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Free Space Representation for a Mobile Robot moving on a Rough Terrain

This paper addresses the problem of autonomous navigation for mobile robots on rough terrains 1 . We propose a free space structuring as a promising way to improve the e ciency of path planning for all-terrain mobile robots. This space structuring is based on the characterization of con guration space regions for which the locomotion architecture can guarantee terrain irregularities absorption and stability of the vehicle.

A planner based on this approach has been implemented and experimental results show its interest for practical use.

Introduction

There is an increasing interest in developping mobile robots for applications requiring autonomous navigation on natural terrains (planetary exploration 4] 5] 11], public safety robotics and other hazardous missions 7] 8]). This paper addresses the path planning problem for such all-terrain mobile robots.

Research in motion planing has been very active over the past decade. Most of the work has addressed the problem of nding a collision-free path for manipulators or for mobile robots moving in planar environments (see 6] for an overview). This problem is usually solved by a decomposition of the con guration space into networks of free regions. Graph search techniques and heuristics are then used to search a path from which a safe sequence of motions can be computed.

However, motion planning is almost inexistent in the litterature for mobile robots moving on non-planar terrains. There already exists all-terrain mobile robots which use simple path generation techniques for their autonomous navigation. These approches use the terrain model to characterize the traversability of small terrain patches (roughness of the patch, preferred crossing direction,. . .). In 4] 9], paths are computed from this characterization by gradient propagation techniques. The AMR robot 7] uses a 2D pathplanner similar to the one presented in 2] to plan a path that avoids the patches classi ed as obstacle.

These simple techniques are certainly su cient for the case of benign terrains. However, they will fail to nd a safe path for a robot moving on a rough terrain: in this case, the binary notion of obstacles and non obstacles regions does not hold anymore; the obstacles depend on the ability of the robot to cross over the irregularities of the terrain and their characterization requires to better formalize the constraints acting on the placement of the robot on the terrain.

We are aware of a very few contributions that consider this rather new topic of the path planning problem. A geometric 3D planner is described in 10] for the case of a 3-wheels robot moving on a polygonal terrain. This planner produces paths which not only satisfy collision-free constraints, but also stability and non-holonomic constraints. This planning technique is derived from the approach described in 1] for the planar case; it consists of exploring a discretized representation of the Con guration Space to incrementally search for a safe trajectory. A similar formulation of the problem is reported in 8] for the Intelligent Locomotion of a four tiltable track robot. As mentionned by the authors, this incremental search of a safe trajectory can be very time consuming and we feel that having a preprocessing step aimed at discovering the \good" CS-regions could be used to better guide a more complex path-planning method.

The main contribution of this paper is to produce such a preprocessing. We provide a characterization of the CS-regions for which the locomotion architecture of the robot can guarantee terrain irregularities absorption and stability of the vehicle.

The paper is organized as follows: After a presentation of the robot and terrain models, Section 2 gives a more formal statement of the placement problem and of the constraints acting on the placements of the robot. Section 3 presents an algorithm that characterizes the admissibility of a given CS-region. Finally, Section 4 combines these results to obtain an octree representation of these admissible regions. The algorithm have been implemented and experimental results are presented at the end of the section.

2 Formalization of the placement problem.

2.1 General statement.

We consider an articulated robot consisting of a body and n wheels attached to it by suspensions. These suspensions allow the wheels to keep a better contact to the terrain, but on the other hand, the placement of the robot becomes complex : it results from the interaction with the terrain and the balance of the suspensions, which are modeled by springs.

The terrain is known by a discrete elevation map, that is the elevation values z on a discrete regular grid in (x; y).

In the sequel, we consider that 3 conditions are required for a placement to be valid : (C1) all the wheels remain in contact with the ground. (C2) the springs cannot be stretched beyond some limit length. (C3) the robot does not tip-over, which requires that the projection of its gravity center remains inside the convex hull of the projections of all the contact points (called the support polygon). Our purpose is to determine domains of the con guration space which verify these conditions.

