3.1) φ(x) ≈ Qeσ S(x)f0(x),

where quantum yield Qe characterizes the efficiency of the emission process. This time-
invariant model also assumes that there is no molecules displacement during the acquisition—
i.e., the illumination duration is short—and we neglect photo-bleaching of fluorescent dye.

3.2. Photon collection model. For a static illumination pattern S(x), the LE collects
within the acquisition duration tacq a nonnegative number of photons Y , a fraction of those
emitted by the fluorescent sample. Neglecting for now any other noise sources that could
plague this photon collection such as thermal and readout noise in the optical detector, Y is
a Poisson r.v. whose mean is

(3.2) EY =

∫
Ω

∫ tacq

0
c0
(
φ(x) + φb(x)

)
dt dx,

where φ and φb are the direct and the background photon fluxes generated by the object,
and 0 < c0 < 1 is a constant accounting for the fraction of photons captured by the LE. As
explained in subsection 5.1, the model (3.2) assume no sensitivity attenuation of the light
collection (as induced by the fiber numerical aperture) closer to the periphery of the FOV.

Using (3.1) and (3.2), and assuming φb is induced by constant density over the FOV, the
continuous forward model relating the photon count Y to f0 is equivalent to

(3.3) Y ∼ P
(∫

Ω
S(x)[c1f0(x) + c2] dx

)
with constants c1, c2 > 0 depending on c0, Qe, σ, and tacq. In this study, we are interested in
the relative contrast between different regions of the object space Ω. Recovering f0 up to a
scaling factor and an offset is adequate. Defining f := c1f0 + c2, model (3.3) becomes

(3.4) Y ∼ P
(∫

Ω
S(x)f(x) dx

)
.
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3.3. Simplified discrete forward model. We now simplify (3.4) by turning it into a
discrete representation. For this, we suppose that both f and S can be represented in
a finite set of N = n2 orthonormal functions {ψi}Ni=1 over Ω ⊂ R2, i.e., there exist co-
efficients {si}Ni=1 and {fi}Ni=1 such that S(x) ≈

∑N
i=1 siψi(x) and f(x) ≈

∑N
i=1 fiψi(x).

By Parseval, this also means that
∫
Ω S(x)f(x)dx ≈ s⊤f , where s := (s1, . . . , sN )

⊤ and
f := (f1, . . . , fN )

⊤. In this work, we select a naive pixel representation with pixel pitch
ϖ > 0, i.e., ψi(x) := ψ(x−xi) with X := {xi}Ni=1 evenly sampling Ω on N locations and ψ(x)
equals to 1/ϖ if x ∈ [−ϖ/2, ϖ/2]× [−ϖ/2, ϖ/2], and 0 otherwise. Assuming a square FOV
with side length L, we thus set ϖ = L/n.

Combined with the corruption of any possible signal-independent noise sources (e.g., elec-
tronic and readout noise) appearing in the measurement process, the continuous model (3.4)
becomes

(3.5) Y ∼ P(s⊤f) +N (0, σ2),

where all extra noise sources are collectively modeled as a Gaussian noise with variance σ2.
This work considers an estimation of the biological specimen, assimilated to its fluo-

rophore density map f , from the information captured from M distinct observations y :=
(y1, . . . , yM )⊤ ∈ NM , i.e., M realizations of Y . Each observation yj is associated with a dis-
crete illumination patterns sj , the discrete representation of the field S(x,αj)—focused or
speckle—set by one complex amplitude configuration αj ∈ CJ . As justified by our experi-
mental conditions (see section 5), this estimation is also realized in a high photon counting
regime where the following approximation holds for Poisson distributed random vector:

(3.6) Y ∼ s⊤f +N (0, s⊤f + σ2).

Gathering the M illumination patterns in the matrix S := (s1, . . . , sM ) and following the
conclusions of section 2, we can thus compactly represent the sensing model as

(3.7) y = S⊤f + n,

where n := (n1, . . . , nM )⊤ amounts to M realizations of the noise sources ni ∼ N (0, σ2i ), with
variance σ2i := s⊤i f +σ2. When we perform speckle illumination, the noise variance σ2i is well
approximated by a deterministic but unknown value given by σ2f := E[s⊤i f + σ2] = s̄⊤f + σ2,
which is independent of the measurement index i. In practice, we describe in subsection 3.4.4
a cross-validation technique that determines the influence of n (and its unknown variance σ2f )
in the estimation of f from y.

3.4. Imaging process. In this section, after a brief review of LE imaging by RS of a
focused beam, we present a more general imaging process allowing object observation with
speckle illumination. The image reconstruction can then be seen as solving of an inverse
problem—accounting for the indirect observation of the fluorophore density map—regularized
by some prior information on the structure of this map.

3.4.1. Raster scanning imaging. As mentioned in subsection 1.1, RS is a conventional
sensing strategy for lensless endoscopy [59]. It amounts to scanning the object of interest with
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the focused light beam Sfoc(x) defined in (2.13). As explained in subsection 2.2, the action of
the scanning mirrors allows us to move the center of Sfoc along a trajectory Ωtr in the FOV Ω
and to record one observation of the fluorophore density f for each trajectory position. Thus,
the number of observations crucially depends on the total length of Ωtr and its sampling rate,
both tunable parameters of the experiment.

Let us assume that we get M observations y = (y1, . . . , yM ) for a light beam focused
at M discrete locations Ωd := {pi : i ∈ [M ]} ⊂ Ωtr that belong to the pixel grid X (see
subsection 3.3). In this case, in a noiseless setting and in the discrete model developed in
subsection 3.3, RS imaging directly estimates f from the observations, i.e.,

(3.8) f̂(pi) = yi = s⊤foc,i f ≈ f(pi),

where sfoc,i is the discrete representation of Sfoc when it is translated on pi.
In other words, we consider that the matrix S generated by the patterns {sfoc,i}Mi=1 in

(3.7) is well approximated by the identity operator over the FOV specified by Ωd. However,
even with a fiber arrangement optimized to produce point-like light beams, distant side lobes
in the light pattern (see Figure 2(a)) limit the accuracy of this approximation. Moreover,
setting unit amplitude αj in the fiber endface requires calibrating the SLM, and the FOV
must be densely scanned by Ωtr. This last point forces the RS trajectory to visit each point
of a fine grid X . We explain below how one can alleviate these limitations by adopting a
compressive imaging strategy relying on random speckle illumination.

3.4.2. Inverse problem formulation. In the context of either focused RS imaging or
speckle illumination, we can invert the forward model given by (3.7). We do so by pos-
ing the reconstruction of the fluorophore density map f as the solving of an inverse problem,
that is, the estimation of f from the (indirectly) observed data y for a general sensing matrix
S. A natural but naive way to find this estimate amounts to picking the density f̂ minimizing
the squared ℓ2-norm of the residual S⊤f̂ − y. This minimization problem is unfortunately
often ill-posed, mainly due to the noise corruption but also because S⊤ is not necessarily well
conditioned, e.g., if the number of observations M is smaller than the number of pixels N .
Consequently, we cannot guarantee the uniqueness or even the existence of a solution to this
least squares minimization.

