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Abstract
Cell membrane fluidity is an important phenotypic feature that regulates the diffusion, function and
folding of transmembrane and membrane-associated proteins. It is particularly interesting to study it
in bacteria as variations in membrane fluidity are known to affect fundamental cellular processes
such as respiration, transport and antibiotic resistance. As such key parameter, membrane fluidity is
regulated to adapt to environmental variations and stresses like temperature fluctuations or osmotic
shocks.  Membrane  fluidity  has  been  however  scarcely  studied  quantitatively  in  bacterial  cells,
mostly because of the lack of available tools. Here, we developed an assay based on total internal
reflection fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity
in live bacteria via the diffusivity of fluorescent membrane markers. We used this assay to quantify
the fluidity of the cytoplasmic membrane of the Gram-positive model bacterium Bacillus subtilis in
response to a cold shock, caused by a shift from 37°C to 20°C. In our experimental conditions,
steady-state fluidity was recovered within 30 mins, and the steady-state fluidity at 20°C was about
half of that at 37°C. Our minimally invasive assay opens up exciting perspectives and could be used
to  study  a  wide  range  of  phenomena  affecting  the  bacterial  membrane,  from  disruption  by
antibiotics, antimicrobial peptides, or osmotic shocks.

Significance
Using  fluorescence  correlation  spectroscopy  (FCS)  with  total  internal  reflection  fluorescence
(TIRF)  illumination,  we  measured the  diffusion  speed  of  fluorescent  membrane  markers  as  a
readout for membrane fluidity of growing B. subtilis cells. Quantification of the effect of cold shock
provided  unique  information  about  the  dynamics  of  the  plasma  membrane  of  B.  subtilis.  The
unprecedented capability of TIR-FCS to quantify membrane fluidity in living bacteria opens the
door to a whole set of new studies that will shed light on the bacterial plasma membrane and its
interactions with the environment.

Introduction
The plasma membrane is a component of virtually every living cell, made of a fluid mixture of
lipids  and proteins,  that  separates  the  intracellular  and extracellular  spaces.  The fluidity  of  the
plasma membrane is the physical parameter that defines how fast a given element can diffuse within
the  membrane  at  a  given  temperature.  Thus,  it  is  of  utmost  interest  for  protein  diffusion  and
biomolecular  interactions  (1,  2).  Moreover,  membrane fluidity  affects  protein  folding  (3–5).  In
bacteria, membrane fluidity was found to to be critical in both Gram-negative (for respiration in
Escherichia  coli (6) and  multidrug  transport  in  Methylobacterium  extorquens (7))  and  Gram-
positive (e.g resistance to antibiotics in Staphylococcus aureus (8) ) bacteria. Membrane fluidity in
bacteria was found to vary in response to chemical  (9) biochemical  (10, 11) or osmotic  (12, 13)
stresses. Another hint of the importance of membrane fluidity in bacterial cells is the widespread
existence of control systems that maintain it by modifying lipid and protein composition (14, 15). In
particular,  the fatty acid composition of phospholipids – the main class of lipids of the plasma
membrane – is modified in response to changes in temperature to modulate steric constraints and
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thereby lipid packing  (16). Furthermore, proteins such as flotillins  (17, 18) and MreB  (19)  in  B.
subtilis are  also thought  to  play a role in membrane fluidity. In the case of extremophiles,  the
generation of exopolymers (20), cryoprotectants and antifreeze proteins (21) are used by bacteria to
protect  their  membrane  against  changes  in  temperature.  Existing  assays  to  measure  membrane
fluidity in live and synthetic membranes include electron spin resonance (ESR) (22, 23) and nuclear
magnetic  resonance  (NMR)  spectroscopy  (17),  membrane  fatty  acid  analysis  (8,  12,  22),
fluorescence  assays  using  environment-sensitive  probes  like  diphenylhexatriene  (DPH)  or
ratiometric probes like Laurdan  (9) and the measurement of the diffusion speed of a fluorescent
tracer using either single particle tracking (SPT)  (24), fluorescence recovery after photobleaching
(FRAP)  (25) or  fluorescence  correlation  spectroscopy  (FCS)  (26).  In  microbiology,  the  most
frequently used techniques are fatty acid analysis and DPH anisotropy or ratiometric imaging. Fatty
acids analysis informs on the membrane composition but is an indirect readout of fluidity. It gives
multidimensional  results  (relative  proportions  of  different  fatty  acid  with  branching  and
(poly)unsaturation),  which can be challenging to directly  associate with a change in membrane
fluidity,  and can in the best case only provide qualitative comparisons of the resulting fluidity.
Environment-sensitive fluorescent probes can give useful insights but can only measure relative
differences in membrane fluidity. Many probes exist that are sensitive to different parameters of the
membrane  (27, 28) and their behaviour can be biased by unforeseen interactions  (29). FCS has
occasionally been used in a few instances in bacterial membranes, to study protein diffusion (30–
32), RNA concentration (33), assembly of protein complex (34) or membrane dynamics in response
to antibiotic treatment  (26).  These studies were all performed using confocal microscopy which
axial resolution is not well suited for measurements in bacteria. The axial resolution of confocal
microscopes is comparable to the diameter of most studied bacterial cells (500 nm – 1 µm), and this
results in problems such as such as having both top and bottom membranes in focus at once or
excessive background from out-of-focus membranes. These limitations can be overcome either by
using super-resolution  (35) or more simply by using total internal reflection fluorescence (TIRF)
microscopy. TIRF significantly improves the axial resolution of a microscope by illumination with
an  evanescent  field  that  usually  significantly  decays  within  a  range  of  100 nm.  Total  internal
reflection fluorescence correlation spectroscopy (TIR-FCS) (36, 37) was previously used to study
molecular  dynamics  in  eukaryotic  cells  (38,  39) and  to  measure  the  fluidity  of  flat  synthetic
membranes (40, 41). However, TIR-FCS was not previously applied to bacteria despite TIRF being
the  standard  for  membrane  investigations  in  such  organisms  (42).  TIR-FCS  offers  several
advantages over confocal FCS, besides the unrivalled axial selectivity of TIR illumination: camera-
based TIR-FCS also offers massive parallelisation of measurements, since hundreds of FCS curves
can be acquired at once instead of a single one on a confocal microscope. TIR-FCS can also easily
generate diffusion maps and therefore retrieve spatial information. Finally, TIR-FCS enables, by
resampling intensity fluctuations in space after acquisition, the measurement of diffusion speeds at
different  spatial  scales  (spot-variation  FCS  (43)).  Here,  we  propose  to  extend  the  scope  of
application of TIR-FCS to measure membrane fluidity in live bacterial cells, exemplified by the
Gram-positive leading model organism Bacillus subtilis. To simplify data analysis and fully use the
high-throughput  capability  of  imaging  FCS,  we  developed  a  new  FCS  quality  metric  to
automatically discard artefactual curves. Using simulations validated by experiments in synthetic
samples, we measured the bias induced by the small size and curvature of bacterial membranes on
TIR-FCS measurements.  We demonstrated  the  validity  of  our  assay  by studying a  well-known
system:  the  response  of  the  B.  subtilis plasma  membrane  to  a  cold  shock  (44,  45).  Diffusion
measurements  of  the  membrane  markers  Nile  Red  and  Di4-ANEPPS  confirmed  the  previous
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knowledge about cold shock recovery and provided unprecedented insights of bacterial membrane
dynamics at different temperatures.