The placement parameters.

Let us de ne a local frame (G; u; v; w) attached to the robot, where G is the gravity center of the robot, and (u; v; w) are respectively its longitudinal, lateral and vertical axis (see Fig. 1).

We assume that, when all the springs are in their steady state, the wheels belong to the same plane P S perpendicular to w axis, at height w 0 in the local frame. Then, the coordinates of wheel i are (u i ; v i ; w 0 + l i ) where u i and v i are some xed values related to the geometry of the robot, and l i is
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Figure 1: Model of the vehicle the algebraic extension of the spring (l i = 0 being its natural length). That means that the springs always keep a vertical orientation in the robot's frame. Additionally, we assume that the positions (u i ; v i ) of the wheels are symmetrically distributed around the vehicle. Fig. 1 shows an example of a 6-wheels robot, with the parameters detailed above.

A position of the robot's body is de ned by the 6-dimensional vector p = (x G ; y G ; z G ; ; ; ), where (x G ; y G ; z G ) are the coordinates of point G, and ( ; ; ) are respectively the horizontal orientation of u axis, the roll angle and the pitch angle2 . These parameters de ne the transform matrix from the robot frame to the space frame (O; x; y; z):

M(p) = T(x G ; y G ; z G )R(w; )R(v; )R(u; ):
Therefore, a complete placement of the robot is given by (6 + n) independant parameters : the 6-dimensional vector p = (x G ; y G ; z G ; ; ; ) de ning the position of the robot's body in the space, and the n spring extensions l i , giving the wheel positions.

Nevertheless, the interactions with the terrain constrain these parameters and therefore reduce the dimension of the robot's con guration space. This will be developped in the next section.

De nition of the con guration space.

The placement of the robot results from its weight and the reaction of the ground exerted through the springs.

The static equilibrium state is reached when the total energy of the robot is minimized. In the following, we consider a simple energy function, including only the compression energy of the springs: E((l i ) i=1:::6 ) = 6 X i=1 kl i 2 :

(1

)
where k is the sti ness coe cient of the springs. Moreover, the wheels are supposed to stay over the terrain, which constrains their positions. Let z = f(x; y) be an analytic expression of the terrain, the free space being the set of points such that z > f(x; y). The position of wheel i is de ned by the position p of the robot's body and the length l i of its spring. We call W i (p; l i ) the volume occupied by the wheel. The placement of wheel i is strictly expressed as : 8M(x; y; z) 2 W i (p; l i ); z f(x; y):

In order to keep a simple constraint expression, we approximate the wheel's shape by a point 3 denoted M i (x i ; y i ; z i ). Hence the constraint is only applied to this contact point M i . Moreover, we are only interested in the placements which keep all the wheels in contact with the terrain (condition C1). Therefore, the contact constraints become :

z i = f(x i ; y i ) (2) 
where x i ,y i and z i are related to the placement p and to the length l i by: (x i ; y i ; z i ) T = M(p)(u i ; v i ; w 0 + l i ) T For given values of the three parameters (x G ; y G ; ), the remaining parameters (z G ; ; ; (l i ) i=1:::6 ) result from the minimization of energy (1) under equality constraints (2). Thus we consider the three dimensional con guration space induced by the parameters (x G ; y G ; ). Any con guration de nes the placement of the robot as follows :

De nition 1 For any con guration q = (x G ; y G ; ) 2 CS = R 2 S 1 , the associated placement of the robot is the set of parameters (p; (l i ) i=1:::n ) such that :

E((l i ) i=1:::n ) is minimal. 8i 2 1; n]; z i = f(x i ; y i ).

The admissible con gurations.

There remains to link together the requirements C2 and C3 de ned in section 2.1 and the con guration parameters (x G ; y G ; ). [START_REF] Barraquand | Robot Motion Planning: A distributed Representation Approach[END_REF] or by a sphere, with an appropriate change of function f, which corresponds to growing the terrain by the radius of the wheels.