We overcome this issue by regularizing the inverse problem, i.e., by adding extra objective
functions g1 and g2 (or priors) in the minimization [12]. We solve this multicriterion problem
by minimizing the weighted sum of the objective functions:

(3.9) f̂ ∈ argmin
u

∥S⊤u− y∥2 + ρ1g1(u) + ρ2g2(u),

where ρ1, ρ2 > 0 are regularization parameters balancing between the data fidelity term (and
thus the measurement noise level) and regularization terms g1 and g2. We detail in subsec-
tion 3.4.4 how to automatically estimate those parameters. In this work, we focus on two
extra priors g1 and g2.

Image structure. We assume that f is made of smooth areas separated by sharp boundaries
(possibly corresponding to tissue interfaces or cellular membranes). This prior, encoded in
function g1, corresponds either to the minimization of the TV norm [55] or to the second-
order total generalized variation (TGV2

α) norm [13, 40] (see Appendix A for formal definitions).
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Promoting a small TV-norm leads to piecewise constant images and is then well suited for
the synthetic data used in the simulations. As for TGV, it can be seen as a generalization of
TV to higher-order image derivatives. Minimizing the TGV2

α-norm leads to piecewise linear
estimates where parameter α > 0 makes a trade-off between edge-preserving and smoothness-
promoting terms (as suggested by [40], we set α = 2). TGV2

α is better suited for fluorescent
samples used for the experiments or when we estimate a vignetted map.

Nonnegativity. We know from the physics of fluorescence emission that f ⪰ 0. Function
g2 is then a convex indicator function on the set RN+ that is equal to zero if the constraint is
satisfied and to +∞ otherwise, g2 = ıRN

+
.

3.4.3. Minimization algorithm. Since we do not require g1 and g2 to be differentiable,
we cannot minimize (3.9) with methods relying on the computation of the gradient or the
Hessian of the objective function. Instead, we resort to the family of proximal algorithms [46]
that can deal with optimization of nondifferentiable functions. In a nutshell, these algorithms
can minimize the sum of several convex nonsmooth functions by splitting this optimization
into an iterative algorithm relying on the computation of the proximal operator of each of
these functions. This operator is defined as follows.

Definition 3.1 (from [46]). Let ψ be a lower semicontinuous convex function from S ⊂ Rd
to ]−∞,+∞[ such that the domain of ψ is nonempty. The proximal operator of ψ : S → S
evaluated in z ∈ S is unique and defined as

proxψ(z) := argmin
x∈S

1
2∥z − x∥22 + ψ(x).

The evaluation of the proximal operator of a convex function ψ on z thus provides a
minimizer of ψ that remains close to z. For many smooth and nonsmooth convex functions,
this operator is closed form or fast to compute; this is the case of the ℓ1-norm, the T(G)V-
norm, the indicator function of a convex set, and the functions g1 and g2 defined above.

In this work, we solve (3.9) with a generalized version of the Chambolle–Pock (CP) primal-
dual algorithm [17, 32]. This flexible algorithm allows for composing convex functions with
linear operators in the minimization, i.e., it can be used to solve the following type of prob-
lem [32]:

(3.10) min
u

h(u) +
∑K

k=1 φk(Aku).

Solving (3.9) with TV regularization thus corresponds to solving (3.10) with K = 2, h(u) =
ıRN

+
(u), φ1(u) = ∥u − y∥2, φ2(u) = ∥u∥1, and, in the case where g1 is the TV-norm, the

matrix A1 = S⊤ and A2 = ∇ is the finite difference operator (defined in Appendix A). If g1
is the TGV2

α-norm, Appendix A provides the definition of the functions and the correspond-
ing operators. The CP algorithm only requires computing the proximal operators of h, the
Legendre–Fenchel conjugate of each φk, as well as the adjoints of the matrices Ak’s. Notice
that, as an alternative, the generalized forward backward algorithm can also solve (3.9) by
leveraging the fact that the function ∥S⊤u− y∥2 is differentiable with respect to u [52].

3.4.4. Regularization parameter and stopping criterion. As brought up earlier, the op-
timal value of the parameter ρ balancing the data fidelity term and the regularization term
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g1 in (3.9) is unknown a priori. From a maximum a posteriori standpoint, this parameter
actually depends on the chosen regularization term g1 and on noise corrupting the observa-
tions y (3.7). We can, however, set a value for ρ based on the optimization of a criterion
depending on the estimate and the observations. Boufounos, Duarte, and Baraniuk, followed
by Ward, proposed, for instance, to use cross-validation to estimate such a balancing parame-
ter [11, 72]. To avoid overfitting noisy observations in the context of compressive sensing, the
set of observations can be divided into two parts: a first set is used for the signal estimation,
and a second, much smaller, is used to determine when to stop an iterative reconstruction
algorithm, or to select appropriate regularization parameters.

We propose here to use the same cross-validation approach. We first randomly split the
vector ofM observations in y in an estimation and validation vectors yest and yval of sizeMest

andMval =M−Mest, respectively, withMval representing a small fraction ofM (see section 4).
We use for this two restriction matrices, Rest ∈ {0, 1}Mest×M and Rval ∈ {0, 1}Mval×M , such
that yval = Rval y and similarly for yest. In this context, the estimation problem (3.9) becomes

(3.11) f̂ρ ∈ argmin
u

∥Rest(S
⊤u− y)∥2 + ρg1(u) + ıRN

+
(u).

As in [11], we use the squared ℓ2-norm of the residual to evaluate the quality of the produced
estimate f̂ρ. This is defined by

q(f̂ρ) := ∥Rval(S
⊤f̂ρ − y)∥2.

This quality function q is then used, first, to stop the CP algorithm when q reaches a
minimum, and second, to select an appropriate value for ρ. This last operation is done by
solving (3.11) for K values of ρ and ρk∗ is considered as the best choice if q(f̂ρk∗ ) ≤ q(f̂ρk)
for all k ∈ [K].

4. Compressive imaging with speckle illumination. We show in this section how the
LE acquisition model (3.7) can follow a CS scheme [15], i.e., when the density map f ∈ RN
is observed with M < N random speckle illuminations. This also aims at removing the
beamforming calibration of the RS method by using speckle illumination. We thus consider a
sensing model (3.7) where the patterns {sk}Mk=1 composing S ∈ RN×M

+ are associated with M
random configurations {αk}Mk=1 ⊂ CJ of the MCF complex field amplitudes. As mentioned in
subsection 1.2, speckle patterns realized with monochromatic light and a multiple scattering
medium were shown, mostly experimentally, to be suitable candidates for generating the
sensing matrix in a CS framework [41, 57, 42].