Methods
FCS setup

TIR-FCS acquisitions were performed on a Zeiss Elyra PS1 microscope equipped with a 100×/1.46
NA Apochromat oil immersion objective. A typical FCS acquisition consisted of 50000 frames, on a
field  of  view of  128x10 pixels  with  a  pixel  size  of  160  nm in  the  object  plane  and  a  frame
acquisition time of 1.26 ms, the maximum achievable with our camera. Stable focus was ensured
using Definite  Focus.  Detection  was performed using  an  emCCD camera  (Andor iXon),  using
maximum pre-amplification (5×) and electron-multiplying gains (300×) settings. Laser excitation at
561 nm was set, unless specified otherwise, to 5% of the maximum excitation power, corresponding
to a power of 460 µW in epifluorescence mode measured in the focal plane of the objective. The
excitation area was of approximately 80x80 µm size, leading to an estimated power density of ~70
nW/µm². 

Data processing and fitting

Pixels from each image stack were numerically binned  2 by 2, unless specified otherwise. The first
1500 frames  of  every  acquisition  were  discarded as  an  occasional  loss  of  focus  could  lead  to
artefactual intensity fluctuations in these frames.  Intensity timetraces at  each binned pixel were
corrected for bleaching using a double exponential  fit  (46).  Intensity  traces  at  each pixel  were
correlated using a python implementation of the multipletau algorithm (47). FCS curves were fitted
using the standard 2D imaging FCS model (48) except in bacterial cells where the fitting model is
described in the ‘technical implementation’ section:

gxy (τ )= 1
N

( 1
√πμ (exp(−μ ²)−1)+erf (μ)) ²

μ= a
2 √σ ²+D τ

1

Where N is the average number of molecules in the observation area,  a is the effective pixel size
(320 nm with 2x2 pixel binning),  D the diffusion coefficient,  τ the lag time and σ is the standard
deviation of the microscope’s Point Spread Function (PSF) approximated as a two-dimensional
Gaussian function:

PSF (x , y )=exp(−
(x ²+ y ²)

2σ ²
) 2

Calibration of the PSF was done as described in reference (49). We measured our PSF σ=0.19 µm,
corresponding to a full width at half-maximum (FWHM) of 450 nm, larger than expected using a
1.46  NA oil  immersion  objective.  This  enlargement  was  likely  caused  by  our  use  of  a  low
magnification tube lens that degraded resolution, as we measured a PSF size σ=0.16 µm when using
a higher magnification tube lens. For all acquisitions except in SLBs, we used an intensity threshold
set to 80% of the maximum intensity in the field of view (see Supplementary Information for the
determination of intensity threshold).

Liposomes preparation
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1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine  (DOPC)  and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) stored in chloroform were purchased from Merck (Darmstadt,
Germany) and stored under argon. 50 µL of 10 mg/mL stock were added to a glass tube then dried
using Argon under rotation. Lipids were resuspended in 1.6 mL Phosphate-Buffered Saline (PBS),
then  tip-sonicated  for  10  mins  in  30  s  on/off  cycles  on  ice.  Liposomes  were  labeled  before
experiments with 1% of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl) (PE-Rhodamine) (Merck) at a concentration of 10µg/mL.

Supported lipid bilayer preparation

Supported  lipid  bilayers  (SLB)  were  prepared  by  liposome  deposition.  We  pipetted  20µL of
liposome solution to  a home-made microfluidic  chamber made of  a  sandwich of a  slide and a
plasma-cleaned coverslip held together by two strips of molten parafilm. Excess liposomes were
abundantly washed using 200µL PBS.  The chamber was then sealed using parafilm to prevent
evaporation.

Beads-supported lipid bilayer preparation

Beads-supported lipid bilayers were prepared as described elsewhere (50). 10µL of 5 µm uncoated
silica beads (BioValley, Nanterre, France) were washed twice in 1 mL PBS, then mixed with 50µL
liposomes. The mix was shaken for 20 mins to form BSLBs, then washed twice in 1 mL PBS. 200
µL PBS was left after final wash. 100 µL of BSLBs were then pipetted to a glass-bottom Ibidi
chamber for imaging.

Cells preparation and staining

The wild-type laboratory strain 168 trpC2 of  B. subtilis was grown and imaged in rich lysogeny
broth medium (LB). For measurements at 37°C, 3µL of cells from an overnight culture grown at
30°C were diluted in 2 mL LB and grown at 37°C under agitation for 2h30 until they reached
exponential  phase (OD600 ~ 0.3) then labeled with 0.2% (v:v) of either 50 µg/mL Nile  Red or
40µg/mL Di4-ANEPPS  (Thermofisher)  disolved  in  DMSO.  Labeled  cultures  were  left  under
agitation for 15-20 additional min, then 3 µL were transfered to an agarose pad (1.2% in LB) for
immobilisation and covered with a plasma-cleaned coverslip.