Constraint C2 limits the n spring elongations l i to a given value denoted L max . According to constraint C3, the robot is stable when the vertical projection of its gravity center belongs to the support polygon. The shape of this support polygon is clearly a function of , and the lengths (l i ) i=1:::n . However, we assume that the less stable position is obtained when all the springs are the longest [START_REF] Faverjon | Object Level programming of industrial robots[END_REF] . The stability thus only depends on and , and we can determine a subset S ] 2 ; 2 2 such that for any pair ( ; ) 2 S, the robot position is stable.

We can now de ne precisely the admissible space of the robot.

De nition 2

The admissible subset ACS is the set of con gurations q 2 CS such that : 8i 2 1; n]; jl i j L max .

( ; ) 2 S.

In the remaining, we propose a method to built a hierarchical decomposition of ACS relying on the analysis of the admissibility of a domain x y in CS.

3 Admissiblity of a CS region.

We consider now a region R CS = x 1 ; x 2 ] y 1 ; y 2 ] 1 ; 2 ] CS. Our purpose is to determine if the region R CS is in ACS or not.

Overview.

Similarly to the con guration vector q, we de ne the vector r of the remaining placement parameters : r = (z G ; ; ; (l i ) i=1:::n ).

Let r 0 be a domain which is guaranteed to contain any admissible placement. For example, l i necessarily belongs to l i = L max ; L max ].

For any wheel i, we can determine the area in the 3-dimensional natural space of all its positions for all placements in R CS r 0 . The vertical projection of this area gives an (x; y)-region called contact region R i . The contact of the wheel onto the terrain belongs to the set of points (x; y; z) of the terrain such that (x; y) 2 R i . The elevation map is used to compute a sort of bounding box of this terrain portion, called contact envelope V i (cf Section 3.2).

The de nition of a placement given in Section 2.3 establishes relations between the placement parameters and the elevation of the terrain. These relations allow to deduce a new placement interval r from the contact envelopes (cf Section 3.3). The thicker the envelopes are, the larger are the parameter intervals r.

For this reason, the contact envelopes must be as close as possible to the terrain.

The obtained placement domain R CS r necessarily contains all the possible placements of the robot in region R CS , whatever the terrain's shape inside the contact envelopes. If this interval is in accordance with the constraints C2 and C3, R CS is guaranteed to be in ACS. Otherwise, we consider that the region R CS could contain placements which would not verify the constraints, and we declare R CS to be forbidden.

The contact envelopes.

In this section, we show how to compute, for each wheel, the terrain envelope where the contact should occur. We rst determine an average plane P a from the points of the terrain over all the contact regions. Then we compute for each wheel the limit values of the terrain elevation relatively to plane P a .

3.2.1 The contact regions (R i ) i=1:::n .

We rst consider the in uence of , and (l i ) i=1:::n . Let (G 0 ; u 0 ; v 0 ) be the horizontal frame obtained from the vertical projection of (G; u; v),(see Fig. 2). In this frame, the vertical projection of wheel i is given by the two rst coordinates of R(v; )R(u; )(u i ; v i ; w 0 + l i ). When , and l i vary in , and l i , this projection remains in an area which we approximate by the minimum enclosing rectangle u 0 1 ; u 0 2 ] v 0 1 ; v 0 2 ].