In CS theory, the success of the estimation of a signal of interest mainly depends on the
ability of the sensing matrix to capture information about this signal during the acquisition
process [53]. This theory offers tools to study the recovery of low-complexity signals (such
as sparse images in a given basis) when the number of observations is much smaller than the
number of pixels in the final image, e.g., the restricted isometry property (RIP) and the null
space property [15, 53]. But as mentioned in [25, 53, 64], those two properties are difficult
to verify directly (e.g., for deterministic matrices) without extra assumptions on the sensing
matrix. Most of the existing theoretical work in CS theory is about random matrices with
zero-mean i.i.d. row entries, or random partial Fourier sampling. For instance, the behavior of



COMPRESSIVE IMAGING THROUGH OPTICAL FIBER WITH PSS 405

a reconstruction based on observations acquired with sub-Gaussian or Bernoulli measurement
matrices has been extensively studied from a theoretical point of view [15, 37]. However, those
zero-mean random matrices with i.i.d. entries (or rows) are too ideal for real-life applications
where the physics often limits the choice of sensing operator [25, 53].

As detailed in the next subsections, we study two practical compressive acquisitions for
LE, and we show how to make them, at least partially, compatible with CS theory. The first
strategy, speckle imaging, or SI, observes the object withM distinct speckle patterns generated
byM i.i.d. complex amplitudes configurations {αk}Mk=1. The second, partial speckle scanning,
or PSS, adopts a structured compressive sensing strategy; while observing the object, only a
fraction of the M speckles are generated randomly, and the others consist of shifted copies of
the firsts.

4.1. Speckle imaging. In SI, the phases of the complex amplitudes of the J MCF cores
are all independently picked uniformly at random over [0, 2π] for each measurement, i.e.,
given αk = (αk1, . . . , αkJ)

⊤, we have αkj ∼i.i.d. exp(iU([0, 2π])), for j ∈ [J ] and k ∈ [M ].
This unstructured compressive sensing scheme thus acquires M observations by successively
illuminating the biological sample with M different unstructured light patterns sj , each ob-
tained from a random configuration of the SLM. In this context, we first note that the sensing
model (3.7) can be rewritten as

(4.1) y = S⊤f + n =
√
M Φ S̄f + n,

where the sensing matrix Φ ∈ RM×N is a renormalization of S⊤ defined as

(4.2) Φ := 1√
M
S⊤S̄

−1
, S̄ := diag(s̄) ∈ RN×N ,

and s̄ := (s̄1, . . . , s̄N )
⊤ ∈ RN+ is the discrete representation (over the pixel grid X ) of the

mean speckle field S̄ defined in (2.6). The rationale of the renormalized model (4.1) follows

the conclusion of section 2. Since by construction each row S̄
−1

sk of the random matrix√
MΦ in (4.2) corresponds to sampling S(x;αk)/S̄(x) on the pixel grid X (provided that

S̄(x) evolves slowly compared to S, which basically means that 1/σc ≫ 1/D), Proposition 2.3
shows that each Φjk are subexponential for a random speckle illumination generated with
random complex amplitudes.

However, the entries of Φ are biased: their mean is 1/
√
M since S̄ = ES. Such a bias

is detrimental to the application of CS theory; for instance, it prevents Φ from satisfying
the RIP property [53]. Following [51, 63], we can consider the following debiased observation
model that amounts to modifying both the observations and the sensing model:

(4.3) z := y − (s̄⊤f)1M =
√
MΦ̃S̄f + n,

where Φ̃ is the debiased sensing matrix

(4.4) Φ̃ := Φ− 1M1⊤
N√

M
= 1√

M
S⊤S̄

−1 − 1M1⊤
N√

M
S̄S̄

−1
= 1√

M
(S⊤ − 1M s̄⊤)S̄

−1
.

In this new model, we thus collect M observations z of the object f thanks to the sensing
matrix Φ̃ = (r̃1, . . . , r̃M )⊤/

√
M ∈ RM×N . By construction, its random entries are zero-mean.
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Moreover, comparing (4.4) to (2.8), we see that each row r̃k = S̄
−1

(sk − s̄) of
√
MΦ̃ =

(r̃1, . . . , r̃M )⊤ corresponds—for a slowly varying mean field S̄—to the discrete representation
of R̃(x;αk) as defined in (2.8). Therefore, the subexponential norm of the entries of Φ̃ are
bounded by 1/

√
M .

However, the debiased model (4.3) is impractical; the quantity (s̄⊤f)1M is unknown. Up
to a slight increase of the noise level, we can solve this problem by assuming that the noise
n corrupting the observations is zero-mean. In this case, since E 1

M 1⊤My = E 1
M

∑M
i=1 yi =

1
M

∑M
i=1 E(s⊤i f + ni) ≈ s̄⊤f , where the expectation refers to the randomness of both n and

all the {si}Mi=1, we can reach this realistic sensing model

(4.5) ỹ := y − 1
M (1⊤My)1M =

√
MΦ̃S̄f + ñ

with ñ := n + n′ and n′ := (s̄⊤f)1M − 1
M (1⊤My)1M . Since E 1

M (1⊤My) = s̄⊤f and each
yi are independent r.v.’s, we can compute that the variance of the entries of n′ decay like
O(1/M) when M increases. Therefore, the variance σ̃2 of each components of ñ behaves like
σ̃2 = σ2 +O(1/M), which is close to σ2, the variance of each nk, if M is large.

In model (4.5), the entries of Φ̃ are zero-mean and subexponential. For matrices A with
zero-mean, random i.i.d. entries with bounded subexponential norm, Adamczak et al. showed
that, provided M = O(s ln2 (N/s)), such matrices satisfy the RIP property with high proba-
bility when normalized by

√
M [1]. This means that there exists a constant 0 < δ < 1 such

that, for all s-sparse vectors u in RN—with at most s nonzero components—we have

(1− δ)∥u∥2 ≤ ∥ 1√
M
Au∥2 ≤ (1 + δ)∥u∥2.

Respecting the RIP implies that robust reconstruction of any s-sparse vector x from its (possi-
bly noisy) observations Ax can be achieved via, e.g., ℓ1-minimization or greedy methods [53].
Foucart and Lecue showed that such matrices also satisfy a modified version of the RIP based
on the ℓ1-norm [29] and proposed a recovery algorithm able to recover s-sparse vectors with
M in O(s ln (N/s)).

Unfortunately, the analysis of the autocorrelation of R̃ made in subsection 2.4 shows that
all entries of Φ̃ are (locally) correlated. This is no surprise; while each row r̃k of

√
MΦ̃ belongs

to RN , only J parameters—the J random phases of the complex amplitudes αk—were used
to generate the pattern r̃k. Thus, provided that N ≥ J (e.g., if J = O(100) and N = O(1282)
as in subsection 4.1.1), spatial correlations are inherent in each r̃k. Therefore, we cannot
readily use the results of [1, 29] to characterize our sensing scheme. Note that the existence
of the abovementioned correlations is not an impossibility per se; after all, random partial
Fourier sensing matrices, made of M randomly sampled rows of a Fourier matrix, do present
such correlations but respect the RIP under certain conditions [15]. Studying if our sensing
matrix Φ̃ satisfies the RIP is thus an open question. However, the coherence of Φ̃ also provides
(weaker but computable) guarantees for the recovery of s-sparse signals [25, 30]. This quantity
(defined hereafter) measures our ability to distinguish two distinct atoms of the sensing basis
in the signal measurements; the lower the coherence, the better the signal recovery (as a limit
case, an orthonormal basis has zero coherence and all signals can be recovered).
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Definition 4.1 (from [25, Def. 2]). The coherence µ(Θ) of a matrix Θ is the largest absolute
inner product between any two columns θi,θj of Θ:

µ(Θ) = max
1≤i ̸=j≤N

|⟨θi,θj⟩|
∥θi∥∥θj∥

.