For steady-state measurements at 20°C, cells from an overnight culture at 30°C were first diluted (3
µL of overnight  culture diluted in 2 mL fresh LB) and grown for about 2 hours at  37°C until
reaching exponential phase (OD600 ~ 0.2), transferred at 20°C under agitation for 4-5h for at least
one generation, then labeled as described above. 

When  cells  were  transferred  from the  liquid  culture  to  the  agarose-coated  slide,  we  observed
temporary membrane readaptation for about 25 mins (Figure S1). This readaptation could be due to
osmotic shock  (51), oxidative stress or another cause that remains unknown. We therefore leave
cells to settle on the agarose-coated slide for 25 mins on the slide before starting to image. In the
case of cold shock, cells were first immobilised on an agarose pad and covered with the coverslip at
37°C for 25 min then transferred at 20°C in the microscope. 
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Technical implementation

Filtering curves based on goodness of fit
FCS measurements can be subject to artefacts that distort FCS curves, for instance when bright
clusters of fluorescent molecules enter the observation area. These curves need to be discarded from
analysis  to  avoid  biasing  diffusion  coefficient  estimation.  In  point  FCS,  this  is  often  done via
manual inspection facilitated by dedicated softwares (52). This approach is however impractical in
imaging FCS due to the high parallelisation of FCS curves acquisition resulting in the generation of
a high number of  FCS curves  (typically  we acquire  350-500 FCS curves  per  hour in  bacteria,
considering only one pixel binning value). The issue of sample-induced artefact in FCS is well
acknowledged and solutions to this issue were previously developed. It was notably proposed to
compare  each  curve  within  a  dataset  to  the  averaged curve  and to  exclude  outliers  (53).  This
solution is however computationally intensive and might fail if signal levels vary within a dataset,
for instance due of cell-to-cell heterogeneity. Another approach consists in rejecting curves with
irregular residuals. One method for doing this consists in calculating the χ² goodness of fit (30), but
it does not handle well noisy curves (53). It also requires knowledge of the standard deviation of the
FCS curve, which is not always available. The Fourier transform was previously used to detect
unevenly  distributed  residuals,  relying  however  on  fine-tuning  three  empirical  parameters  and
making assumptions on the transit  times observed  (33). As an alternative to these methods,  we
introduce  here  a  simple  error  metric  based  on  fitting  residuals  that  quantifies  fitting  bias.
Considering the mean square error (MSE):

MSE=1
n ∑i

n

(ri)
2

r i=( yi−ŷi)/ ŷ0

3

Where yi is the empirical FCS curve at lag time I, ŷi is the corresponding fit value and ri the residual.
A high MSE value is indicative of either a high fitting bias in a poorly fitted curve, which needs to
be discarded, or of low signal value (54) caused by strong oscillations of the FCS curve around its
fit. Expecting strong variations in signal levels within and across acquisitions, due to cell-to-cell
variations and inhomogeneous illumination of curved cells in the TIRF field, we designed a metric
that measures fit quality with a lower dependency to signal level. This metric, named non-linear
mean-square error (MSEnl) is a weighted sum of residuals, where the weight of each residual is
equal to the number of adjacent residuals of same sign nadj,i:

MSEnl=
1
n ∑i

n

nadj ,i (r i)
2 4

Concretely, if residuals  ri between  i-2 and  i+2 are all positive, the fitting bias is strong and the
weight nadj,i=4 is high. On the other hand, if the residual ri is positive but the residuals i-1 and i+1
are negative,  there is  no fitting bias (residuals are oscillating around the mean) and  nadj,i=0. To
evaluate the capability of MSEnl to evaluate fitting bias, we performed 2 TIR-FCS acquisitions on a
flat  sample  of  DOPC SLBs,  at  either  high  (740 µW) or  low (185 µW) excitation  power.  The
resulting  dataset  had  heterogeneous  signal  levels  representing  the  expected  heterogeneity  in
biological samples. This dataset being acquired on the same SLB however we expected to find a
comparable number of artefactual curves with either excitation intensities.  Comparing  MSE and
MSEnl   for every FCS curve in the dataset (Figure 1A), we could observe that excitation intensity
was a good predictor of MSE but not of MSEnl. Curves acquired at higher excitation intensity had in
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average a lower MSE but similar MSEnl, showing a lower dependence of MSEnl with signal levels.
We observed a strong correlation between the two metrics for curves acquired at a same excitation
intensity, as poorly fitted curves have higher residuals than well-fitted curves at similar signal levels
(Figure  1B). However, comparing two FCS curves with same MSE but different  MSEnl suggested
that  MSEnl measures  fitting  bias  irrespective  of  signal  levels,  unlike  MSE (Figure  1C-D).
Considering  that  every  FCS  curve  contains  imperfections,  we  then  sought  to  determine  the
maximum acceptable amount of fitting bias measured by MSEnl. For this, we plotted the measured
diffusion coefficient against  MSEnl  (Figure  1E, bottom). We observed that high fitting bias were
correlated  to  slower  diffusion  coefficients,  themselves  caused  by  artefacts  in  FCS  curves.  We
confirmed this  by plotting the average diffusion coefficient  for  sets  of  FCS curves with  MSEnl

thresholds   (Figure  1E,  top)  and found that  FCS curves  with a low  MSEnl  corresponded to the
expected  diffusion  coefficient  (55).  Using  both  inspection  of  individual  FCS  curves  and  the
scatterplot shown in Figure  1E, we set the  MSEnl threshold to the value of 0.015. We kept this
threshold throughout this study, in both synthetic and biological samples.