When q varies in R CS , this rectangle sweeps an area in accordance with the values of x, y and (see Fig. 2). This area is approximated by a polygon which de nes the expected contact region R i . Now, we compute a plane approximation over the union of all contact regions. For this purpose, we collect the points of the elevation map over all the contact regions. The approximation plane is computed by a least square method. Let A, B and X be matrices de ned as follows :

∆θ x ∆ y ∆ u'1 u'2 v'1 v'2
A = 0 B @ x 1 y 1 1 . . . . . . . . . x p y p 1 1 C A ; B = 0 B @ z 1 . . . z p 1 C A;X = 0 @ a b c 1 A
where ((x i ; y i ; z i )) i=1:::p are the collected points of the elevation map, and a, b and c are the coe cients of the plane equation : z = ax + by + c. Vector X is given by the matrix equation : AX = B: whose solution is : X = (A T A) 1 A T B: with

A T A = 0 @ P x 2 i P x i y i P x i P x i y i P y 2 i P y i P x i P y i p 1 A A T B = 0 @ P x i z i P y i z i P z i 1 A
Let us just mention that, in order to spare memory, we compute directly the matrices A T A and A T B, by adding for each new point, the associated terms to the matrices. When all the points have been collected, there only remains to inverse a 3 3 symetrical matrix, and to multiply it by a 3-dimensional vector.

The coe cients a, b, c de ne the plane which minimizes the quadratic mean of the vertical distances to the elevation map data. This average plane denoted P a provides a placement called p a : p a = (x a ; y a ; z a ; a ; a ; a )

with:

8 > > > > > > < > > > > > > : x a = x1+x2 2 y a = y1+y2
2 z a = ax a + bx a + c a = 1+ 2 2 a = arctan((b cos a a sin a ) cos a ) a = arctan(a cos a + b sin a ) This placement is not supposed neither to have any optimal property nor to correspond to the mean values on each placement parameters. It is only a good indication on what could be the placement of the robot upon the contact regions. p a will be used as a reference position to determine the bounds of the placement parameters around it.

3.2.3

The contact envelopes (V i ) i=1:::n . For each contact region R i , we compute the extreme elevation di erences between the points of the elevation map and P a . For any point M(x; y; z) in the elevation map, this di erence is z = z (ax+by +c). Let z min i and z max i be the extreme values of z on the contact region R i . The contact envelope is : Vi = M 2 R 3 (x; y) 2 Ri and z (ax + by + c) 2 z min i ; z max i ]

Fig. 3 illustrates this notion of contact envelopes. Notice that all the envelopes have the same orientation, de ned by the common average plane P a , but each has a speci c depth, since it is computed separatly on each contact region. However, one may wonder why a di erent mean plane is not computed on each region, which would provide envelopes even closer to the terrain. The reason is that in order to be valid on the whole region R CS , the computed domain r must be independant of (x; y; ). This will be clari ed in the following section. We now use equation (1) which characterizes a placement, to give some bounds on each parameter, according to the dimensions of the contact envelopes.

According to De nition 1, the placement minimizes the robot's energy E. The partial derivates of E with respect to z G , and need therefore to be null. As these di erentiations of E yield too complex expressions, we introduce three new parameters to de ne the relative placement of the robot with respect to P a (Section 3.3.1). The bounds on these parameters can be easily obtained (Section 3.3.2), and then related to the bounds of r (Section 3.3.3).

Relative placement from the average plane.

We introduce three parameters ( ; ; d 0 ) characterizing the position of the steady state plane P S of the robot (whose equation is w = w 0 in the robot's frame) relatively to the average plane P a . Let be the line P S \ P a and the angle between the two planes. We denote by the orientation of the robot in plane P S relatively to . Finally, we call d 0 the distance of point M 0 (0; 0; w 0 ) in the robot's frame to plane P a .

Actually, we are interested in the limits of parameters d 0 and (which respectively correspond to the vertical position and the attitude of the robot) for any value of .

Fig. 3 illustrates these notations, and will give a support to the following developments. Three contact points M 1 ; M 2 and M 3 are represented, with the associated distances to P a and the spring lengths l i , which are the distances to P S .