The analysis provided by the coherence is quite limited compared to an analysis based on
the RIP. However, we can still use this information to compare different sensing matrices. A
low coherence is a good indicator of the efficiency of the sensing matrix in a CS framework.

There also exists a limit to the resolution achievable by our sensing model. Under the
far-field approximation, (2.9) shows that

R̃(x;α) ≈ R̃ff(x;α) := 1
J

∑J
j,k=1 αjα

∗
ke

2πi
λz

(qj−qk)
⊤x − 1 = F

[
Θ(·;α)

]
(−2π

λzx)

with Θ(u;α) := 1
J

∑J
j,k=1 αjα

∗
kδ(u− (qj − qk))− δ(u). With D = maxj,k ∥qj−qk∥ being the

smallest length such that Θ(u;α) = Θ(u;α) · disk( uD ), we find

R̃ff(x;α) = (R̃ff(·;α) ∗H)(x) with H(x) = H(−x) = (2πDλz )2F [disk](2πDλz x).

Therefore, for any row r̃k of
√
MΦ̃, which discretizes R̃(x;αk) ≈ R̃ff(x;αk), there exists

a symetric filter h (the discretization of H) whose size scales like O(λz/D) and such that
r̃k = r̃k ∗ h. In other words, as also stressed in subsection 2.4, the patterns r̃k cannot have
faster variations than those allowed by the spectrum of h; the components of this pattern are
correlated and display “speckle grains” whose size are related to the size of h.

The existence of h alters the model (4.5); since ⟨a ∗h, b⟩ = ⟨a, b ∗h⟩ for any vector a and
b, we find

(4.6) ỹ =
√
MΦ̃(h ∗ S̄f) + ñ.

In conclusion, even if Φ̃ in this last model was a random matrix with i.i.d. subexponential
entries, (4.6) shows that, at best, we can estimate h ∗ S̄f—a version of S̄f that is blurred
by h. Since the size of this filter is controlled by λz/D, the impact of h can be mitigated
by either decreasing distance z between the distal end of the fiber and the object (while still
keeping the far-field regime valid) or increasing D when designing the MCF. Model (4.6) also
shows that the pixel pitch ϖ used to discretize f can be adjusted to the speckle grain λz/D
since a higher resolution cannot be achieved. We will follow this procedure in subsection 5.2
for actual LE fluorescence imaging.

In the following sections, we use the physical model (3.7) for data simulations. For the
reconstruction process, we consider debiased observations ỹ in (4.5) and the associated sensing
matrix Φ̃, and we adapt the CV optimization method (3.11) of subsection 3.4.4 into

(4.7) f̂ρ ∈ argmin
u

∥Rest(
√
MΦ̃S̄u− ỹ)∥2 + ρg1(u) + ıRN

+
(u)

with quality criterion q̃(f̂ρ) := ∥Rval(
√
MΦS̄f̂ρ − ỹ)∥2. As will be clear below, the inclusion

of S̄ in this minimization—induced by inserting (4.5) in (3.11)—allows us to expand the area
where f is estimated outside of the support of S̄.
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(a)

50 µm

(b) (c)

Figure 5. (a) 128× 128 ground truth f of standard USAF transmission target. (b) Vignetted ground truth
S̄f . (c) Acquisition with RS strategy as explained in subsection 3.4. Observations were generated according to
(3.7) with focused illumination pattern and AWGN (SNR of Φf equal to 40 dB). The maximum intensity of
the RS image is around three times lower than the one of the ground truth.

As explained in subsection 4.1.1, this optimization scheme leads to a quality of the final
estimate similar to the one obtained with the biased sensing model but achieved in a much
shorter reconstruction time.

4.1.1. Simulations. We simulate observations y of 128 × 128 USAF transmission target
f (see Figure 5(a)) according to (3.7) for M/N ∈ {0.1, 0.2, . . . , 1}. We reconstruct estimates
of f by first solving the original inverse problem (3.11) with (Φ,y) and then the debiased
model (4.7) with (Φ̃, ỹ). For comparison, we also simulate RS observations and measurements
acquired with an ideal zero-mean Gaussian matrixΦG. Since the synthetic USAF transmission
target is piecewise constant, we select the TV-norm for g1 in (3.11) and (4.7).

We measure the quality of an estimate û with both the signal-to-noise ratio (SNR) and
the weighted SNR (WSNR) metrics:

SNR(û,u) := 20 log10
( ∥û∥
∥û−u∥

)
, WSNR(û,u) := SNR(S̄û, S̄u).

The WSNR attenuates the reconstruction artifacts at the limit of the FOV where the vi-
gnetting of S̄ is the strongest.

For each value of M above, M observations of f are generated according to model (3.7),
with a noise variance σ2 set such that the SNR of Φf is equal to 40 dB. For all the simulations,
the illumination patterns were generated for a Fermat’s spiral core arrangement (J = 120 cores
and diameter D = 113µm) and the parameters λ = 1µm, z = 500µm, 3σc = 3.2µm, and
pixel pitch ϖ = 2µm.

We perform the reconstruction with the CP algorithm (see subsection 3.4.3) and a max-
imum number of internal iterations equal to 5,000, never reached in practice. The stopping
criterion and regularization parameter are set as described in subsection 3.4.4 withMval = 256,
and initial values ρ(0) = 10 and f̂ρ(0) = 0N . The initial guess of the algorithm for each k > 0

is given by previous estimate f̂ρ(k−1) and ρ(k) = 0.5ρ(k−1). The maximum number of iterations
on the estimation of ρ is 20.

4.1.2. Comparison results. Simulation results are visible in Figure 6. For comparison
purposes, we also show the estimate obtained with the RS strategy (see Figure 5(c)). Even
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Figure 6. SI strategies. Top: mean WSNR (over 10 trials) of the restored USAF target versus M/N
for three SI strategies: (i) acquisition and reconstruction with (Φ,y) (dashed line), (ii) acquisition with Φ
and reconstruction with (Φ̃, ỹ) (solid line), and (iii) acquisition and reconstruction with ideal (unrealistic)
sensing matrix ΦG (dotted line). The gray areas represent the standard deviations. Synthetic observations were
generated according to (3.7) (SNR of Φf equal to 40 dB). Bottom: estimates of f obtained for M/N = 0.3.
All estimates share the same intensity scale.

if they require storing M speckles patterns and performing a costly reconstruction, estimates
of the fluorophore density map obtained with SI methods have a better quality compared to
the estimate obtained with RS (WSNR equal to 1.68 dB with optimal normalization; see Fig-
ure 5(c)). The poor quality of the RS estimate is indeed mainly due to the imperfections3

of the focused PSF (see Figure 2(a)) that are not corrected during the trivial reconstruction
described in (3.8).