Impact of membrane curvature
Three assumptions made when fitting FCS curves with the model in equation 1 were not verified
when doing TIR-FCS in bacteria. First of all, eq. 1 assumes that the diffusion within the observation
area is occuring on a 2-dimensional flat surface. Indeed, TIR-FCS measures an average transit time

Figure 1: Estimating the fit quality of FCS curves acquired on a DOPC SLB labelled
with PE-Rhod using MSE and MSEnl.  (A) Scatter plot (center) of MSE and MSEnl

metrics  for  each  curve  acquired  in  TIR-FCS  at  low (magenta)  and  high  (green)
excitation powers as indicated in the legend, and histograms of the corresponding
MSE (bottom) and MSEnl (left)  distributions. Colored squares refer to FCS curves
shown in panels (B-D). (B-D) Normalised FCS curves (color) and fits (dotted black
lines) with (top) fitting residuals, with high MSE and MSEnl (B), medium MSE and
high MSEnl (C) and medium MSE and low MSEnl (D). The same scale was used to plot
all  fitting residuals.  (E) Bottom: Scatterplot of  measured diffusion coefficient with
MSEnl and  empirical  threshold  on  fitting  quality  (dotted  vertical  line)  to  discard
artefactual FCS curves. Squares represent FCS curves shown in (B-D). Top: Mean +/-
std of diffusion coefficient within the MSEnl range represented by lateral errorbars
(blue) and value reported for the diffusion coefficient of PE-Rhod in a DOPC SLB in
ref (55).
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in the observation area and then calculates a diffusion coefficient as a ratio between the size of the
observation area and the transit time. In eq. 1, it is assumed that the size of the observation area is
identical to the size of the area in which molecules diffused (the diffusion area), which is true when
imaging a flat surface but is not when imaging a curved surface. In the latter case, the diffusion area
is larger than the observation area. Second, it is assumed that intensity fluctuations are only caused
by molecules moving across the observation area and Poisson noise. When doing TIR-FCS in a
curved membrane, molecules moving laterally also change their axial position which under TIRF
excitation  determines  excitation intensity  and therefore  induces  intensity  fluctuations.  The third
assumption is that the system is open, which means that there is an infinite pool of fluorescent
molecules diffusing in an infinite-sized reservoir. This latest assumption is never actually verified
but it is a good approximation when the mean square displacement of fluorescent emitters during
the time of acquisition is much smaller than the reservoir size. This is not the case for membrane
markers in bacteria: the average distance traveled by molecules diffusing at a reasonable 1µm²/s
speed over the course of 1 min (our usual acquisition time) is 15 µm, larger than the characteristic
dimensions of a B. subtilis cell (typically 5x1µm for exponentially-growing B. subtilis cells in LB at
37°C).  To  evaluate  the  potential  biases  in  diffusion  coefficient  measurements  caused  by  these
effects, we simulated diffusion on curved surfaces of finite areas: either on the simplest case of a
sphere (that can represent cocci e.g Staphylococcus aureus) or on a cylindrical vessel like the rod-
shaped  B. subtilis. Diffusion on these 3D surfaces were simulated as a Wiener process. We first
generated a uniform distribution of initial positions. Position vectors were updated for each step by
adding the cross product of the position vector with a random 3D vector of brownian motion, then
normalised (see Supporting Materials and Methods for a complete description of the simulation).
From the position of individual emitters determined as trajectories (Figure 2A), we could simulate
TIR-FCS experiments having the physical parameters of our setup: framerate (1 ms/frame), PSF
size (FWHM of 450 nm), TIRF penetration depth (100 nm). Molecular brightness was set to 20 kHz
and simulated diffusion coefficient was set to 1 µm²/s. The number of molecules was set to reach a
density of 1.6 molecules/µm², with a minimum of 10 molecules per simulation. 

With this simulation framework, we simulated a series of TIR-FCS experiments either on rods (of
constant length set to 3 µm) or on spheres of various radii (0.5 to 10 µm) and measured the apparent
diffusion  coefficient  (Figure  2B).  We  found  that  in  both  geometries,  the  measured  diffusion
coefficient converged towards the real value for high radius values, which was expected given that a
curved membrane of high radius of curvature can be approximated as flat. We found however a
significant  bias  in  diffusion  coefficient  measurement  for  small  radii  (below  2  µm).  The
measurement bias in a rod was well approximated by the square root of the measurement bias in a
sphere (Figure 2B, dashdotted line). This can be explained by thinking of curvature as modifying
the detection PSF: the detection PSF is modified alongside two dimensions in the case of a sphere
and only one dimension in the case of a rod. FCS curves acquired in a rod-shape can therefore be
fitted with an updated model based on eq.  1, which is the product of two 1-dimensional fitting
models with a fitting bias f accounting for curvature alongside one dimension: 

gxy ,rod ( τ)= 1
a ²

( 1
√πμ1

(exp(−μ1 ²)−1)+erf (μ1))(
1

√πμ2
(exp(−μ2²)−1)+erf (μ2))

μ1=
a

2√σ ²+D τ
;μ2=

a
2√σ ²+D f τ

5
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We set the fitting bias f to the value of 2.1 for B. subtilis,  corresponding to the bias induced by a
curvature of 500 nm radius on a sphere (Figure  2B). We verified using simulations whether rod
length influenced the measurement of diffusion coefficient (Figure S4), and found that for a radius
of 500 nm only rod lengths below 2.5 µm affected the diffusion measurements, which is below the
lengths  of  B.  subtilis  cells  we  measured  in  this  study  (Fig.  S5).  To  validate  our  simulations
experimentally, we used POPC Beads-Supported Lipid Bilayers (BSLB) of 5µm diameter, labeled
with the fluorescent lipid PE-Rhod,  as a system of 2D diffusion of a controlled diameter (Figure
2C). We performed a series of TIR-FCS experiments in these BSLBs and measured the diffusion
coefficient with different observation sizes using different pixel binning values (Figure  2D). The
apparent curvature increased as the pixel binning increased and this experiment was therefore a
good proxy to measure the effect  of  different  curvatures  on measured diffusion coefficient.  As
expected,  we  observed  an  increase  in  diffusion  coefficient  with  increased  observation  size,
corresponding to  an increased  effect  of  curvature  on the  effective  PSF.  We observed a  similar
change in diffusion coefficient with observation size on simulated spheres of identical diameter
(Figure 2E). This analysis assumed free diffusion occurring in BSLBs, which was previously shown