Determination of the bounds on the

robot's position. Let (d i ) i=1:::n be the distances of the wheels to P a : d i = cos a cos a z i . The length of each spring can be related to the associated d i by: l i = 1 cos (d i d 0 ) tan (sin u i + cos v i ): (3) The di erentiation of E with respect to d 0 yields :

n X i=1 (d i d 0 ) sin n X i=1 (sin u i + cos v i ) = 0
Let us remind that the wheels are assumed to be symetrically placed around the vehicle. This implies : P u i = P v i = P u i v i = 0, and we nally obtain :

d 0 = 1 n n X i=1 d i :
Hence d 0 is between the mean of minimal values of d i on each contact envelope, and the mean of the maximal values. Since d i can be bounded according to the elevation bounds z min i ; z max i ] computed in Section 3.2.3, the extreme values of d 0 are:

d min 0 = 1 n cos a cos a n X i=1 z min i d max 0 = 1 n cos a cos a n X i=1 z max i
Similarly, the di erentiation by leads to :

f( ) = tan cos = B C A where 8 < : A = P n i=1 (d i d 0 ) 2 B = sin P n i=1 d i u i + cos P n i=1 d i v i C = sin 2 P n i=1 u 2 i + cos 2 P n i=1 v 2 i
As function f is monotonous on ] 2 ; 2 , we can deduce the maximal angle max between P S and P a from the maximal value of B C A . Let us rst give some bounds to A, B and C, for any value of :

5 max jAj = max( n X i=1 (d max i d min 0 ) 2 ; n X i=1 (d max 0 d min i ) 2 ) max jBj = v u u t max( n X i=1 diui) 2 + max( n X i=1 divi) 2 min jCj = min n X i=1 u 2 i ; n X i=1 v 2 i
All these values may be computed from the bounds on (d i ) i=1:::n [START_REF] Giralt | The French Planetary Rover VAP: Concept and Current Developments[END_REF] .

The rst condition to be sure there exists a bound to is to insure that maxjAj < minjCj (otherwise there could exist some terrain con guration for which = 2 ). Under this condition, the bounds on can be expressed as follows : max = 2 arctan 1 K (1 p K 2 + 1)] with K = maxjBj minjCj maxjAj 3.3.3 The new placement domain r.

The bounds on and can be related to max . It can be easily shown that : cos = cos( a ) cos( a ). Hence maxj a j = maxj a j = max which gives : = a max ; a + max ] = a max ; a + max ] P n i=1 d i u i is obtained by adding d max i u i when u i > 0, d min i u i otherwise. The minimal value is obtained with d min i u i when u i > 0 and d max i u i otherwise. The same reasoning can be ap-

plied to P n i=1 d i v i .
Finally, the bounds on (l i ) i=1:::n are obtained by minimizing and maximizing expression (3) : 8i; l i = l min i ; l max i ] with:

l min i = 1 cos max (d min i d max 0 ) tan max p u 2 i + v 2 i l max i = 1 cos max (d max i d min 0 ) + tan max p u 2 i + v 2 i
The admissibility of R CS is now very simple to establish, according to De nition 2. Region R CS is declared admissible if : 8i; l i L max ; L max ] (4) S (5) Proposition 1 For any cubic region R CS CS, if the computed placement domain r veri es conditions (4) and ( 5), then R CS ACS.

4 Hierarchical decomposition of CS.

The analysis of CS-regions is now used to compute an approximate cell decomposition of ACS. This cell decomposition relies on an octree decomposition of CS.

4.1 The octree structure.

Octree-type representations have already been used for path-planning; see for example 3]. An octree is a recursive decomposition of a cubic space into subcubes. It is a tree of degree eight whose nodes represent in our case cubic regions of CS, also called voxels.

Any voxel can be analyzed according to Proposition 1. If the voxel is in ACS, we declare it FREE. Otherwise, we cannot conclude, and the voxel is declared MIXED [START_REF] Latombe | Robot Motion Planning[END_REF] . It must be subdivided into eight smaller voxels, for which the test will eventually be successful. This recursive decomposition is performed up to a level p max for which the approximation is ne enought.

The approximate decomposition of ACS consists of all the FREE voxels.

The construction methods.