Acquisition and reconstruction with a Gaussian sensing matrix outperforms the other two
frameworks involving speckle illumination. While unrealistic, such a Gaussian framework is
useful as it sets an upper bound on the achievable reconstruction quality of LE imaging. For
instance, it shows that the CS regime, where enough measurements are collected to ensure a
reconstruction quality close to the measurement SNR of 40 dB, starts aroundM/N = 0.3 after
a sharp transition in the curve. After that value, an increase in the number of measurements
does not lead to a significant gain in WSNR. The same behavior is observed for reconstructions
based on speckle acquisition even if the change in the curve rate is less outstanding. WSNR of

3For instance, the central peak represents only 2% of the total energy of the focused beam [3, 4].
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images reconstructed with (Φ̃, ỹ) is similar to the one obtained for a reconstruction performed
with (Φ,y), despite the extra noise introduced in the debiased model. However, we observed
significantly shorter reconstruction times for the debiased model when M/N ≤ 0.7. We
also noticed that, while the reconstruction with (Φ,y) fails when we do not constrain the
estimate to be nonnegative, the debiased model performs almost as well without enforcing
the positivity of the map. In the rest of the paper, all reconstructions are performed with the
debiased model.

4.2. Partial speckle scanning. One disadvantage of SI is that, despite the good qual-
ity of its reconstruction, it requires long acquisition and reconstruction times compared to
RS imaging that simply uses scanning mirrors and direct reconstruction (see (3.8)). This
is due to the strong contrast that exists between the time it takes to change the SLM con-
figuration in SI—about 1/60 s in our setup (see DVI frame rate in [21])—and the elapsed
time between two consecutive tilts of the galvanometric mirrors, which is about 1,000 times
faster [14].

We here propose a hybrid acquisition framework, PSS, combining the advantages of both
techniques while keeping a high reconstruction quality. This method strongly relies on two
properties of the LE considered in this paper: (i) the ability to easily generate speckles by
randomly programming the SLM and (ii) the MCF memory effect.

The PSS strategy acquiresM observations but unlike the SI strategy, a single SLM config-
uration allows us to collect MP ≤ M observations by translating the speckle. Following sub-
section 2.2, this is achieved by applying different tips to the input wave front to the MCF with
the scan mirrors. Mathematically, given a set of P = M/MP complex amplitudes {αj}Pj=1

randomly generated as in the SI model, and MP mirror tilts {θk}MP
k=1, the PSS sensing matrix

Φ̃ used in the model (4.5) corresponds to

(4.8) Φ̃ = [Φ̃
⊤
1 , . . . , Φ̃

⊤
P ]

⊤ with Φ̃
⊤
j = [r̃

(0)
j , r̃

(1)
j , . . . , r̃

(MP−1)
j ]⊤,

and where, according to (2.11), r̃
(k)
j is the discrete representation of R̃

(
x,diag(γ(θk))αi

)
≈

R̃(x + θk,αi)—the shifted residual field—for each j ∈ [P ], k ∈ [MP ], and γ is defined in
(2.10).

In this work, we consider a single line scanning mode, i.e., shifts are applied to the speckle
patterns in only one (arbitrary) unit direction u ∈ R2 and θk = kδ u for some translation
step δ > 0 of the speckle patterns in the plane Z. Line scanning is fast and accurate because
it only needs the rotation of one galvanometric mirror.

When designing the PSS framework, the adjustment of the shift δ between two illumination
patterns (which we perform in the next section) faces two competing effects. First, if δ
is smaller than a speckle grain, i.e., if too small compared to λz/D, the shifting model (4.8)
introduces too many correlations between neighboring rows of Φ̃ and there is not much variety
in the MP observations acquired with a fixed SLM configuration. Moreover, in addition to
the column dependency mentioned in subsection 4.1, our sensing matrix further deviates from
an ideal decorrelated subexponential random matrix. Second, to approximate Φ̃ by a block-
circulant matrix (e.g., to boost the computation of matrix-vector multiplication), δ must
be small enough such that approximation (2.12) still holds. This requires us to respect the
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paraxial approximation for all translation steps, i.e., we must haveMP δ ≪ z. Note that, while
there exist sensing constructions based on subsampled random circulant matrices defined from
sub-Gaussian random filters [25, 53], there are no known constructions for subexponential
random filters. Despite this absence, our simulations below confirm that the PSS sensing
compares favorably to the SI and the Gaussian sensing schemes.

An advantage of the PSS scheme is that its scanning time tacq is reduced compared to
the SI acquisition time, a desirable advantage when observing fluorescent biological samples
subject to photo-bleaching (see subsection 3.1). We can compute this time from

(4.9) tacq = tgalva(ξP +M − P ) with M = PMP ,

where 1/tgalva is the scan mirror rate and ξ := tSLM/tgalva with 1/tSLM the SLM frame rate.
If tSLM is large compared to tgalva, i.e., if ξ is large, for a fixed M , tacq can be kept small if we
keep the number of distinct speckle patterns P small. In our setup, ξ ≈ 103.

4.2.1. Simulations. As a first simulation, we aim to choose a convenient shift δ between
two consecutive speckles. We simulate M observations y of 128 × 128 USAF transmission
target f for M/N = 0.3. MP = 2 observations are acquired before changing the configuration
of the SLM, i.e., P/N = 0.15. We sequentially set the shift δ to the values {0, 1, 2, 3, 4, 6, 8, 10}
[µm]. For each, we reconstruct the estimate f̂ of f by solving the debiased model (4.7) with
(Φ̃, ỹ). Exactly like for the SI strategy, g1 in (4.7) is the TV-norm.

We also conduct a second simulation where we compare the PSS strategies for different
values of MP . We simulate and reconstruct observations as described in the previous para-
graph but with fixed value of δ (chosen according to the result of the first experiment), for
M/N ∈ {0.1, 0.2, . . . , 1} and MP ∈ {1, 2, 4, 8, 16, 32, 64}. The value MP = 1 corresponds to
the SI strategy. We generate the observations according to (3.7) with σ2 set to reach a mea-
surement SNR of 40 dB. The speckles are generated for a Fermat’s spiral core arrangement
(J = 120 cores and diameter D = 113µm) with the parameters λ = 1µm, z = 500µm,
3σc = 3.2µm, and a pixel pitch ϖ = 2µm. The time tSLM is set to 100 ms, slightly higher
than the actual SLM time [21], and tgalva is set to 100µs [14]. The reconstruction is performed
as already described in the SI simulations (see subsection 4.1.1).

4.2.2. Results. Results in Figure 7 suggest considering a shift δ ≥ 4µm (corresponding
to δ/λ ≥ 4). In this case, the theoretical autocorrelation of field R̃ is close to zero and the
coherence of the sensing matrix is lower (see Definition 4.1) than the ones for δ < 4µm. The
quality of the estimate is similar to the quality obtained with the SI strategy.