Figure  2:  Impact  of  membrane  curvature  on  TIR-FCS  measurements.  (A)  3D  visualisation  of
random trajectories generated on a rod (B) Diffusion coefficients measured Dmeasured from simulation
of FCS measurements, normalised with simulated value Dsimulated, in cylindrical (blue) and spherical
(orange) coordinates. Dash-dotted red line: square root of  normalised diffusion coefficient in a
sphere, dotted black line: simulated diffusion coefficient (ground truth). (C) Cartoon of a BSLB
(top)  and epifluorescence  images of  BSLBs in an Ibidi  chamber (bottom).  (D) FCS curves  for
different observation sizes (obtained by pixel binning) as indicated in the legend, averaged within a
1.28x1.28µm observation area. (E) Diffusion coefficients measured at different observation sizes,
normalised with value measured for smallest  observation size, from experimental measurements
(plain blue line) in 5 µm diameter BSLBs or from simulations in a sphere of same size (dotted red
line).
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to not be strictly true  (50). Nanoscale hindrances were detected in BSLBs using super-resolution
spectroscopy  (50), but  these  were  unlikely  to  affect  diffusion  measurements  at  the  larger
observation  scales  used  here.  Indeed,  we observed that  the  measured  diffusion  coefficient  was
constant for pixel sizes comprised between 160 and 480 nm  (Figure  2E), consistent with a free
diffusion approximation. 

Results
Temperature-induced changes in membrane fluidity
The viscosity  of  biological  membranes  heavily  depends  on the  ambient  temperature.  Reducing
temperature increases lipid order, thereby decreasing membrane fluidity, up to the point of phase
transition  from a  fluid  membrane  to  a  gel-like  structure  (56).  Poikilothermic  (‘cold-blooded’)

organisms like bacteria which are naturally exposed to ample changes in temperature adapt their
membrane composition in order to maintain fluidity to survive to such changes. Bacterial membrane
adaptation  to  temperature  has  been  widely  studied,  particularly  in  the  Gram-positive  model
organism B. subtilis,  and includes increasing the unsaturated and branched fatty acids. The plasma
membrane of steady-state B. subtilis cells contains only low amounts of unsaturated fatty acids (45,
57). Upon cold shock, the enzyme Des desaturates fatty acids  (58) immediately  (44)(<30 min).
Long-term membrane readaptation involves  branching instead of unsaturation  (45).  To measure
membrane fluidity of exponentially-growing B. subtilis cells in steady-state at 37°C and 20°C, we

Figure 3: Adaptation of B. subtilis membrane to cold temperature, measured with TIR-
FCS.  (A-B)  representative  bright-field  (top)  with  highlighted  areas  (dotted  squares)
where TIR-FCS diffusion maps (bottom) of Nile Red in exponentially-growing B. Subtilis
were acquired,  at  37°C (A) or after  5h at 20°C (B).  Scalebars: 5 µm. (C) Diffusion
coefficient of Nile Red (left) and Di4 (right) in B. subtilis cells grown and imaged at
37°C (orange) or 5 hours after transfer at 20 °C (blue). Dots: average of individual TIR-
FCS acquisitions of one or more cells, 2 biological replicates, n>280 FCS curves per
condition. (D) Recovery of diffusion speed of Nile Red upon transfer from 37°C to 20°C,
pooling measurements by tranches of 5 mins, n=2 biological replicates. Dotted black
line: median diffusion coefficient of Nile Red at 20°C from (C). (E) Normalised FCS
curves obtained at 37°C (orange) and 5 mins (green) and 5h (blue) after transfer at
20°C.
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first used the membrane marker Nile Red, which has the advantage of being bright, photostable, and
long-used in B. subtilis. Individual diffusion maps alone clearly showed that the diffusion speed of
Nile Red was slower at 20°C than at 37°C (Figure  3A-B). This observation was verified through
multiple acquisitions, showing an about 2-fold reduction in the diffusion coefficient of Nile red at
20°C relative to 37°C (Figure 3C). We verified that cells were healthy and in exponential phase by
monitoring  their  growth  before  imaging  (Figure  S6).  Rare  cells  that  were  not  growing  in  the
microscopy field were excluded from the analysis. We also estimated the impact of phototoxicity by
monitoring their growth after imaging and found that cells were growing after imaging, although at
a slightly slower rate (Figure S6). To verify whether the diffusion speed of Nile Red was controlled
by membrane fluidity and not unforeseen interactions, we performed the same experiment with the
membrane dye Di4-ANEPPS (Di4). Diffusion speed of Di4 was slower than Nile Red in similar
experimental conditions, which could be expected from its larger size (M=318 g/mol for Nile Red
and 480 g/mol for Di4). The reduction of diffusion speed measured between 37°C and 20°C was
identical for both dyes (Figure 3C and Table 1), suggesting that it was indeed a change in fluidity
that led to the observed reductions in diffusion coefficient. Having established a baseline for the
diffusivity  of  Nile  Red in  B. subtilis at  different  temperatures,  we then  sought  to  observe  the
remodeling of the membrane in response to a cold shock. For this, we transferred exponentially-
growing cells  labeled  with Nile  Red at  37  °C to  the  microscope at  20°C and performed FCS
acquisitions  on  different  cells  for  1h.  As  expected,  we  observed  first  a  reduction  in  diffusion
coefficient caused by the temperature downshift (Figure 3D-E), then a progressive increase likely
caused by membrane adaptation. The ~30 mins timescale of membrane adaptation we observed was
consistent with the significant membrane fatty acids remodeling within 30 mins of cold shock that
was previously observed (44). The diffusion coefficients measured were fitted using the model of
equation  5 accounting for membrane curvature, assuming a constant radius of 0.5 µm and a cell
length larger  than 2.5 µm (see Figure S4).  We verified that  these hypotheses were verified by
manual measurements of cell width and length (Figure S5).

Table 1: Diffusion coefficients of Nile Red and Di4-ANEPPS measured in B. subtilis at 37°C and
20°C, and ratios of diffusion coefficients at 37°C and 20°C. Presented are the means and standard
deviations of the average diffusion coefficients for each acquisition (dots in Figure 3C).