There mainly exist two methods for building an octree :

The bottom-up method : the voxels of level p max are rst analyzed. The octree is then recursively deduced from the nest level : any voxel of level i is declared FREE if its eight sons of level i + 1 are FREE. Otherwise, it is declared MIXED. This method has a major drawback : it requires to test Figure 4: Octree decomposition of ACS associated to the environment of Figure 5. a great amount of voxels at the nest level, even in areas where such a ne decomposition is not needed.

The top-down method : the root node (level 0) is rst analyzed and is recursively decomposed up to level p max . If a voxel of level i is found to be FREE, it is no longer decomposed. Otherwise it is considered as MIXED and must be subdivided into eight voxels of level i+1 which are analyzed in turn. However, in our case, large CS-regions are unlikely to be in ACS and their analysis would require to consider an important amount of elevation map datas. We choose to combine both methods, in order to avoid their respective drawbacks. A reference level, called p 0 , is choosen in the octree. We rst analyze all the voxels of level p 0 , and we recursively re ne it in the top-down fashion. Then the levels i < p 0 are built according to the bottom-up method.

The choice of a good reference level leads to a minimum number of useless test operations. This reference level mostly depends on the complexity of the terrain. Nevertheless the level where voxels have a size of the order of the robot's length gives usually the best results.

However, searching for a free path between 2 con gurations does not require to compute a complete free space representation. We propose in the next section a search method relying on an incremental building of the octree.

Incremental search for an admissible

path.

Let q s and q g be respectively the start and goal con gurations. We rst create in the octree the largest FREE voxels V s and V g containing q s and q g . Path search from V s to V g is performed by a classical A algorithm.

At each step of the search, the FREE neighbours of the current voxel are expanded as follows : Let V be the current voxel, belonging to level i, and let V 0 be one of its neighbours at the same level. If V 0 is FREE, we recursively analyze its father in order to determine the largest FREE voxel adjacent to V . In the other case, we analyze, among its sons, the 4 voxels adjacent to V . The free sons are appended to the list of neighbours. The MIXED ones are recursively analyzed up to level p max . This procedure is applied to the 6 neighbours of V , and returns the complete list of the largest FREE voxels adjacent to V .

Finally, the search returns a sequence of large voxels connecting V s to V g .

Experimental results.

Figures 4 shows the octree computed for the environment of Figure 5 with p max = 6. The terrain is a 64 64 elevation map.

The path search technique described above was used to improve the e ciency of a path planner based on an extension of 10]. Figure 5 shows a trajectory obtained for a 6-wheeled robot. The total time for planning this trajectory is about 1 minute on a Silicon Graphics INDIGO workstation.

Conclusion.

In this paper, we have addressed a rather new topic of the path-planning problem, ie. computing a safe path for a mobile robot moving on a rough terrain. We proposed a method, using con guration space, to characterize the placements for which the locomotion architecture of the robot can guarantee terrain irregularities absorption and stability of the vehicle.

We believe that the free space representation proposed in this work captures the essential constraints acting on the placement of the robot over the terrain. Therefore, the CS-regions resulting from the path search can be used to limit the search space for more sophisticated (but also more computationally expensive) path planners which consider additional constraints such as collision or non-holonomic constraints.

Natural extensions of this work would deal with a better integration of these di erent planning techniques to obtain a more e cient path planner. 
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 5 Figure 5: (A) The initial consiguration. (B) The goal con guration. (C) The trajectory obtained for a six wheels robot by using the free-space structuring described here.
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j j < 2 ; j j < 2 .

This hypothesis is not restrictive and facilitates the computation.

In order to keep simple expressions, we give them according to the bounds on d i , since d min i = cos a cos a z min i and d max i = cos a cos a z max i .

[START_REF] Giralt | The French Planetary Rover VAP: Concept and Current Developments[END_REF] In the expression of maxjBj, the maximal value of

Note that our octree does not contain FULL voxels.