Figure 8 shows the results of the second experiment performed with δ = 4µm. We observe
a reconstruction quality similar for all MP values at fixed M/N ratio. It indicates that the
choice of δ based on Figure 7 is good: for δ = 4µm, the shifted patterns get sufficiently
decorrelated such that the quality of the estimates for MP > 1 is similar to the one obtained
with SI (MP = 1). However, we are more interested in considering the quality obtained for a
fixed acquisition time tacq rather than a fixed number of measurements M . Images shown in
Figure 8 correspond to (M,MP ) pairs located on the same tacq level curve (see the upper plot).
For a fixed acquisition time (or photobudget), choosing MP as large as possible is the best
option. To minimize the photo-bleaching of the sample and increase the time resolution of the
acquisition, we would like to choose tacq as small as possible while keeping a high WSNR. In



412 GUÉRIT, SIVANKUTTY, LEE, RIGNEAULT, AND JACQUES

0 2 4 6 8 10
10

11

12

13
SI with M/N = 0.3

δ/λ

W
SN

R
[d

B]

0.72

0.73

µ
(Φ̃

)

0 2 4 6 8 10

0.5

1

1% of
peak value

|τ | [µm]

Γ R̃
(|τ

|)

Figure 7. PSS strategy: choice of δ. (Left) Mean WSNR (over 25 trials) of the restored USAF target (black)
and mean coherence (over 25 trials) of the sensing matrix Φ̃ (cyan) versus the relative shift δ/λ between two
consecutive replicas of the same speckle. The light area represents the standard deviation. Synthetic observations
were generated according to (3.7) (SNR of Φf equal to 40 dB). Each illumination pattern was used twice and
M/N = 0.3. (Right) Theoretical autocorrelation of the residual field R̃ defined in (2.16) as a function of |τ |
(extracted from Figure 3).

this case, the best choice is the PSS strategy with MP = 64: we achieve high WSNR (around
17 dB) with an acquisition time around 30 s.

Remark 4.2 (approximation of the sensing matrix). Up to now, the proposed PSS strategy
only decreases the acquisition time. Compared to SI for the same number of measurements,
the number of speckles to be recorded to form Φ̃ is identical. Moreover, the reconstruction
time is similar between SI and PSS since the complexity (in O(MN)) of the matrix-vector
product involving Φ̃ is not optimized. By considering the translation rule (2.12), this can
be potentially improved by approximating Φ̃ with a block-Toeplitz matrix Φ̃app. Then, each
matrix-vector product involving this new matrix can benefit from the FFT and the complexity
is then reduced to O(N logN). The previous storage of M speckle patterns is reduced to P
patterns. We test this matrix approximation in Figure 9. This figure is the same as Figure 8
but for a reconstruction performed with Φ̃app. As expected, when MP increases, ∥θMP

∥ =
MP δ takes bigger values and the paraxial approximation is less respected. The error made
by approximation (2.12) increases. This leads to a decrease in the reconstruction quality.
However, for MP ≤ 16, the reconstruction quality is still similar to the one of the SI strategy
(around 15 dB). Therefore, in this approximation of Φ̃ by Φ̃app, one must find a trade-off
between a fast acquisition time and the quality of the produced estimate. Unlike SI, PSS
has thus the potential to (i) reduce the pattern storage and (ii) speed up the reconstruction
by exploiting the structure of the sensing matrix. Fast reconstruction algorithms are crucial
for in vivo imaging or to reach higher image resolution. For now, those two advantages
are more a perspective than a proof of concept since deviation to pure speckle translation
(given by (2.12)) currently prevents us from boosting the reconstruction. We postpone this
analysis for a future study, and we only consider the original matrix Φ̃ in our following
experiments.



COMPRESSIVE IMAGING THROUGH OPTICAL FIBER WITH PSS 413

1,280
1,280

640
640

640

32
0

320

320

16
0

16
0

160

160
80

80
80

80

40
40

40

40

20
20

20

20

10

10

5
5

0.2 0.4 0.6 0.8 1
1

2

4

8

16

32

64

M/N

M
P

0

5

10

15

WSNR
t a

c
q
≈

2
0
s

50 µm

MP = 8 MP = 16 MP = 32 MP = 64

Figure 8. PSS strategy. Top: mean WSNR (over 10 trials) of the restored USAF target versus MP and
M/N ratio. Synthetic observations were generated according to (3.7) with AWGN (SNR of Φf equal to 40 dB).
Number MP of replicas of the same (shifted) speckle pattern belongs to {1, 2, 4, 8, 16, 32, 64} and shift δ between
replicas is 4µm. Level curves of the acquisition time tacq (in seconds) are superimposed to the SNR (white
solid lines). Bottom: estimates of f obtained for MP ∈ {8, 16, 32, 64} and tacq ≈ 20 s. The PSS strategy with
MP = 1 corresponds to the SI strategy with (Φ̃, ỹ) (see Figure 6). Estimates share the same intensity scale.

5. Fluorescence imaging experiments. In this last section, we apply the SI and PSS
methods to an actual LE in the context of fluorescence imaging. We first describe the ex-
perimental setup, material, and methods, before explaining how these sensing strategies can
improve the quality of the reconstructed images compared to the RS technique.

5.1. Experimental setup. A simplified view of the experimental setup is presented in
Figure 10 and described below in functional blocks.

Spatial light modulator. A continous wave laser operating at 491 nm (Cobolt lasers, Swe-
den) is expanded and impinges upon a liquid crystal SLM (X10468-03, Hamamatsu, Japan).
A set of relay optics, depicted by a single lens and objectives Obj in Figure 10, images the SLM
to the proximal endface of the MCF. In order to maximize the injection of the light beams
into the individual cores, a convex lenslet array whose centers are matched to the individual
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Figure 9. PSS approximated strategy. Top: mean WSNR (over 10 trials) of the restored USAF target
versus MP and M/N ratio. Synthetic observations were generated according to (3.7) with AWGN (SNR of Φf
equal to 40 dB). Number MP of replicas of the same (shifted) speckle pattern belongs to {1, 2, 4, 8, 16, 32, 64}
and shift δ between replicas is 4µm. Sensing matrix Φ̃ was approximated by a block-circulant operator (instead
of a block-Toeplitz operator since the FOV is limited) for the reconstruction. Level curves of the acquisition
time tacq (in seconds) are superimposed to the SNR (white solid lines). Bottom: estimates of f obtained for
MP ∈ {8, 16, 32, 64} and tacq ≈ 20 s. The PSS strategy with MP = 1 corresponds to the SI strategy with (Φ̃, ỹ)
(see Figure 6).

cores is displayed on the SLM. This results in a beamlet array which is efficiently coupled into
the MCF and whose relative phases can be tuned independently with the SLM.

Multicore fiber. Imaging through the MCF is analogous to phased arrays for beamform-
ing where the relative phases between the cores (antennae) can be calibrated and tuned to
generate and shift a focused beam. The cores of these fibers are single mode at the operating
wavelength and exhibit an intercore coupling term less than 20 dB [60]. These factors have
two important advantages: (i) operations such as RS or defocusing can be performed with
conventional optical elements at the distal end, and (ii) the resulting speckle patterns are
highly resilient to external perturbations both thermal and mechanical (except for a global
shift). These are significant advantages over single MMF where the significant off-diagonal
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Figure 10. Simplified view of the experimental setup used to characterize the performance of the CS-based
acquisition strategies. Relay optics (Obj) image the SLM to the proximal endface of the MCF. An imaging
system with two channels is placed at a distance z of the MCF distal end. The main purpose of the first
channel is to image the speckle patterns with a charge-coupled device (CCD) sensor. The second channel is
dedicated to observations collection through a single pixel detector or photomultiplier tube (PMT).

coupling terms preclude stability and fast imaging with conventional optical elements. For a
more comprehensive discussion of the imaging properties of the golden spiral MCFs, we refer
the reader to [60].