Dye D37°C (mean +/- std) D20°C (mean +/- std) D37°C/D20°C

Nile Red 4.4+/-0.3 2.2+/-0.2 2+/-0.3
Di4-ANEPPS 1.9+/-0.1 0.9+/-0.07 2.1+/-0.3

Discussion
In this  paper,  we demonstrated how TIR-FCS can be used to quantitatively measure membrane
fluidity in bacteria, exemplified by the Gram-positive model organism Bacillus subtilis. For this, we
derived a new fit quality metric that greatly simplified data analysis. Using simulations validated by
experiments, we estimated the measurement bias caused by the observation of a curved membrane
of finite size in a TIRF field, and used this information to perform unbias measurements of diffusion
coefficients  in  the membrane of  B. subtilis.  We used this  assay to  measure membrane fluidity,
reported  by  diffusion  speed of  membrane markers,  in  the  membrane of  B.  subtilis at  different
temperatures, during membrane remodeling caused by a cold shock and in a steady-state. 

The fitting quality  metric  we derived in  the first  section is  a  fine addition to  the collection of
readily-available  quality  metrics  for  FCS quality  assessment.  Its  reliability  across  datasets  with
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different signal levels might prove useful in future high-throughput FCS studies, whether camera-
based or not (59). Using TIR-FCS instead of conventional confocal FCS offered several advantages,
some of them already listed: high-throughput measurements,  excellent axial  selectivity allowing
FCS measurements in single membranes and extraction of spatial information. Besides, using an
unpolarised  evanescent  field  with  TIRF  excitation  allows  excitation  of  fluorescent  molecules
irrespective of their dipole orientation. This is a major advantage when working with membrane
markers that intercalate within a membrane and keep a fixed orientation, which can be orthogonal to
the polarisation plane of e.g confocal excitation and therefore lead to poor excitation quality and
inhomogeneous excitation of observation area. 

Simulating TIR-FCS in curved surfaces proved very useful for understanding and measuring the
potential  biases  induced  by  membrane  curvature,  inhomogeneous  excitation  of  the  curved
membrane in the evanescent field, and diffusion in a closed system of small size. The respective
impact of these three effects was not disentangled by our simulations and further investigations
could quantify the individual impact of each of these three effects on the final measurement. Simple
2-dimensional simulations in finite-sized boxes could readily reveal that the small diffusion areas
typical of bacterial membranes can lead to substantial biases in measured diffusion speed (Figure
S3). Care must be taken when accounting for membrane curvature with simulations to accurately
simulate not only the observed geometry, but also the microscope itself as parameters like the PSF
size affect the final bias in diffusion coefficient (Figure S4). Furthermore, we did not account for
photobleaching in our simulations. This might affect the measurement bias caused by the closedness
of the system: in a closed system, the same molecule is more likely to diffuse repeatdly through an
observation area than in an open system. However, if there is significant bleaching, a molecule will
likely diffuse only once through the observation area and then bleach. We do not expect this effect
to significantly change the predictions of our simulations: bleaching was not simulated but occurred
in BSLBs, and both systems exhibited a similar behaviour (Figure 2E).

In this work, we showed that the diffusivity of two different membrane markers decreased similarly
in response to a decrease in temperature, suggesting a common determinant to their diffusivity:
membrane fluidity. Claiming that this assay measures membrane fluidity however requires a couple
of reasonable approximations. Membrane fluidity in the field of microbiology is usually referred to
as a single parameter (the physical parameter governing diffusion speed in the plasma membrane).
However,  it  is  known  that  the  fluidity  in  the  physical  sense  affects  the  diffusivity  of  objects
depending on their hydrophobic radius (60). The diffusivity of the membrane markers Nile Red and
Di4 is therefore a good proxy for the measurement of membrane fluidity experienced by molecules
of  comparable  size  (e.g  lipids)  but  the  diffusivity  of  larger  molecules  such  as  transmembrane
proteins will be affected by membrane fluidity differently. Relative differences should nevertheless
remain the same: the slower diffusion speed of Nile Red at 20°C relative to 37°C indicates that
membrane proteins undergoing Brownian motion also diffuse more slowly at 20°C than at 37°C.
Furthermore,  we  did  not  consider  lateral  membrane  heterogeneities  (named  functional
microdomains in bacteria  (61), conceptually equivalent to lipid rafts  (62) in eukaryotes) that are
thought to recruit certain proteins and lipids in areas of higher molecular order and therefore lower
mobility.  The  diffusivity  that  we  measured  in  this  study  likely  represents  an  average  of  the
diffusivity in all domains of the membrane. 

Our measurements were performed in the rod-shaped Gram-positive model bacterium B. subtilis.
Together with our setup, this offers several advantages: first, the well conserved cell diameter of B.
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subtilis across  the  cell  cycle  and  growth  conditions  (63) facilitates  correction  for  membrane
curvature. Second, Gram-positive bacteria lack an outer membrane. More care would need to be
taken for labeling Gram-negative bacteria to ensure that the used fluorescent marker labels only the
membrane of interest, either the inner or the outer membrane. Third, additional care must be taken
when  performing  FCS  experiments  in  Gram-negative  bacteria,  as  the  topography  of  the  outer
membrane was previously shown to be affected by various compounds (26, 64) which itself affects
measurement  of  diffusion  speeds  with  FCS  (65).  Our  work  confirmed  the  results  of  previous
experiments  on the  effect  of  a  cold  shock on membrane fluidity.  Upon cold  shock,  membrane
fluidity  decreases,  and  quickly  increases  again  thanks  to  a  modification  of  plasma  membrane
composition that  increases unsaturated and branched-chain fatty acids in the membrane  (45).  It
remained unknown by how much membrane fluidity recovered. Fatty acid profiles only provided
qualitative information and conflicting results  were obtained with environment-sensitive probes
(66).  DPH anisotropy suggested an incomplete  recovery of  B. subtilis membrane fluidity  while
fluorescence lifetime measurements of the same probe indicated an identical fluidity at 20 and 37°C
(66). Our results allow to settle this debate unambiguously: membrane fluidity does not completely
recover after a cold shock in B. subtilis: it recovers to the steady-state fluidity at the temperature to
which cells were transferred. 

Our TIR-FCS assay opens up exciting perspectives in the field of microbiology. The unprecedented
ability  to  quantify  membrane  fluidity  will  shed  a  new  light  on  the  biophysics  of  bacterial
membranes and might help to understand severeal cellular processes as well as the mode of action
of  membrane-targetting  antibiotics  or  antimicrobial  peptides.  The  newly  acquired  capability  to
quantify membrane fluidity might also lead to a better understanding of the fundamental role of
membrane fluidity in bacterial physiology.
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Supporting material

Simulations
On a sphere:  First  a set  of points  representing individual fluorescent  emitters were distributed
randomly on a sphere, as described in (5). The position of each point was described in spherical
coordinates. Its azimuthal (θ) and polar (φ) angles were randomly generated using the following
equation:

θ=2 πu
ϕ=cos−1(2v−1)

1

where u and v are drawn from uniform random variables with bounds  [0,1[. Trajectories were then
converted to cartesian coordinates. At a given time t, the vector position r⃗ (t )=[ x (t ) , y (t ) , z (t )] of
a point was then updated as follows, as discussed in reference (6):

r⃗ (t+1)= R
‖r⃗ ( t)+ r⃗ (t)∧ b⃗(t )‖

( r⃗ (t)+ r⃗ (t)∧ b⃗(t )) 2

where R is the radius of the sphere and b⃗(t )=[u x(t ) ,u y (t ) ,uz(t )]  is a three-dimensional random
vector  drawn from a  normal  distribution,  with  each component  having a  standard deviation of

√2 Dt / R ,  with  D  the  diffusion  coefficient.  The  normalisation  factor  R
‖r⃗ (t )+ r⃗ (t )∧b⃗(t )‖

is

necessary to keep the vector r⃗ (t +1) on the surface, as the vector r⃗ (t )∧b⃗(t) is tangential to the
curved  surface  and  therefore  r⃗ (t )+ r⃗ (t)∧b⃗(t ) is  not  on  the  surface  (Figure  S2A).  Under  the
conditions that the angle between r⃗ (t ) and r⃗ (t +1) is small,  ‖r⃗ (t+1)− r⃗ (t )‖= r⃗ (t )∧b⃗ (t ) and
the simulation of brownian motion is accurate.

Supp.Figure  1:  Changes  in
diffusion  coefficient  with  time
spent  on  pad.  Steady-state
fluidity  is  reached  after
approximately 25 mins (vertical
black line), after which imaging
can start.
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On a rod: the simulation process is very similar. The rod is represented as a cylinder of length L
and radius R with two half-spherical parts or radius R at its end (Figure S2B), oriented along the x-
axis. The initial distribution of points is done in two steps: a fraction of the total number of the
points is distributed on a sphere,  while the rest of the points are distributed on a cylinder.  The
relative fraction of points on the sphere and the cylinder is determined from the relative areas of the
spherical and cylindrical parts of the rod. Points drawn on the sphere with a negative x coordinate
are moved along the x axis by a distance -L/2, the others by a distance +L/2. The vector position

r⃗ (t ) of each point is  then iteratively updated following equation  2 as in the previous section,
except that in this case the vector r⃗ (t ) describes the distance to the medial axis (segment [P1P2] in
Figure S2B) of the rod and not to the centre of the sphere. Figure S2B illustrates the two different
configurations ( r⃗1(t ) and r⃗2(t ) ) for the vector r⃗ (t ) .

Parameters used in the simulations of Figure 2 are listed in the following table:

Frame
rate
(kHz)

D [µm²/s] # frames Parts.
density
[parts/µ
m²]

Length
[µm] (rod
only)

Pixel  size
[µm]

σpsf [µm] δzTIRF

[µm]
Brightnes

s (Hz)

1 1 50000 1.6 3 0.08 0.19 0.1 20000

Particle density was set to the constant value of 1.6 particle/µm², except in smallest simulations for
which it was increased to contain at least 10 particles. TIRF penetration depth δz was defined as:

I TIRF( z)=I 0 exp(−z /δ z) 3
Where I(z) is the depth-dependent TIRF excitation field.  To speed up calculations,  all  particles
above 4δz were considered to have a brightness equal to zero and were discarded from the analysis.
Analysis was performed with 4x4 binning to an observation area of 320 nm, similar to the one we
used in our experiments. An intensity threshold set to 80% of the maximum intensity was also used
to analyse simulations as we used in real experiments. Each simulation was performed 9 times. The
lateral position of the simulated bacterium was different for each of the 9 simulations to avoid a
potential bias.

Influence of size of closedness of the system:

Supp.Figure 2: Sketch of the simulation of a Wiener process on curved surfaces. (A):
iteration of the Wiener process. B: Sketch of rod-shape simulation.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2023. ; https://doi.org/10.1101/2023.10.13.562271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562271
http://creativecommons.org/licenses/by/4.0/


In order to understand if the closedness of the simulated systems described above and in Figure 2
could lead to a bias in diffusion coefficient estimation with imFCS, we simulated a simple system of
2-dimensional Brownian motion in a homogeneous illumination field. Molecules leaving the system
on one edge were reintroduced at the corresponding position on the opposite edge (Figure S3A).
When the box became very small, we could observe that FCS curves shifted towards shorter lag
times and became distorted (Figure S3B). Fitting curves for different box sizes to extract diffusion
coefficients  confirmed  that  smaller  box  sizes,  of  areas  in  the  order  of  magnitude  of  bacterial
membrane  areas,  indeed  induced  a  bias  in  diffusion  coefficient  estimation  (Figure  S3C).  It  is
therefore very likely that part of the measurement biases in Figure 2 were caused by an effect of the
small size of the systems observed. 