Generation of the speckle patterns. Multiple illumination patterns are generated a few
hundred microns away from the distal end as a combination of (i) randomizing the relative
phase of the injected beamlets into the MCF resulting in a speckle pattern at the distal end
of the fiber, and (ii) translations of the speckle pattern with a global tilt of the beamlets.

Calibration and imaging. The distal end of the MCF is placed at the focal plane of a second
imaging system with two channels: one imaging the distal end onto the camera (CCD) and a
second one detecting the signal of interest (PMT). The first channel serves for the recording of
the sensing matrix, the visual inspection of the samples and the generation of an image close
to the ground truth. The sensing matrix is populated by acquiring a multiexposure image of
each speckle pattern and fusing them to generate a synthetic high-dynamic range. The second
channel employs a single pixel detector (PMT) (H7240-50, Hamamatsu, Japan) upon which
the signal is detected. In the following experiments, the sample is either a standard USAF
transmission target or fluorescent beads. In either case, we operate in a high photon count
regime as assumed in subsection 3.2.

In the interest of maximum flexibility, we employ the SLM to function as a series of
optical components such as a microlens array to maximize the coupling into the fiber, and
as a galvanometric scanner. This also allows us to test and compare between the proposed
imaging scheme and conventional RS techniques. However, for the speckle illumination based
compressive imaging proposed in the paper, the SLM can be replaced with conventional op-
tical elements such as microlens arrays, mirror scanners, and thin diffusers as in our earlier
works [3].

5.2. Material and methods. Samples used for the experiments are either the standard
USAF transmission target (see Figure 11) or 5µm fluorescent Beads. The USAF sample itself
is not fluorescent: it is a layer of metal deposited on glass where the features (the bars) are
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Figure 11. Estimates of USAF ground truth. Images of standard USAF transmission target. They are
estimated using the first channel of the imaging system (see Figure 10). The CCD sensor acquires M images
of the product between a speckle and density map f . Their average divided by the mean speckle field (Gaussian
fit estimated from the M light patterns) leads to the estimated ground truths.

transparent. To make it fluorescent, we apply a layer of highlighter on top of it. We use the
setup depicted in Figure 10 and described in subsection 5.1 with a Fermat’s golden spiral
MCF containing J = 118 cores and with standard deviation σc = 0.8µm (or, equivalently,
d = 1.9µm). The distance between the endface of the fiber and the sample plane is z =
500µm.

5.2.1. Acquisition and reconstruction. In all experiments, the data acquisition follows
two steps: (i) recording the speckle patterns with the CCD sensor to build and store the
sensing matrix Φ (pixel size equal to 2.2µm), and (ii) illuminating the sample withM speckles
and measuring the signal on the single pixel detector. Light patterns are either all different
from each other (SI strategy) or shifted versions of each other (PSS strategies) due to the
application of global tilt terms on the SLM (δ = 1.1µm).

The first experiment was designed to compare the SI and PSS strategies: M = 4096
measurements of Beads #3 sample were acquired for MP = 1 (SI) and then MP = 64 (PSS).
The second experiment acquired M = 4096 observations of two different parts of the USAF

target (see Figure 11) with MP = 64. Finally, M = 4096 observations of three other Beads
samples were acquired with MP = 64.

Unlike the number of observations M that is an acquisition parameter, the number of
pixels N of the estimate (or equivalently, the pixel pitch ϖ) can be chosen after the acquisition
process. Ideally, ϖ should match the diffraction limited point spread function of the device,
i.e., the speckle grain size. In this case, we can take full advantage of the CS-friendly statistical
properties of the sensing matrix and we avoid spurious correlations in the estimate. For the
considered experimental parameters, the average grain size is r ≈ 3.5µm (see subsection 2.4).
We thus set the pixel pitch ϖ to r, and select N = 80×80 for USAF samples and N = 160×160
for Beads samples (original sizes are 128× 128 and 256× 256, respectively).

We obtained better results by solving a slightly different problem from (4.7): given the
zero-mean sensing matrix Φ̃ and the debiased observations ỹ, we solve

(5.1) ̂̄Sfρ ∈ arg min
u

∥Rest(
√
MΦ̃u− ỹ)∥2 + ρg1(u) + ıRN

+
(u),
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Figure 12. Vignetted estimates of Beads #3 sample. Left and middle images are obtained with two different
acquisition strategies (SI and PSS) but the same number of observations M (ρ = 860 and ρ = 690). Middle
and right images are again obtained with two different strategies (PSS and SI) but the same acquisition time
tacq = 6.8 s. Left and middle estimates share the same intensity scale. The intensity of the right estimate is 50
times lower compared to the other two images.

i.e., we estimate the vignetted fluorophore density map S̄f instead of f . This adaptation
is possible by setting g1 in (5.1) to the TGV2

α-norm. This norm, which promotes piecewise
linear images, is well adapted to our piecewise constant images multiplied by the smooth
vignetting s̄. As in the synthetic case, we use the CP algorithm with a maximum number of
iterations equal to 5,000 (that was also never reached). The stopping criterion of CP internal
iterations is set as described in subsection 3.4.4 with Mval = 256, while the parameter ρ is
chosen by visual inspection. Initial values for ρ are ρ(0) = 2500 (USAF) or ρ(0) = 104 (Beads)
and ρ(k) = 0.8ρ(k−1) for k > 0 (kmax = 20). Initial guess of the algorithm is f̂ρ(0) = 0N and

then f̂ρ(k−1) for k > 0.

5.3. Results. Reconstruction results are visible in Figures 12 to 14. Regarding Figure 12,
as expected, the SI strategy provides a better estimate for Beads #3 sample: beads are better
resolved and there are fewer artifacts in the background. However, this quality is obtained
at the cost of an acquisition time 60 times longer compared to the PSS strategy. Middle
and right images are again obtained with two different strategies (PSS and SI) but the same
acquisition time tacq = 6.8 s. In this case, the SI strategy fails to reconstruct the beads.

For USAF samples and Beads #1, #2, and #4, we performed the image reconstruction
from the observations acquired with PSS strategy for M/N ∈ {0.3, 0.5, 0.64} (see Figures 13
and 14). We note that in order to minimize photo-bleaching, we keep the incident laser power
extremely low (few 100 s of µW over the entire FOV). This precludes us from acquiring ground
truth fluorescence images of the beads since the sensitivity of a standard camera is much lower
than the single pixel detector.