Influence of rod length and PSF size:

Supp.Figure 3: TIR-FCS simulations in a closed box of varying size.
(A) sketch of the simulated system with box (black) containing moving
particles  (blue)  and  a  smaller  observation  area  (centre,  orange
square) where TIR-FCS is simulated. Top: small box, bottom: large
box. A molecule leaving on one side and reentering on the other side
is shown with dashed arrows. (B) representative FCS curves obtained
when a small (1.6 µm width, orange) and large (160 µm width, blue)
simulation  box  are  used.  (C)  Measured  diffusion  coefficients  in
simulated TIR-FCS experiment as a function of box size.
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Live bacteria
Cell morphology in different conditions

Having found that the width and length of bacterial cells bias diffusion coefficient measurements,
we verified whether the morphology of B. subtilis cells changed between the different experimental
conditions  investigated  here.  For  this,  we  acquired  epifluorescence  images  for  each  of  these
conditions (Figure S5A-B) and measured cell length and width manually using ImageJ. Cell length
was determined by drawing a line between the two poles of each cell and measuring the length of
this line. We found that the average cell length was identical at 37°C and immediately after cold
shock, decreased after 5hours at 20°C  (Figure S5C), but not to a point where cell length biased
FCS measurements. 

Cell width was measured by plotting the intensity profile alongside a line orthogonal to the cell long
axis and measuring the peak-to-peak distance. This method led to an underestimation of the real cell
width due to off-axis fluorescence emitted by the top and bottom part of the membrane, hence the
relative  difference  with  the  well-known  diameter  of  B.  subtilis of  0.9-1µm  (3-4).  It  revealed
however that as expected cell width did not change significantly between experimental conditions
and thus that we could apply the same correction factor accounting for membrane curvature to
measurements (Figure S5D). Cell width remained constant during cold shock (Figure S5F) and cell
length remained well above the 2.5 µm threshold leading to bias in diffusion coefficient (Figure
S4A).  Panels C and D of Figure S5 were generated using supplementary ref 1.

Supp.Figure  4:  Simulation  of  the  influence  of  physical
parameters  on measured diffusion coefficient.  (A)  Measured
diffusion coefficient with length of rod-shape, for a radius of
0.5  µm.  Red  dashed  line:  bias  for  lengths>2.5  µm.  (B)
Influence  of  PSF  size  (parameter  σ  in  equations  1-2)  on
measured diffusion coefficient, on a sphere of radius 0.5 µm.
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Impact of FCS measurement on doubling time

Using bright-field timelapses, we verified both cell fitness and the impact of phototoxicity on cell
growth. For this, we measured the growth rate of cells used in Figure 3C, at 37°C. We acquired for
each chain of cells 3 bright-field images (Figure S6A), one at least 3 mins before the beginning of
FCS acquisition,  one immediately after  the FCS acquisition and one at  least  3 mins after FCS
acquisition. We measured the length of the cell  chain in each bright-field image and calculated
doubling times between pairs of frames following the equation (under the assumption of constant
cell width as is the case in B. subtilis):

T double=Δ t ln(2) / ln (l2 /l1) 4

Where T double is the doubling time, Δ t is the time between frames 1 and 2, l1

Supp.Figure 5: Morphology of B. subtilis at different temperatures. (A-B) epifluorescence images of
B. subtilis in exponential phase, labeled with Nile Red, at 37°C (A) and 20 °C (B). Scalebars: 5 µm.
(C-D) Length (C) and width (D) of B. subtilis measured from epifluorescence images, in exponential
phase at 37°C, 20°C, or during cold shock. (E-F) Scatterplots of cell length (E) and width (F) with
time at 20°C immediately after cold shock. 
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and  l2 are the lengths of the cell chain in frames 1 and 2. Cells which doubling was more than
twice higher than the nominal doubling time (~20 mins) were considered not exponentially-growing
and therefore excluded from the analysis. Comparing pairwise doubling times before and after FCS
(Figure S6B), we found that cells kept growing after FCS, yet at a slightly slower rate, suggesting
low photoxicity effects.

Detailed implementation of FCS data processing
Determination of intensity threshold

In order to avoid biasing diffusion measurements, we needed to exclude TIR-FCS measurements
that were too far from the point of contact between the bacterial cell and the coverslip. An efficient
way of doing this consisted in removing pixels with an average intensity below a given threshold, as
the excitation of the TIRF field decreases with increased distance to the cell centre. To find an
appropriate value for this intensity threshold, we plotted a 2D histogram of intensity (normalised
with 98th percentile) and diffusion coefficient in 6 acquisitions of exponentially-growing B. subtilis
labeled with Nile Red at 20°C. We set the threshold to 0.8 so that there was no correlation between
diffusion coefficient and intensity (Figure S7).

Supp.Figure 6: Impact of FCS measurements on the growth rate of Nile
Red-labeled B. subtilis cells. (A): bright-field images of growing cells
acquired  before  (top),  immediately  after  (middle)  and  after  (bottom)
FCS acquisition. Scale bars: 5 µm. (B) Doubling times calculated from
cell  elongation,  before  and after  FCS acquisition.  Black  dots:  single
doubling times measurements, gray lines link doubling times of the same
cell chain.
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Bleaching correction and FCS fitting

Bleaching  correction  was  performed  using  a  double  exponential  fit  of  the  decaying  intensity.
Intensity timetraces were downsampled 500 times to speed up computations. The resulting traces
were fitted with the function:

Î ( t)=f 0 [(1−b)exp (−t /τ1)+b exp(−t / τ2)]+c 5

The original intensity timetrace was then corrected as described in ref (2):

I c(t )=
I (t )

√ Î (t) / Î (0)
+ Î (0) (1−√ Î (t)/ Î (0)) 6

The error function in equation 1 is as :

erf (x)= 2
√π∫

0

x

exp(−t ²)dt
7

Supp.Figure 7: Determination of intensity threshold
for  unbiased  diffusion  measurement.  Correlation
between  relative  pixel  intensity  (x  axis)  and
measured diffusion coefficient (y axis) visualised as
a  2-dimensional  histogram  in  6  acquisitions  of
exponentially-growing B. subtilis at 20°C. Vertical
dotted red line: selected threshold
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