6. Conclusion. We have proposed new sensing methods to image a fluorescent object in
the context of lensless endoscopy. Our procedure departs from the classical raster scanning
imaging by using two constructions leveraging speckle patterns to illuminate the sample,
namely unstructured speckle imaging (SI) and partial speckle scanning (PSS). Our work also
relies on proving that these speckles correspond to random fields following a sub-exponential
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Figure 13. Vignetted estimates of USAF samples with PSS strategy. All 80× 80 estimates are reconstructed
from M = 4096 observations (corresponding to M/N = 0.64) acquired with PSS strategy (MP = 64). Estimates
for each sample share the same intensity scale.
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Figure 14. Vignetted estimates of Beads samples (#1, #2, and #4). All 160×160 estimates are reconstructed
from M = 4096 observations acquired with PSS strategy (MP = 64). It corresponds to M/N = 0.16.

distribution at each location of the sample plane (see subsection 2.5). After normalization
and discretization, they are thus good candidates to build efficient sensing matrices, such as
subexponential random matrices [1].

To use speckle illumination to collect observations, several challenges must be solved
with regard to the design of the fiber, the acquisition strategy, as well as the reconstruc-
tion scheme.

First, the arrangement of the single mode cores must be optimized to achieve narrow
autocorrelation of the speckle field (see subsection 2.4), i.e., a grain size as small as possible,
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and to minimize the magnitude of the side lobes. Fermat’s golden spiral shape shows a low
side lobes level and a very good contrast between the intensities of the central peak and the
side lobes [60]. A small grain size combined with an appropriate choice of the pixel pitch leads
to a sensing matrix with nearly independent columns, a desirable property in CS.

Second, the acquisition strategy must be thought to minimize the acquisition time to
avoid as far as possible the loss of fluorescence of the sample and to reach a frame rate
suitable for in vivo imaging of cellular processes (e.g., the propagation of nerve impulses).
The SI strategy offers good reconstruction quality for far fewer measurements compared to
RS (see Figure 6). However, the corresponding acquisition time is unrealistic for real biological
applications, such as requiring changing speckle patterns using slow SLM (with a frame rate
of the order of 10ms). We overcome this limitation using the PSS strategy exploiting the
memory effect of the fiber via the use of scan mirrors. Their rate is around 1,000 times
higher compared to a change of the SLM configuration. With an appropriate value for the
speckle shift δ (see Figure 7), we reach a reconstruction quality similar to that of SI (see
Figure 8).

Finally, the reconstruction scheme, i.e., the formulation and solving of the inverse prob-
lem, must encode prior information on the structure of the fluorophore density map. We
proposed a debiased formulation including the minimization of TV- or TGV2

α-norm. We
showed that the sensing matrix can be approximated by a block-circulant matrix to reduce
the number of stored patterns. When MP ≤ 16, the reconstruction quality is still close to SI
(see Figure 9).

As a perspective, let us mention that we only considered line scanning for the PSS strat-
egy. However, if we use two scan mirrors, other scanning trajectories could be considered to
further minimize the number of measurements compared to traditional RS. If the mirrors are
driven parallely, there would be no increase in the acquisition time. In this case, we could
perform speckle scanning in a way similar to RS: a single speckle would scan M ≤ N posi-
tions in the FOV. In addition, recent advances in ultrafast scanners employing acousto-optic
deflectors [54] and resonant galvanometers [27, 3] will serve to speed up the acquisitions in the
case of focused or speckle illumination. Faster SLM such as digital micromirror devices [31]
and deformable mirrors [8] can also provide a massive speedup to SI, albeit at the cost of
experimental integration.

The 2-D setup presented in this work is quite unrealistic for real in vivo imaging: (i)
in practice, the LE will be required to image 3-D volumes and (ii) we will not have access
to the fiber endface to image the speckle pattern. Regarding those challenges, we would
like to highlight two interesting research directions. The first one is the design of a 3-D
acquisition and reconstruction framework. One of the challenges will be to deal with the
depth dependency of the speckle autocorrelation [47]. The second one is the study of blind
imaging taking advantage of the memory effect like in [7, 62]. In this case, the estimation
is based on the autocorrelations of the measurements vector and of the discretized speckle
field (known a priori). Another solution to deal with the inaccessibility to the fiber endface
would be to perform a single initial calibration of the field and then compute it. Given the
high resilience of the fiber to bending, this would alleviate the tedious calibration of mulitple
intensity patterns. This would provide a route to the deployment of LEs in a more realistic
medical or diagnostic environment.
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Appendix A. Total variation and second-order total generalized variation. The TV
and the TGV of an image are both quantities related to the first- or higher-order derivatives
of this image. We start by defining the discrete gradient operator ∇ and the symmetrized
derivative operator ε.

Definition A.1 (from [36]). The general discrete gradient operator ∇ applicable to N × k
tensor fields is defined as

∇ : RN×k → RN×2k, u 7→ (∇u) := (∇1u,∇2u)

with k ∈ N0 and ∇i ∈ RN×N the first spatial derivative of the tensor field in direction ei,
aligned with axis i of the 2-D image.

Definition A.2 (from [36]). The symmetrized derivative operator ε is

ε : RN×2 → RN×4, u 7→ ε(u) :=
1

2
((∇u) + (∇u)S23) ,

where S23 ∈ {0, 1}4×4 is a matrix permuting the second and the third columns of (∇u).

Applying ε on the gradient of an image provides information about its second derivative.
The concept of symmetrized tensors is detailed in [13].

Definition A.3. Let ui ∈ Rk be the ith row of u. The Lp,q-norm of u ∈ RN×k is defined as

∥u∥p,q =

(
N∑
i=1

∥ui∥qp

) 1
q

.

Regarding the previous definitions, the TV-norm of u ∈ RN is defined in a discrete setting
as the ℓ1-norm of the gradient magnitude of u,

(A.1) TV : RN → R, u 7→ TV(u) := ∥∇u∥2,1.

Minimizing the TV-norm of an image in an estimation problem like (4.7) leads to piecewise
constant estimate. If the original image is not piecewise constant, staircasing artifacts will
appear [13]. To alleviate those limitations when working with real, piecewise smooth, images,
we can resort to the TGV-norm. This norm was introduced by Bredies, Kunisch, and Pock [13]
in 2010 and can be considered as the generalization of TV to higher-order image derivatives.
The second-order TGV2

α-norm is defined as

(A.2) TGV2
α : RN → R, u 7→ TGV2

α(u) := min
w∈RN×2

∥∇u−w∥2,1 + α∥ε(w)∥2,1,

where α > 0 is a parameter making a trade-off between the edge-preserving term and the
smoothness-promoting term. Deriving TGV2

α(u) is not as easy as TV(u) because an additional
minimization problem has to be solved. We rewrite (4.7) in the following way:

ẑρ ∈ arg min
z

∥Rest(
√
MΦ̃S̄Ruz− ỹ)∥2+ρ∥(∇Ru−Rw)z∥2,1+ρα∥ε(Rwz)∥2,1+ ıRN

+
(Ruz),

where z = (u,w), Ru and Rw are restriction operators keeping only the first column of z
and the last two columns of z, respectively, and f̂ρ is given by Ruẑρ.
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